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Abstract

We present a machine learning analysis of five labelled galaxy catalogues from

the Galaxy And Mass Assembly (GAMA): The SersicCatVIKING and Sers-

icCatUKIDSS catalogues containing morphological features, the GaussFitSim-

ple catalogue containing spectroscopic features, the MagPhys catalogue includ-

ing physical parameters for galaxies, and the Lambdar catalogue, which con-

tains photometric measurements. Extending work previously presented at the

ESANN 2018 conference – in an analysis based on Generalized Relevance Matrix

Learning Vector Quantization and Random Forests – we find that neither the

data from the individual catalogues nor a combined dataset based on all 5 cat-

alogues fully supports the visual-inspection-based galaxy classification scheme

employed to categorise the galaxies. In particular, only one class, the Little Blue

Spheroids, is consistently separable from the other classes. To aid further insight

into the nature of the employed visual-based classification scheme with respect

to physical and morphological features, we present the galaxy parameters that

are discriminative for the achieved class distinctions.
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1. Introduction

Telescope images of galaxies reveal a multitude of appearances, ranging

from smooth elliptical galaxies, through disk-like galaxies with spiral arms,

to more irregular shapes. The study of morphological galaxy classification

plays an important role in astronomy: the frequency and spatial distribution

of galaxy types provide valuable information for the understanding of galaxy

formation and evolution [1, 2].

The assignment of morphological classes to observed galaxies is a task which

is commonly handled by astronomers. As manual labelling of galaxies is

time consuming and expert-devised classification schemes may be subject to

cognitive biases, machine learning techniques have great potential to advance

astronomy by: 1) investigating automatic classification strategies, and 2) by

evaluating to which extent existing classification schemes are supported by the

observational data.

In this work, we extend a previous analysis [3] to make a contribution along

both lines by analysing several galaxy catalogues which have been annotated

using a recent classification scheme proposed by Kelvin et al. [4]. In our

previous study, we assessed whether this scheme is consistent with a galaxy

catalogue containing 42 astronomical parameters from the Galaxy And Mass

Assembly (GAMA, [5]) by performing both an unsupervised and a supervised

analysis with prototype-based methods. We assessed whether class structure

can be recovered by a clustering of the data generated by the unsupervised

Self-Organizing Map (SOM) [6], and investigated if the morphological classi-

fication can be reproduced by Generalized Relevance Matrix Learning Vector

Quantization (GMLVQ) [7], a powerful supervised prototype-based method

[8] chosen for its capability to not only provide classification boundaries and

class-representative prototypes, but also feature relevances. Finding consis-
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tently negative results for the supervised and unsupervised method, namely an

intermediate classification accuracy of GMLVQ of around 73% and no clear-cut

agreements between galaxy classes and SOM-clustering results, we concluded

the classification scheme to be not fully supported by the considered galaxy

catalogue. As discussed previously [3] the hypothesised misalignment between

galaxy data and classification scheme could be explained by lack of discrimina-

tive power of the employed classifiers or clustering methods, by mis-labellings

of certain galaxies (a possibility already discussed in [9]), or by the absence

of essential parameters in the data set. In this work, we address two of the

mentioned aspects: We employ an additional established and flexible classifier,

Random Forests [10] to collect evidence that the previously found moderate

classification performance is not due to shortcomings of GMLVQ. Furthermore,

we address the potential incompleteness of the previously analysed dataset

by performing another set of supervised analyses on several additional galaxy

catalogues from the GAMA survey [11], which contain a multitude of additional

photometric, spectroscopic and morphological measurements.

Despite the commonly quoted abundance of data in astronomy, well-accepted

benchmark datasets are not readily available in the field of galaxy classification,

and only a few works analysing GAMA catalogues with machine learning

methods exist. In an analysis by Sreejith et al. [9], 10 features from GAMA

catalogues are hand-selected and analysed using Support Vector Machines,

Decision Trees, Random Forests and a shallow Neural Network architecture.

With respect to Kelvin et. al’s classification scheme a maximum classification

accuracy of 76.2% is reported. Turner et al. [12] perform an unsupervised

analysis of five hand-selected features from GAMA catalogues using k-means

clustering. While not the main aim of Turner et al.’s analysis, a comparison

of the determined clusters with class information from Kelvin et al. shows

galaxies that are assigned the same class by Kelvin et al. spread over several

clusters (Figures 11, 13, 15 and 17 in [12]).

In agreement with our previous results and the analyses from the above

mentioned literature, we find the employed classification scheme to not be fully
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supported even when considering the additional catalogues and an alternative

classifier. Interestingly, analogous to our previous work [3], the Little Blue

Spheroids, a galaxy class newly introduced in [4], remains most clearly pro-

nounced, also for the set of catalogues analysed in this work. We present the

parameters that are the most relevant for the achieved class distinctions.

The paper is organised in as follows: In Section 2 the analysed galaxy cat-

alogues and their preprocessing is described. Section 3 outlines the employed

classification methods, GMLVQ and Random Forests. Section 4 describes ex-

perimental setups and results. The work closes with a discussion in Section 5.

