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A B S T R A C T

’Omics’ technologies offer detailed insights into cellular composition.
Yet, they rarely characterize interactions between the components of a
biological system. To fill this gap, a wide array of network reconstruc-
tion methods has been developed over the past twenty years. Amongst
them are algorithms that derive networks from data that describes a
system’s response to targeted perturbations. This information allows
reconstruction methods to deduce causal interaction chains. In this
way, they can reveal functional mechanisms in gene regulation, signal
transduction, intra-cellular communication and many other cellular
processes. Nevertheless, the problem of reverse engineering of biologi-
cal networks remains essentially unsolved because inferred networks
are often based on inapt assumptions, lack interpretability as well as a
rigorous description of identifiability. This thesis attempts to overcome
these shortcomings.

First, it presents a novel inference method which is based on a sim-
ple response logic. The underlying assumptions are so mild that the
approach is suitable for a wide range of applications while also out-
performing existing methods in standard benchmark data sets. Being
implemented within a powerful Answer Set Programming framework,
the response logic approach can easily incorporate prior network
knowledge and then reveal all networks that conform to the given
data. This provides an explicit display of identifiability of individual
network links. These qualities were critical for the derivation of plau-
sible network hypotheses from RPPA perturbation data, describing
MAPK and PI3K signalling pathways in an adenocarcinoma cell line.
The inferred networks could explain distinct sensitivities of different
PI3K mutants towards targeted inhibitors. The flexibility and clear
interpretability of the response logic approach makes it a versatile
and useful framework to gain mechanistic insights not only in signal
transduction but in various biological systems.

A second study shows that the identifiability of interaction strengths
in linear response networks can be described by an intuitive maximum-
flow problem. This analytical result not only allows to devise iden-
tifiable effective network models in underdetermined settings but
also to optimize experimental design, that is to choose the most ef-
fective perturbation targets. Based on the maximum-flow approach,
an algorithm was designed that determines the sequence of perturba-
tions, which maximizes the number of uniquely inferable interaction
strengths. Benchmarked on a database of human pathways, it achieved
full network identifiability on average with less than a third of the
perturbations that are needed in a random experimental design. More-

v



over, allowing for perturbation combinations further reduced this
fraction to less than one quarter. As perturbation experiments are
often challenging and costly, these improvements can be crucial for a
comprehensive characterization of biological networks.

Finally, this thesis presents mathematical advances in Modular Re-
sponse Analysis (MRA), which is a popular network inference frame-
work that quantifies interaction strengths between network compo-
nents from perturbation data. In practical applications of MRA, it is
important to be able to incorporate prior network knowledge and
to allow for multi-target perturbations. In this general setting, the
inference of MRA network parameters becomes a hard, non-linear
optimization problem, which currently limits the size of inferable
networks to the low tens. Yet, it is here shown that under a certain in-
dependence assumption this optimization problem can be formulated
as a total least squares problem, whose solution is derived analytically
and can be robustly evaluated with negligible computational effort.
However, with increasing levels of measurement errors the indepen-
dence assumption breaks down and the total least squares solution
becomes imprecise. Nevertheless, it still resides in the vicinity of the
global optimum and thus provide an excellent initial condition for a
subsequent iterative optimization. In a benchmark on synthetic per-
turbation experiments on human pathways, this approach drastically
improved the computational performance compared to the current
standard procedure. This could be an essential step to enhance MRA’s
capacity to model bigger networks and to handle the next generation
of large-scale perturbation data.
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Z U S A M M E N FA S S U N G

Moderne Hochdurchsatzverfahren der Molekularbiologie liefern ein
detailliertes Bild zellulärer Zusammensetzung. Allerdings können sie
typischerweise keine Aussagen über Interaktionen zwischen den Kom-
ponenten eines biologischen Systems treffen. Deshalb wurde in den
letzten 20 Jahren ein breites Sortiment an Netzwerk-Rekonstruktions-
methoden entwickelt. Darunter befindet sich eine Klasse von Algorith-
men, die Perturbationsdaten analysiert. Solche Daten beschreiben wie
ein biologisches System auf gezielte Störungen an einzelnen Kompo-
nenten reagiert. Diese Information erlaubt es den Rekonstruktionsme-
thoden Rückschlüsse über kausale Interaktionsketten zu ziehen. Auf
diese Weise konnten funktionelle Mechanismen in der Genregulierung,
in der Signal Transduktion, in intra-zellulärer Kommunikation und vie-
len anderen zellulären Prozessen aufgedeckt werden. Dennoch bleibt
das Problem der Netzwerkinferenz im Kern ungelöst. Die Rekonstruk-
tion der Netzwerke basiert häufig auf ungeeigneten Annahmen, oft ist
die Frage der Identifizierbarkeit einzelner Netzwerkkanten ungeklärt
und die rekonstruierten Netzwerke sind schwer interpretierbar. Das
Ziel der Dissertation ist es diese Probleme anzugehen.

Zunächst beschreibt sie eine neue Netzwerk-Rekonstruktionsme-
thode, die auf einer einfachen Annahme von Perturbationsausbreitung
basiert. Damit ist die Response Logic Methode in verschiedensten
Zusammenhängen anwendbar und übertrifft andere Methoden in
Standard-Benchmarks. Der Algorithmus wurde in einem Answer Set
Programming Framework implementiert. Das erlaubt eine einfache
Integration von Vorkenntnissen über das zu inferierende Netzwerk.
Außerdem ermöglicht es die Bestimmung aller Netzwerke, die den
vorgegebenen Daten genügen. Dies zeigt die Identifizierbarkeit jeder
einzelnen Netzwerkkante explizit auf. Aufgrund dieser Eigenschaf-
ten konnte die Response Logic Methode plausible Netzwerkhypo-
thesen aus RPPA Daten über MAPK und PI3K Signalkaskaden in
einer Adenokarzinom-Zellline generieren. Die inferierten Netzwerke
erlauben es die unterschiedlichen Sensitivitäten von PI3K-Mutanten
gegenüber verschiedener Inhibitoren überzeugend zu erklären. Ihre
Flexibilität und leichte Interpretierbarkeit machen die Response Logic
Methode zu einem wirkungsvollem Werkzeug zur Rekonstruktion
von Netzwerken in verschiedensten biologischen Prozessen.

Ein zweites Projekt untersuchte die Identifizierbarkeit von Interak-
tionsstärken zwischen Komponenten in Netzwerken, für die lineare
Perturbationseffekte angenommen werden können. Hierbei konnte
gezeigt werden, dass sich die Frage nach Identifizierbarkeit auf ein
Max-Flow Problem abbilden lässt. Dieses analytische Resultat erlaubt
es effektive, identifizierbare Netzwerk-Modelle für ursprünglich un-
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terdeterminierte Inferenzprobleme zu bestimmen. Weiterhin ist es
damit möglich das experimentelle Design zu optimieren. Basierend
auf der Max-Flow Formulierung wurde ein Algorithmus entwickelt,
der Sequenzen von Perturbationen bestimmt, die die Anzahl an iden-
tifizierbaren Interaktionsstärken maximieren. Dieser wurde auf einer
Reihe von bekannten regulatorischen Netzwerken getestet. Im Ver-
gleich zu zufällig generierten Perturbationssequenzen, konnte die
durchschnittliche Anzahl der für volle Identifizierbarkeit notwendigen
Perturbationen dabei auf unter ein Drittel gesenkt werden. In dem Fall,
dass Perturbationen auch kombiniert werden können, reduziert sich
dieser Anteil sogar auf unter ein Viertel. Weil Perturbationsexperimen-
te oft sehr aufwändig und kostspielig sind, kann diese Optimierung
ein entscheidender Schritt zur vollständigen Charakterisierung biolo-
gischer Netzwerke sein.

Schließlich beschreibt die Dissertation eine mathematische Wei-
terentwicklung der Modular Response Analysis (MRA). Dies ist ei-
ne populäre Methode zur Quantifizierung von Interaktionsstärken
zwischen Netzwerkkomponenten aus Perturbationsdaten. In deren
praktischen Anwendung ist es häufig notwendig, Vorwissen über
die Netzwerkstruktur mit einbauen zu können, sowie Perturbatio-
nen mit multiplen Zielen zu berücksichtigen. In diesem allgemeinen
Fall muss zur Bestimmung der Interaktionsstärken ein aufwändiges,
nicht-lineares Optimierungsproblem gelöst werden, was die maxima-
le Größe inferierbarer Netzwerke auf deutlich unter 50 beschränkt.
In diesem Zusammenhang kann hier gezeigt werden, dass sich das
Problem unter einer bestimmten Unabhängigkeitsannahme als ortho-
gonale Regression darstellen lässt. Deren Lösung konnte analytisch
bestimmt werden und lässt sich mit vernachlässigbaren nummerischen
Aufwand auswerten. Allerdings wird die Unabhängigkeitsannahme
mit wachsenden Messfehlern ungültig und das Ergebnis der ortho-
gonalen Regression ungenau. Jedoch verbleibt die Lösung weiterhin
in der Nähe des globalen Optimums und stellt damit einen idealen
Anfangswert für eine anschließende iterative Optimierung dar. In Test-
läufen auf synthetische Perturbationsdaten zeigt dieser Ansatz eine
dramatische Steigerung der nummerischen Effizienz. Dies könnte eine
maßgebliche Verbesserung von MRA sein, die es ermöglicht größere
Netzwerke zu rekonstruieren und somit die neuesten Technologien
zur Durchführung von Hochdurchsatz-Perturbationensexperimenten
auszunutzen.
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1
P R E FA C E

This cumulative dissertation presents two publications (Gross et al.
2019; Gross et al. 2020) that resulted from my doctoral studies on net-
work inference. Here, these are summarized and embedded in a larger
scientific context. An extensive introduction in Chapter 2 portrays the
historical developments that led to a demand for the reverse engineer-
ing of biomolecular networks and reviews existing approaches and
applications. This reveals the current shortcomings that motivated my
research. Chapters 3 and 4 present the two publications and discuss
how my studies helped to address these challenges. In addition, Chap-
ter 5 provides some previously unpublished mathematical analysis to
improve an established network reconstruction method. While these
results are preliminary, they fit well into the general context of the the-
sis and therefore make an appropriate addition. The thesis concludes
with a critical review of the obtained results and provides an outlook
on open question.

In all my projects, I carried out all mathematical analyses, developed
the algorithms and wrote the manuscripts. Matthew J. Wongchenko
and Yibing Yan provided the experimental data for the response logic
project and Nils Blüthgen edited the manuscripts and provided and
excellent supervision for the entirety my work. Thank you Nils for all
the inspiration, your consistent support and for creating an intellectual
environment that stimulates a lively exchange of ideas. It has been a
tremendous experience working with you.

