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Abstract: Understanding the community composition and diversity of arbuscular mycorrhizal fungi
(AMF) in an agricultural ecosystem is important for exploiting their potential in sustainable crop
production. In this study, we described the genetic diversity and community structure of indigenous
AMF in rain-fed rice cultivars across six different regions in Ghana. The morphological and molecular
analyses revealed a total of 15 different AMF genera isolated from rice roots. Rhizophagus and Glomus
were observed to be predominant in all regions except the Ashanti region, which was dominated by
the genera Scutellospora and Acaulospora. A comparison of AMF diversity among the agroecological
zones revealed that Guinea Savannah had the highest diversity. Permutational Multivariate Analysis
of Variance (PERMANOVA) analysis indicated that the available phosphorus (AP) in the soil was the
principal determining factor for shaping the AMF community structure (p < 0.05). We report, for the
first time, AMF diversity and community structure in rice roots and how communities are affected by
the chemical properties of soil from different locations in Ghana.

Keywords: arbuscular mycorrhizal fungi; community composition; agroecological zones; phosphorus;
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1. Introduction

Rice (Oryza sativa L.) is an important staple food crop in the world that fulfills the needs of
over 3.5 billion people by providing over 20% of their dietary calories [1]. It is considered to be the
second most significant source of calorie intake after maize in Ghana. Considering a shift in consumer
preference and increase in population growth, the demand for rice is anticipated to continue increasing
substantially [2–4]. Currently, local production of rice fulfills less than 40% of the national consumption,
with the population relying heavily on imports at an estimated US$500 million annually [5–7].

The yield of rice production in Ghana was reported to be low (about 2 t/ha) [8] due to several
factors similar to the entire Sub-Sharan Africa [9–11]. Inadequate soil nutrient resulting from poor
soil fertility management and inefficient fertilizer application by farmers was reported as one of the
major factors affecting rice production [12–14]. Rice is cultivated in Ghana frequently under rain-fed
conditions and productivity under this condition has become more difficult due to adverse conditions
caused by the constant changes in rainfall patterns, such as drought [15,16] and inappropriate control
of water. To boost domestic production of rice, these challenges must be addressed properly. Exploiting
indigenous natural resources to enhance and sustain local rice production is crucial. The roles of soil
microorganisms in improving soil fertility and crop productivity are well documented. For instance,
soil microbes are involved in nutrient cycling and nutrient availability for plants [17–21].

Arbuscular mycorrhizal fungi (AMF), belonging to the phylum Glomeromycota, are part of
the soil microbial community that contributes substantially to crop productivity and ecosystem
sustainability [22,23]. AMF form beneficial symbiotic associations with the majority of vascular plant
species [24,25] and are known to offer numerous benefits to plants, including enhanced nutrient
availability to plants and their uptake (particularly P), increased water uptake [26,27], improved biotic
and abiotic stress tolerance, and improved soil structure [28–30], thus significantly contributing to the
agroecosystem [31,32].

AMF identity and diversity and their effects on plant ecophysiology are influenced by various
factors, such as host genotype and growth stage, AMF species, and environmental conditions [33–36].
Therefore, identification of AMF species and exploring their community composition is an important
primary step in evaluating their beneficial functional potentials to the host plant. There are many
available reports on AMF colonization in several crops, including rice in the temperate regions, and as
many as 240 species of AMF were classified [37–40]. However, to the best of our knowledge, no research
exists regarding the diversity and community composition of AMF in arable crops, particularly in the
rice production system in Ghana.

In several studies, the occurrence of AMF colonization in rice roots under different production
regimes at diverse geographical locations demonstrated variable effects on the community compositions
of AMF [26,41–43]. Lumini et al. [44] reported that AMF colonization in rice roots occurred only
under dry conditions and not in the conventional paddy wet fields. Moreover, Barber et al. [45]
demonstrated that farm management practices in rice cultivation significantly influenced the diversity
and community structure of AMF. Meanwhile, in Ghana, rice is cultivated in all ten regions under
different agroecological zones, characterized by variable climatic conditions and soil nutritional levels.
Therefore, we hypothesized that distinct differences remain in the diversity and community composition
of the native AMF population in rice grown in different agroecological zones in Ghana. Consequently,
the present study aimed to identify AMF associated with rice in Ghana and to characterize the
community composition of AMF naturally present in cultivated rice fields in Ghana, relating their
structure to prevailing soil conditions in these regions.

2. Results

2.1. Soil Chemical Properties of Rice Fields Varied among Agroecological Zones in Ghana

In the six regions, a total of 57 rice roots and 57 soil samples were collected (Figure 1). We observed
significant variations in several soil properties among the sampled regions (Table 1). All the rice fields
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had an acidic soil pH (4.9–5.2), irrespective of the region. No substantial differences were observed for
soil moisture content (10%–18%) or carbon-to-nitrogen ratio (C/N) ratio (Table 1) among the sampled
regions. Although the total nitrogen (TN) content was similar in all locations, the concentration of
nitrate (NO3

−) in Deciduous Forest zones (DFZ) was approximately 2.4 times higher than the Guinea
Savannah zone (GSZ). Interestingly, a similar pattern was observed for ammonia (NH4

+) content
(approximately 2 times), available phosphorus (AP) content (approximately 3 times), cation exchange
capacity (CEC) (approximately 2 times), and total carbon (TC) (approximately 2.3 times) in DFZ soil
compared to GSZ (Table 1).
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Table 1. Chemical properties of soil samples from six different regions under three agroecological zones in Ghana.