This paper constitutes an extension of our contribution to the 26th European

Symposium on Artificial Neural Networks, Computational Intelligence and Ma-

chine Learning (ESANN) 2018 [3]. Parts of the text have been taken over

literally without explicit notice. This concerns, among others, parts of the in-

troduction and the description of GMLVQ in Section 3.

2. Data

In this work we analyse data from five galaxy catalogues (Table 1) con-

taining features which have been derived from spectroscopic and photometric

observations, i.e. measurements of flux intensities in different wavelength bands

from the Galaxy And Mass Assembly (GAMA) survey [11] for a sample of 1295

galaxies. As the catalogues contain information for different sets of galaxies, our

data set consists of the set of galaxies for which a full set of features is available

after balancing the relevant classes (cf. Section 2.6).

To determine this set, each catalogue is first cross-referenced with the galaxy

sample analysed in our ESANN contribution [9, 3], which contains class labels

for 7941 astronomical objects. The resulting subsample is further preprocessed

by selecting measurements based on the specifics of each catalogue. Subse-

quently, missing values are treated by first removing feature dimensions with a

considerable amount of missing values (more than 500 missing values per feature
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catalogue shorthand number of samples after preprocessing

GaussFitSimple GFS 7430 galaxies with 59 emission line features

Lambdar Lambdar 7365 galaxies with 28 flux measurements and

uncertainties for different bands

MagPhys MagPhys 7541 galaxies with 171 features

SersicCatVIKING Viking 5476 galaxies with 66 Sérsic features

SersicCatUKIDSS Ukidss 3008 samples with 53 Sérsic features

Complete information

from all catalogues
2117 galaxies

Final sample

(cf. Section 2.6)
1295 galaxies

Table 1: Overview of galaxy catalogues analysed in this work. Shown are also the number

of samples for which complete information, i.e. information from each of the catalogues, is

available, and the number of samples in the final dataset considered in the remainder of this

work.

dimension) and then discarding samples which contain missing values in any of

the remaining feature dimensions.

Details of each catalogue as well as specific processing steps are delineated in

the following paragraphs.

2.1. GaussFitSimple

The GaussFitSimple catalogue (GFS) [13] contains parameters of Gaussian

fits to 12 important emission lines found in galaxy spectra, namely the emission

lines of oxygen ([O I] emission lines at 6300Å and 6364Å, in the following denoted

as OIB and OIR, [O II] lines at 3726Å and 3729Å, denoted as OIIB and OIIR,

[O III] lines at 4959Å and 5007Å, denoted as OIIIR and OIIIB), nitrogen ([N

II] lines at 6548Å and 6583Å, NIIR and NIIB), sulphur ([S II] lines at 6716Å

and 6731Å, SIIR and SIIB), and hydrogen (Hα and Hβ lines at 6563Å and

4861Å, respectively). Further, the catalogue contains slope and intercept of

the continuum, that is, the background radiation in-between emission lines.
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In addition to these parameters the catalogue also contains meta-information

concerning model fits and corresponding errors.

From the GaussFitSimple catalogue we select amplitudes (AMP *) and sigma

(SIG *) of the Gaussian fit for each emission line, as well as calculated fluxes

(* FLUX) and equivalent widths (* EW). Here and in the following, the asterisk

* is a placeholder for the name of the corresponding emission line. We further

include information about the continuum (CONT, GRAD) and the strength

of the D4000 break, resulting in 59 selected features. We discard all samples

for which a failure of the fitting procedure has been indicated (FITFAIL *),

and remove samples containing missing values in any of the feature dimensions.

The resulting sub-catalogue then contains 7430 galaxies with 59 emission line

features.

We note that the classification performance on the full catalogue, which contains

model fit information and errors / measurement uncertainties is comparable

to the results achieved with the reduced catalogue containing 59 features (cf.

Section 4). As the selected parameters allow for a more direct interpretation in

terms of emission line strengths and therefore facilitate interpretation from the

astronomical perspective, we consider the reduced catalogue in the following.

2.2. Lambdar

The Lambdar catalogue [14] contains flux measurements and uncertainties

for 21 bands, as measured by the LAMBDAR software [14]. When cross-

referencing with the catalogue analysed in our preceding study, 400 galaxies

are missing from the Lambdar catalogue. These galaxies are removed from the

considered Lambdar subset and do not contribute to the ensuing missing value

calculations. Columns still containing a considerable amount of missing values

after this step (> 500 ) are excluded from the analysis. The removed columns

contain parameters that include fluxes and errors in the far and near Ultravi-

olet (UV) (FUV flux, FUV fluxerr, NUV flux, NUV fluxerr), and fluxes and

errors in the 100µm to 500µm bands (P100 flux, P100 gcfluxerr, P160 gcflux,

P160 gcfluxerr, S250 gcflux, S250 gcfluxerr, S350 gcflux, S350 gcfluxerr,
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S500 gcflux, and S500 gcfluxerr). After removing these, 28 features remain in

the catalogue, namely fluxes and errors for u, g, r, i and z bands observed in

the Sloan Digital Sky Survey (SDSS,[15]), Z, Y, J, H and K bands from VISTA

Kilo-Degree Infrared Galaxy Survey (VIKING, [16]), and W1, W2, W3 and

W4 bands from the Wide-field Infrared Survey Explorer (WISE, [17]). After

this step, samples that are missing measurements for any of the remaining

features are removed, resulting in a final sub-catalogue of 7365 galaxies with 28

features.