I also owe my scientific accomplishments to the support of many
more people. I am indebted to Bertram for all of his invaluable expla-
nations and insights, as well as for his patience and kindness. Thank
you Florian, Johannes and Mattias for all the witty conversations. I am
grateful to Manuela and Mathurin for our inspiring meetings. And
without Katinka, I would not have discovered the power of Answer
Set Programming. I also want to thank my graduate schools Com-
putational Systems Biology (Research Training Group GRK1772) and
CompCancer (RTG2424) for their generous support. These programs
allowed me to connect to an international community of scientists and
broadened my horizon. Thank you Edda, Marylu, Cordelia and (once
again) Manuela for creating such a fun learning environment. I am
also very grateful to all members of my dissertation committee for
the effort invested in the evaluation of this thesis. Finally, none of this
would have been possible without the wholehearted encouragement
by Naïma, my friends, and my dear family.
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2
I N T R O D U C T I O N

This thesis aims to contribute to the field of network inference. Net-
work inference is a process that derives a network models from ob-
servations of the state of a system. The need for network inference
methods in biology arose with the onset of the ’Omics’ revolution
at the beginning of the 2000s. Within a few years, a series of techno-
logical innovations enabled the experimental observation of a wide
array of molecular cell components at an unprecedented scale. Yet, the
ensuing wealth of data did not per se deliver tangible insights into
the workings of the cell because it does not reveal the connections
between cell components. Network inference methods attempt to fill
this gap and explain the system’s behaviour in terms of the interaction
of its components. This perspective on biological complexity can lead
to biological insights and reliable predictions.

The first part of the introduction describes the scientific and histori-
cal context that called for reverse engineering of biological networks.
This clarifies the motivation behind the various types of inference
methods, which are reviewed in its second part. Finally, such overview
allows to discuss some of the current challenges of network recon-
struction, which initiated the work that is presented in later chapters.

2.1 the historical context of biological network infer-
ence

Network models in an era of low-throughput data

Mathematical network models were formulated long before the avail-
ability of ’Omics’ technologies. These pre-millennial achievements are
exhaustively reviewed elsewhere (Bailey 1998; Green 2016; Buchman
2002; Wolkenhauer 2001), but to point out the pivotal role of ’Omics’
data for the analysis of biological networks, it is worthwhile to men-
tion some early key developments.

The 1940s marked the beginning of the commercial manufacturing
of antibiotics, which established the field of biochemical engineer-
ing. This gave a strong impetus towards a formalized descriptions of
metabolic circuits in microorganism, as they became crucial for the
industrial production of vaccines, insulin, biofuels and many other
compounds (Bailey et al. 1986). An important theoretical achievement
in this context is Metabolic Control Analysis (Kacser et al. 1973; Hein-
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4 introduction

rich et al. 1974), a mathematical framework that allows to quantify
the extend to which enzymes control the flux and concentration of
metabolites in a metabolic pathway. Later, biochemistry started to
be viewed from a cybernetic perspective as well. This allowed to for-
mulate reaction networks without needing to specify their kinetic
parameters. The idea is that evolution meticulously refined biochemi-
cal networks towards a specific function and thereby constrained their
kinetic parameters. Plausible parameter values can thus be retrieved
by solving optimization problems for the formulated model. For ex-
ample, the maximization of cell mass production in a reaction network
describing microbial growth allowed to quantify the allocation of crit-
ical resources to various key proteins (Dhurjati et al. 1985). Similar
ideas amounted to the development of Flux Balance Analysis (Fell
et al. 1986). Kinetic models also became popular to describe signalling
pathways (Lauffenburger et al. 1996), for which computer simula-
tions could reveal emergent properties, such as “integration of signals
across multiple time scales, generation of distinct outputs depending
on input strength and duration, and self-sustaining feedback loops”
(Bhalla et al. 1999).

Parallel to this research on reaction kinetics, there also was a devel-
opment of logic models for the description of cellular circuits (Abou-
Jaoudé et al. 2016). In his studies on generic (random) logical networks
(Kauffman 1969; Glass et al. 1973), Stuart Kauffman provided theoreti-
cal results on how fundamental properties such as cell cycle duration
or cell type diversity are linked to the size and structure of these net-
works. In contrast, René Thomas constructed specific logic networks to
model lysis and lysogeny of the lambda phage (Thomas 1973; Thomas
et al. 1976). Eventually, the logic formalism was increasingly refined
and led to a wealth of studies (Kauffman 1993; Thomas et al. 1990).

These examples can broadly be categorized as bottom up approaches.
That is, they assemble network models from a priori known interac-
tions. A good network model then captures the interplay of all com-
ponents appropriately and can, for example, predict the state of the
entire system in a variety of environmental conditions or perturba-
tions. The approach is especially effective when interactions are well
characterized, as in metabolic pathways, where stoichiometry and
enzyme kinetics govern the described reaction network. In contrast,
the complexity of gene regulatory networks or signalling pathways
generally precludes their description by a bottom up approach. Here,
an interaction, for example between genes, represent a multitude of
context-dependent biochemical and biophysical processes that can-
not be easily cast into an applicable kinetic description. This is why
many regulatory network models described before 2000 were either
conceptional (such as Kauffman’s random networks) or restricted to
small, well-controllable systems (such as Thomas’ lambda phage net-
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work). An alternative to overcome the problems of such reductionist
descriptions of regulatory interactions is a top-down approach. This
is the (inverse) idea to characterize interactions from observations of
the global state of the system. However, such a reverse engineering
approach relies on comprehensive data sets, which required technolog-
ical innovations to overcome the often laborious and low-throughput
nature of experimental techniques of the time.

The ’Omics’ revolution

A continuously evolving branch of science has no clear starting point.
Nevertheless, one could declare June 26, 2000 as the onset of the
’Omics’ revolution. On that day, U.S. President Bill Clinton and the
British Prime Minister Tony Blair jointly announced the completion of
the first survey of the entire human genome. It was the end of a dogged
scientific race between the publicly funded Human Genome Project,
headed by Francis Collins, and the private company Celera Genomics
founded by Craig Venter. The Human Genome Project was initiated in
1990 and aimed to sequence the human genome within 15 years. It was
eight years later that Craig Venter set out to do the same, yet in three
years only. The resulting shock fully manifested when Collins was told
by Venter that in order to coordinate the efforts of the two projects
“you can do mouse” (Shreeve 2007). In the end, the contestants tied and
their landmark findings were published simultaneously (Lander et al.
2001; Venter et al. 2001). This event marked the beginning for series of
technical innovations that brought about an unprecedented wealth of
biological data. Since then, DNA sequencing costs first decreased at an
exponential rate, and with the advent of next-generation sequencing
(NGS) technologies (Slatko et al. 2018) around 2008, even at a super-
exponential rate. In consequence, the cost per human genome has now
reached the 1000 $ mark (Wetterstrand 2020).

Yet, the name ’Omics’ was derived from the fact that technological
progress not only improved the capacity to decipher genomes but to
make a large variety of cellular components experimentally accessible.
One of the particularly important developments was that it became
increasingly easy to quantify RNA levels. A crucial step here was
the invention of microarrays (Schena et al. 1995), which allowed to
simultaneously assay thousands of transcripts at low costs. NGS tech-
nologies further revolutionized transcriptomics, as RNA levels could
then be determined through cDNA sequencing on a massive scale,
using RNA-Seq (Weber 2015). Compared to microarrays, this not only
improved dynamic range and sensitivity but as RNA-Seq no longer
relied on a predefined set of complementary oligonucleotides, it could
also be used to detect transcription initiation sites, sense and antisense
transcripts, alternative splicing events, and gene fusion (Vailati-Riboni
et al. 2017).
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Also high-throughput epigenomic measurements became available.
An example is the use of chromatin immunoprecipitation (ChIP) to
investigate binding between proteins and DNA. The combination
with Microarrays (ChIP-chip) or NSG (ChIP-seq) then allowed to map
histone-methylations over entire genomes (Barski et al. 2007) or to
identify transcription factor binding sites (Johnson et al. 2007). Other
techniques were developed to assay chromatin accessibility (e.g. ATAC-
seq), chromatin interaction (e.g. Hi-C), DNA-methylation (Kurdyukov
et al. 2016), and other DNA modifications (Stricker et al. 2017).

The ’Omics’ revolution encompasses the proteome as well. In par-
ticular, it was the development of mass-spectroscopy that manifested
high-throughput proteomics, which made the technology an indis-
pensable tool for molecular and cellular biology (Aebersold et al.
2003). It’s applications can be broadly divided into three major ar-
eas (Cox et al. 2011). There is expression proteomics, which aims to
quantify the amount of proteins in a sample, there is the identification
of post-translational modifications, and there is mapping of protein
interactions (typically by a pull-down assay of a bait protein with
its binding partners followed by mass-spectrometric analysis). Even
though mass-spectroscopy remains a highly elaborate technology in
comparison to other ’Omics’ approaches, in the sense that is confined
to a few specialized laboratories, it brought about a highly diverse
range of biological insights, particularly due to its inherent specificity
and sensitivity (Aebersold et al. 2016). A first complete model (yeast)
proteome was presented in 2008 (Godoy et al. 2008) and first drafts of
the human proteome followed in 2014 (Kim et al. 2014; Wilhelm et al.
2014). Concerning post-translational modifications, high-throughput
phosphoproteomics has identified more than 230 000 phosphosites on
13 000 proteins in human (Vlastaridis et al. 2017) and suggests that
many of them seem to be involved in cellular regulation (Sharma et al.
2014).

Besides technological developments that enabled high-throughput
measurements of various types of cell components, recent years also
saw the transition from bulk measurements to single cell experiments.
The background to this development was that cellular heterogeneity
had been recognized for decades (Rubin 1990; Elsasser 1984), which
called the significance of measuring population averages into question.
While cell ensemble measurements are reasonable when the cell-to-cell
variance is simply due to noise (Elowitz et al. 2002; Ozbudak et al.
2002; Newman et al. 2006), they might not represent the biological
state of any cell at all, if the ensemble is composed of distinct sub-
populations (Ferrell et al. 1998) (consult Altschuler et al. 2010 for
an extensive discussion). This triggered a range of innovations that
opened ’Omics’ technologies to the single-cell level. The first single-cell
RNA-seq data was generated in 2009 (Tang et al. 2009), and followed
by many more single-cell ’Omics’ approaches (Stuart et al. 2019) to e.g.
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reveal genome sequence (Navin et al. 2011), chromatin accessibility
(Buenrostro et al. 2015), DNA methylation (Luo et al. 2017), or protein
levels using mass-cytometry (Bandura et al. 2009). More recently, even
more comprehensive experiments are realized by single-cell multi-
modal omics, where e.g. non-destructive assays allow simultaneous
genome sequencing and transcriptome profiling of the same single
cells (Zhu et al. 2020). The costs of single cell experiments decrease
continuously which makes such studies prevalent today (Linnarsson
et al. 2016).

The availability of ’Omics’ technologies inspired the foundation of
various large consortia that tried to systematically apply them on a big
scale. Amongst them is ENCODE (ENCODE Project Consortium 2012),
which started in 2003, and is the successor of the already mentioned
Human Genome Projects. Motivated by the observation that protein
coding genes only account for approximately 1.5% of DNA in the
human genome, this ongoing international collaboration set out to
explore the role of the remaining DNA and to compile a comprehen-
sive list of its functional elements. By applying various assays to study
transcription (RNA-seq), DNA binding (ChiP-seq), DNA accessibility
(ATAC-seq), and others, the goal is to determine which DNA elements
act at the protein and RNA levels, control cells and circumstances
in which a gene is active. This lead to an assignment of biochemical
functions for 80% of the genome, a claim that provoked substantial
criticism (Doolittle 2013; Eddy 2013).

Another major (public) data collection effort that was launched after
’Omics’ technologies became available is The Human Protein Atlas
(Uhlén et al. 2015). This ongoing project started in 2003 and applies
antibody-based imaging, mass spectrometry-based proteomics, and
transcriptomics to map human proteins in cells, tissues and organs.

