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1. Introduction 

Modern electrical power systems can be 
regarded as a pivot supporting virtually all 
activities of man required to enhance 
meaningful existence. Smart home and 
industrial automation are examples of areas of 
applications where the benefits of an electrical 
energy is greatly appreciated in almost every 
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part of the world [1]. Hence, stern efforts to 
sustain the optimum operation of power 
systems at all times become non-negotiable.  

Over time, experiences had shown that fault 
is one of the major anomalies in power 
systems, capable of causing a major setback 
to optimum performance and operation of 
power systems [2]. When the fault occurred, 
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 The occurrence of faults in any operational power system network is 

inevitable, and many of the causative factors such as lightning, 

thunderstorm among others is usually beyond human control. 

Consequently, there is the need to set up models capable of prompt 

identification and classification of these faults for immediate action. 

This paper, explored the use of artificial neural network (ANN) 

technique to identify and classify various faults on the 11 kV 

distribution network of University of Lagos. The ANN is applied because 

it offers high speed, higher efficiency and requires less human 

intervention. Datasets of the case study obtained were sectioned 

proportionately for training, testing, and validation. The mathematical 

formulations for the method are presented with python used as the 

programming tools for the analysis. The results obtained from this 

study, for both the voltage and current under different scenarios of 

faults, are displayed in graphical forms and discussed. The results 

showed the effectiveness of the ANN in fault identification and 

classification in a distribution network as the model yielded satisfactory 

results for the available limited datasets used. The information 

obtained from this study could be helpful to the system operators in 

faults identification and classification for making informed decisions 

regarding power system design and reliability.          
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current and voltage magnitudes suffer severe 
deviations from their normal magnitudes. 
Consequently, it triggers protective devices to 
act, which when it is severe than what 
proactive devices can cope with, such 
dangerous magnitudes are passed on to 
delicate power systems equipment like 
generators, transformers, insulator and many 
others [3]. Hence, damage to these sensitive 
pieces of equipment cannot an option. As a 
matter of fact, the emergence of faults would 
have been of no significance, if the system is 
intelligent enough to detect and forestall 
possible faults even before they arise. 

Simulation software is an essential tool in 
recent time, which permits analysis of large 
interconnected systems in real-time [4], [5]. 
For instance, the authors in [6], [7] utilized 
the classical PSPICE to observe power system 
operations especially with the presence of a 
switching feature. PSPICE is capable of 
modeling the essential circuital equations at 
both transient and steady states. It can as well 
be used to set up a database for managing 
load flow data, field test results and various 
other engineering information as seen in [8], 
[9]. However, the PSPICE simulation platform 
is limited to low frequency-dependent devices 
[10]. Similarly, system's distance calculation 
technique based on the fault distance 
estimation re-action method, using data from 
one transmission line terminal was used by 
the authors of [11].  

In recent time, there are several artificial 
intelligence approaches to detect and classify 
fault on the power system. Such approaches 
include wavelet transform [12], a fuzzy logic 
technique [13], short Fourier transform [14], 
continuous wavelet transform,  adaptive 
neuro-fuzzy inference system (ANFIS) [15], 
and artificial neural network [16]. ANN was 
found to enjoy wide usage when it comes to 
fault detection and classification. For instance, 
the authors of [17] classified and detected 
location of faults within a power transmission 
network using ANN. Similarly, the authors in 
[18] advanced the work done reported in [17] 
by implementing identification, classification 
and detection of fault location using ANN. 
Also, an analysis of the different types of faults 
on the Nigerian 33-kV transmission network 
using ANN was carried out by  the authors of 
[19]. More recently, various methodologies for 
fault classifications and detection based on 
ANN are reviewed in [20]. 

Every power system strives for its 
sustainability. Consequently, in some 

developing countries like Nigeria, where the 
demand for electricity outweighs the power 
produced, it is economical to ensure that the 
available generated power is optimally 
distributed. As the occurrence of faults in 
power system operation is inevitable, its 
emergence could be catastrophic, which could 
lead to total blackout or voltage collapse of the 
system. In order to promptly salvage the 
situation and ensure power system 
sustainability, it is necessary to analyze and 
classify faults in real-time. This can help 
power system engineers in quickly identifying 
the type of fault that has ensued so as to take 
quick decision to maintain the integrity of the 
network. Every occurrence of fault is 
characterized by variance in current and 
voltage values. These faults are associated 
with patterns of currents and voltage 
distributions. The neural network features a 
connection of neurons that takes in datasets 
for each type of fault, which learns and 
recognizes the patterns for voltage and 
current distribution for each type of fault. As 
such, it is able to accurately analyze and 
predict the type of fault whenever it re-
emerges in the system. 