2.3. MagPhys

The MagPhys catalogue [18] contains physical parameters comprising in-

formation about stellar populations as well as parameters describing the inter-

stellar medium in the galaxies. Parameters include, among others, star forma-

tion rates, star formation time-scales, information about star formation bursts,

as well as the masses of stars formed in the bursts, overall stellar ages and

masses, metallicities, and information about dust in the interstellar medium

and in stellar birth clouds ; all this for each included galaxy. All MagPhys

parameters have been derived from information provided in the Lambdar cata-

logue (Section 2.2) using the MAGPHYS program [18]. Due to missing values in

the Lambdar catalogue, the MagPhys catalogue does not contain information

for 400 of the galaxies analysed in our ESANN contribution [3]. Apart from

these, there are no missing values, so that information from 177 MagPhys fea-

tures is available for 7541 galaxies. However, after selecting the final sample (cf.

Section 2.6) some parameters exhibit almost no variance over the considered

samples: Parameters fb17 percentile2 5, fb18 percentile2 5, fb17 percentile16,

fb17 percentile50, fb17 percentile84 and fb18 percentile16 1 are largely constant,

with maximally 15 data points displaying deviations. We therefore remove these

features, which results in a dimensionality of 171 for the final MagPhys sample.

1Percentiles of the likelihood distribution of parameters describing the fraction of the ef-

fective stellar mass formed in bursts over the last 107 and 108 years
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Information on the MagPhys parameter shorthand notation used in the remain-

der can be found in [19].

2.4. Sérsic Catalogues

Three different catalogues are available which contain parameters of single-

Sérsic-component fits to the 2D surface brightness distribution of galaxies in

different bands [20]. The single-Sérsic-component fits have been produced with

the GALFIT program [21]. The catalogues contain a parameter, GALPLAN *,

which indicates GALFIT fitting failures for each band, where the asterisk * is

a placeholder for the band. GALPLAN *=0 indicates a severe failure when fit-

ting the surface brightness profile of the galaxy, which could not be amended by

attempting a number of correction strategies. We therefore discard all samples

where GALPLAN *=0.

An additional goodness-of-fit parameter allowing to judge the quality of profile

fitting is the PSFNUM * parameter. This parameter indicates the number of

prototype stars used to model the point spread function (PSF) in the galaxy

image to which the surface brightness profile was fit. As indicated in the GAMA

catalogue description, modelling PSFs based on less than 10 stars may result

in poor PSF models, which in turn may result in poorly fitted surface bright-

ness distributions. Accordingly, we discard all samples where the PSFNUM *

parameters have a value lower than 10.

The catalogue further contains meta-information needed to reproduce the re-

sults of the GALFIT fitting. Here we concentrate on parameters that are

descriptors of galaxies as opposed to parameters describing the fitting proce-

dure. The galaxy descriptors, all GALFIT-derived, are: GALMAG *, the mag-

nitude of the Sérsic model; GALRE *, the half-light radius measured along

the semi-major axis; GALINDEX *, the Sérsic index; GALELLIP *, the el-

lipticity; GALMAGERR *, the error on magnitude; GALREERR *, the er-

ror on the half-light radius; GALINDEXERR *, the error on the Sérsic index;

GALELLIPERR *, the error on ellipticity; GALMAG10RE *, the magnitude of

a model truncated at 10 × the half-light radius; GALMU0 *, the central surface
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brightness; GALMUE *, the effective surface brightness at the half-light radius;

GALMUEAVG *, the effective surface brightness within the half-light radius;

and GALR90 *, the radius containing 90% of total light, measured along the

semi-major axis of the galaxy.

2.4.1. SersicCatVIKING

The SersicCatVIKING [20] catalogue contains the above measurements for

the VIKING bands Z, Y, J, H, and K. Based on the GALFIT failure parameter

GALPLAN *=0, 966 samples were removed from the sub-catalogue. Additional

1074 samples were removed because of PSFNUM * < 10. After removing sam-

ples which have missing values in any of the named feature dimensions the final

sub-catalogue contains 5476 galaxies with 66 Sérsic features.

2.4.2. SersicCatUKIDSS

The SersicCatUKIDSS [20] catalogue contains the above measurements for

the UKIDSS [22] bands Y, J, H, K. Based on the GALFIT failure parameter

GALPLAN *=0, 2904 samples were removed from the sub-catalogue. Addi-

tional 1841 samples were removed because of PSFNUM * < 10. After removing

samples which have missing values in any of feature dimensions the final sub-

catalogue contains 3008 samples with 53 Sérsic features.

2.4.3. SersicCatSDSS

For the SersicCatSDSS catalogue [20], most samples from the cross-

referenced catalogue [3, 9] are discarded based on the PSFNUM and

GALPLAN selection, and only 1672 samples remain. The SersicCatSDSS

catalogue is therefore excluded from the analysis.