Furthermore, The Cancer Genome Atlas, running from 2006 to 2018,
compiled genetic mutations (amongst others) in 33 cancer types from
11000 tissue samples (Ding et al. 2018). Some of the key findings
from this massive data set were that cancers could be grouped by
(pan-tissue) molecular characteristics rather than their tissue of origin
(Hoadley et al. 2018), and that cancer is a signalling disease with
89% of tumours having at least one significant alteration in 10 key
signalling pathways (Sanchez-Vega et al. 2018).

Another noteworthy mention is the more recent launch of the Hu-
man Cell Atlas Project in 2016. Here, the focus lies on using high-
throughput single-cell molecular profiling to map all cell types in the
human body (Regev et al. 2017). The aim of the first project phase is
to profile 30-100 million cells from major tissues of healthy individuals.
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20 years of systems biology

’Omics’ technologies provide the data that enables a previously inac-
cessible description of biological networks from a top-down approach,
using network inference methods. But network inference is only a
part of a much larger, ’Omics’-triggered reformation of quantitative
biology. To understand how network reconstruction fits into this new
scientific context, this section reviews some of its developments.

The ’Omics’ revolution established of an era of unprecedented abun-
dance of biological data. Yet, it turned out that identification and
quantification of cellular components alone did not provide meaning-
ful insights into the workings of a cell. What was needed to extract
knowledge from ever more powerful experimental techniques was
a radical shift in research methodology. This transformation became
known as systems biology. The field quickly manifested by the found-
ing of the Institute for Systems Biology in Seattle, Washington and
the Systems Biology Institute in Tokyo both in 2000. The same year,
the International Conference on Systems Biology (ICSB) was launched.
Shortly thereafter, perspectives on the matter were written (Ideker
et al. 2001; Kitano 2002) and dedicated journals appeared (Molecu-
lar Systems Biology and PLOS Computational Biology in 2005, BMC
Systems Biology in 2007). The field expanded rapidly. Within a few
years, the number of new articles per year that are indexed in PubMed
with a “systems biology” label grew into the thousands (Chuang et al.
2010), and the ICSB that started as a meeting with little more than 20

speakers in 2000 became a full-fledged conference with many parallel
sessions, featuring more than 300 talks and workshops in 2019.

But even though the term systems biology is omnipresent today,
its specific meaning is still under debate (Green 2016). The apparent
consensus may be that systems biology addresses phenomena that
are in some sense complex and thus rely on a mathematical or com-
putational formalism for their analysis. Yuri Lazebnik illustrates this
idea in his light-hearted contemplation on whether a biologist can
fix a radio (Lazebnik 2002). Furthermore, systems biology pursues
a wholistic approach to study emergent properties that arise from
the complex interplay of the system’s components. Philip Warren
Anderson, who sadly passed away while I was writing this chapter,
coherently explained this concept in his seminal paper “More Is Dif-
ferent” (Anderson 1972). There he argued that a strictly reductionist
point of view, which attempts to explain an observed phenomena by
breaking it down into ever smaller entities, would fail to constructively
describe a complex system. Rather an effective description is based
on a scientific hierarchy, where at each level emergent properties are
derived from basic principles which in turn serve as the basic princi-
ples in a next higher-level description of the system. In practice, these
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concepts have become widely internalized in the molecular biology
community, and often quite subliminally so. It could be regarded as
an outcome of 20 years of systems biology that we can sensibly work
with high-level concepts, such as protein function or information flow,
without needing to detail their biochemical underpinnings. But to
not delve into a philosophical discourse about the nature of systems
biology, I will resort to a mostly ostensive description.

Research in systems biology is not confined to any particular species,
biological mechanism, nor any length or time scale. To give an impres-
sion of this diversity and of the systems biology approach, I want to
point out a few of the more prominent works of the field. One that
attracted a great amount of attention was the discovery of network
motifs (Milo et al. 2002; Shen-Orr et al. 2002; Milo et al. 2004; Alon
2007). These motifs are small subnetworks (with typically three to
five nodes) that occur in a given network significantly more often
than in randomly rewired control networks. This overabundance is
thought to manifest evolutionary design principles in biological or
synthetic systems. Prominent examples are the feed-forward loop and
bi-fan structure that was found to be characteristic for gene regu-
latory networks. Hopes are that motifs allow to characterize entire
network superfamilies by more simpler principles. Yet, the excitement
was not unanimously shared. It was argued that motifs simply occur
due to specific constraints of the underlying network, such as local
clustering effects (which is not taken into account by the background
model) (Artzy-Randrup et al. 2004). Furthermore, it was shown that
a network motif can exhibit opposing behaviour depending on its
parametrization. This suggests that it might be impossible to conclude
about biological function of the motifs (Ingram et al. 2006).

Networks generally play a central role in systems biology. They
were used to chart genetic links between human diseases and genes
(Goh et al. 2007). In yeast, large-scale proteomics studies revealed a
protein interaction network (Krogan et al. 2006). Similarly, a set of
yeast double mutants including up to 6000 genes allowed to map a
genetic interaction network based on synthetic lethality with nearly 1

million interactions (Tong et al. 2004; Costanzo et al. 2010; Costanzo et
al. 2016). Such type of networks then form the basis of computational
models of either cellular processes, for example metabolism in E. Coli
(Orth et al. 2011), or even whole-cell models for simple organisms
such as bacterium Mycoplasma genitalium (Karr et al. 2012). Such cell
models had already been proposed by Francis Crick in 1973 (Crick
1973). As experimental and computational technology advanced, they
seemed within reach and were deemed “the ultimate goal” (Carrera
et al. 2015) of systems biology and a “grand challenge of the 21st
century” (Tomita 2001), because they would allow to predict complex
phenotypes and perturbation responses, as well as to optimize the
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design of future experiments. However, they also face profound criti-
cism. Some argue that whole cell models will always remain utterly
incomplete in light of the astronomical number of cellular interactions
(Noble 2012). Furthermore, their inherent lack of abstraction or simpli-
fication might fail to give them any explanatory power (Krohs et al.
2007). Such questions are extensively discussed for the Mycoplasma
genitalium model in (Gross 2017).

In contrast to such computational efforts, systems biology also
includes more theoretical works, such as a study on phenotype switch-
ing in clonal populations (Kussell et al. 2005). Here, the analysis of
a simple growth equation showed that a phenotypical adaptation to
a changing environment that is triggered by stochastic phenotype-
switching mechanisms can be favourable to one relying on active
sensing. Another investigation on the optimal design of the signalling
network of bacterial chemotaxis (Kollmann et al. 2005) revealed that
the naturally evolved pathway structure is more robust to gene ex-
pression noise than multiple alternative topologies. And as a final
example, it was suggested that many biological systems might exhibit
self-organized criticality (Mora et al. 2011). This means that certain
characteristic properties of the system, for example the activity of
retinal ganglion cells, obeys a power law, which could yield an opti-
mal capacity for stimulus representation, or information storage and
transmission (Shew et al. 2013). However, others claim that such criti-
cality might solely arise due to external fluctuations rather than from
a self-organized fine-tuning of parameters (Schwab et al. 2014).

With time, the field of systems biology further diversified and
systemic approaches also entered other areas of research. Today, there
is Systems Medicine (Auffray et al. 2009; Apweiler et al. 2018), Systems
Genetics (Civelek et al. 2014), or Systems Immunology (Davis et al.
2017) to name but a few of the biological “systems sciences”. In fact,
the term is now so abundant that it no longer describes a distinct and
novel way of doing science. 20 years of systems biology showed that
genes do not act in isolation but are embedded in a multi-layered and
modular regulatory system (Noble 2008; Hartwell et al. 1999; Kashtan
et al. 2005). It also made clear that the elucidation of this astounding
complexity requires an integration of experimental, computational and
mathematical efforts (Aderem 2005). The success of having established
these ideas might complete the epoch of systems biology.

2.2 reverse engineering of biological networks

The previous section showed that a central idea of systems biology
is to derive effective descriptions of cellular complexity in terms of
networks of interacting modules. These descriptions rely on ’omics’
technologies to observe the entirety of involved cellular components.
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Yet, the ’Omics’ approach per se only offers “complete but physiologi-
cally uninterpreted data sets” (Krohs et al. 2007). Some even claim that
the ever increasing precision in the identification and quantification
of cell components can hamper an effective understanding of cellular
processes (Stern 2019), unless the refinements in the experimental
protocols are met with advances in mathematical approaches to data
analysis (Bizzarri et al. 2019). Currently, the development of such
adequate analysis methodology seems to be lagging behind. Alluding
to Lazebnik’s reflections on how a biologist would fix a radio (Lazeb-
nik 2002) (mentioned in the last section), Jonas and Kording asked
whether a neuroscientist could understand a microprocessor (Jonas
et al. 2017). The microprocessor was chosen because it can be seen as a
hugely simplified model system of a brain, for which data in any level
of detail can be obtained. At the same time, being a man-made device
it provides a known truth against which analysis results can be tested.
Yet, the sobering realization was that even when detailed datasets are
available, current methods from neuroscience fail to capture the inner
logic of the device and cannot derive functional insights. I would argue
that this situation applies to other branches of biology as well. Take as
example that even in well-studied eukaryotic model organism such as
budding yeast, 20% of the proteins lack any informative description
of their biological role (Wood et al. 2019). This is without saying that a
simple protein assignment to a biological process for the other 80%
does not come anywhere near to allow understanding a protein’s
function in a given physiological context. The list of fundamental
problems that are unsolved despite an abundance of available data
is long (Dev 2015). This explains the ongoing focus of the systems
biology community to develop new mathematical and computational
methods (Polychronidou et al. 2017).

Amongst them is a class of algorithms to reverse engineer biological
networks from ’Omics’ data. Its goal is to identify or even quantify
(pairwise) interactions between the components of a biological system
from experimental observations of the system’s state. The hope is that
this elucidates the underlying processes and mechanisms, and thereby
ultimately provides a functional understanding of the system.

In some settings, network information arises directly from exper-
imental data. For example, there is an impressive array of different
experimental techniques to analysis protein-protein interactions (Titeca
et al. 2019). Similarly, the previously mentioned double-mutant epista-
sis screens in yeast (Costanzo et al. 2010; Costanzo et al. 2016) quantify
genetic interaction strengths directly from measurements of cell vi-
ability or culture size. As it was observed that ∼73% of Yeast gene
are non-essential, the idea is that synthetic lethal genes can indicate
processes that buffer each other and thereby display functional rela-
tionship (Tong et al. 2004). Also various other measures of genetic



12 introduction

interactions from phenotype measurements were defined (Drees et al.
2005).

However, these are exceptions and usually there are no experimental
protocols to directly obtain a useful network description. This can have
technical reasons, e.g. that double mutant libraries are not available,
but more importantly, this is due to a more conceptual limitation.
Experimental approaches to characterize network interactions often
provide biochemical information that fails to capture the nature of the
interactions that the network is supposed to describe. For example,
ChIP assays can indicate that a certain transcription factor binds to
a promoter of a gene. But this information does not adequately de-
scribe gene regulation because a binding event might not be functional
or not sufficient with respect to transcription initiation. An alterna-
tive strategy is therefore to rather identify appropriate readouts for
the relevant components (e.g. mRNA counts), and to derive effective
networks from experimental observations of their behaviour under
various conditions, in response to perturbations, or over time. In this
way, the inferred network becomes an interpretable model for the ob-
served biological phenomenon in a defined biological context. ’Omics’
technologies deliver the type of data that is suitable for this approach.
Thereby, they initiated a substantial amount of research on the reverse
engineering of biological networks.