Although several works have been reported 
on fault classification, detection and location 
on transmission networks [21]–[24], less 
attention has been paid to fault classification, 
identification and location detection on the 11-
kV practical distribution network. This paper 
presents the application of an ANN for 
symmetrical fault analysis on a typical 11-kV 
distribution network in Nigeria.  

The remaining section of this paper takes 
the following structure: section 2 presents the 
theoretical framework as well as the 
mathematical formulations of the method with 
reference to the artificial neural networks and 
the analysis of an unsymmetrical fault in a 
distribution network. The results are 
presented and discussed in section 3 while the 
paper is concluded in section 4. 

2. Theoretical Framework and 
Mathematical Modeling  

2.1. ANN-Based Fault Analysis 

Artificial neural networks (ANN) or 
connectionist systems are computing systems 
based on biological neural networks that make 
up animal brains [25]. Neural network has 
been viewed as framework rather than been 
called an algorithm, which enhances several 
differ machine learning algorithms not only to 
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work together but also process complex inputs 
data [26], [27].  

Such systems are capable of learning 
pattern based on some set of rules used in 
training dataset with a view to execute 
dedicated tasks [28]. ANN works on 
fundamental principles of central and 
peripheral nervous systems such that it 
observes, learns and processes patterns from 
datasets with sole aim to make decisions on 
an entirely new set of data [29], [30]. It 
essentially comprised the input, the hidden 
layer that processes the input, the output and 
the neurons that carry the information. 
Artificial neurons are assembled into layers. It 
has a weight that is adjusted as learning 
progresses; the weight of a connection 
increases or decreases the strength of the 
signal [30]. Artificial neurons may have a 
threshold to send the signal only if that 
threshold is crossed by the aggregate signal. 
Different layers may perform different kinds of 
transformations on their inputs, such that 
signals from the first layer to the last layer are 
traversing the layers in a quite number of 
times.  

Consider the skeletal structure of Fig. 1 
based on back propagation of the ANN as 
shown in Fig. 2. 

 
Fig. 1 Basic structure of an ANN. 

 
Fig. 2 The neural network’s skeletal 

structure [31]. 

Given that i1, i2 are primary inputs, h1, h2 
are neurons (hidden layer), o1, o2 are output 
neurons, b1, b2 are biases and w1, …, w8 are 
the weights. As shown in Fig. 2, the net input 
(𝑛𝑒𝑡ℎ1) and output (𝑜𝑢𝑡ℎ1) at h1 can be 
expressed respectively as: 

𝑛𝑒𝑡ℎ1 = 𝑤1 ∗ 𝑖1 + 𝑤2 ∗ 𝑖2 + 𝑏 ∗ 1.             (1) 

𝑜𝑢𝑡ℎ1 =
1

1+𝑒−𝑛𝑒𝑡ℎ1
 .               (2) 

Similarly, the output from h2 can be written 
as: 

𝑜𝑢𝑡ℎ2 =
1

1+𝑒−𝑛𝑒𝑡ℎ2
 .                      (3) 

The net input (𝑛𝑒𝑡𝑜1) and output (𝑜𝑢𝑡𝑜1) to 
node o1 respectively are:  

𝑛𝑒𝑡𝑜1 = 𝑤5 ∗ 𝑜𝑢𝑡ℎ1 + 𝑤6 ∗ 𝑜𝑢𝑡ℎ2 + 𝑏 ∗ 1.      (4) 

𝑜𝑢𝑡𝑜1 =
1

1+𝑒−𝑛𝑒𝑡𝑜1
 .             (5) 

In a similar manner, the output from o2 is 
given by the equation: 

𝑜𝑢𝑡𝑜2 =
1

1+𝑒−𝑛𝑒𝑡𝑜2
  .             (6) 

The total error is given as: 

𝐸𝑡𝑜𝑡𝑎𝑙 = ∑
1

2
(𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑜𝑢𝑡𝑝𝑢𝑡)2.            (7) 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑜1 + 𝐸𝑜2.             (8) 

In a bid to describe how the errors are 
influenced by the weights at each synaptic 
junction, the rate of change of the error was 
evaluated with respect to each weight. 
Considering w5 for example, to evaluate how 
the error is affected by w5, a partial derivative 
of the error was determined with respect to 
the weight w5 using chain’s rule as: 