2.5. Classification Scheme

For each galaxy analysed in our ESANN contribution [3], a class label has

been determined by astronomers following a visual inspection based classifica-

tion scheme described by Kelvin et al. [4]. The scheme assigns galaxies to 9

classes: Ellipticals, Little Blue Spheroids, Early-type spirals, Early-type barred
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class index class name
corresponding

Hubble type

prevalence in

data set of [3, 9]

1 Ellipticals E0-E6 11%

2 Little blue Spheroids - 11%

3 Early-type spirals S0, Sa 10%

4 Early-type barred spirals SB0, SBa 1%

5 Intermediate-type spirals Sab, Scd 15%

6 Intermediate-type barred spirals SBab, SBcd 2%

7 Late-type spirals & Irregulars Sd - Irr 45%

8 Artefacts - 0.4%

9 Stars - 0.005%

Table 2: Overview of galaxy classes in the dataset used to cross-reference the catalogues anal-

ysed in this paper. Shown are also the corresponding Hubble types, an established galaxy type

descriptor in astronomy, and the class index that is used to identify classes in the remainder of

the work. Gray highlights indicate the classes that are part of the final classification problems.

spirals, Intermediate-type spirals, Intermediate-type barred spirals, Late-type spi-

rals & Irregulars, Artefacts and Stars (Table 2). We will refer to the classes by

their class index (1-9).

As barred spirals, artefacts and stars are highly under-represented in this sam-

ple, our subsequent analysis will focus on the substantial classes, namely classes

1, 2, 3, 5 and 7.

2.6. Sample selection

To ensure a fair comparison between the catalogues, our final dataset com-

prises the subsample of galaxies for which a full set of measurements is available,

i.e galaxies for which measurements are provided in each of the five considered

catalogues. This is the case for 2117 galaxies. Considering only the substantial

classes 1, 2, 3, 5 and 7, and balancing classes so that for each class the same

number of samples is selected, (259, based on class 2, the class with minimum

cardinality), results in a final sample of 1295 galaxies.
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3. Methods: Classifiers

3.1. GMLVQ

Generalized Relevance Matrix LVQ (GMLVQ) [7, 8] is an extension of

Learning Vector Quantization (LVQ) [23]. LVQ is a supervised prototype-based

method, in which prototypes are annotated with a class label. The prototypes

are adapted based on the label information of the training data: if the

best-matching unit (BMU), the prototype closest to the data point, is of the

same class as a given data point, the prototype is moved towards the data

point, while in the case of a BMU with an incorrect class label, the prototype

is repelled. While LVQ assesses similarities between prototypes and data

points using the Euclidean distance, GMLVQ learns a distance measure that

is tailored to the data, allowing it to suppress noisy feature dimensions or

to emphasise distinctive features and their pair-wise combinations. GMLVQ

therefore considers a generalized distance

dΛ(w, ξ) = (ξ −w)T Λ (ξ −w) with Λ = ΩT Ω and
∑

i Λii = 1,

where Λ is an n × n positive semi-definite matrix, ξ ∈ Rn represents a feature

vector and w ∈ Rn is one of M prototypes. After optimisation, the diagonal

of Λ will encode the learned relevance of the feature dimensions, while the off-

diagonal elements encode the relevances of pair-wise feature combinations. As

empirically observed and theoretically studied [24, 25] the relevance matrix after

training is typically low rank and can be used, for instance, for visualisation of

the data set (see Appendix A for an example).

The parameters {wi}Mi=1 and Λ are optimised based on a heuristic cost function,

see [7],

EGMLVQ =
∑P

i=1 µ
Λ
i , with µΛ

i = (dΛ
J (ξi)− dΛ

K(ξi))/(d
Λ
J (ξi) + dΛ

K(ξi)) , (1)

where P refers to the number of training samples, dΛ
J (ξ) = dΛ

J (wJ , ξ) denotes the

distance to the closest correctly labelled prototype wJ , and dΛ
K(ξ) = dΛ

K(wK , ξ)

denotes the distance to the closest incorrect prototype wK . If the closest pro-

totype has an incorrect label, dΛ
K(ξi) will be smaller than dΛ

J (ξi), hence, the
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corresponding µΛ
i is positive. Minimisation of EGMLVQ will therefore favour the

correctness of nearest prototype classification. In a stochastic gradient descent

procedure based on a single example the update reads

wJ,K ← wJ,K − ηw∂µi/∂wJ,K and Ω← Ω− ηΩ∂µi/∂Ω . (2)

Derivations and full update rules can be found in [7]. In a batch gradient de-

scent version [26], updates of the form (2) are summed over all training samples.

3.2. Random Forests

Random Forests (RF) [10] is a well-known classification and regression

method that employs an ensemble of randomised Decision Trees [27]. In ran-

domised Decision Trees, a subset of features is chosen randomly at each node.

Considering only the selected features, decision thresholds are determined based

on the best attainable split between classes. To combine the classifications of

each tree in the ensemble, i.e. to determine the output of the Random Forest,

different methods can be employed. In the scikit-learn implementation used in

our experiments [28, 29] the final classification output is obtained by averaging

the probabilistic prediction of each tree.