Some of the first highly cited network inference methods were de-
scribed around the turn of the millennium (Liang et al. 1998; Friedman
et al. 2000; Yeung et al. 2002; Ideker et al. 2002; Friedman 2004) and
followed by a continuous stream of new publications, whose number
was found to double every two years (Stolovitzky et al. 2009). Today,
the literature about the reverse engineering of biological networks
includes thousands (Jurman et al. 2019) of research articles about
new methods and applications, various books (Lingeman et al. 2012;
de la Fuente 2014; Haibe-Kains et al. 2015; Sanguinetti et al. 2019),
and more than forty review articles (Natale et al. 2017). Amongst the
latter, Markowetz and Spang 2007 provides an excellent overview of
the different mathematical and algorithmic approaches, and Natale
et al. 2017 presents a comprehensive discussion about applications.
The aim of the following sections is thus to only give an overview
of some basic concepts and typical approaches, which then allows to
evaluate the current state of the field and identify open challenges
that inspired the works of this thesis.

Methods

A network is defined as a set of nodes and edges connecting some node
pairs. Edges can be directed or undirected. Furthermore, they can be
weighted (they are associated with some scalar value) or unweighted.
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In the latter case, they merely describe the topology of the network. If
on the other hand, there is a weight associated to an edge, it mostly
describes one of two properties. Either, it represents the confidence
that the data supports the existence of the edge, or it quantifies a
certain strength of interaction between the two connected nodes.

Next, we can distinguish observational, time-course and interven-
tional data. Measuring time-courses or observing the system’s re-
sponse to targeted perturbations is often challenging for biomolecular
systems. Therefore, observational data, consisting of samples of the un-
perturbed system state in various conditions, is much more abundant
and the majority of inference methods is designed to interpret this
kind of data. One of their major strategies is to characterize network
edges based on measures of association between pairs of network
nodes, such as (Pearson) correlation, for example used in WGCNA
(Langfelder et al. 2008). Yet such an approach will not properly dis-
tinguish between associations from direct interactions and those that
arise due to secondary interactions. To also account for such indirect
node interactions, others applied partial correlation scores (Schäfer
et al. 2005). Still, correlation coefficients indicate the strength of linear
relationships, which rarely arise in a biological system. To address
this issue, others applied information theoretic scores such as mutual
information, which was for example implemented in ARACNe (Basso
et al. 2005). However, the estimation of mutual information from finite
datasets is non-trivial (Steuer et al. 2002). To account for non-linearities
while also avoiding finite sample effects, more recent work (Ghan-
bari et al. 2019) has therefore suggested to apply distance correlation
(Székely et al. 2007) as a measure of association. Alternatively, inter-
actions can be quantified by a maximum entropy approach (Stein
et al. 2015; De Martino et al. 2018). This approach fits parameters of a
probability distribution such that the distribution captures the means
and covariances of the data while maximizing its entropy to avoid
any unjustified bias. The parameters can be interpreted as pair-wise
association measures between network nodes. An important feature
of this model is that it can be fit to discrete data (it then becomes
a Potts model), for example to DNA sequence alignments to reveal
evolutionary couplings between pairs of nucleotides (Weigt et al. 2009;
Marks et al. 2011).

Ultimately, to obtain a (non fully-connected) topology, each of these
methods needs to define a threshold to distinguish important from
negligible association scores. All the mentioned association measures
are symmetric and thus the inferred networks are undirected. They
can therefore not be interpreted in a causal sense. Rather edges are
thought to combine functionally associated nodes. These could for
example represent co-expression gene modules, or, as often claimed,
even gene regulatory networks, although such an interpretation is
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questionable as discussed further below.

A different type of strategy is to infer Bayesian networks from ob-
servational data. A Bayesian network is a probabilistic model with
directed edges that represent the conditional dependence of its vari-
ables on each other. It implies a joint probability distribution with
the interpretation that the data was sampled from it. Using Bayesian
inference (Needham et al. 2006), its parameters can be tuned as to
maximize its likelihood to the data. However, such maximization relies
on the specification of a specific network structure. While established
algorithms exist (Spirtes et al. 2000), the search for network structures
with a maximum likelihood in the super-exponential space of possi-
ble networks is challenging and remains an active area of research
(Ghanbari et al. 2015). Bayesian network inference methods (Fried-
man et al. 2000; Friedman et al. 2003) have been particularly popular
because they provide a natural way to integrate prior network knowl-
edge. Another particularly astonishing feature is that these methods
infer directed networks from purely observational data. However, the
directions of the edges are not necessarily meaningful (Verma et al.
1990). That is because different Bayesian network structures can give
rise to identical joint distributions, a phenomenon known as Markov
equivalence. Thus, a Bayesian network does not generally provide a
unique causal structure. However, Bayesian model averaging can help
with causal discovery (Koller et al. 2009).

A Bayesian network cannot contain cycles (it is a directed acyclic
graph, DAG). This is a considerable limitation as feedbacks are per-
vasive in biology (Thomas et al. 1990). When time-course data is
available, dynamic Bayesian networks (Dean et al. 1989) can provide
a solution to this problem. In these probabilistic models, a variable
represents a specific biological entity at a given time point. In this way,
a path in a DAG can lead back to the same entity at a later time point
and thereby model feedback loops (Hill et al. 2012).

Another popular approach to derive causal models from time-course
data is to describe the observed dynamics as a system of differential
equations. Typically, it is assumed that trajectories remain close to
steady state, which justifies a linearisation of the system. This then
allows to fit model parameters, which can be interpreted as interac-
tion strengths. Often, this leads to an underdetermined optimization
problem which requires regularization strategies. A popular example
of such a method is the Inferelator (Bonneau et al. 2006).

Other approaches on time-course data do not rely on an explicit
dynamic model. This includes methods that are based on convergent
cross mapping (Sugihara et al. 2012), Granger causality (Zou et al.
2009), or transfer entropy (Runge et al. 2012).
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Many of these methods can more reliably determine directed in-
teractions, when the observed time-courses track the response to an
intervention at the system (Pearl 2009). However, many experimental
techniques are destructive so that it is often impossible or prohibitively
laborious to perform measurements at various time points. It is thus
more common to only observe system once per perturbation, typically
after transient adaptations have terminated and the system has relaxed
into a new equilibrium state. The methods developed in this thesis
work within this setting.

Perturbations can either target a single or a few network nodes, as is
the case for knockouts, gene overexpression, inhibitors, and ligands, or
they can be multi-factorial (Jansen 2003), e.g. when comparing popula-
tions with different mutational backgrounds. Some of the previously
mentioned approaches that infer networks from observational data
can be adapted to include interventional data, see (Markowetz and
Spang 2007). Notably, Bayesian networks can introduce what is known
as ideal interventions (Pe’er et al. 2001; Pearl 2009). These interven-
tions account for perturbations by collapsing according probability
distributions to a point mass. Then, some Markov equivalent network
structures might no longer provide the same maximum likelihood
and thus become distinguishable. In this way perturbations help to
determine the direction of causality.

Alternatively, if each single network node can be experimentally
perturbed, a much more direct way to infer a directed network is
to simply draw edges from a perturbed node to all nodes which
showed a significant response to the according perturbation. Clearly,
the resulting disruption network (Rung et al. 2002) fails to distinguish
between direct and indirect effects. To overcome this challenge, one
could hypothesise that the direct interactions are captured by the
transitive reduction of the disruption network (Wagner 2001). The
transitive reduction (Aho et al. 1972) is the directed network with the
fewest edges that still contains a path from a perturbed node to all
nodes that showed a response. Yet, also this approach requires a fully
perturbed network, is sensitive to noise, and does not allow for an
integration of prior network knowledge. More importantly though,
there is no fundamental reason to believe that the transitive reduction
is biologically justified (de la Fuente, Brazhnik, et al. 2002). In fact,
these and other shortcomings were part of the motivation for the
development of the response logic approach (Gross et al. 2019) that
is introduced in the next chapter. There, I will further discuss similar
methods and the more general idea of inferring boolean network
models.

In any case, these methods solely consider an edge to be present
or absent. Yet, such purely topological information might not always
be enough to determine the system’s behaviour, as shown for exam-
ples in simple synthetic gene networks (Guet et al. 2002), or in the
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applications described further below. In these scenarios it is crucial
to quantify interaction strengths, that is, to infer weighted directed
networks. While this can be achieved with Bayesian networks, the
involved estimation of probability distributions may require many
data samples per perturbation. In contrast, another approach that
can infer weighted directed networks from smaller data sets relies
on theoretical work in Metabolic Control Analysis (Kacser et al. 1973;
Heinrich et al. 1974) and was termed Modular Response Analysis
(MRA) (Bruggeman, Westerhoff, et al. 2002). Here, the idea is, again,
that the underlying system can be represented by a system of ordinary
differential equations. The measurements of the perturbed system
are considered as its perturbed steady states and allow to compute
the unknown entries of the system’s Jacobian matrix, which can be
interpreted as interaction strengths. Many extensions to this original
idea have been developed (Santra et al. 2018) and will be reviewed
in Chapter 4. This thesis also makes contributions to the field of
MRA by studying network identifiability and experimental design, as
discussed in Chapter 4, and ways to improve optimization of MRA
models, which is described in Chapter 5.

This concludes the overview on the most common approaches to
network inference. Many more aspects have been discussed in the
literature. Amongst them are hidden (unobservable) nodes, which are
for example addressed by nested effects models (Markowetz, Kostka,
et al. 2007), learning from heterogeneous data sources (Hecker et al.
2009; Chiquet et al. 2019), temporarily evolving networks (Parikh et al.
2011), the recent surge of methods to handle single cell data sets (Aibar
et al. 2017; Matsumoto et al. 2017; Todorov et al. 2019; Wang et al. 2019),
and many more. Additional information about these developments
can be found in more specialised reviews (Sanguinetti et al. 2019).

Evaluation

How can we judge if a network inference method generates useful
results? There are several aspects to this question. One approach is
to evaluate the performance of a network inference method by the
accuracy of its prediction. This would require some gold standard
networks to compare against. I can see three reasons why these are
hard to come by. For one, they would have to be generated by some
complementary experimental method which is often unavailable and
also prone to be incomplete and erroneous. Furthermore, it is challeng-
ing to ensure a meaningful overlap between a putative gold standard
network and the data that serves as input for the inference. For ex-
ample, it is problematic to benchmark transcription factor networks
inferred from transcriptome data on transcription factor binding sites
obtained from a ChIP assay. The complication is that binding of a tran-
scription factor at the promoter region of another transcription factor
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is an indication but no proof of regulation. So even in the absence of
experimental error, the networks are not fully comparable. A third
reason why a comparison to a gold standard network can be prob-
lematic is that every method is based on different assumptions and
comes with a different understanding of how the inferred network is
to be interpreted. Some methods might be tailored towards a detailed
deciphering of the system’s biochemical underpinnings, while others
attempt to trace the flow of information. How can one then define
a single gold standard network to compare these different network
concepts?

