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Abstract. When collecting real-world imagery, objects in the scene may
be occluded by other objects from the perspective of the camera. How-
ever, in some circumstances an occluding object is absent from the scene
either for practical reasons or the situation renders it infeasible. Utilizing
augmented reality techniques, those images can be altered to examine the
affect of the object’s occlusion. This project details a novel method for
augmenting real images with virtual objects in a virtual environment.
Specifically, images from automated aerial refueling (AAR) test flights
are augmented with a virtual refueling boom arm, which occludes the
receiving aircraft. The occlusion effects of the boom are quantified in
order to determine which pixels are not viable for stereo image process-
ing to reduce noise and increase efficiency of estimating aircraft pose
from stereo images.

Keywords: Augmented reality · Virtual reality simulation · Vision
occlusion

1 Introduction

Virtual 3D graphic environments offer the opportunity to simulate the real-world
in a deterministic, controlled manner. These environments are also capable of
playing back data collected from real-world experiments and introduce condi-
tions and constraints not possible during data collection. For instance, images
captured from real cameras can be augmented with virtual objects overlaid. This
augmentation visualizes how the scene would appear had the virtual object been
present during initial data collection. When analyzing the augmented images,
the effects of the virtual object can be taken into account when comparing the
augmented image to the original image.

Work on Automated Aerial Refueling (AAR) has focused on utilizing a stereo
vision camera system to accurately inform the flight crew with relative position
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data of the aircraft involved. The receiver is the airplane requesting fuel, and the
tanker provides the fuel to the receiver via a boom arm. The tanker aircraft is
equipped with such a boom and a stereo camera system located on the bottom of
the fuselage, behind the boom and facing toward the rear and around 25◦ down
from horizontal. Figure 1 depicts a virtual rendering of a refueling approach as
well as the frusta of the stereo cameras.

Fig. 1. Virtual rendering of tanker based on a 767 airframe and a Beechcraft as receiver.
The stereo camera frusta are visualized pointed toward the boom and receiver.

This paper details work on augmenting images taken from test flights of
refueling approaches with a virtual rendering of the boom arm. During the test
flights, two Beechcraft airplanes acted as both receiver and tanker. Since it is
infeasible to attach a boom to a Beechcraft, the real world test flight images do
not contain the boom. However, as depicted in Fig. 1, the boom arm occludes the
receiver from the perspective of the cameras. This occlusion introduces difficul-
ties when attempting to determine the position and orientation of the receiver
relative to the tanker’s stereo vision system. Augmenting the images with a vir-
tual boom lets researchers deterministically test various occlusion solutions using
real imagery.

When augmenting the images with a virtual boom, the number of pixels in
the left and right stereo images which occlude the vision of the receiver can be
quantified. Additionally, because of the nature of stereo vision, certain features
visible by one camera are obscured in the other camera. These features are not
viable for utilization with stereo vision but can be exploited by monocular vision.
Rendering the virtual boom allows the capability to quantify not only pixels
obscured in both cameras but also to measure the pixels seen in one camera but
not the other.
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The work presented in this paper makes the following contributions: (1) devel-
opment of a real-time approach to augmenting real-world images with 3D virtual
objects, (2) utilizing augmented images to test occlusion effects of objects not
present in the original images, and (3) quantifying the intersection and disjunc-
tion of pixels being occluded with a stereo vision system.

2 Related Work

Typically, when discussed in augmented reality literature, occlusion refers to
virtual objects occluding the user’s vision of objects in the real world [12,20].
For example, a user may be wearing augmented reality glasses, and a virtual
menu might appear, blocking the user’s view of the real world located behind
the menu. Work done in this field has focused on reducing the occlusion by
either making the virtual objects transparent, or by utilizing smart computing
methods to place the objects such that they do not occlude important features of
the real world. Additionally, real objects may appear to occlude virtual objects,
confusing the users’ perception. In contrast, the approach toward occlusion with
respect to AAR relates to a physical object blocking the view of the desired
target object. Specifically, the tanker’s boom arm occludes the cameras’ view of
the approaching receiver.

Virtual 3D environments are ubiquitous for simulating real-world scenar-
ios. AAR is a natural candidate for such work as the flight approaches can be
deterministically replicated. In the real world, deterministically repeating iden-
tical approaches is infeasible; furthermore, real test flights with two aircraft
flying refueling approaches is prohibitively expensive. Simulation environments
detailed in [3,6,19] for refueling unmanned aerial vehicles (UAV) provide the
capability to generate virtual images that vision techniques can utilize.