Details on the set-up of the experiments for RF as well as for GMLVQ can be

found in Section 4.1.

4. Experiments

In our experiments, we assess relevances of features and discriminability

between classes by training and evaluating GMLVQ for each of the five prepro-

cessed catalogues described in Section 2. As found in previous work [3], class

2, the Little Blue Spheroids (LBS), were particularly well-distinguishable. We

perform experiments for both, the full 5-class problem, trying to distinguish

between galaxy classes 1, 2, 3, 5 and 7 (cf. Table 2) and a 2-class problem in

which the LBS are classified against galaxies from the other four classes. In
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addition to the single catalogue experiments, we also assess feature relevances

and discriminability between classes for a concatenation of all catalogues, to

account for possible synergies between features from different catalogues.

To allow for interpretation in the light of other classifiers, we perform the same

experiments with the widely used Random Forests (RF) classifier [10] as a base-

line.

4.1. Setup

We train and evaluate GMLVQ on the galaxy catalogue data using a pub-

licly available implementation [26]. As the GMLVQ cost function is implicitly

biased towards classes with larger numbers of samples, we train and evaluate

the classifier on size-balanced random subsets of the five classes. For our ex-

periments, we specify one prototype per class and run the algorithm for 100

batch gradient steps with step size adaptation as realised in [26] with default

parameter settings.the We validate the algorithm by performing a class-balanced

repeated random sub-sampling validation (see e.g. [30] for validation methods)

for a total of 10 runs. Error measures and relevance profiles shown in the follow-

ing correspond to averages over the 10 repetitions. For the two-class problems

we also obtain and average Receiver Operator Characteristics (ROC) and the

corresponding Area under the Curve (AUC) [31].

4.1.1. Setup LBS vs others

For the two-class problem, we evaluate the classifier on a subset of the full

dataset (cf. Section 2.6) containing 515 samples. For this subset, we select

all 259 samples from class 2, while the others class is made up by 256 sam-

ples consisting of 64 samples randomly selected from class 1, 3, 5, and 7 each.

The remaining settings and validation procedure remain identical to the 5-class

problem.

4.1.2. Random Forests

We execute experiments employing Random Forests analogous to the GM-

LVQ experiments, i.e. the classifier is trained on class-balanced random subsets
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of the data and validated using repeated random sub-sampling validation. Ex-

periments are performed using a publicly available scikit-learn implementation

[28, 29] with default settings.

4.2. Classification results based on parameters from individual catalogues

A summary of classification performances for both the 5-class and the 2-

class problem can be found in Figure 1. For the 5-class problem, an overview of

confusion matrices (averaged over all validation runs) for each of the catalogues

is shown in Figure 1a; an overview of the average classification accuracies can

be found in Figure 1c in the bottom panel. For the 2-class problem, a compar-

ison of ROC curves and classification accuracies can be found in Figure 1b and

in Figure 1c in the top right subfigure, respectively. The corresponding aver-

age relevance profiles contrasting feature relevances for the 5-class and 2-class

problem are shown in the Appendix, in Figure B.1 (Lambdar catalogue), Fig-

ure B.2 (GaussFitSimple catalogue), Figure B.3 (SersicCatVIKING catalogue),

Figure B.4 (SersicCatUKIDSS catalogue), and Figures B.5 and B.6 (MagPhys

catalogue).

Results based on SersicCatVIKING. The confusion matrix indicating the GM-

LVQ class-wise accuracy on the SersicCatVIKING catalogue exhibits similar,

albeit slightly worse performance than the performances presented in our pre-

vious work [3] that was based on a different set of galaxy parameters. Based

on the SersicCatVIKING, the LBS are classified with higher accuracy (87% vs.

91% in ESANN) than the other classes (47-67%, 64-74%). As in the ESANN

results, classes 1 and 3 show some overlap (21% of class 1 samples are classi-

fied as class 3, and 20% of class 3 samples are erroneously classified as class

1). However, unlike in the ESANN results, the overlap between class 1 and

class 2 is increased in the classification using SersicCatVIKING: 22% of class 1

samples are now classified as belonging to class 2, where this overlap was only

10% for the data analysed in our ESANN contribution [3]. This is also reflected

in the 2-class problem when distinguishing the LBS from the other classes. In
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[3] this can be achieved with AUC(ROC)=0.96, while for the SersicCatVIKING

catalogue the classification accuracy is around 84% and the AUC(ROC)=0.91.

Another notable increase in overlap is the overlap between class 5 and 7, where

the misclassification rate of class 5 galaxies as class 7 galaxies is increased from

8% to 18%.

Results based on GaussFitSimple Catalogue. The confusion matrix for the classi-

fication based on the GaussFitSimple Catalogue shows the highest classification

accuracy of 64% for the LBS. Class 3 drops in accuracy to 47% . This is in

part due to an increased overlap between the classes, 31% of class 1 samples are

classified as class 3 samples and 31% of class 3 samples as belonging to class 1.

In addition, there is increased overlap between class 1 and 5 (12%) and class 3

and 5 (18%), while the overlap between classes 1 and 3 with both LBS and class

7 remains low. It is notable that based on the information in the GaussFitSim-

ple Catalogue, class 7 is only classified slighly above chance level, with most

of its samples being misclassified as class 2 (35%) and class 5 (18%). Despite

this, the distinction between LBS and others is still on average 78% correct, the

AUC(ROC)=81%.