At the expense of biological relevance, these difficulties can be cir-
cumvented to some extent by an evaluation on synthetic, simulated
networks. This was the strategy in the first public network inference
challenges conducted by the Dialogue on Reverse-Engineering Assess-
ment and Methods (DREAM) project (Stolovitzky et al. 2007). DREAM
challenges have since become the de facto standard benchmark of
reverse-engineering methods. Participating teams make predictions
on provided data sets that are then scored against a held-back gold
standard in order to rank the applied methods. Yet, the first years of
the challenge led to a perplexing outcome. In retrospect of DREAM3,
the organizers conclude that

However, for the majority of inference methods the preci-
sion of the predictions was rather low . . . . In addition, a
surprisingly large number of methods (11 out of the 29)
produced network predictions that were, on average, not
significantly better than random guessing . . . . This is a
sobering result for the efficacy of the network-inference
community. (Marbach et al. 2010)

This underperformance can have many reasons, for example that some
participants simply were not very experienced in the development
of such methods. Likewise, it might not necessarily reflect upon a
poor state of the field for the reasons discussed above. However, there
also is a general technical problem that could explain poor results,
which might not always have been fully appreciated. It is the issue of
identifiability.

Network inference tends to act within a massively underdetermined
setting, as typically the number of nodes far exceeds that of the (in-
dependent) samples (Natale et al. 2017; Bonneau et al. 2006). In this
case, the data is insufficient to confidently infer all edges of the under-
lying network (Szederkényi et al. 2011). In practice, many methods
approach this problem by regularization in one form or the other.
Inferring a transitive reduction (Wagner 2001), as discussed above, is
one approach that picks a particular network (the sparsest) within a
set of equivalent alternatives. Another example is the ARACNe (Basso
et al. 2005), which applies the data processing inequality to develop
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a heuristic that strives to remove putative indirect interactions. Simi-
larly, L1 regularization is used in the optimization of the Inferelator
(Bonneau et al. 2006) in order to prevent overfitting. Whenever the
goal is to construct performative classifiers or even predictive models,
such types of regularization can be an essential tool. However, they
require caution when the goal is to interpret the regularized network
model itself. The reason is simply that a maximization of sparsity that
is implied by regularization might not correctly represent biological
networks. Admittedly, ecological, gene-regulatory, metabolic and other
biological interaction networks have been reported to be sparse (Bus-
iello et al. 2017), which was, for example, explained by evolutionary
selection towards robustness to network perturbations (Leclerc 2008).
However, the topological space of sparse network structures that can
equally well explain a certain data set can potentially be highly diverse.
Committing to a single network amongst them would then likely yield
a poor prediction. Additionally, a maximization of sparsity might miss
the biological truth, as functional constraints can necessitate additional
network edges but might not be reflected by the considered data. For
example, recall from the previous section that the most abundant gene
regulatory network motif is thought to be a feedforward loop (Milo
et al. 2002). Its suspected function is to activate the output node only
under a prolonged stimulation and to quickly deactivate it when the
stimulation stops (Shen-Orr et al. 2002). Yet from the perspective of a
transient reduction, the additional feedforward edge in the circuit is
dispensable and would be removed.

To avoid such misjudgements, a reconstruction method should not
uncritically commit to a single solution network but rather be ex-
plicit about which parts of the network are uniquely determinable
by the data, and where rivalling network hypothesis exist (Altay et
al. 2010). While such an identifiability analysis is a standard proce-
dure in biological modelling (Chis et al. 2011; Bellman et al. 1970),
it has been largely underappreciated within the realm of network
reconstruction. Notable exceptions include methods that take into
account the uncertainty about inferred parameters by inferring entire
parameter distributions instead of just single values (Molinelli et al.
2013), or those that not only infer a single model but are rather ex-
plicit about non-identifiabilities by considering an entire ensemble of
networks (Kuepfer et al. 2007) which describes the data equally well
(Szederkényi et al. 2011; Ud-Dean et al. 2014).

Gaining a rigorous understanding about identifiability of network
parameters is crucial for a meaningful network inference but has not
yet been sufficiently addressed. It is thus a central focus in the methods
that were developed in this thesis. The response logic approach (Gross
et al. 2019) presented in the next chapter, returns a comprehensive
ensemble of data-conforming networks. And our study on identifiabil-
ity within the framework of MRA, presented in Chapter 4, maps the
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question of parameter identifiability onto an intuitive maximum-flow
problem, which additionally allows to optimize the experimental de-
sign to maximally reduce non-identifiability.

Beyond these more technical aspects of network inference, it is
worth thinking about how exactly such methods can aid to under-
stand biology. This seems especially important as the development
of new algorithms often seems technically motivated and as the field
has become very self-referential. Likewise, it is not convincing to only
report a method’s superior DREAM scores, when it remains unclear
whether it can reveal useful insights from novel data sets. Such short-
comings lead to the unfortunate situation that many new methods
will not find applications beyond the decorative examples provided
in their publication. To that effect, there should be an increased effort
to identify the biological system, data set or use case that a novel
method can be applied to. Obviously, it is impossible to define general,
quantitative criteria that allow to judge this applicability. Instead, one
can point out a number of examples for which reverse engineering
expanded our understanding of biology, as done next.

Applications

Network inference methods are applied in various different areas.
They serve to derive gene regulatory models from transcriptomics
data, but they were also used to describe metabolic pathways, neural
circuits, signal transduction, interaction of species, disease networks
and many other types of interaction. The following paragraphs there-
fore do not aim for a comprehensive description of the applications of
biological network reverse-engineering, as attempted in Natale et al.
2017, but rather discuss a variety of different examples that represent
qualitatively different ideas in which inferred networks can be useful.

Many reverse-engineering methods were developed to be applied
on large-scale ’omics’, in particular transcriptomics data, in order to
infer gene regulatory networks, specifically transcription factor inter-
actions. Examples include the elucidation of MYC targets in human
B cells (Basso et al. 2005), or a large-scale study in in Escherichia
coli (Faith et al. 2007), which lead to the discovery of many novel
transcription factor interactions and a regulatory interaction involved
in metabolic control of iron transport, which could be confirmed by
follow-up experiments. These studies computed association scores
from transcriptional profiles under various different conditions, that
is, from observational data. But as discussed before, this only allows
to infer undirected networks, which cannot distinguish whether a
certain transcription factor is upstream or downstream of its network
neighbours. Yet, the lack of such network logics hampers the design
of predictive models. In addition, a downside of association score
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based network predictions is that they possibly tend to overestimate
the number of network links. That is because, quite commonly, the
variation of transcriptional profiles under various conditions is not ex-
plainable from within the network itself. For example, it is imaginable
that in certain conditions cells grow in environments, which contain a
receptor ligand that drives the transcription of a set of genes that exert
no regulatory control amongst each other. Therefore, although they are
disconnected, genes in this set will vary concertedly across conditions
and appear as highly associated. Thus, even methods that take great
care in rejecting indirect links, will erroneously suggest at least some
links between them. This is the classic problem that correlation does
not imply causation. It thus requires caution to interpret association
scores as indicators for regulatory interaction. Often, it might be more
adequate to view sets of connected nodes as functionally associated
modules. While this point of view diminishes the potential to un-
derstand cell regulation and derive predictive models, it can still be
useful, for example to predict protein function based on annotated
function of neighbouring proteins (Sharan et al. 2007).

Beyond the scope of molecular cell biology, the idea to derive undi-
rected networks from activity or abundance profiles found applications
in an astounding diversity of topics. Such networks were used to de-
scribe species interactions on the microscopic (Menon et al. 2018) as
well as the macroscopic scale (Volkov et al. 2009), they allowed to
describe organization of coding in neural populations (De Martino
et al. 2018), they represent co-evolved protein residues that allow to
predict protein contacts and ultimately protein folding (Weigt et al.
2009; Marks et al. 2011), and were used in many more contexts (De
Martino et al. 2018; Stein et al. 2015).

In contrast, to be able to make causal statements and to derive
directed networks, many studies relied on perturbation data. In partic-
ular, many perturbation experiments have been carried out to decipher
various signalling pathways, their cross-talk and context-specificity,
with a focus on cancer. Dysregulation of signalling is a driving mecha-
nism in a majority of cancer types (Sever et al. 2015) and a detailed
understanding of these functional changes forms the basis of targeted
therapy (Gerber 2008). In this context, an important contribution of
perturbation studies is to reveal the special role of feedback loops
in signalling. For example, Klinger et al. 2013 measured changes in
phosphorylation of kinases within the epidermal growth factor re-
ceptor (EGFR) signalling network in colorectal cancer cell lines upon
perturbations by small molecule inhibitors and growth factors. They
could then apply MRA to quantify a signalling model which unveiled
a negative feedback from kinase ERK to EGFR. The model could thus
mechanistically explain how an inhibition of MEK, the upstream ki-
nase of ERK, increases the activity of EGFR and thereby also that of its
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other downstream target, AKT. As the AKT pathway is associated with
cell survival, this finding undermines the benefit of MEK inhibition for
eradication of colorectal cancer cells. Instead, it lead to the hypothesis
that cell growth is effectively blocked by a combined inhibition of
EGFR and MEK, which could be confirmed in a xenograft model.

While this study constructed a pure signalling model, others ex-
plicitly included variables to describe phenotypes. Perturbation ex-
periments on a BRAF-mutant melanoma cancer cell line (Molinelli
et al. 2013) lead to a model that not only identified novel signalling
interactions but can also systematically simulate the effect of inhibi-
tions of different kinases, beyond the ones observed experimentally.
This allowed for a prediction of efficacious drug targets, such as PLK1

whose pivotal role in cell viability could be confirmed by follow-up
experiments.

But network inference methods can also address the inverse ques-
tion of determining the direct targets of a compound. The difficulty is
that due to secondary effects, perturbations will affect not only their
direct targets but all of their downstream nodes. To this end, pertur-
bation experiments on a nine-gene subnetwork of the SOS pathway
in Escherichia coli (Gardner et al. 2003) enabled a network inference
method to distinguish these first and second order effects. Thus, net-
work reverse-engineering can also identify the mode of action of
uncharacterised pharmacological compounds.

Yet another type of network inference applications is to use the
inferred networks as input to downstream analyse. For example, a
toxicity study on human embryonic stem cells (Yamane et al. 2016)
reconstructed a Bayesian network from qRT-PCR data on ten genes at
four time points after administration of five different doses for each of
22 chemicals. The resulting weighted network edges were than added
as features to a support vector machine. This improved its accuracy as
a classifier of toxicity categories.