Agroecological
Zone Region Soil pH

(water)

Soil
Moisture

Content (%)

Total
Carbon
(g/kg)

Total
Nitrogen

(g/kg)
C/N NH4

+

(mg/kg)
NO3−

(mg/kg)
AP (mg/kg) CEC

(cmolc/kg)

Guinea
Savannah

Upper West 4.9 ± 0.3 a 10.1 ± 4.3 a 5.6 ± 0.6 c 0.5 ± 0.3 a 11.1 ± 0.9 ab 3.5 ± 0.9 b 35.0 ± 13.0 c 8.0 ± 0.4 e 4.1 ± 2.1 c
Upper East 5.4 ± 0.3 a 12.5 ± 2.8 a 12.3 ± 2.4 c 1.43 ± 0.2 a 8.9 ± 3.7 b 9.1 ± 5.3 b 45.7 ± 25.7 c 6.6 ± 0.6 e 10.6 ± 4.0 b
Northern 5.2 ± 0.5 a 15.1 ± 3.6 a 10.0 ± 2.6 c 3.53 ± 3.1 a 9.6 ± 0.7 ab 47.0 ± 24.6 ab 23.1 ± 2.54 c 11.9 ± 0.8 d 11.5 ± 0.9 b

Forest-Savannah
Transitional

Zone
Brong-Ahafo 5.4 ± 0.3 a 12.0 ± 5.2 a 21.3 ± 4.2 b 2.93 ± 0.9 a 12.6 ± 0.4 ab 70.1 ± 16.9 ab 134.3 ± 10.9 ab 20.6 ± 1.4 c 15.6 ± 1.3 b

Deciduous
Forest

Ashanti 5.2 ± 0.5 a 18.3 ± 4.2 a 28.0 ± 1.9 b 2.17 ± 0.7 a 11.8 ± 1.0 ab 88.7 ± 10.4 a 107.4 ± 18.9 b 31.3 ± 0.7 b 22.5 ± 1.8 a
Volta 5.2 ± 0.3 a 16.8 ± 3.8 a 35.9 ± 3.7 a 3.97 ± 1.3 a 13.8 ± 1.6 a 94.4 ± 4.3 a 148.3 ± 20.7 a 47.9 ± 0.3 a 27.4 ± 2.3 a

All data are expressed as mean ± SE (n = 3), different letters within each column indicates statistically significate difference according to Tukey (T) test (p < 0.05). C/N (carbon-to-nitrogen
ratio), NH4

+ (ammonia), NO3
− (nitrate), AP (available phosphorus), CEC (cation exchange capacity).
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Furthermore, within the DFZ, soils in the Volta region had higher TC, NO3
−, and AP contents

compared to the Ashanti region, however, other soil parameters revealed no significant differences.
Similarly, within the GSZ, no variations were observed among the three locations sampled, except
that the Northern region had a higher AP content in comparison to the other two regions. Moreover,
the soil in the Upper West region had a lower CEC value compared to the Northern and Upper East
regions (Table 1). Overall, the soil samples from the DFZ showed consistently higher mean levels in the
analyzed soil fertility parameters compared to the GSZ and Forest-Savannah transition zone (FSTZ).

2.2. AMF Colonization Rates in Rice Roots Varied Across Six Regions in Ghana

Microscopic observations showed that sampled rice roots were colonized by AMF, as evident in
their structures, such as hyphae, arbuscules, or vesicles in the root cortical cells (Figure 2A). The most
common structures observed in all samples among the regions were hyphae, followed by arbuscules
and, less commonly, vesicles. The rate of AMF colonization ranged from 1.9%–22.9% among the
regions (Figure 3B). The samples from the Upper West region exhibited the highest rate of colonization
(22.9%), followed by the Brong-Ahafo region (13.2%), and the lowest rate of colonization was observed
from root samples in the Volta region (1.9%).
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Figure 2. Arbuscular mycorrhizal fungi (AMF) colonization with rain-fed cultivated rice plants in
Ghana: (a) Photomicrographs of structural colonization of AMF in rice roots stained with trypan
blue solution. The observed morphological structures of AMF were hyphae, arbuscules, and vesicles.
(b) The rate of AMF colonization in rice roots (based on the presence of hyphae, arbuscules, and
vesicles) evaluated throughout the six different regions (Upper West, Upper East, Northern, Ashanti,
Brong-Ahafo, and Volta) where rice roots were sampled from. Different letters (a, b, c, d, e, f)
indicate significant differences between locations based on Tukey’s test (p < 0.05). Sampling sites in
rice-cultivated fields of Ghana with the study area colored in three different colors: (a) The map shows
57 sampling areas marked with black triangles among six different regions under three agroecological
zones of Ghana. (b) Pictures of rice fields in Ghana where samples were collected.



Agronomy 2020, 10, 559 6 of 19

Agronomy 2020, 10, x FOR PEER REVIEW 2 of 19 

 

2.3. Farming Management Practices and Agroecological Zones Influenced Community Structure of AMF in 
Rice Roots 

Nested polymerase chain reaction–denaturing gradient gel electrophoresis (PCR–DGGE) 
amplification was used to assess AMF community structure in rice roots, with bands showing AMF 
species; according to a study by Formin et al. [46], DGGE bands represent a distinct taxon. The PCR-
DGGE analysis displayed profiles characterized by a high number of distinct fragments (Figure S1). 
The DGGE fingerprints produced a total of 280 bands that varied across regions and ranged from 
three to ten per sample, as follows: (Upper West: 6.5 ± 2.1), (Upper East: 8.13 ± 2.2), (Northern: 5.25 ± 
1.7), (Brong-Ahafo: 5.25 ± 1.9), (Ashanti: 2.94 ± 2.9), (Volta: 9.3 ± 2.8). No significant difference was 
detected in the number of bands counted among the regions.  