Results based on SersicCatUKIDSS. The results for the SersicCatUKIDSS show

an overall similar performance to the results of the SersicCatVIKING catalogue:

In comparison to the classification performance presented in our ESANN con-

tribution [3], there is an increased misclassification of class 1 samples as class

2 samples, and an increased misclassification of class 5 samples as belonging to

class 7. LBS classification accuracy is at 87% with an AUC(ROC)=0.91.

Results based on Lambdar Catalogue. The results for the Lambdar sample show

a similar picture as the GaussFitSimple sample: Class 7 is classified with an

accuracy of only slightly above chance level and is often (52%) misclassified as

class 2. Unlike in the GFS results, the accuracy for class 1 is below chance level

(15%). As has been the case for the other catalogues, class 1 samples are mis-

classified mostly as class 3 (38%). In contrast to the GaussFitSimple catalogue,
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here class 1 also shows considerable overlap with class 2 (23% of class 1 samples

are misclassified as class 2). In addition, a considerable amount of class 1 sam-

ples (11% and 13%) are also misclassified as classes 5 and 7. Further, class 5

and class 3 show overlap, with 15-16% misclassifications. Overall, classification

accuracy based on the Lambdar catalogue is lowest (46%), while the LBS can

be distinguished with 74% accuracy and an AUC(ROC)=0.81 .

Results based on MagPhys catalogue. The classification results for the MagPhys

sample show a similar trend as the results based on the Lambdar sample: Classes

1 and 3 exhibit considerable overlap (40% of class 1 samples are classified as

class 3, and 17% of class 3 samples are classified as class 1), class 7 accuracy

is low (43%) and is frequently misclassified as class 2 (34% of the cases). In

contrast to the Lambdar sample, there is almost no overlap between class 1 and

class 2. Average classification accuracy for the 5 classes based on the MagPhys

catalogue is at (54%), while the LBS can be distinguished with 80% accuracy

and an AUC(ROC)=0.88 .

LBS vs other. The LBS can be distinguished from the other classes with an

intermediate accuracy of about 74% - 87% and AUC(ROC) values of 81%-91%.

4.3. Combined catalogues

Combining all catalogues would result in a very high-dimensional classifica-

tion problem, thereby rendering the resulting relevance profiles difficult to inter-

pret. We therefore select a subset of parameters from each individual catalogue

based on the feature relevances obtained in the single catalogue experiments

in the following manner: For each individual catalogue, parameters are sorted

according to their relevance. Subsequently, the most relevant parameters cu-

mulatively comprising 50% of the summed total relevance are carried over to

the combined catalogue. We note that we have also performed GMLVQ ex-

periments on the full catalogue comprising all 377 features, which resulted in

similar, albeit slightly worse performances than reported below.

For the Random Forests baseline experiments, we select the full catalogue of
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Figure 2: Sorted relevance profiles for catalogues obtained by combining the most relevant

features that cumulatively make up 50% of the relevances in the single catalogue relevance

profiles. Bar colours indicate the origin catalogue for each feature. Features up to the position

marked by a black arrow constitute 50% of the cumulative relevance determined for the

resulting combined catalogue.



377 features independent from the GMLVQ results, as to warrant identical ex-

perimental conditions. For completeness, we note that classification accuracy

of Random Forests on the above described relevance-selected parameter subset

is comparable to the classification accuracy on the full dataset.

Sorted relevance-profiles for the resulting combined catalogues are displayed in

Figure 2a and Figure 2b, for the 5-class and 2-class problem, respectively. To

simplify comparison, the confusion matrix as well as the 2-class classification

performance are displayed alongside the individual catalogue performances in

Figure 1.

Considering the confusion matrix for the combined catalogue, a slight overall

increase in performance with respect to the individual catalogue performances

can be observed. Further, it reflects the combined properties of the individual

catalogues: An overlap between classes 1 and 3, some overlap between class 3

and 5, and some overlap between class 2 and 7. In comparison to the results

presented in [3], classification accuracy is slightly decreased (70% vs. 73%).

It should be noted however, that in [3] thrice as many samples per class were

available, which could account for the difference in performance. LBS can be

distinguished from the other classes with a classification accuracy of 89% and

an AUC(ROC)=0.96.

Feature relevances for the combined catalogues. The parameters that

make up 50% of the relevances for the 5-class and the 2-class prob-

lem (indicated by a black arrow in Figure 2a and Figure 2b), almost

exclusively originate from the SersicCatVIKING and MagPhys cat-

alogues. For the 5-class problems, these parameters are related to

stellar masses and dust (mass stellar best fit, mass dust percentile97 5,

mass stellar percentile 97 5 and mass stellar percentile84), and the star for-

mation timescale (gama percentile16), the effective surface brightness within

the half-light radius for the J- and Z-bands (GALMUEAVG J and GAL-

MUEAVG Z), ellipticity of the galaxy (GALELLIP Z, GALELLIP Yviking),

and magnitude of a GALFIT model of the galaxy (GALMAG10RE Jviking).
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For the 2-class problem, the most relevant parameters encompass the GALFIT

central surface brightness in Z-band (GALMU0 Z), parameters related to star

formation rates (sfr19 percentile50), information related to the ellipticity of the

galaxies (GALELLIPERR Z, GALELLIP Hviking), effective surface brightness

(GALMUEAVG Z) and information about the equivalent width of the sulphur

emission line.