With respect to utilizing computer vision algorithms to aid in AAR, [2]
produces pose estimations from Gaussian least squares differential correlation
(GLSDC) [11], while [10] utilizes an extended Kalman filter. Instead of using
vision algorithms to determine the receiver pose with respect to the tanker,
[13] compares the performance of point matching algorithms to determine the
tanker’s pose from the point of view of the receiver. In [7,8], virtual 3D environ-
ments simulate AAR with the capability of capturing virtual images via a Digital
Frame Grabber which in turn are sent to various feature and pose estimation
algorithms.

Previous approaches at the Air Force Institute of Technology (AFIT) have
focused on utilizing computer vision techniques such as stereo block match-
ing to generate disparity maps that produce a sensed point cloud [15,16]. A
truth point cloud generated from the known geometry of the receiver (shown in
Fig. 2) can then be registered with the sensed point cloud via iterative closest
point (ICP). The six degrees of freedom (DoF) vector returned is the relative
x, y, z, roll, pitch, yaw between the tanker and receiver – this is the most impor-
tant product from the vision system. Work has been done with electro-optical
(EO) and infrared (IR) sensors [5]; however, this project focuses solely on aug-
menting the EO imagery.
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Fig. 2. Visualization of shadow volume method for determining occluded areas. (Color
figure online)

Other work undertaken at AFIT, specifically in the AAR domain to reduce
the boom’s effect on stereo image processing, has involved calculating the volume
of space occluded by the boom. In [18], shadow volumes were generated by
casting rays from the point of view of the camera. Since these volumes represent
the space occluded in either camera [4], any features detected within the volume
can be discarded. An example of this technique is shown in Fig. 2 where red
points can be seen by both cameras, green points by neither, and cyan and blue
points can only be seen from one camera’s point of view. In contrast to this
method, augmenting the real images transforms a 3-dimensional problem into
just 2-dimensions, whereas the shadow volume approach is done entirely in 3-
dimensions. Additionally, the features detected within the shadow volume must
go through stereo block matching first before they are discarded as viable points.
With the augmented images, occluded pixels can be detected before the vision
algorithm. Reducing the number of pixels input to the stereo vision algorithm
decreases the computational time for stereo feature matching. Finally, pixels
corresponding to the boom will not be matched to features on the plane since
those pixels are not utilized in the image processing, increasing the accuracy of
feature matching.

With respect to object occlusion, literature typically discusses methods to
reconstruct the occluded object as seen in [9] where structure-from motion tech-
niques are utilized for aiding robotic systems. This example demonstrates the
capability to extend work done augmenting real imagery with virtual objects
into other fields such as robotics. Another approach detailed in [21] utilizes single
view approaches to generate 3D point clouds and model occlusion. A technique
is presented in [1] to reduce the weight of occluded pixels during feature map-
ping with stereo matching. The work on augmented boom images can similarly
improve matching algorithms by rejecting certain pixels that are known to be
subject to occlusion.
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3 Methodology

Previous work on AAR at AFIT has resulted in a simulation environment capable
of playback of truth data collected from Global Positioning System (GPS) and
inertial measurement unit (IMU) devices as well as visualization of point-clouds
generated from stereo vision image processing. The application development has
been realized with AfterBurner [14], a graphics engine built in C++ utilizing
OpenGL for rendering. In addition, the stereo vision pipeline utilizes OpenCV.
Figures 1, 2, 4 and 6 were generated with the AfterBurner engine.

Simulating the AAR approaches in the virtual world, the aircraft position and
orientation can be replayed from data logs to accurately visualize the approach.
Virtual cameras are placed on the refueling tanker, and with their orientation
and view frusta conforming to their real-world counterparts, the images captured
by these virtual cameras will be identical to the real images.

3.1 Test Flights

In March of 2019, researchers conducted aerial refueling test flights at Edwards
Air Force Base. The aircraft involved in these flights were two Beechcraft, one
as the receiver and one as the tanker with stereo EO and IR cameras attached.
Figure 3 depicts the stereo camera setup for the test flights with the cameras
mounted to the underbelly of the aircraft below the co-pilot’s seat. Imagery was
captured from these cameras and linked to truth data collected from GPS and
IMU devices, resulting in accurate pose truth data for each aircraft.