The composition of AMF communities was assessed based on the cluster analysis of DGGE 
profiles (Figure 3A). The dendrogram showed eight significant groups with higher similarity (63–
99%) that were displayed among samples from the Upper East, Volta, and Northern regions, 
irrespective of the differences in rice cultivar and cultivation method. Our findings were confirmed 
through the principal component analysis, where PCA1 and PCA2 together revealed 75.7% of the 
variance in the AMF community (Figure 3B) in rice roots. The PCA1 that contributed the highest 
variation (54%) in the dataset revealed that the cultivation method (direct seeding versus 
transplanting) had a profound impact on the AMF community in rice. The PCA2 explained 22% 
variation and showed the regional influence on AMF community structure. As depicted in Figure 3B, 
the regions under DFZ and FSTZ were grouped together, however, the regions were not grouped in 
the GSZ.  

 
Figure 3. Comparison of results from clustering and ordination analysis of denaturing gradient gel 
electrophoresis (DGGE) profiles showing arbuscular mycorrhizal fungi (AMF) communities in 
colonized rice roots from six different regions in Ghana. (a) The dendrogram from the cluster analysis 
used a similarity matrix (Dice coefficient) based on region, rice cultivar, and farming system. The 
colors show the 6 sampled regions, namely, Ashanti (AR), Brong-Ahafo (BA), Northern (NR), Upper 
East (UE), Upper West (UW), and Volta (VR). Rice cultivar: Jasmine85 (JA), AgraRice (AG), and Local 
variety (LV); farming system: direct seeding (DS) and transplanting (TP). (b) Principal component 
analysis (PCA) with similarities explained by the first two components as 21.6%–54.1% of the 
variability. The diamond and triangle shapes represent the farming systems under which rice is 
cultivated. 

(a)

PC2 (21.6%)

PC1 (54.1%)

-2e05 -1e05 0 1e05

-1
.0

e0
5

-5
e0

4
0

5e
04

1.
0e

05

Ashanti
Brong-Ahafo
Northern
Upper East
Upper West
Volta
Direct seeding
Transplanting

(b)

Figure 3. Comparison of results from clustering and ordination analysis of denaturing gradient
gel electrophoresis (DGGE) profiles showing arbuscular mycorrhizal fungi (AMF) communities in
colonized rice roots from six different regions in Ghana. (a) The dendrogram from the cluster analysis
used a similarity matrix (Dice coefficient) based on region, rice cultivar, and farming system. The colors
show the 6 sampled regions, namely, Ashanti (AR), Brong-Ahafo (BA), Northern (NR), Upper East (UE),
Upper West (UW), and Volta (VR). Rice cultivar: Jasmine85 (JA), AgraRice (AG), and Local variety (LV);
farming system: direct seeding (DS) and transplanting (TP). (b) Principal component analysis (PCA)
with similarities explained by the first two components as 21.6%–54.1% of the variability. The diamond
and triangle shapes represent the farming systems under which rice is cultivated.

2.3. Farming Management Practices and Agroecological Zones Influenced Community Structure of AMF in
Rice Roots

Nested polymerase chain reaction–denaturing gradient gel electrophoresis (PCR–DGGE)
amplification was used to assess AMF community structure in rice roots, with bands showing
AMF species; according to a study by Formin et al. [46], DGGE bands represent a distinct taxon.
The PCR-DGGE analysis displayed profiles characterized by a high number of distinct fragments
(Figure S1). The DGGE fingerprints produced a total of 280 bands that varied across regions and
ranged from three to ten per sample, as follows: (Upper West: 6.5 ± 2.1), (Upper East: 8.13 ± 2.2),
(Northern: 5.25 ± 1.7), (Brong-Ahafo: 5.25 ± 1.9), (Ashanti: 2.94 ± 2.9), (Volta: 9.3 ± 2.8). No significant
difference was detected in the number of bands counted among the regions.

The composition of AMF communities was assessed based on the cluster analysis of DGGE
profiles (Figure 3A). The dendrogram showed eight significant groups with higher similarity (63–99%)
that were displayed among samples from the Upper East, Volta, and Northern regions, irrespective
of the differences in rice cultivar and cultivation method. Our findings were confirmed through the
principal component analysis, where PCA1 and PCA2 together revealed 75.7% of the variance in the
AMF community (Figure 3B) in rice roots. The PCA1 that contributed the highest variation (54%) in
the dataset revealed that the cultivation method (direct seeding versus transplanting) had a profound
impact on the AMF community in rice. The PCA2 explained 22% variation and showed the regional
influence on AMF community structure. As depicted in Figure 3B, the regions under DFZ and FSTZ
were grouped together, however, the regions were not grouped in the GSZ.
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2.4. Phylogenetic Analysis of the Excised DGGE Bands

Based on the homology (80%–100%) in the GenBank, we identified a total of 82 AMF taxa from
our selected DGGE bands (Figure S2, Table S1). The most frequently identified sequences revealed
the highest homology with Glomus, followed by Acaulospora, Rhizophagus, Archaeospora, Scutellospora,
Claroideoglomus, and Gigaspora genera of AMF. A total of 41 out of 82 sequences showed the highest
homology match with the fungal family Glomeraceae (27 Glomus and 14 Rhizophagus), 20 with
Acaulosporaceae, 9 with Archaeosporaceae, 7 with Gigasporaceae, and 5 with Claroideoglomeraceae.
The number of identified AMF species varied among different regions (Table S2), with Archaeospora
detected only in the Upper East and Upper West regions. Among the identified species of AMF, Glomus
dominated almost all the regions, except in the Ashanti, where the dominant AMF species was revealed
to be Acaulospora.