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤5
= 

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑜𝑢𝑡𝑜1
∗

𝜕𝑜𝑢𝑡𝑜1

𝜕𝑛𝑒𝑡𝑜1
∗

𝜕𝑛𝑒𝑡𝑜1

𝜕𝑤5
 .            (9) 

𝐸𝑡𝑜𝑡𝑎𝑙 =
1

2
(𝑡𝑎𝑟𝑔𝑒𝑡𝑜1 − 𝑜𝑢𝑡𝑜1) +

1

2
(𝑡𝑎𝑟𝑔𝑒𝑡𝑜2 − 𝑜𝑢𝑡𝑜2)  (10) 

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑜𝑢𝑡𝑜1
= 2 ∗

1

2
(𝑡𝑎𝑟𝑔𝑒𝑡𝑜1 − 𝑜𝑢𝑡𝑜1) ∗ (−1) + 0  

= −(𝑡𝑎𝑟𝑔𝑒𝑡𝑜1 − 𝑜𝑢𝑡01).                   (11) 

Thus,  

𝑜𝑢𝑡𝑜1 =  
1

1+𝑒−𝑛𝑒𝑡𝑜1
,           (12) 

𝜕𝑜𝑢𝑡01

𝜕𝑛𝑒𝑡𝑜1
=   𝑜𝑢𝑡𝑜1(1 − 𝑜𝑢𝑡𝑜1),          (13) 

and   

𝑛𝑒𝑡𝑜1 = 𝑤5 ∗ 𝑜𝑢𝑡ℎ1 + 𝑤6 ∗ 𝑜𝑢𝑡ℎ2 + 𝑏 ∗ 1.           (14) 

𝜕𝑛𝑒𝑡01

𝜕𝑤5
= 1 ∗ 𝑜𝑢𝑡ℎ1 ∗ 𝑤5(1−1) + 0 + 0 =  𝑜𝑢𝑡ℎ1.     (15) 
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Therefore,  

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤5
=

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑜𝑢𝑡𝑜1
∗

𝜕𝑜𝑢𝑡𝑜1

𝜕𝑛𝑒𝑡01
∗

𝜕𝑛𝑒𝑡𝑜1

𝜕𝑤5
  

= −(𝑡𝑎𝑟𝑔𝑒𝑡𝑜1 − 𝑜𝑢𝑡𝑜1) ∗ 𝑜𝑢𝑡𝑜1(1 − 𝑜𝑢𝑡𝑜1) ∗ 𝑜𝑢𝑡ℎ1.    (16) 

Alternatively, 

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤5
= 𝛿𝑜1 ∗  𝑜𝑢𝑡ℎ1.            (17) 

Where, 

𝛿𝑜1 = 
𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑜𝑢𝑡𝑜1
∗

𝜕𝑜𝑢𝑡𝑜1

𝜕𝑛𝑒𝑡01
.            (18) 

To reduce the error, a learning rate (for the 
model) was introduced and the result was 
subtracted from the initial weight (w5 in this 
case). The new weight can be written as:  

𝑤5+ = 𝑤5 − 𝜂 ∗
𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤5
.             (19) 

The process is carried out for each weight 
and iterated until a desired output is obtained. 

2.2. Unsymmetrical Faults Analysis  

In the balanced three-phase fault, all three 
phases are either mutually shorted by one 
another or are equally shorted to the ground. 
This implies that all three phases experience 
the same degree of fault with a 120o phase 
displacement. This means that calculations 
can be done using a single phase (since 
whatever happens in one of the three phases 
translates to the rest). During fault 
simulations, impedance is attached to the 
associated fault area and the resulting faulty 
network is evaluated using Thevenin’s 
equivalent circuit as observed from the fault 
location. Prior to the occurrence, the system 
is assumed to be stable and a single phase is 
taken for analysis; where the generator is 
taken as a constant voltage source with its 
associated impedance. Consider a 
conventional n-bus system shown in Fig. 3(a) 
with a fault occurring at bus R of the system. 
The system can be re-modeled as shown in        
Fig. 3(b), setting all voltage sources to zero 
and replacing them by their corresponding 
impedance values. To evaluate the fault, a 
voltage 𝑉𝑟(0) is applied to the faulted bus and 
a fault impedance 𝑍𝑓 is attached to the bus so 
that the fault current If will flow through 𝑍𝑓. If 
the vector of the system pre-fault voltage is 
given by [32] as: 

[𝑉𝐵𝑈𝑆] = [𝑉1(0)𝑉2(0) ⋯ , 𝑉𝑟(0)]𝑇.                   (20) 

In the event of a fault, there is a change in 
the bus voltages given by the matrix[∆𝑉𝐵𝑈𝑆] 
due to the current 𝐼𝑓 flowing through 𝑍𝑓. 