It should be noted that relevance-matrices are not necessarily unique. They

depend on which other features are available and on the parameters chosen for

both data preprocessing and execution of the algorithm. This can be illustrated

when considering highly correlated variables: GMLVQ might assign either two

intermediate relevances to each of the variables, or deem one variable highly

relevant at expense of the other correlated variable’s relevance. Relevance

profiles therefore should be interpreted in the sense that focusing on the

most relevant parameters would allow differentiation between classes with the

reported accuracy, while keeping in mind that other combinations of features

may achieve this as well.

4.4. Random Forests baseline results

The classification accuracies for Random Forests for the individual and com-

bined catalogues are displayed in Figure 1c side-by-side with the GMLVQ re-

sults. For all catalogues applying the Random Forest classifier results in com-

parable, though slightly better classification accuracies.

5. Discussion & Conclusion

The results presented above suggest that there may be inconsistencies in

the investigated morphological classification scheme: Analogous to our previous

findings [3], it has proven difficult to distinguish galaxy types using two powerful

and flexible classifiers, GMLVQ and Random Forests. In all GMLVQ analyses of

the individual as well as of the combined catalogues, class 1 (Ellipticals) and 3

(Early-type spirals) are particularly difficult to differentiate. Class 7 (Late-type
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spirals & Irregulars) is frequently misclassified as class 5 (Intermediate-type spi-

rals) and with a similar frequency as class 2 (LBS), while class 2 is consistently

detected with the highest sensitivity among all classes.

The difficulty of training a successful classifier was also observed in [9], where

class-wise averaged accuracies are around 75%. As mentioned in our earlier

contribution [3], possible explanations for poor classification performance may

be the lack of discriminative power of the employed classifiers or mis-labellings

of certain galaxies [9]. A possible indication for the latter case may be that

samples from class 7 (Late-type spirals & Irregulars) are often misclassified as

class 5 (Intermediate-type spirals), and class 2 (LBS). This indicates that the

feature representations of the galaxies in question share more properties with

the named classes, and it is not unlikely that in the hand-labelling process an

Intermediate-type spiral is occasionally misclassified as class 7 (e.g. confused

with a Late-type spiral), or that a LBS is classified as class 7 (an Irregular). In

the former case, employing even more flexible classifiers, e.g. GMLVQ with local

relevance matrices [7], may improve classification performances. In the second

case, if mis-labellings are restricted to “neighboring” classes in an assumed un-

derlying class ordering (e.g. when considering class 5 adjacent to class 7, or class

1 (Ellipticals) as adjacent to class 3 (Early-type spirals)), ordinal classification

may provide further insights [32, 33].

Despite trying to address the issue of essential parameters being not contained

in the dataset analysed in [3] by considering 5 additional catalogues with a

multitude of photometric, spectroscopic and morphological measurements, it is

still possible that additional (and possibly not yet discovered) parameters would

enable improved class distinction. Yet, our results do not rule out the possibil-

ity that the true, underlying grouping of galaxies is considerably different and

less clear-cut than the investigated one. Further data-driven analyses of galaxy

parameters and images with advanced clustering methods might reveal alterna-

tive groupings, like recently found for data in the VIMOS Public Extragalactic

Redshift Survey [34], or even suggest novel classification schemes.

To aid further insight into the nature of the employed visual-based classification
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scheme, in particular with respect to physical parameters, we have presented

relevances of the catalogue features for the investigated class distinctions. Note

that relevances have to be interpreted with regard to the characteristics of the

data sample (e.g. correlations) and classification performance. This connotes

that feature relevances are only meaningful when the class of interest is at least

moderately well distinguished from the others. Further it should be noted that

the presented feature relevances are not necessarily unique – alternative rele-

vance solutions may exist. It is of particular interest to note that in the combined

catalogue the most relevant features originate from the Sérsic catalogues and

the MagPhys catalogue. The high relevance of Sérsic features indicate the im-

portance of galaxy structure in different bands for the class distinction, while

the presence of highly relevant features from the MagPhys catalogue highlights

that classification performance is aided by these physical parameters as well.

Further insight into the role of features in the context of necessary and dispens-

able features may be obtained by studying feature relevance bounds along the

lines of [35].

Conclusions. We have presented an analysis of five galaxy catalogues using

Random Forests and GMLVQ, a prototype-based classifier. Analogous to re-

sults obtained in preceding work on a lower-dimensional dataset, we conclude

that even when considering a multitude of additional galaxy descriptors, the

visual-based classification scheme used to label the galaxy sample remains not

fully supported by the available data. Taking into account that perceptual and

conceptual biases likely play non-negligible roles in the creation and application

of galaxy classification schemes, further data-driven analyses might help provide

novel insights regarding the true underlying grouping of galaxies.
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Appendix A. Dataset visualizations and intrinsic dimensionality re-

duction in GMLVQ

Figures A.1 and A.2 display projections of each dataset considered in this work onto

the first and second eigenvector of the relevance matrix Λ (cf. Section 3) and onto the

first two principal components determined by Principal Component Analysis (PCA) [36].