2.5. AMF Community Structure Analysis by Illumina MiSeq Sequencing

Despite the agroecological effect that was demonstrated in AMF community structures in rice roots
through PCR–DGGE profiling, the bands obtained by the DGGE profiles did not necessarily represent
the actual population of AMF species and their relative abundances within each region. Therefore,
advanced technology, specifically amplicon sequencing using Illumina sequencing, was applied to
provide information on the definite number of AMF species present and to identify the factors that
affected the community structures of AMF among the regions.

The Illumina sequencing of 18S rRNA produced a total of 150,183 raw reads with an average
read length of 236 bp. After the removal of nontarget and low sequence reads, we obtained 132,343
high-quality sequences read (88.12%). The Basic Local Alignment Search Tool (BLAST) analysis
(97% similarity cut-off) showed high homology to members of the Glomeromycota from 11 different
genera. The rarefaction curve for the observed operational taxonomic units (OTUs) was predicted
(Figure S3). ANOSIM analysis of the rarefied OTUs did not reveal any significant difference in AMF
communities due to region or cultivar differences (Table S3). The alpha diversity indices, such as the
Shannon diversity and Simpson dominance indices, were similar in all regions, while the observed
OTUs showed some differences among the regions (Table 2), with the highest observation in roots
from the Brong-Ahafo region and the lowest from the Upper East region. However, Chao1, an index
representing the species richness in a community, showed a significant difference between samples
from the Upper East and Volta regions. The most dominant genera in all the regions were Rhizophagus
and Glomus, except for the Upper West region which was dominated by Scutellospora and Acaulospora
(Figure 4). Rhizophagus, Glomus, Acaulospora, and Scutellospora were the only genera found in the Ashanti
region. The Northern region showed greater diversity compared to the other regions. Concerning
the abundance of AMF genera, we did not observe any significant differences across the six regions.
The Permutational Multivariate Analysis of Variance Analysis (PERMANOVA) indicated that the
community composition of AMF in rice roots from the relative abundance of different OTUs was
significantly affected (Table 3) by the measured content of AP independently (p < 0.05), as well as by
the interactions between AP and the carbon-to-nitrogen ratio (C/N; PERMANOVA, p < 0.05), P and
nitrate (NO3

−
; PERMANOVA, p < 0.05), and C/N and NO3

− (PERMANOVA, p < 0.05), but not by the
difference in regions or the cultivars of rice. This was shown in the Mantel statistical analysis based
on Spearman’s rank correlation of each OTU (Table S4). Several OTUs correlated either positively or
negatively (R2 > 0.8–0.9) with either AP or C/N except for OTU3544, OTU5961, OTU72, and OTU3698
(Glomus), which correlated positively with AP and C/N.
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Table 2. AMF diversity and species richness. Alpha-diversity metrics of samples based on rarefied
operational taxonomic units (OTUs) in analyzed rice roots sampled from different regions across Ghana.

Region Observed OTU Shannon Simpson Chao1

Upper West 222.50 ± 84.15 a 0.68 ± 0.09 a 1.93 ± 0.16 a 293.62 ± 136.49 ab
Upper East 138.33 ± 119.26 a 0.57 ± 0.50 a 1.83 ± 1.59 a 158.1 ± 132.7 b
Northern 242.33 ± 99.50 a 0.74 ± 0.17 a 2.29 ± 0.67 a 472.32 ± 186.56 ab

Brong-Ahafo 461.00 ± 173.52 a 0.89 ± 0.06 a 3.24 ± 0.72 a 308.97 ± 45.84 ab
Ashanti 227.67 ± 44.11 a 0.80 ± 0.10 a 2.54 ± 0.32 a 340.31 ± 94.77 ab

Volta 278.33 ± 76.77 a 0.79 ± 0.09 a 2.40 ± 0.40 a 252.03 ± 59.67 a

Values are mean ± SE (n = 3). Different letters indicate statistically significant differences (p < 0.05) between regions
according to the Tukey–Karmer (T) test.

Agronomy 2020, 10, x FOR PEER REVIEW 4 of 19 

 

Table 2. AMF diversity and species richness. Alpha-diversity metrics of samples based on rarefied 
operational taxonomic units (OTUs) in analyzed rice roots sampled from different regions across 
Ghana. 

Region Observed OTU Shannon Simpson Chao1 
Upper West 222.50 ± 84.15 a 0.68 ± 0.09 a 1.93 ± 0.16 a 293.62 ± 136.49 ab 
Upper East 138.33 ± 119.26 a 0.57 ± 0.50 a 1.83 ± 1.59 a 158.1 ± 132.7 b 
Northern 242.33 ± 99.50 a 0.74 ± 0.17 a 2.29 ± 0.67 a 472.32 ± 186.56 ab 

Brong-Ahafo 461.00 ± 173.52 a 0.89 ± 0.06 a 3.24 ± 0.72 a 308.97 ± 45.84 ab 
Ashanti 227.67 ± 44.11 a 0.80 ± 0.10 a 2.54 ± 0.32 a 340.31 ± 94.77 ab 

Volta 278.33 ± 76.77 a 0.79 ± 0.09 a 2.40 ± 0.40 a 252.03 ± 59.67 a 
Values are mean ± SE (n = 3). Different letters indicate statistically significant differences (P < 0.05) 
between regions according to the Tukey–Karmer (T) test. 