 
Fig. 3 One-line diagrams (a) faulty n-bus 
system with the fault at the Rth bus [32]          

(b) the re-modeled network. 

If 𝑍𝑖 represents equivalent impedance at 
bus (𝑖), 𝑍𝑟 represents equivalent impedance at 
bus (𝑟) (faulted bus), 𝑍𝑖𝑟 connotes line 
impedance between buses (𝑖) and (𝑟), 𝑋𝑖𝑜 
stands for equivalent reactance of generator 
at bus (𝑖), 𝑍𝑓 represents the fault impedance 
introduced at (𝑟), 𝐼𝑟 (𝑓) represents the fault 
current at (𝑟) flowing through 𝑍𝑓, and 𝑉𝑓(𝑣) 

denotes the voltage applied at faulted bus (𝑟). 
The voltage at fault condition can be 
expressed  as [32]:    

𝑉𝐵𝑈𝑆(𝑓) = 𝑉𝐵𝑈𝑆(0) − ∆𝑉𝐵𝑈𝑆.           (21) 

Where, 𝑉𝐵𝑈𝑆(𝑓) is the matrix for the voltage at 
the different buses during fault, 𝑉𝐵𝑈𝑆(0) is the 
matrix for the pre-fault voltage values prior to 
fault and ∆𝑉𝐵𝑈𝑆 is the matrix for the drop in 
voltage values at the different buses during 
fault.  

The vector of the bus currents for the 
network can be expressed as follows: 

𝐼𝐵𝑈𝑆 = 𝑉𝐵𝑈𝑆𝑌𝐵𝑈𝑆.            (22) 

Where, 𝑉𝐵𝑈𝑆 is the vector of bus voltage profile 
and YBUS is the 𝑛 − 𝑏𝑦 − 𝑛 bus admittance 
matrix for the network.  

In the event of fault, all voltage sources at 
the different buses (except the bus on which 
the fault occurs) are shorted and represented 
by their equivalent resistances. The 
implication of this is that current in every 
other bus aside the faulted bus is 0 as the 
faulted bus has a voltage 𝑉𝑟(0) applied to it. 
Therefore, equation (22) can be expanded as 
[32]: 
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[
 
 
 
 

0
:

𝐼𝑟(𝐹)
:
0 ]

 
 
 
 

=

[
 
 
 
 
𝑌11

𝑀
𝑌𝑟1

𝑀
𝑌𝑛1

  

∧
.
∧
.
∧

  

𝑌1𝑟

.
𝑌𝑟𝑟

.
𝑌𝑛𝑟

  

∧
.
.
.
∧

  

𝑌1𝑛

𝑀
𝑌𝑟𝑛

𝑀
𝑌𝑛𝑛]

 
 
 
 

[
 
 
 
 
∆𝑉1

⋮
∆𝑉𝑟
⋮

∆𝑉𝑛]
 
 
 
 

.                 (23) 

From equation (22), the vector of change in 
the bus voltage magnitude is given by the 
equation: 

[∆𝑉𝐵𝑢𝑠] = [𝑌𝐵𝑢𝑠]
−1[𝐼𝐵𝑈𝑆].               (24) 

But,  

[𝑉𝐵𝑈𝑆 (𝑓)] = [𝑉𝐵𝑈𝑆 (0)] − [∆𝑉𝐵𝑈𝑆].             (25) 

[𝑉𝐵𝑈𝑆 (𝑓)] = [𝑉𝐵𝑈𝑆(0)] − [𝑉𝐵𝑈𝑆(0)][𝐼𝐵𝑈𝑆].           (26) 

In compact form, 

[
 
 
 
 
𝑉1(𝐹)

⋮
𝑉𝑟(𝐹)

⋮
𝑉𝑛(𝐹)]

 
 
 
 

=

[
 
 
 
 
𝑉1(0)

⋮
𝑉𝑟(0)

⋮
𝑉𝑛(0)]

 
 
 
 

− 

[
 
 
 
 
𝑍𝐼1 ⋯ 𝑍𝐼𝑟 ⋯ 𝑍𝐼𝑛

⋮
𝑍𝑟1

⋮
⋯ 𝑍𝑟𝑟 ⋯ 𝑍𝑟𝑛

𝑍𝑛1 ⋯ 𝑍𝑛𝑟 ⋯ 𝑍𝑛𝑛]
 
 
 
 

[
 
 
 
 

(0)
⋮

𝐼𝑟(𝐹)
⋮
0 ]

 
 
 
 

.. 