Outlook

A recent benchmark compared seven popular network inference meth-
ods on a large body of transcriptome data from mouse embryonic
stem cells (Meisig et al. 2018). The disheartening result was that the
reconstructed networks varied widely and that their features did not
reflect upon the data but could rather be traced back to the design of
the algorithm. Apparently, also twenty years after it became a trending
research topic, reverse engineering of biological networks remains an
unsolved problem. So what can be done about that?
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A significant hurdle on our way to a better understanding of biologi-
cal networks is the seemingly prevalent idea that there is a single, true
network that underlies the data, and that this network can be recon-
structed if only our mathematical and computational abilities become
sufficiently developed. This view fails to appreciate that a network is
just a mathematical concept to simplify biological complexity at a cer-
tain level of abstraction. The spectrum of what networks can represent
ranges from specific biochemical reactions to effective descriptions of
information flow without specific mechanistic underpinning (Gardner
et al. 2005). It is crucial to make a deliberate choice about this level of
granularity to be able to interpret an inferred network and generate
biological hypotheses from it. Merely listing a “hairball” of decon-
textualized interactions (Lander 2010) is not inherently more fruitful
than to report the original data (Natale et al. 2017). Yet, making such
an informed choice relies on a good understanding of what the data
represents and what it can allow to learn. The importance of biologi-
cal context seems to be underappreciated by the reverse-engineering
community. An algorithm cannot blindly create knowledge and the
automation of science (King et al. 2009) is still a dream. Fortunately,
there are methods that are embedded in biological context and incor-
porate various forms of biological knowledge (Siahpirani et al. 2019).
One particularly interesting idea in this direction is that of network
contextualization (Liu et al. 2019). Here, instead of reconstructing a
network de novo, the algorithm identifies from an ensemble of known
pathways those that best explain a set of expression profiles.

As biological systems can be viewed from different perspectives,
there generally is no single, best inference method for a certain data
set. The challenge is that, in the absence of solid gold standards (see
above), methods cannot easily be evaluated. Rather an algorithm has
to be chosen based on an assertion of how well its inherent assump-
tions conform to the biological context. However this is notoriously
difficult, as these assumptions are typically expressed in mathematical
or algorithmic terms that cannot be directly compared to biological
knowledge. Who can say, whether the data processing inequality ap-
plied in the ARACNe (Basso et al. 2005) is more adequate to eliminate
indirect links in an inferred transcription network in mouse embry-
onic stem cells than removing them by partial correlations? This kind
of problem was also noted in the DREAM challenges, in so far as
“sophisticated methods that would in theory be expected to perform
better . . . , were more strongly affected by inaccurate prior assump-
tions in practice” (Marbach et al. 2010). This suggests that the reverse
engineering community should increase their efforts to clarify the
context in which their methods work. This can be achieved by tailor-
ing methods towards specific applications, e.g. inferring signalling
networks from phosphoproteomic data (Invergo et al. 2018), or by



2.2 reverse engineering of biological networks 23

simplifying a method’s assumptions, which was a central motivation
in the development of the response logic approach, which will be
presented in the next chapter.





3
R O B U S T N E T W O R K I N F E R E N C E U S I N G R E S P O N S E
L O G I C

This chapter introduces a method called response logic approach,
which infers directed networks from perturbation data to derive mech-
anistic insights. Yet as discussed in the preceding chapter, these net-
works are not necessarily the only valid representation of a system’s
interconnections. Rather, the derived interactions reflect the biolog-
ical assumptions and the viewpoint of the reconstruction method.
Therefore, different methods will infer different networks that can
potentially be useful to answer different questions about the biological
system. The problem is that many methods offer no clear interpreta-
tion of their results because their inherent assumptions are either not
explicitly formulated or have no tangible biological meaning. Thus, it
is often difficult to assess whether a result is adequate for the data set
at hand. This challenge was the main motivation in the development
of the response logic approach. It was designed to deliver easily in-
terpretable networks by being based on very simple assumptions that
apply to a wide array of biological contexts.

An established way to summarize biological complexity into un-
derstandable patterns of interactions are logical models (also called
boolean networks). These models are useful if the components of the
biological system can naturally be described by a discrete number of
states (typically two). These states can represent, for example, whether
a gene is expressed or not, a kinase is active or inactive, or a metabolite
is present or absent. Nodes in boolean networks represent boolean
functions that indicate if a specific component changes its state de-
pending on the state of its input nodes. Such state transition rules can
be applied synchronously (simultaneously over all components) or
asynchronously (sequentially over components) to define a step-wise
trajectory that is thought to represent the development of the modelled
system over time.

Due to the involved binarization, logic models are a crude simplifi-
cation of biological complexity. But often they constitutes the adequate
level of abstraction to capture the main features of the system. This
is why boolean networks have a long tradition in quantitative biol-
ogy and were used in a large variety of applications (Abou-Jaoudé
et al. 2016; Morris et al. 2010). Accordingly, there is large body of
methods to reverse-engineer boolean networks (Hickman et al. 2009).
Generally, this involves both, the inference of the topology and the
assignment of boolean functions to the node. Even for small networks
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such a task constitutes a combinatorial search space of stupendous
complexity (Tatsuya 2018). Therefore, most methods require an input
of comprehensive time-course data (Berestovsky et al. 2013) and rely
on heuristics such as limited indegrees (Liang et al. 1998). However,
many systems cannot be experimentally observed over the course
of time. Rather, the available data might only describe the altered
state of the system some time after the application of one of various
perturbations. This makes for an even harder and more underdeter-
mined computational challenge so that methods that rely on such
perturbation data typically incorporate a prior knowledge network. To
account for context, this input network can then get optimized such
that its perturbed steady states maximally conform to the experimen-
tally observed responses (Saez-Rodriguez et al. 2009). But also this
approach depends on ad hoc regularization strategies to reduce model
complexity.

This shows that even though boolean networks provide a simple
description of functional relationships between system components,
their inference is challenging. To avoid this obstacle, the response
logic approach is based on an even simpler idea. In contrast to the
complexity of a logic model, the response logic simply states that

a perturbation at a node is propagated along all outgoing
edges to the set of connected nodes, and these responding
nodes will in turn propagate the signal and so forth. Con-
sequently, a perturbation of a node causes a response at all
nodes to which it is connected by a path, and no response
at all others. (Gross et al. 2019)

Thus in contrast to boolean networks, the response logic no longer
defines any dynamic trajectories but only steady states, and all nodes
represent OR gates. Despite of its simplicity, this model represent a
common way to reason about cause and effect in biological networks.
At the same time, it renders the inference computationally tractable.

The aim of the method is to infer all topologies that best describe
the experimental perturbation data given the response logic. Without
having to define any parameters or heuristics, this difficult combinato-
rial search problem can be solved with a powerful logic programming
approach, called Answer Set Programming (ASP) (Gebser et al. 2014).
ASP has been applied to answer a wide range of questions in bioinfor-
matics (Dal Palù et al. 2018), and led to the development of various
data analysis tools (Gebser et al. 2010). In particular, it has been
used to infer Petri nets (Ostrowski et al. 2011) and boolean networks
(Guziolowski et al. 2013; Videla et al. 2015). But once again, these
approaches aim to identify the boolean gates that act on the nodes of
a prior knowledge network. In contrast, when such prior knowledge
is not available or incomplete, the response logic approach can be
applied to reconstruct it, making it a complementary strategy. Clearly,
to crude OR-logic of the inferred network might not always be an
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adequate description. Yet, our publication demonstrates the validity of
the response logic in a variety of settings and shows, for example, how
it can generate mechanistic hypotheses about signalling pathways that
explain drug sensitivities of a colon cancer cell line.

In comparison to existing network reconstruction methods, the re-
sponse logic approach has a few distinct features. An inferred network
is intuitively interpretable: an edge indicates that its target node will
show a response to a perturbation if the source node is perturbed.
This also entails a very obvious relationship between data and inferred
networks. We can easily understand why a certain data point either
rules out or necessitates the existence of a certain edge. And this also
has the crucial advantage that it becomes apparent when the response
logic is not a good model for the biological system. Moreover, the
response logic approach is unbiased in the sense that it will return all
networks that conform to the given data. It might seem inconvenient,
having to deal with such an ensemble of solutions. But this display
of non-identifiability can convey the valuable message of where the
connectivity of the system can be disentangled and where not, given
the current data set. Furthermore, the logic programming framework
makes it possible to incorporate additional information and network
constraints in a very natural way, which is demonstrated in the publi-
cation.

Previous work has discussed approaches that are similar to the
response logic. This includes disruption networks (Rung et al. 2002).
While the response logic postulates that a node will show a response
if it is reachable from a perturbed node by a path of any length,
the disruption network considers reachability only between directly
connected nodes. To describe all the observed responses under this
assumption thus requires a densely connected network, also known
as transitive closure. The counterpart to this idea is a description of
the response data in terms of a transitive reduction (Wagner 2001).
Here, nodes can be reached also via indirect paths and the transitive
reduction is the network that describes the experimentally observed
reachability relationships with as few edges as possible (Aho et al.
1972). This approach thus reflects the believe that biological networks
should be sparse. Further refinements to the original method also
accommodate for certain network cycles, positive and negative regu-
lation, and double-perturbation data (Tringe et al. 2004). Combining
these two opposing ideas, the TRaCE algorithm (Ud-Dean et al. 2014)
examines both the transitive closure and the transitive reduction. It
then considers any edge that appears in the closure but not in the
reduction as non-identifiable and can thereby quantify the degree of
identifiability of different classes of biological networks.
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Yet in contrast to the response logic approach, these methods require
a fully perturbed network, are sensitive to noise, and do not allow for
an incorporation of prior network knowledge. Furthermore, they only
identify singular (extreme) networks to describe the perturbation data.
The response logic approach on the other hand provides the entire
ensemble of conforming networks (including cyclic networks) which
can then be further filtered to identify the most appropriate network
description of the data.

In summary, the logic response approach is a network inference
methods that is based on a simple assumption, which represents the
way in which we often reason about the interactions within biological
networks. This opens the approach for a wide range of applications. It
retrieves networks without any implicit bias (such as through regular-
ization). Rather, all the inference rules are explicit and simple, which
allows for a coherent interpretation of the reconstructed networks.
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Abstract

Motivation: A major challenge in molecular and cellular biology is to map out the regulatory net-

works of cells. As regulatory interactions can typically not be directly observed experimentally,

various computational methods have been proposed to disentangling direct and indirect effects.

Most of these rely on assumptions that are rarely met or cannot be adapted to a given context.

Results: We present a network inference method that is based on a simple response logic with min-

imal presumptions. It requires that we can experimentally observe whether or not some of the sys-

tem’s components respond to perturbations of some other components, and then identifies the

directed networks that most accurately account for the observed propagation of the signal. To cope

with the intractable number of possible networks, we developed a logic programming approach

that can infer networks of hundreds of nodes, while being robust to noisy, heterogeneous or miss-

ing data. This allows to directly integrate prior network knowledge and additional constraints such

as sparsity. We systematically benchmark our method on KEGG pathways, and show that it outper-

forms existing approaches in DREAM3 and DREAM4 challenges. Applied to a novel perturbation

dataset on PI3K and MAPK pathways in isogenic models of a colon cancer cell line, it generates

plausible network hypotheses that explain distinct sensitivities toward various targeted inhibitors

due to different PI3K mutants.

Availability and implementation: A Python/Answer Set Programming implementation can be

accessed at github.com/GrossTor/response-logic. Data and analysis scripts are available at github.

com/GrossTor/response-logic-projects.