 

Figure 4. The relative abundance of total number of read operational taxonomic units (OTUs) grouped 
by AMF genus among six different regions in Ghana. UW: Upper West; UE: Upper East; NR: 
Northern; AR: Ashanti; VR: Volta. 

UW
0.9% 1.1%2.7%3.8%

6.3%

9.4%

14.2%

22.8%

38.9%

Archaeospora

Ambispora

Gigaspora

Racocetra

Scutellospora

Claroideoglomus

Redeckera

Acaulospora

Glomus

Rhizophagus

Others

Diversispora

1.0% 2.1%2.8%
3.3%
4.7%

12.7%

32.4%

41.1%

1.7% 4.5%
5.0%

5.8%

6.0%

9.7%

30.4%

36.9%

1.2% 1.3%1.3%2.8%
5.8%

38.9%

48.7%

0.7% 11.0%

14.7%

34.6%

39.1%

1.0% 1.3%

23.1%

28.8%

45.7%

BA

NRUE

VRAR
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by AMF genus among six different regions in Ghana. UW: Upper West; UE: Upper East; NR: Northern;
AR: Ashanti; VR: Volta.

Table 3. PERMANOVA analysis of the effect of available P, carbon-to-nitrogen ratio (C/N), NO3
− and

their interactions on the distribution of AMF OTUs in analyzed rice roots sampled from six different
regions across Ghana. * p < 0.05.

Soil Chemical Properties Df Sum of Squares Mean Squares F. Model R2 Pr(>F)

Available P 1 0.519 0.519 1.591 0.071 0.041 *
C/N 1 0.432 0.432 1.326 0.059 0.137

NO3
− 1 0.327 0.327 1.002 0.045 0.443

AP × C/N 1 0.557 0.558 1.710 0.077 0.021 *
AP × NO3

− 1 0.584 0.584 1.793 0.080 0.015 *
C/N × NO3

− 1 0.509 0.509 1.561 0.070 0.049 *
AP × C/N × NO3

− 1 0.428 0.428 1.313 0.059 0.145
Residual 12 3.911 0.326

Total 19 7.266 1
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3. Discussion

In the present study, we combined morphological analysis and molecular genetics to investigate
the diversity and community compositions of native AMF in rice roots that were grown under field
conditions in different regions across Ghana. Our data showed that agroecology, soil physicochemical
properties, and farm management practices (cultivation method) influence the composition of the
indigenous AMF community in rice. For the first time, we identified native AMF species (at the genus
level) that colonize rice roots from different rice ecologies in Ghana and characterized the dynamics of
their community compositions.

In the present study, the rate of AMF colonization in rice roots was used to assess the activity of
AMF communities indirectly among the regions. Unlike previous studies [44,47,48], we detected AMF
associations in roots at the vegetative stage of rice growth, indicating that root colonization by AMF
occurred earlier and not at the reproductive stage as proposed by other investigations. For instance,
Wang et al. [49] and Watanarojanaporn et al. [50] proposed that AMF colonization in rice roots was
observed much more frequently at the mature stage (heading and ripening) and also at the early stage
of growth before flooding. In the present study, soil moisture levels were often controlled by rainfall
patterns under a rain-fed rice cultivation system, therefore, higher AMF colonization at the early stage
of host growth was obserevd. Moreover, colonization was observed to occur at an early stage of
growth because the involved indigenous AMF species possibly adapted to the ecological conditions
under rain-fed systems, thereby enabling them to colonize at an early stage of host growth. However,
further research is still required for clarification. The rate of colonization by AMF in sampled rice
roots displayed a considerably similar range (1.9%–22.9%) compared to that reported in other rice
plants grown in different environments as well as in other crops, such as wheat [51,52]. Among the six
regions included in the present study, significantly different colonization percentages were observed.
The cause of these variations is currently unknown, however, this could be attributed to several factors,
including climatic variables, rice variety, soil fertility, and farm management practices [50,53,54].

Molecular profiling of AMF communities through nested PCR–DGGE and high throughput
Illumina sequencing in the present study revealed that AMF community structures in rice roots varied
across the agroecological locations and were influenced significantly by soil properties. The cluster
analysis of PCR–DGGE profiles revealed the region as the major factor driving AMF communities
in rice roots, irrespective of the differences in rice cultivars and cultivation methods applied during
production. This finding was in agreement with the results of a previous study in West Africa [55],
where community composition of AMF associated with yam production was influenced by differences
in ecological zones. This finding was further supported by another previous study [56], which reported
that the geographical distance had a significant impact on the community structures of AMF in grazed
grassland across Sweden. Furthermore, Casazza et al. [57] reported differences observed in AMF
community structures found in Berardia subacaulis among diverse sites in the Southwestern Alps. In this
survey, the multivariate analysis (PCA) based on PCR–DGGE profiles further illustrated the impact of
other variables, including cultivation methods on the composition of AMF communities in roots from six
different regions. Direct seeding was used as the dominating method that influenced AMF community
structures in all regions, except for the Brong-Ahafo and Volta regions. The farm management practices,
such as cultivation methods, were among the factors reported in several studies to severely affect AMF
community structures and distributions [33,44,58]. As reported in recent studies, a single factor is
unable to influence the composition of AMF communities itself, however, combinations of factors
(biotic and abiotic) regulate AMF communities and their distribution [33,36,59,60] by contributing
significantly to agricultural sustainability.