(27) 

In a situation whereby the effect of the fault 
is not evenly distributed across all three 
phases, the use of symmetrical components 
employed in evaluating the current and 
voltage values during a fault is given as [32]:  

𝑎 = 𝑎1 + 𝑎2 + 𝑎0.          (28a) 

𝑏 = 𝑏1 + 𝑏2 + 𝑏0.          (28b) 

𝑐 = 𝑐1 + 𝑐2 + 𝑐0.                    (28c) 

Similarly, each phase in terms of phase A 
can be represented as follows: 

𝑎 = 𝑎0 + 𝑎1 + 𝐴2;          (29a) 

𝑏 = 𝑎0 + 𝐾2𝑎1 + 𝐾𝑎2;          (29b) 

𝑐 = 𝑎0 + 𝐾𝑎1 + 𝐾2𝑎2;                   (29c) 

where, K is an operator defined by 𝐾 = 1∠120°. 

Equation (29) can be written in matrix form 
as follows: 

[
𝑎
𝑏
𝑐
] = [

1 1 1
1 𝐾2 𝐾
1 𝐾 𝐾2

] [

𝑎0

𝑎1

𝑎2

].               (30) 

If  𝑋 =  [
1 1 1
1 𝐾2 𝐾
1 𝐾 𝐾2

];            (31) 

the inverse of X can be estimated by using the 
relation: 

𝑋−1 = 
1

3
[
1 1 1
1 𝐾2 𝐾
1 𝐾 𝐾2

].            (32) 

The phase currents and sequence currents, 
using symmetrical components, can be 
written as: 

[𝐼]𝑎𝑏𝑐
𝑇 = 𝑋[𝐼]012

𝑇 .             (33) 

[𝐼]012
𝑇 = 𝑋−1[𝐼]𝑎𝑏𝑐

𝑇 .            (34) 

In a similar fashion, the phase and 
sequence voltages, can be written 
respectively as: 

[𝑉]𝑎𝑏𝑐
𝑇 = 𝑋[𝑉]012

𝑇 .            (35) 

[𝑉]012
𝑇 = 𝑋−1[𝑉]𝑎𝑏𝑐

𝑇 .            (36) 

The proposed method is then extended to 
the 11 kV distribution network of the 
University of Lagos to test the effectiveness of 
its performance. Different simulations and 
signal analysis are performed in the MATLAB 
Integrated Development Environment (IDE).  

2.3. Implementation 

The University of Lagos 11 kV distribution 
station comprises eleven buses, two in-
coming and nine out-going, with a power 
outputs such that 3.5 MW ≤ 𝑃𝑜𝑢𝑡𝑝𝑢𝑡 ≤   5.5  MW 
is used to implement the approach presented 
in this study. This section discusses, in detail, 
the implementation and testing of the neural 
network model.  

2.3.1. Model training: The datasets were 
obtained from the station and used to train, 
test and evaluate the performance of the 
model. Table 1 shows the data set employed 
for the training model. The datasets were 
normalized against the preset values before 
being fed into the neural network model.  

A multi-layer perceptron (MLP) was 
deployed in creating a model for the neural-
network, it combines a feed-forward and a 
supervised learning technique called a back-
propagation. The feed forward simply 
combines all available sets of neurons and the 
back propagation compares the outputs 
obtained, calculates the error, differentiates 
the error function to obtain the global 
minimum and then adjusts the neurons 
weights and biases until the desired output is 
obtained to a reasonable accuracy. The 
accuracy obtained for training the model was 
found to be 90 %. However, this was due to 
the relatively little data that was available for 
testing the model. The sci-kit learn library was 
adopted in building this library and obtaining 
necessary statistical insights as to the model’s 
performance. The data in Table 1 was properly 
visualized and cleaned up so as to obtain 
unadulterated training results and a training 
plot was obtained. 

2.3.2. Model testing: The next step after 
sufficient training is testing the model to 
observe performance and how it handles a 
new set of data. Table 2 shows the datasets 
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that were passed into the model via an excel 
spreadsheet. These datasets were used to 
assess the trained model to see how it fared 
and also to observe accuracy, error(s) and 

regression. The test accuracy was found to be 
100 % for the dataset that was tested and a 
validation plot as well as a confusion matrix 
was obtained for the test set.