Contact: nils.bluethgen@charite.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Complex molecular networks control virtually all aspects of cellular

physiology as they transduce signals and regulate the expression and

activity of genes. Understanding those molecular networks requires

an appropriate simplification of the stupefying complexity that we

find in cells. A very successful and common abstraction in molecular

cell biology is to define effective modules and map out their interac-

tions (Ideker and Nussinov, 2017). But even though new experimen-

tal techniques can reveal and quantify countless cellular components

in ever increasing level of detail, they typically cannot identify the

relationships between them. This is why for more than two decades

various methods were developed to infer gene regulatory networks,

signalling pathways and genotype–phenotype maps (De Smet and

Marchal, 2010). These methods vary widely in their notion of net-

work (e.g. directed versus undirected, weighted versus unweighted

links), their mathematical methodology (e.g. statistical measures

versus model-based parameter fits) or their goals (e.g. interaction

discovery versus network property characterization versus perturb-

ation response prediction) (Basso et al., 2005; de la Fuente et al.,

2004; Ghanbari et al., 2015; Kholodenko et al., 2002; Klamt et al.,

2006; Molinelli et al., 2013; Natale et al., 2017). Not surprisingly,

different methods produce radically different results on same data-

sets (Marbach et al., 2010; Meisig and Blüthgen, 2018). This makes

for an intricate choice of method and guarantees a certain degree of

arbitrariness in interpreting the inferred networks.

One major goal of network inference for signalling and regula-

tory networks is to derive directed networks, that is, to infer infor-

mation about causal relations within the studied system. This differs

profoundly from the inference of undirected associations between

node pairs, such as by correlation, as it requires to trace the flow of

VC The Author(s) 2019. Published by Oxford University Press. i634
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information through the network. A popular approach is to use

time-series data, for which methods like convergent cross mapping

(�Cenys et al., 1991; Sugihara et al., 2012) or Granger causality

(Granger, 1969) can distinguish correlation from causation, given

sufficiently dense samples. But most often, experimental protocols

or excessive expenditures preclude the observation of suitable tem-

poral trajectories for many contexts in molecular biology. Thus, a

complementary approach is to observe the system’s responses, for

instance the steady-state response, to a set of localized perturbations

(Bruggeman et al., 2002; Sachs et al., 2005; Wagner, 2001a).

Depending on the specific system, these perturbations could, for ex-

ample, be gene knockouts or kinase inhibitions. However, existing

methods for such data rely on context-specific assumptions whose

validity is hard or impossible to assess in practice, which makes it

very difficult to interpret their results. Facing this challenge, we

asked whether we could derive a more generally applicable scheme

for the inference of directed networks—a method that is based on a

principle which is accurate enough for most contexts while also suf-

ficiently simple to allow for an intuitive understanding of how the

network structure was resolved. Furthermore, we noticed that even

though most network inference problems are embedded within very

well-studied contexts, the vast majority of reverse-engineering meth-

ods predicts networks de novo. Therefore, we additionally aimed for

a method that could readily incorporate prior knowledge about

presence or absence of certain links or about other known network

properties. This resulted in what we call the response logic

approach.

In the following, we describe the response logic approach in

more detail and then benchmark it by (i) assessing the performance

using synthetic data derived from KEGG pathways (Kanehisa et al.,

2017), and (ii) comparing its performance to competing methods

using community-wide inference challenges (Dialogue for Reverse

Engineering Assessments and Methods, DREAM) (Stolovitzky et al.,

2007). Finally, we use the approach to study RAS/MAPK/PI3K sig-

nalling in a colon cancer cell line, and predict differences in the sig-

nalling network topology due to different PI3K mutants, that

manifests in differential sensitivity of a colon cancer cell to various

targeted drugs.

2 Materials and Methods

We developed a method to infer directed network structures from

perturbation data that we term response logic (see Fig. 1). As an in-

put, this method requires binary information about which nodes in

the network respond to which perturbation, together with a rank of

confidence of each data point. We refer to this set of experimental

observations as the response pattern. Given this information, the re-

sponse logic approach infers networks that agree to the following

simple rule: a perturbation at a node is propagated along all out-

going edges to the set of connected nodes, and these responding

nodes will in turn propagate the signal and so forth. Consequently, a

perturbation of a node causes a response at all nodes to which it is

connected by a path, and no response at all others. The information

about which node can be reached from which other nodes is known

as the network’s transitive closure. Thus, the central assumption of

our response logic approach is that experimentally observed

responses are in agreement with the transitive closure. This assump-

tion then leads to the inverse problem of identifying the networks

whose transitive closure actually matches the response pattern.

The algorithm to infer these networks consists of two main steps.

Using a logic programming approach, it first modifies the experi-

mental response pattern to match a transitive closure (rectification

step) and then infers either all individual networks that comply to

the given data or the union over all those conforming networks. We

will describe the different steps in the following sections.

2.1 Rectifying the response pattern
The response logic approach interprets the measured response pat-

tern as a noisy, incomplete transitive closure. But because of mis-

classification, a response pattern might not match any actual

(incomplete) transitive closure. Consider for example a three-node

network in which all nodes are observed to respond to a perturb-

ation at node one. This implies two paths, from nodes one to two

and nodes one to three. Therefore, if a perturbation at node two

causes a response at node one, node three is expected to respond as

well. But assume that this response at node three was not observed

(misclassification). Then, there is no directed network with a transi-

tive closure that would match this response pattern. We expect that

such misclassification occurs rather often when working with ex-

perimental data because of experimental noise or because the system

under consideration does not fully comply with the assumptions of

the response logic. Thus, it is necessary to identify the most relevant

subset of the response pattern that forms an (incomplete) transitive

closure which can then be used to infer networks.

Our rectification algorithm requires to rank the observations of

the response pattern from most to least confident. Typically, such

confidence levels are readily available since the response pattern is

often derived from a binarization of continuous experimental read-

outs, in which case a confidence score could be the distance to the

binarization threshold, or a score of statistical significance. The al-

gorithm then iterates the elements of the response pattern from high

to low confidence, and at each step, determines whether the so far

collected elements form a transitive closure and also conform with

additional constraints from prior knowledge. This is done using a

logic program (see below), which determines if there is any network

that is compatible with these elements of a transitive closure. If the

new element is compatible, it is added to the collection of conform-

ing data and otherwise discarded. The more data points enter the

collection the more restrictions apply to the remaining elements of

the response pattern. As high confidence observations are taken into

account first they are thus less likely to be discarded, ensuring that

we extract the most relevant subset of the response pattern that in-

deed forms an incomplete transitive closure that is in line with add-

itional constraints. If confidence levels of different data points

cannot be easily distinguished, it is recommendable to repeat the re-

sponse logic analysis for alternative rankings and inspect how this

impacts the set of compatible networks.

Fig. 1. The steps of the response logic approach. The response logic and all

additional prior network knowledge are formulated as a logic program. It is

first used to rectify the experimentally determined response pattern, and se-

cond, takes the resulting (potentially incomplete) transitive closure as input to

infer either all individual conforming networks or the union thereof
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Figure 2 demonstrates this scheme for a toy network of five

nodes, for which we assume that four nodes were perturbed (indi-

cated as flashes in Fig. 2A, top). The resulting response pattern then

consists of a five-by-four matrix, and we assume that two data

points are missing, and two elements of the response pattern do not

match the transitive closure (compare heat maps in Fig. 2A). In

Figure 2B, we exemplify how the response pattern is iteratively recti-

fied. We assume that we know that a link from node two to node

three exists and that there is no link between node one to node three

(green stars). Given this prior knowledge, already the first (highest

confidence) data point (yellow star in the leftmost panel) additional-

ly implies that node three also responds to a perturbation of node

one. Any subsequent data point that is in conflict with this informa-

tion will be discarded. The middle panels of Figure 2B show that the

five most trusted data points constrain five other elements of the rec-

tified response pattern. Among them are the two misclassified, as

well as the two missing data points. Therefore, in this toy example,

the high confidence data points automatically correct these false or

missing pieces of information. The bottom panel of Figure 2B shows

how adding data points increasingly constrains the network struc-

ture. Once all data are considered, most of the links (but not all, as

discussed later on) are known to be either present or absent from the

network. Note, however, that the rectification process does not re-

quire to compute the shown union of conforming networks, but

only requires to determine if for any network at all, all constraints

are satisfiable, which is computationally far less expensive.

2.2 Finding conforming networks with logic

programming
Mapping the response pattern to its corresponding set of conforming

networks is a substantial computational challenge, as there are 2N�N

possible directed networks (with N being the number of nodes),

making it infeasible to enumerate all networks even for small sizes.

We therefore solve the search problem with a logic programming

approach, which is a form of declarative programming where the

problem is represented via a set of logical rules. We chose to use the

logic modelling language Answer Set Programming (ASP) (Baral,

2003), as implemented in the Potsdam Answer Set Solving

Collection (Gebser et al., 2011). For ASP solving, we apply the

clingo (Gebser et al., 2014) system.

ASPs generate-define-test pattern (Lifschitz, 2002) allows for a

convenient encoding of the response logic, which is detailed in

Supplementary Material S1. In short, we generate the collection of

answer sets, consisting of all possible network structures, then define

auxiliary predicates, in our case the networks’ transitive closure,

and then test whether this transitive closure agrees with the data and

also whether the tested network complies to all other heuristic con-

straints. Then the ASP solver, clingo, allows to enumerate all con-

forming networks. Note that the computational effort needed to

identify a conforming network heavily depends on network size and

the provided heuristic constraints. But overall, the logic program-

ming approach infers networks of up to 100 nodes within seconds,

without any parallelization.

The previously discussed data rectification sequentially checks

the satisfiability of every data point and could therefore become a

performance bottleneck for large systems. However, because this

process only requires to decide whether any network at all is in

agreement with the latest data, instead of having to provide the en-

tire set of conforming networks, we can solve a much simpler logic

program, which is detailed in Supplementary Material S1. It drastic-

ally improves performance because it does not require to define an

answer set for each possible network structure.

2.3 Identifiability and heuristic constraints
While every directed network has a single transitive closure, a transi-

tive closure can often be mapped to many different networks, even

more so if the transitive closure is only partially known. Thus, we

can usually not infer a unique directed network from a rectified re-

sponse pattern alone. For example, any feedback loop creates a

strongly connected network component, that is, a set of nodes for

which any pair is connected by a path. Therefore the response pat-

tern is independent on how exactly the nodes are connected to each

other. Similarly, the response pattern does not change with any add-

itional feed-forward loops that cuts short an existing path. To re-

solve such structures we need to resort to additional constraints that

are derived from contextual knowledge about the studied system. A

crucial advantage of the response logic approach is that it can easily

integrate various kinds of such constraints. Here, we want to exem-

plify this and introduce those constraints that are used in the appli-

cations shown further below.

Rarely will we analyze networks that have never been studied

before. Therefore one can use prior knowledge to constrain net-

works, such as by requiring the presence of well-established links

in the network, or by excluding links that are physically not feas-

ible (such as interactions between molecules located in different

compartments). This information can directly be integrated into

the logic program by defining the presence or absence of links as

additional constraints. In addition, the logic program can also ac-

commodate more subtle constraints, such as to enforce bounds on

the numbers of incoming and outgoing edges of (groups of) nodes,

see the implementation in Supplementary Material S1. This allows,

for example, to encode the information that a module of nodes sig-

nals to other parts of the network without having to explicitly state

which of the module’s nodes has the outward link. The same idea

holds for a module that is known to receive at least one input to

A B

Fig. 2. Response logic inference of a toy network. (A) From top to bottom: an

example network of five nodes, where flashes indicate which nodes were per-

turbed; the full transitive closure; the response pattern that captures parts of

the network’s transitive closure, with missing or misclassified data and confi-

dence scores. (B) Three instants during data rectification: data points are

added sequentially from high to low confidence (stars in top row), and in-

creasingly constrain the inferred network and the (rectified) response pattern

(red and blue fields in top row). Bottom row shows the inferred network at

the given instant during rectification
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any subset of its components. Note that these types of constraints

directly limit the space of possible networks and in turn that of the

transitive closures. They will thus influence how the response pat-

tern can be rectified and must be taken into consideration during

the process.