Since a Beechcraft substituted an actual tanker in the test flights, it was
impractical to attach a boom. Thus, the test images do not contain a boom
occluding the receiver. In order to examine the effects of occlusion from the real
test flights, an augmented reality solution detailed below was conceived with the
goal of quantifying the occlusion of the receiver caused by the boom.

3.2 Virtual Cameras

In synthesizing real images with virtual objects, one objective is to render the
virtual 3D models geometrically perspective-correct onto the real images. To
achieve this result, a virtual construct is generated consisting of a quad or virtual
“green screen” (see Fig. 4). The quad is simply a 2D textured planar rectangle
serving as a surface to render the real images. This quad is placed near the
far plane of a virtual frustum which shares the same aspect ratio and field of
view as a virtual camera. The quad is oriented and locked with respect to the
frustum such that it remains static when viewed from the frustum origin. The
scene is then rendered with an OpenGL frame-buffer object (FBO) with the
camera position and direction set to the frustum pose. Thus, as long as the field
of view of the frustum is identical to the real world cameras capturing imagery,
any virtual objects within the view frustum can be rendered perspective-correct
into the real images. A summary of the image pipeline is shown in Fig. 5.
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Fig. 3. Reference image of stereo EO and IR cameras mounted underneath the co-pilot.

Figures 4 and 6 depict the virtual camera arrangement for creating aug-
mented images of aerial refueling test flight images. The images appearing in
the upper corners are the raw image data captured during the test flight. Below
the aircraft are visualizations of the stereo camera frusta, and positioned just in
front of the far plane, quads utilize the raw stereo images as textures. The ratio-
nale for placing the quads just in front of the far plane (the distance from the
frustum origin to the quad is 99% the distance to the far plane) is to minimize
any errors caused by floating point precision loss which may cause the quad to
not correctly render from the perspective of the virtual camera.

Near the bottom of Fig. 6 and appearing with black borders are the resulting
render from the point of view of the virtual cameras located on the bottom of
the plane. For this figure, the boom has been selectively rendered into the FBOs,
whereas the Beechcraft model was excluded from the render. If the Beechcraft
model were rendered, it would perfectly align with its real-world counterpart
when visualized inside the augmented images. Note that since Fig. 6 is rendered
with the world camera’s pose different than the virtual cameras’, the virtual
Beechcraft is not aligned with the real aircraft. If the virtual model did not
line up with the real aircraft image, it could be indicative of an error in the
camera’s parameters such as the position and rotation. Thus, the augmented
image system also allows researchers to visually validate the correctness of the
truth data collected during the test flights.

Some camera parameters were chosen based on the real camera measure-
ments, while some were arbitrary. The near-plane for the virtual camera was
set to 1 m as no objects, real nor virtual, came within 1 m of the camera. The
far-plane distance and virtual quad position were set to 100 m from the camera.
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Fig. 4. Depiction of virtual quad with real imagery rendered into it. The top two quads
contain the raw image, and the quads behind the image use the raw image as their
texture.

Aug-Rel
render 

pipeline 
start

Load stereo 
image pair

Place image as 
quad texture

Posi on virtual 
camera wrt. 

tanker frustum 
pose

quad.pos = frustum.pos + 
frustum.farPlane * 

frustum.lookDir * 0.99

Rotate quad 
180° about 

rela ve z-axis

Bind FBO to 
camera viewport

Render world list 
into FBO from 
camera POV

Fig. 5. Augmented reality render pipeline

This value was influenced by two factors. First and most importantly, the refu-
eling envelope begins at 100 m from the tanker, thus the test flights focused on
approaches with the receiver closer than 100 m. Second, a larger far-plane value
would significantly increase the size of the quad and texture and likely decrease
performance of the visualization. The horizontal field of view of the cameras
utilized during the test flights was 56◦. The aspect ratio of the real cameras was
4:3, and the resolution was 1280 by 960. The virtual camera was given this same
aspect ratio, and the FBO texture the augmented images were rendered into
were set to the same resolution.

Because the real image augmented with the virtual boom goes through the
OpenGL rendering pipeline, the resulting composite image can go through multi-
sample anti-aliasing (MSAA). As shown in [17], when stereo vision processes are



Augmenting Flight Imagery from Aerial Refueling 161

Fig. 6. A virtual model of a Beechcraft is placed in the truth location with respect
to the tanker. Although this object falls within the frusta, it can be omitted from
rendering into the augmented textures, which are rendered at the bottom with black
borders.

performed on virtual objects, performing MSAA on the images before imparting
them to the vision pipeline significantly reduces the error in the resulting point
cloud.