The rightmost column of each figure contrasts the eigenvalue spectra of Λ and the data

covariance matrix which forms the basis for PCA. While Λ is an n × n matrix, the steeply

declining eigenvalue spectra for each dataset illustrate the low-dimensional subspace which

GMLVQ operates in after learning [24, 25]. In particular, for the 5 class problem, Λ spans an

approximately 3 dimensional subspace, while for the 2 class problem the subspace is essentially

one-dimensional. The low-rank relevance matrices therefore can be thought of as performing

a GMLVQ-intrinsic dimensionality reduction.

Comparing the 2-D projections onto the two leading eigenvectors of Λ and the projections

onto the first two principal components, the former results in a more fanned out representation

with respect the classes. This is due to the fact that by making use of the class labels, GMLVQ

finds a lower-dimensional discriminative subspace as opposed to the unsupervised PCA.
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Figure A.1: 2D visualisations of the datasets used in the LBS vs. others classification condi-

tion. The leftmost column displays a projection of each dataset onto the first two eigenvectors

of the learned relevance matrix Λ. In the middle column, projections of the datasets onto

the first two principal components (PC1 and PC2) are shown. The right column juxtaposes

the eigenvalue spectra of the relevance matrix and the data covariance matrix used in PCA.

For increased readability, figures concentrate on the median region of the data and axes are

cut off at a 3 times inter-quantile range distance from the median. Furthermore, the data

projections are scaled by the square root of the corresponding eigenvalues. In the sub-figures

of the eigenvalue spectra the x-axis is truncated after both eigenvalues have dropped below a

value of 0.005.
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Figure A.2: 2D visualizations of the datasets used in the 5-class classification condition. The

leftmost column displays a projection of each dataset onto the first two eigenvectors of the

learned relevance matrix Λ. In the middle column, projections of the datasets onto the first two

principal components (PC1 and PC2) are shown. The right column juxtaposes the eigenvalue

spectra of the relevance matrix and the data covariance matrix used in PCA. For increased

readability, figures concentrate on the median region of the data and axes are cut off at a 3

times inter-quantile range distance from the median. Furthermore, the data projections are

scaled by the square root of the corresponding eigenvalues. In the sub-figures of the eigenvalue

spectra the x-axis is truncated after both eigenvalues have dropped below a value of 0.005.



Appendix B. Feature relevances for individual catalogues

In the following (Figures B.1- B.6), we present relevance profiles for the individual cat-

alogues analysed in this work. Relevance profiles reflect the diagonal of GMLVQ’s relevance

matrix Λ after learning (cf. Section 3) and summarise the importance of features for a given

data sample and classification task. Figures display mean and variance of the profiles over 10

independent runs (cf. Section 4.1). As noted previously, for an accurate interpretation it is

important to note that, in general, relevance profiles are not unique: Especially in the presence

of correlated variables, alternative profiles resulting in comparable classification performance

might exist. In particular, a feature’s low relevance does not entail the feature to carry no

information for the desired class distinction, but may instead indicate its contribution to be

at least partly redundant with other features.

For example, contrary to expectations at first glance, our experiments with the Lambdar sam-

ple result in relevance profiles that indicate uncertainties of fluxes of various bands as more

relevant than the corresponding flux measurements themselves (Figure B.1). While it is not

unthinkable that flux uncertainties systematically vary over a subset of galaxy classes (per-

sonal communication, Angus Wright, developer of the LAMBDAR software), in our sample

W1 and W2 fluxes are correlated with both their respective errors and with fluxes from other

bands. W1 and W2 fluxes as well as fluxes from other bands are thus at least partly redundant

with the W1 and W2 flux uncertainties, and therefore might end up more relevant than the

corresponding fluxes.
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Figure B.1: Feature relevances as determined by GMLVQ for the Lambdar sample. For

accurate interpretation of the relevance profiles, take note that relevance profiles are not

necessarily unique, in particular in the presence of highly correlated variables. This connotes

that focusing on the relevant parameters would enable to differentiate between classes with the

reported accuracy, however, there may be other combinations of features which could result

in similar accuracies.
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Figure B.2: Feature relevances as determined by GMLVQ for the GaussFitSimple sample.

Same note applies here as to Fig. B.1.
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Figure B.3: Feature relevances as determined by GMLVQ for the SersicCatVIKING sample.

Same note applies here as to Fig. B.1.
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Figure B.4: Feature relevances as determined by GMLVQ for the SersicCatUKIDSS sample.

Same note applies here as to Fig. B.1.
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Figure B.5: 5 class problem: Feature relevances as determined by GMLVQ for the MagPhys

sample. Same note applies here as to Fig. B.1.
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Figure B.6: LBS vs. others: Feature relevances as determined by GMLVQ for the MagPhys

sample. Same note applies here as to Fig. B.1.
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