Though AMF diversity in rice roots was observed to be the first of its kind in Ghana, the sequences
obtained from excised DGGE bands corresponded to an already known AMF taxon [61]. The sequence
analysis of PCR–DGGE bands did not provide extensive coverage of the phylum Glomeromycota.
Only 7 out of 21 genera and 4 out of 11 families were observed to be common across all the regions [61],
suggesting low AMF diversity in rice. Glomus was the most frequently encountered AMF phylotype
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in all regions, except for the Ashanti region. The predominance of Glomus phylotypes in rice plants
was revealed by several studies, irrespective of the conventional (wet paddy) system or production
under rain-fed conditions [49–51,62]. The consistent occurrence of Glomus in these varying conditions
of production indicated that the genus Glomus could withstand several environmental conditions and
was adapted to various ecosystems [40,61]. The genus Archaeospora was found only in the Upper East
and Northern regions, implying that this genus may be localized to some particular environmental
conditions. Although the Northern, Upper East, and West regions are under the same agroecological
zone, the distribution of Archaeospora in these two regions might be influenced by other factors unrelated
to agroecological distance.

In the PCR–DGGE analysis, the number and intensity of bands illustrated on DGGE profiles did
not necessarily represent AMF diversity and the actual abundance of species present in a microbial
community [63]. Therefore, Illumina sequencing was performed for a more precise assessment of
AMF diversity and species richness within the three different rice ecologies among the six regions,
and to characterize their community compositions. A total of 67 OTUs were detected after rarefying,
corresponding to an already known AMF taxon discussed in previous studies [40,61,64]. The read OTUs
revealed 7 out of 11 families and 12 out of 24 genera of the phylum Glomeromycota, yet the AMF diversity,
as expressed by the Shannon–Weaver (0.57–0.89) and Simpson-dominance diversity indices (1.83–3.24),
were not consistent among different regions, which was confirmed by the significant differences
observed by the Chao1 richness index of rice roots. However, these were observed to be somewhat
higher in comparison to previous reports from arable fields based on plant roots [65,66]. The AMF
species identified at the genus level include Acaulospora, Ambispora, Archaeospora, Claroideoglomus,
Diversispora, Gigaspora, Glomus, Racocetra, Redeckera, Rhizophagus, and Scutellospora. Our findings also
indicated that Glomus and Rhizophagus were the abundant species in rice roots among all regions,
except for the Upper East region, where Scutellospora and Acaulospora were dominant. Nonetheless,
in previous reports, Glomus were described as the leading AMF species in roots and soil [67–69],
though the species abundance in roots was a fraction of that found in the rhizosphere. The switch
observed in the distribution of AMF species in the Upper East region was an indication of the biotic
and abiotic effects on AMF community compositions. Across the agroecological zones, we observed a
vast difference in species distribution among GSZ, FSTZ, and DFZ. The GSZ showed the highest AMF
diversity (ranging from eight to nine AMF species per region) compared to FSTZ and DFZ. Factors
contributing to these distinct variations among the regions under these zones are currently unknown.
However, the influence of agroecological activities cannot be eliminated based on its effects on AMF
communities, as reported by previous studies [22,45,70–72].

For the characterization of AMF in plant roots, numerous studies reported biotic factors as the
major components actively regulating community composition [35,73,74]. However, in the present
study, some abiotic factors (particularly soil properties) were detected as relevant characteristics based
on PERMANOVA analysis. PERMANOVA revealed a significant effect (p < 0.05) of AP on the AMF
community structure in sampled rice roots. The AP content in soil varied among the regions, with the
highest level observed in the Volta region (47.9 mg/kg) and the lowest in the Upper East and Upper West
regions (6.6–8.0 mg/kg). Although the Northern, Brong-Ahafo, and Ashanti regions also showed high
AP levels, under the agroecological zones, the GSZ was observed to possess the lowest level compared
to the FSTZ and DFZ. In previous studies, it was demonstrated that the soil physiochemical properties
affected the composition of AMF communities and influenced their distribution and performance in
the agricultural environment [30,42,60,75–78]. In the present study, the AMF communities based on the
observed OTUs were affected independently by AP content and their interactions with other nitrogen
source elements, such as NO3

- and C/N. Soil NO3
- and C/N showed no effects on AMF communities

in roots, except when an interaction between them was observed. The recorded AP content from
the surveyed rice fields mentioned previously in the present study was perceived as the principal
factor shaping AMF community structures in rice roots among the different regions. Although the
relationship between the rate of AMF colonization with their host plants and the physicochemical
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properties of soil vary among ecosystems, the response of AMF species to the mineral environment is
also known to differ [79]. In previous studies, Hijri et al. [65] and DeBeenhouwer et al. [22] suggested
a negative effect of soil AP on AMF community structures, whereas the findings of other studies
were in contrast with these findings, suggesting no linkage between AMF diversity and AP [60,80].
The findings were in agreement with a previous study by Yoshimura et al. [81], who reported that
the rate of AMF colonization in Japanese pear correlated with the AP content in the soil. In the
present study, AP contents were observed to be higher (47 mg/kg) and the colonization percentage was
observed to be very low (1.9%), while the highest colonization percentage was recorded (22.9%) in
locations where the AP contents were recorded to be low (8.0 mg/kg). Since the surveyed rice fields
among the six regions differed in agroecological zones, the variations in AP alone could not explain
the discrepancy in AMF colonization rate and Alpha diversity indices; further research is required
in this aspect for better understanding. These results are useful in providing an understanding for
future studies focusing on the functional benefits of AMF during the development of sustainable rice
production systems, particularly on the potential application of AMF for improved nutrient acquisition
and soil moisture utilization in rice cultivation systems.