Table 1 Training datasets. 

𝑉𝑎 𝑉𝑏 𝑉𝑐 𝐼𝑎 𝐼𝑏 𝐼𝑐 
0.5000 0.5000 0.5000 0.1500 0.1500 0.1500 
0.0000 0.4800 0.4800 0.8890 0.1570 0.1560 

0.4800 0.0000 0.4300 0.1640 0.9270 0.1660 

0.4800 0.4700 0.0000 0.0950 0.9330 0.8150 
0.1160 0.1030 0.4300 0.7720 0.7722 0.1550 

0.5000 0.1123 0.1078 0.1486 0.8880 0.8890 

0.0000 0.4890 0.0750 0.7500 0.1570 0.7570 
0.0150 0.0150 0.5100 0.8440 0.8440 0.1490 

0.4870 0.0290 0.0289 0.1520 0.6667 0.7110 

0.0920 0.5160 0.920 0.7740 0.1499 0.7660 
0.1200 0.1250 0.1290 0.8200 0.7900 0.8900 

1.0030 1.0211 1.0110 1.1120 1.1100 1.0992 

0.0000 0.9480 0.9480 3.8890 1.1170 1.1065 
1.0030 0.0000 1.0130 1.1640 3.9270 1.1660 

1.1080 1.1072 0.0000 0.9500 0.9330 3.8150 

0.4160 0.5300 1.0430 3.7720 3.6722 1.1150 
1.1500 0.1230 0.2078 1.1486 4.8880 4.8810 

0.0080 1.0890 0.2075 5.7500 0.9870 5.7510 

0.0150 0.0150 1.1100 3.8440 4.0440 1.1020 
1.0870 0.0290 0.0289 1.0520 3.6667 4.0110 

0.0920 1.1160 0.0920 4.7740 1.1090 3.9660 

0.3120 0.1050 0.1790 4.8200 4.8910 4.8900 
1.0030 1.0040 0.9970 0.9930 0.9980 1.0010 

0.2250 1.1120 1.1050 4.331 0.9860 0.9970 

1.1150 0.3340 1.1030 0.9910 5.2210 1.0020 

0.5530 0.3360 0.9860 4.4480 4.4480 1.0060 

0.9920 0.5520 0.3380 0.9860 4.5560 4.5560 

0.5510 1.0010 0.6630 6.2220 0.9940 6.2220 
0.3240 0.3240 1.1160 6.1220 6.8870 0.9890 

1.1130 0.3150 0.3150 0.9870 5.6670 6.1230 
0.3020 1.1180 0.3020 7.2230 0.9960 6.8960 

Note: Va, Vb and Vc represent the normalized phase voltage values for phases a, b and c respectively; Ia, Ib and Ic 

represent the normalized phase current values for phases a, b and c respectively. 

Table 2 Test datasets. 

𝑉𝑎 𝑉𝑏 𝑉𝑐 𝐼𝑎 𝐼𝑏 𝐼𝑐 
0.995 0.991 0.993 0.997 0.994 0.992 

0.321 1.184 1.179 3.521 0.989 0.983 
1.173 0.334 1.194 0.982 3.336 0.985 

1.192 1.172 0.336 0.981 0.979 3.337 

0.471 0.625 0.987 5.421 5.421 0.984 

0.986 0.651 0.985 5.421 5.421 5.379 

0.469 0.987 0.648 5.376 0.984 5.376 

0.206 0.205 1.186 7.187 7.855 0.985 
1.188 0.213 0.213 0.985 7.185 7.855 

0.205 1.179 0.205 7.187 0.985 7.855 
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3. Results and Discussion 

Fig. 4 shows the training curve for the 
model and the training accuracy obtained was 
found to be 90 %.  

 
Fig. 4 ANN training curve with MLP.  

3.1. Univariate Analysis of System Parameters 

The univariate analysis of the voltage on 
each phase clearly buttresses the distinct 
corresponding trend in behavior of the voltage 
distribution across the pre-fault and on-fault 
conditions. Taking phase ‘a’, for instance, the 
voltage behavior is shown (Fig. 5). The blue 
shade behind the waveform is called a density 
plot and it describes the regions where the 
voltage values are represented for pre-fault 
and on-fault scenarios. The waveform 
represents voltage distribution across pre-
fault and on-fault cases. On the left part of the 
waveform, the voltage value is closer to unity 
as with the normalized pre-fault values and 
then on the right side of the plot. It can be 
seen that a decline in voltage magnitude is 
experienced and this is essentially obtainable 
during fault conditions. 