4 Results

To evaluate the augmented images, simple image processing was performed to
create masks for the boom and receiver. The boom mask was obtained by sub-
tracting the original image from the augmented image. Since the pixels in the
augmented image correspond to those in the original image that have the same
value, they will become zero. Elsewhere, the pixels will likely be non-zero and
thus can be utilized to create a mask. The original images were captured with
a resolution of 1280 by 960, and Figs. 7a, b, c and 8a and b depict cropped
segments of the original, so the resolutions will be less than 1280 by 960.

Figure 7a, b and c depict the masks created by subtracting the augmented
images from the original images in RGB color-space. The figures have been
cropped, focusing on the boom to enhance visibility. The left and right masks
are colored cyan and blue, respectively, and when these two images are again
subtracted, the overlapping areas appear green as shown in Fig. 7b. From this
method, it is easy to visualize which pixels in each image are unavailable for
stereo image processing. Black pixels are not occluded in either camera. Green
pixels represent features occluded by the boom in both images, thus they are
unsuitable for stereo image processing. Cyan and blue pixels correspond to fea-
tures the boom occludes in either just the left or right image. These features are
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also unsuited for stereo processing since the boom blocks the feature in exactly
one of the cameras; however, this feature could be utilized with monocular vision
processing such as object or motion tracking if it were matched to the previous
frame.

In addition to measuring the number of pixels occluded by the boom, the
augmented imagery may be utilized to visualize and quantify areas of a specific
object occluded by the boom. In Fig. 8a and b the masks from Fig. 7a and c
have been added to the mask of the plane in RGB color-space. In Fig. 8a, the
overlapping pixels of the plane and boom appear white, while in Fig. 8b, they
appear magenta.

Table 1 presents data from one image pair regarding the number and percent-
age of pixels quantified by the masks. The first four entries show the number and
percent of pixels which the plane and boom cover in the left and right images,
respectively. The fifth entry shows the number of pixels overlapping from the left
and right boom images. The percentage is how many pixels overlap compared to
how many are contained within the boom masks on both images. The final two
entries are how many pixels the boom occludes the plane in the left and right
images, and the percentage shown is the percentage of how many pixels of the
plane are occluded.

(a) Boom rendered cyan
from POV of left camera.

(b) Combined render of
boom from left and right
cameras; green pixels are
where boom overlaps in
each camera.

(c) Boom rendered blue
from POV of right camera.

Fig. 7. Masks generated of boom from POV of left and right cameras (Color figure
online)
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(a) From left camera POV, mask of
boom (cyan) and plane (red), added cre-
ating overlapping pixels (white).

(b) From right camera POV, mask of
boom (blue) and plane (red), added cre-
ating overlapping pixels (magenta).

Fig. 8. Visualization of pixels occluded in each camera frame (Color figure online)

Table 1. Pixel counts and percentages of image masks

Image Pixels Percent Percent reference

Plane left (red pixels in Fig. 8a) 1164420 31.59% Whole image

Plane right (red pixels in Fig. 8b) 1164983 31.60%

Boom left (cyan pixels in Fig. 7a) 40970 1.11%

Boom right (blue pixels in Fig. 7c) 42710 1.16%

Boom overlap (green pixels in Fig. 7b) 5609 7.18% Boom pixels

Boom occlusion left (white pixels in Fig. 8a) 2866 0.25% Plane pixels

Boom occlusion right (magenta pixels in Fig. 8b) 3270 0.28%

5 Conclusion

Combining real world imagery with virtual 3D models provides simulations with
the capability to examine the obscuring effect caused by those objects if they
had been present in the original scene. In order to accurately place the virtual
objects into the real scene, the models must be rendered perspective-correct with
respect to how the original images were captured. By placing the real imagery
as a texture behind the virtual objects and locking the texture with respect to
the camera’s view point, the scene can be rendered with the blend of real and
virtual objects. In the case of AAR, images captured from actual test flights
can be enhanced to visualize and test the effect a boom arm occludes. This
process can also be utilized to mitigate the effect the boom has on stereo vision
processing by eliminating specific pixels from further feature matching, since it
is known those pixels are being occluded by the boom. While this process was
developed specifically for augmenting refueling images, it could be extended to
other topics such as robotics and augmented reality.
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