4. Materials and Methods

4.1. Site Description and Sampling Materials

The present study was carried out in six major rice-producing regions in Ghana. The regions
included the Upper West, Upper East, Northern, Ashanti, Brong-Ahafo, and Volta regions (Figure 1),
which are categorized under three agroecological zones, including the Guinea Savannah zone (Upper
West, Upper East, and Northern regions), the Forest–Savannah transition zone (Brong-Ahafo region),
and the deciduous forest zone (Ashanti and Volta regions). The FSTZ and DFZ are characterized by a
bimodal annual rainfall (1300 mm) and a mean annual temperature of 30 ◦C, whereas the GSZ has
a unimodal rainfall pattern (1000 mm) with a 35 ◦C average temperature, according to the Ghana
Meteorological Agency (1983–2012). The soils in FSTZ and DFZ are typically well-drained loamy soil
(rich in organic matter), and GSZ has sandy soil that is low in organic matter and highly receptive to
erosion [4,82,83].

Rice farmers from these regions often acquire rice seeds (cultivars Jasmine85 and AgraRice and
local cultivars) from agrochemical shops. Rice seeds acquired for production are mostly untreated
with pesticides before sowing. Rice cultivation in these locations is carried out following two main
methods, namely, direct seeding and transplanting. In the direct seeding method, seeds are sown
directly in the field either by dibbling or broadcasting, whereas in the transplanting method, seeds are
nursed close to the fields and seedlings are transferred later onto the main field for production.

In this study, healthy rice plants (cultivars Jasmine85 and AgraRice and local cultivars), at an
average height of about 55 cm and in their vegetative (tiller) stage, were collected randomly from eight
different spots within each cultivated field and then pooled as a sample. Roots from sampled rice
plants were washed with tap water to remove adhering soils debris and stored at −30 ◦C until further
use. Soil (0–15 cm depth), often moist, was also sampled from the same rice fields at eight different core
spots using an auger. The roots and soil samples collected from each field represented an individual
a sample per field. Likewise, about nine different fields in each region were sampled, except for the
Volta region where samples were collected from twelve different fields, making a total of 57 root and 57
soil samples. The rice roots and soil samples were collected in August–September 2016.

4.2. Soil Analysis

Various soil properties, such as pH, moisture content, TC, total nitrogen (TN), and the soil
carbon-to-nitrogen ratio (C/N) were analyzed following the standard protocols for tropical soils [84].
The AP was extracted using sulfuric acid and ammonium sulfate (NH4 (SO4)2, pH3) solution using
the Truog-soluble method [85]. Ammonia (NH4

+) and nitrate (NO3
−) contents were determined
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via the continuous flow injection analysis method and the indophenol-blue colorimetric procedure,
respectively, after extracting 10 g soil with 2 M KCl solution [86]. The CEC content was measured
using the Schollenberger and Simon method [87].

4.3. Assessment of AMF Colonization in Roots

The rate of AMF colonization in rice roots was estimated according to the magnified interaction
method based on trypan blue staining [88], with some minor modifications. Briefly, roots were cut into
about 1 cm fragments, cleared in 10% KOH (potassium hydroxide) boiling solution, stained with 0.05%
trypan blue–lactic acid solution, and destained by transferring into a freshly prepared lactoglycerol
solution for 48 h. Thirty randomly selected stained root fragments (1 cm) per sample were examined
for AMF colonization following the procedures described by McGonigle et al. [52].

4.4. DNA Extraction and Nested PCR

Fresh rice root samples were ground into a fine powder with liquid nitrogen using a sterilized
mortar and pestle. DNA was extracted from roots (100 mg) using the DNeasy plant mini kit (Qiagen,
Hilden, Germany) following the manufacturer’s recommendations. The isolated DNA was subjected
to nested PCR amplification using AMF specific primers, including AMV4.5F/AMV4.5R [89] and
GC-AMV4.5NF/AMDGR [48,89]. The first PCR reaction was prepared in a final volume of 25 µL and
comprised of DNA template (10 ng/µL), AmpliTaq Gold® 360 polymerase (0.13 µL; Thermo Fisher
Scientific, USA), PCR buffer (10×), forward and reverse primers (10 µM each), dNTPs (2.5 mM), MgCl2
(25 mM), and distilled water (15.375 µL). The conditions used for PCR reaction were as follows: 95 ◦C
for 10 min, 30 cycles of denaturation at 94 ◦C for 30 s, primer annealing at 55 ◦C for 30 s, 1 min
extension at 72 ◦C, and a final extension period of 9 min at 72 ◦C using the Veriti 96 Wells Thermal
Cycler (Applied Biosystems; California, USA). The first PCR product was purified using FastGene
Gel/PCR Extraction kit (NIPPON Genetics, Japan).The purified PCR product was diluted (1:10) with
sterilized distilled H2O and used as a DNA template in the second PCR reaction. The second PCR
amplification was carried out following similar conditions as the first PCR reaction, except for a change
in the final volume of 50 µL.

4.5. DGGE Analysis

DGGE analysis was performed using DCode Universal Mutation Detection System (Bio-Rad
Laboratories; CA, USA) following the method as described by Muyzer et al. [90], with minor
modifications. DGGE fingerprints were loaded onto 7% (w/v) polyacrylamide gel (37:5:1
acrylamide/bis-acrylamide) with a linear denaturing gradient of 20%–40% denaturant (100% denaturant
solution containing 7 M urea and 40% (v/v) formamide) and run for 20 h at 50 V under a constant
temperature of 60 ◦C. Gels were photographed after staining with SYBR® Green I Nucleic acid gel
stain (Takara Bio) for 40 min and unstained in a 1× Tris-acetate EDTA buffer at room temperature [89].