 
Fig. 5 Univariate plot showing voltage 

distribution for phases ‘a’. 

The normalized voltage axis as shown in 
Figs. 5 to 7 represents the normalized fault 
voltage values (phases a to c) and the voltage 
distribution axis shown in each of the figures 
represents the voltage value range for 
standard conditions. Each phase shows the 
voltage distribution for different points of 
operation and it can be seen that a voltage 
collapse occurs during a fault condition.  
Similar to phase ‘a’, phase ‘b’ shows the 
voltage distributions across different 
conditions. Also, phase ‘a’ and phase ‘b’ show 
the voltage distribution for different points of 
operation and it can be seen that a voltage 
collapse occurs during a fault condition.  

 
Fig. 6 Univariate plots for phase b voltage 

distribution. 

 
Fig. 7 Univariate plots for phase ‘c’ voltage 

distribution. 

The univariate current distribution (Fig. 7) 
shows the trend in behavioral of current 
values during fault conditions (to the left of 
the curve) and during normal or pre-fault 
conditions. The univariate current 
distributions, shown in Figs. 8 to 10, show the 
trend in behavior of current values during fault 
conditions (to the left of the curve) and during 
normal or pre-fault conditions.  
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Fig. 8 Univariate plot showing current 

distribution for phase ‘a’. 

 
Fig. 9 Univariate plot showing current 

distribution for phase ‘b’. 

 

Fig. 10 Univariate plot showing current 
distribution for phase ‘c’ 

The normalized current deviation axis 
shows step sizes for the mean deviation of the 
current values while the Current distribution 
axis represents current distribution across 
pre-fault and on-fault conditions. Fig. 8 shows 
the distribution of the current data points and 
also shows a density plot for where the values 
are concentrated during pre-fault and on-fault 
scenarios for phase ‘a’. The same applies to 
phase ‘b’ (Fig. 9). As with phases ‘a’ and ‘b’, 
Fig. 10 shows the univariate plot for the 
current distribution in phase ‘c’. 

3.2. Bivariate Analysis of System Parameters 

The bivariate plot in Fig. 11 shows a stacked 
histogram plot of current and voltage values 
during fault conditions.  On the left of the plot, 
the pre-fault voltage and current values can 
be seen on yellow and blue bars respectively 
(on a scale of 0.5 on the vertical axis) and on 
the right, the voltage collapse for both 
parameters is observed. 

 
Fig. 11 Bivariate plot showing voltage and 

current distribution. 

The Figs. 12- 14 show voltage for each type 
of fault, it shows the population of power 
system parameters for each type of fault. This 
helps to draw insight on what happens to the 
phase voltage values during each type of fault 
and this helps when making decisions during 
power system design and reliability studies.  

Fig. 12 shows the distribution of voltages 
values across each fault type for phase ‘a’ 
during different fault conditions. During fault 
conditions associated with phase ‘a’, there is a 
decline in voltage values, whereas the voltage 
values for the fault types that are not 
associated with phase ‘a’ are observed to be 
intact. 
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Fig. 12 Voltage distribution for phase ‘a’ for 

each fault type. 

 
Fig. 13 Voltage distribution for phase ‘b’ for 

each fault type. 

 
Fig. 14 Voltage distribution for phase ‘c’ for 

each fault type. 

Similarly, Fig. 13 shows the distribution of 
voltages values across each fault type for 
phase ‘b’ during different fault conditions. 
During fault conditions associated with phase 
‘b’ there is a decline in voltage values, 
whereas the voltage values for the fault types 
that are not associated with phase ‘b’ are 
intact. In addition, Fig. 14 the distribution of 
voltages values across each fault type for 
phase ‘c’ during different fault conditions.  
Observation of Fig. 14 shows that during fault 
conditions associated with phase-a there is a 
decline in voltage values, whereas the voltage 
values for the fault types that are not 
associated with phase ‘c’ are intact. 

The electric current distribution can be 
shown in like manner as seen shown in Figs. 
15 to 17 for a different type of fault, and 
current values during each type of fault help 
when making decisions during power system 
design and reliability studies.  

 
Fig. 15 Current distribution for phase ‘a’ for 

each fault type. 

 
Fig. 16 Current distribution for phase ‘b’ for 

each fault type. 
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Fig. 17 Current distribution for phase ‘c’ for 

each fault type. 