4.6. DGGE Band Sequencing

A total of 280 bands were detected after DGGE analysis; thereafter, 101 bands were excised
from polyacrylamide gel and kept at 5 ◦C overnight in 250 µL sterilized MilliQ water. DNA was
eluted from these bands after incubating overnight using the Poly-Gel DNA Extraction Kit (OMEGA,
USA), following the manufacturer’s instructions. Extracted DNA was used as a template for PCR
reamplification following the same conditions as before, using the primers AMV4.5NF/AMDGR before
sequencing. Sequences obtained were compared to AMF sequences in the GenBank database through
the BLAST program (http://www.ncbi.nlm.nih.gov/BLAST) with a varying threshold of nucleotide
identity (90.9%–100%). The sequences were aligned using the MacVector sequence analysis tool
(https://macvector.com). Maximum likelihood (ML) analyses of the partial 18S rRNA gene region were
performed using the Molecular Evolutionary Genetic Analysis X (MEGA X) program with bootstrap
support obtained using 1000 replicates [91]. The sequences obtained in the present study were also

http://www.ncbi.nlm.nih.gov/BLAST
https://macvector.com
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deposited at the DNA Data Bank of Japan (DDBJ) http://www.ddbj.nig.ac.jp/search/top-e.html) with
the accession number LC516092 -LC516173.

4.7. Next-Generation Sequencing

Amplicon sequencing of the 18S rRNA gene was carried out on the MiSeq platform at
Bioengineering Lab. Co. (Atsugi, Japan) for 20 samples based on the location, rice variety
(Jasmine85), and cultivation method. Firstly, a nested PCR using primers AMV4.5F/AMV4.5R and
AMV4.5NF/AMVR was performed. A DNA library was generated after purification of the second PCR
product using AMPure XP (Beckman Coulter). The purified product was then quantified using Synergy
H1 (Bio Tek) and QuantiFlour dsDNA system. A quality check of the libraries was done using Fragment
Analyzer and dsDNA 915 Reagent Kit (Advanced Analytical Technologies). DNA libraries were pooled
together and loaded on an Illumina MiSeq instrument following the manufacturer’s instructions
(Illumina, San Diego, CA, USA). The Quantitative Insights into Microbial Ecology (QIIME) toolkit [92]
was used to process the raw high-throughput sequencing data. Excluding the barcodes and standard
primer sets, sequence reads not meeting the quality filtering <20 criterion and those fewer than 200 bp in
length were discarded [93]. Denoising was performed using the built-in denoiser algorithm and chimera
removal. OTU picking was done (http://www.drive5.com/usearch/download.html) at a pairwise
identity percentage of 0.97 using the sequence analysis tool USEARCH 61. Taxonomy assignment was
performed using the Ribosomal Database Project naïve Bayesian classifier using a minimum confidence
of 0.8 against the Greengenes database (October 2012 release; http://greengenes.secondgenome.com/)
and BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi).

4.8. Statistical Analysis

All data obtained were subjected to statistical analyses. Analysis of variance (ANOVA) and
Tukey’s pairwise comparisons (p < 0.05) were conducted to compare the means for each variable using
the statistical software Minitab version 18 (Minitab Inc., State College, PA). For DGGE fingerprint
data, clustering and PCA analysis were performed based on the presence or absence of a band
using Bionumerics® software package (version 7.6.3; Applied Maths, Sint-Martens-Latem, Belgium),
following the procedures as described by Gomes et al. [94]. The abundance of OTUs per sample
and the Bray–Curtis distances recorded after Illumina MiSeq sequencing resulted in series of AMF
community-related analyses carried out using the R program, version 3.5.2 (Eggshell Igloo, 2018),
using the package “vegan” 2.5–3. Theα-diversity indices (Shannon, Simpson, and Chao1) of AMF within
each location were estimated, and the significant differences were estimated using the Tukey–Karmer
test (p < 0.05). PERMANOVA was used to assess the differences in AMF community structures and
their relationships with the chemical properties of soil across the locations.

5. Conclusions

Although the benefits of AMF symbiosis are well known, limited studies exist regarding the AMF
symbiosis under the agricultural system and their applications regarding crop production in Ghana.
In this study, we reported on the AMF diversity and community structures of rice roots in six regions
under three agroecological zones for the first time in Ghana. Soil properties were identified as the key
environmental factors affecting AMF communities with rice production among the regions. The AP
contents detected played a significant role in the dynamics of AMF communities. Thus, assessing the
effect of AP levels in shaping AMF communities and the impact on an improved rice production system
is recommended for future studies. Overall, these findings shed light on the diversity, community
structures, and drivers of AMF with rice in arable soils for sustainable production.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/10/4/559/s1,
Figure S1: DGGE profile of 18S rRNA fragments of AMF communities in rice roots sampled from six different
regions in Ghana; Figure S2: Phylogenetic tree of arbuscular mycorrhizal fungi (AMF) colonizing rice roots from
Ghana; Figure S3: Rarefaction curves of AMF species for all analyzed rice root samples from six different regions
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in Ghana; Table S1: AMF species identified from sequencing excised DGGE band fragments of sampled rice roots
collected from six different regions in Ghana and their closest similarity percentages based on NCBI-BLAST search;
Table S2: The number of AMF species identified among six different regions in Ghana based on PCR–DGGE band
profiles; Table S3: AMOSIM analysis of the effects of rice varieties and sampling locations on AMF community
structures in analyzed rice roots based on rarefied OTUs; Table S4: Mantel analysis based on Spearman’s rank
correlation among each OTU and available phosphorus (AP) or carbon-to-nitrogen ratio (C/N).
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