Fig. 15 depicts the distribution of current 
values across each fault type for phase ‘a’, in 
contrast to what was obtained in the 
distribution from the bar-graphs for the 
voltage values during fault conditions 
associated with phase ‘a’, there is a rapid rise 
in current values whereas the current values 
for faults not associated with phase ‘a’ 
remained unchanged. Also, Fig. 16 shows the 
distribution of current values across each fault 
type for phase ‘b’. Observation shows that 
during fault conditions associated with phase 
‘b’ there is a rapid rise in current values 
whereas the current values for faults not 
associated with phase ‘b’ remained 
unchanged. Besides, Fig. 17 depicts the 
distribution of current values across each fault 
type for phase ‘c’. It was observed that during 
fault conditions associated with phase ‘c’ there 
is a rapid rise in current values whereas the 
current values for faults not associated with 
phase ‘c’ remained unchanged. 

3.3. Model Validation 

Validation is necessary when building a 
neural network model and it is usually 
represented by a validation curve. A validation 
curve, shown in Fig. 18, gives a measure of 
how effective an estimator fares with data 
with which it has been trained and also 
measures how well it handles new or 
unrecognizable inputs. Having split the data 
sets into the training set and test set; the 
validation curve shows how well the model 
was able to handle new datasets (the test set) 
after being trained with the (train set). 

The accuracy of the model is basically a 
measure of a ratio of the amount of data 

correctly predicted to the total amount of data 
passed into the model, sequel to obtaining the 
model accuracy. It is important to observe 
how easily the model made the predictions 
and this is evaluated by plotting a confusion 
matrix. As the name implies, it essentially 
provides an insight on how well the model was 
able to predict the outcome of the test dataset 
and also issues encountered in making the 
prediction. The confusion matrix, shown in 
Fig. 19, showed that the model was 
considerably decisive in classifying each type 
of fault with minimal confusion. This suggests 
that the model was well trained and has a 
good grasp of the patterns associated with 
each fault and can easily classify other 
datasets when the need arises. 

 
Fig. 18 Validation plot for the model. 

 
Fig. 19 Confusion matrix for the tested data. 

Artificial neural network is a very handy tool 
for fault analysis and detection. Neural 
networks built on complex statistical methods 
and optimization techniques and as such, they 
are generally complex. The model developed 
in this paper describes how to effectively 
deploy a neural network using systematically 



 

A. S. Alayande et al. / Journal of Advances in Science and Engineering 4 (2021) 53 – 64  

 

63 

designed python programming libraries that 
simplify the scientific complexities presented 
by neural networks. The model produced a 
90% training result and a 100% prediction 
accuracy.  

This paper contributes to the existing string 
of research on faults analysis using ANN as an 
alternative method, which is characterized by 
simplicity, without sacrificing the accuracy of 
the method. One main limitation of the 
proposed approach is that it leverages on data 
availability to accurately classify and predict 
faults, which make it to be data-intensive. The 
approach presented in this paper identifies 
and classifies various unsymmetrical faults 
through the use of ANN. The approach 
presented in this paper could also be extended 
to predict symmetrical faults in distribution 
networks. Although, the approach is tested 
using a small distribution network of 11 kV 
distribution network of University of Lagos, it 
can be extended to larger sized practical 
power systems. One important factor that 
constrained this present study to a small 
network is the availability of datasets, which 
has a greater influence on the results obtained 
from the study. 

4. Conclusion 

In this paper, the application of an artificial 
neural network for classifying various 
unsymmetrical faults occurring on a typical 11 
kV distribution network of the University of 
Lagos in Nigeria. The relevant mathematical 
formulations based on the suggested 
approach have been presented. The datasets 
obtained for the test case are sectioned into 
two parts; the first part is used to train the 
model while the validation and integrity of the 
developed model are tested using the second 
portion. The results obtained showed that the 
method is able to accurately locate and 
classify all types of unsymmetrical faults on 
the system. It is seen that proper data 
visualization and cleaning plays a significant 
role in the learning process, performance and 
accuracy of a neural network model. 
Moreover, based on the results obtained, it 
can be inferred that the approach presented 
could be helpful to system operator by 
optimizing the speed in classifying 
unsymmetrical faults, most especially, during 
critical outages, so as to reduce downtimes 
and avoid lengthy blackouts. Although a 
simple system is used for the validation of the 
approach in this present study, larger 
networks could also be tested as part of the 
future studies. 
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