But even these additional constraint might not sufficiently limit

the number of conforming networks to consider them individually.

Alternatively, an extension of the logic program, described in

Supplementary Material S1, allows to efficiently find the union of

all answer sets. This union reveals which links (or missing links) ap-

pear in all solutions and which are ambiguous. The latter is particu-

larly informative to either guide the choice of additional

perturbation experiments or to reveal effective strategies on how to

further filter the set of solutions.

One widely used strategy in this regard is to require an overall

sparse architecture (Wagner, 2001b). We would thus want to iden-

tify the conforming networks with the fewest links. However,

naı̈vely parsing all network solutions will be infeasible when the set

of solutions is large. To overcome this problem we developed an al-

gorithm that sequentially removes as many ambiguous links as pos-

sible, without violating any constraint. To do so, after every link

removal the pruned network is tested for satisfiability. If it complies

to the given constraints, the link remains removed and the procedure

continues. Otherwise the link is considered necessary and the pro-

cedure continues without the removal of the link. This leads to what

will be referred to as the sparsified network. Yet, such scheme is

only reasonable if the order by which links are removed, reflects to

some extent a knowledge about which links are more likely to be ab-

sent in the underlying network, and should therefore be tested for re-

moval first. However if such information is not available, one can

use yet another approach to filter for sparse networks, termed the

parsimony constraint. This constraint asks whether a link from a

conforming network can be removed without it changing the net-

work’s transitive closure. If that is the case, the network is consid-

ered non-sparse and is removed from the solution set. The specific

encoding is found in Supplementary Material S1. While this proced-

ure does not generally single out a unique solution as before (mul-

tiple networks can be parsimonious), it was nevertheless observed to

drastically reduce the solution space.

Taken together, a response pattern will typically be compatible

with a large number of network topologies, but various types of prior

network information can be incorporated into the response logic ap-

proach to reveal a finer network structure than what would have been

possible from the response pattern alone. At the same time, the ap-

proach states explicitly whether or not the presence or absence of a

link can be inferred from the given data and constraints.

2.4 Implementation and data acquisition
The response logic approach is implemented in Python 3.6 as a

package available at github.com/GrossTor/response-logic.

Numerical computations, data handling and plotting was done using

the SciPy libraries (Jones et al., 2001) and seaborn. Additional

functions were taken from the networkx package (Hagberg et al.,

2008). Clingo’s python API (version 5.2.2) (Gebser et al., 2014) is

used to ground and solve the Answer Set Programs.

The repository contains all Answer Set Programs, which are

accessed by the main response.py module. It includes the

prepare_ASP_program function to set up a logic program according

to the provided data and additional constraints, the conform_res-

ponse_pattern function that rectifies the response pattern, as well as

various functions to solve a logic program. Additionally, a projects

repository available at github.com/GrossTor/response-logic-projects

includes all scripts and data that were used to obtain the results

from the following sections.

KEGG data (Kanehisa et al., 2017) was retrieved via the KEGG

package within the biopython library. The KEGG pathway maps

database was parsed for human pathways and the retrieved KGML

files were used to build network representations based on their ‘rela-

tion elements’.

The data and evaluation scripts for the DREAM3 and DREAM4

challenge was retrieved with the official DREAMTools python pack-

age (Cokelaer et al., 2016). Leaderboards were taken from Cokelaer

and Costello (2015) and Figure 3 from Marbach et al. (2010).

The SW-48 perturbation data were generated using a SW-48 cell

line, and two derived clones with mutations in PI3K. Cell lines were

obtained from Horizon Discovery. All lines were maintained in

RPMI (Invitrogen) with 10% FBS (Invitrogen). Cell growth was

assessed using the Cell Titer 96 Aqueous One Solution Cell

Proliferation Assay (Promega). Cells were treated with compound

24 h after plating and grown for 72 h. The cell growth was deter-

mined by correcting for the cell count at time zero (time of treat-

ment) and plotting data as percent growth relative to vehicle

(DMSO)-treated cells. Reverse-phase protein array (RPPA): cells

were treated 24 h after plating and incubated with inhibitor

(GDC0973, GDC0068, Erlotinib) or solvent control (DMSO) for

1 h, and then stimulated either with EGF, HGF and IGF or with con-

trol (BSA) for 30 min. Cells were lysed in T-PER (Thermo), 300 mM

NaCl, cOmplete
VR protease inhibitor (Roche) and Phosphotase

Inhibitor Cocktails 2, 3. RPPA measurements were carried out by

Theranostics Health. All data can be accessed from the according

data folder in the projects repository (response-logic-proj

ects/SW-48_analysis/data/).

3 Results

3.1 Performance assessment on KEGG pathways
We first set out to systematically quantify how misclassification and

missing data in the experimentally determined response pattern

impacts the quality of the predicted network structure. To this end,

we inferred network structures from synthetic datasets. As a relevant

and representative collection of test networks, we extracted all 270

human gene regulation and signal transduction networks (maximal-

ly containing 100 nodes) from the KEGG pathway database

(Kanehisa et al., 2017). For each of these network structures we gen-

erated its transitive closure, which we considered as the immaculate

response pattern. Then, we repeatedly generated a random confi-

dence pattern, C, where each entry is drawn from a uniform distri-

bution between 0 and 1. To evaluate the effect of missing data, we

remove a fraction �M of data points from the perfect response pat-

tern and to evaluate the effect of measurement error, we also mis-

classify a fraction �C of the remaining data points. Missing or

misclassified data points were chosen with a probability that was

proportional to their confidence score Cij. We then used the result-

ing response and confidence patterns to infer the sparsified network,

as defined in the previous section, via the response logic approach

and, comparing it to the original KEGG network, computed preci-

sion and recall as performance scores, see Figure 3A.

For each of the 270 KEGG networks the procedure was repeated

50 times for different choices of �M and �C, and the mean of the scores

is shown in Figure 3B. In the absence of misclassifications (�C ¼ 0, red

and orange dots in Fig. 3B), prediction errors stem exclusively from

the previously discussed multitude of conforming network structures.
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Interestingly, for a vast set of biological pathways the resulting infer-

ence errors are rather mild, and highly accurate predictions can be

made independent of network size. However, once misclassifications

are present, the predictivity is markedly reduced. Interestingly, this ef-

fect increases with growing network size.

We next examined the dependency on missing data and misclassifi-

cation rates in more detail for the three signalling pathways: RAS, Wnt

and TGF-b. We chose to scan the parameters from 0.0 to 0.5 and 0.0

to 0.25 for �M and �C, respectively, as a complete loss of information

would either occur when all data were missing, �M ¼ 1, or half of the

entries were misclassified, �C ¼ 0.5 (�C ¼ 1 would produce an inversion

of the response pattern). For all pathways, we found that recall is more

affected by missing data than precision (see Fig. 3C). That is, with less

data the predicted links remain rather accurate but fewer of them are

predicted. We also confirmed our previous finding that misclassification

reduces prediction scores much stronger than missing data.

Interestingly, even when half the data were discarded, in many instances

precision remained still close to one. This suggests that discarding low-

confidence data points rather than risking to accept many misclassified

data points might be a good strategy to improve predictions. We will

re-examine this idea by the end of the next section.

3.2 Response logic approach outperforms competing

methods in DREAM challenges
The DREAM (Stolovitzky et al., 2007) provides community-wide

reverse-engineering challenges that foster the development of new

systems biology models. Particularly, the DREAM3 and DREAM4

in-silico challenges (Greenfield et al., 2010; Marbach et al., 2010)

assessed the performance of various gene network-inference meth-

ods and have since become a standard benchmark to which we can

compare the response logic approach. In these two challenges vari-

ous biologically plausible in-silico gene networks of different sizes

were simulated under stochastic conditions to emulate realistic tran-

scription dynamics resulting from knockdowns and knockouts of

each single gene. Participants were given the resulting time courses,

the steady states and the wild-type level of each gene and asked to

infer the directed network structure from them. A ranked list of pre-

dicted gene pair interactions was then compared against the gold

standard from which the area under the precision–recall (PR) and

the area under the receiver operating characteristic curve (ROC) are

computed, see Supplementary Figures S1 and S2. Comparing these

to a null model provides P-values for each of the given five networks

per network size that then get combined into a single overall score

(Stolovitzky et al., 2009).

To infer the DREAM networks with the response logic approach,

we generated response patterns from the in-silico knockout experi-

ments of these challenges only (not considering knockdown or time-

series data). These were computed as follows. When Kij denotes the

level of gene i after knockout of gene j, and the wild-type levels are w,

we defined the normalized global response matrix, R, as

Rij ¼
jKij �wij

si
;

with si being the standard deviation of the knockout levels of gene i

(row i of K). We then defined gene i to be responding to a knockout

of gene j if Rij > 1. The entries of the associated confidence matrix

were defined as a normalized distance of knockout levels to this

threshold, see Supplementary Material S2. We then applied our re-

sponse logic approach to these matrices to infer sparsified networks,

as defined earlier. The goal of the DREAM challenge is to provide a

list of gene pairs that is ranked by their predicted likelihood to be

interacting. We generated it by first listing the predicted interacting

and then the non-interacting gene pairs, where within each group,

the pair list was ordered according to the associated entries in the

global response matrix (interaction i! j was ranked higher than

k! l if Rij > Rkl). As comparison, we also created a ranked list by

simply ranking gene pairs in the order of the global response matrix,

without the grouping that was introduced by the response logic,

which we termed ‘naı̈ve approach’.

These ranked lists were then scored using the official

DREAMTools package (Cokelaer et al., 2016) (with a minor modi-

fication for one network score at DREAM3 N¼100, see

Supplementary Material S2). Figure 4A shows the results of our

method and that of the naı̈ve approach in comparison to the 10 best

performing participants at each network size and challenge that

were provided with the full (knockout, knockdown, time-course)

datasets. Except for the small networks with N¼10, where the re-

sponse logic approach ranks second and third, it outperforms all 29

competitors participating in DREAM3 (Marbach et al., 2010), as

well all 29 competitors participating in DREAM4 (Cokelaer and

Costello, 2015). Note that the best performers for the small net-

works (N¼10) that scored higher than the response logic (Küffner

et al., 2010; Yip et al., 2010) also used the provided time-course

data, which we did not use in our response logic approach.

We also observed that the response logic always outperformed

the naı̈ve approach, confirming that non-trivial additional know-

ledge is gained when applying the response logic. Notably however,

A

B

C

Fig. 3. The performance of the response logic approach on synthetic data

generated from 270 human KEGG pathways (Kanehisa et al., 2017). N

denotes network size, �M quantifies the fraction of missing and �C the fraction

of misclassified data points. (A) Data generation and scoring scheme. (B)

Each dot per colour represents a different pathway, colours represent differ-

ent parameters for misclassification (�C) and missing data (�M). (C) Precision

and recall for three particular signalling pathways as a function of the fraction

of misclassified or missing data
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already the naı̈ve approach scores comparatively well, which let the

challenge’s organizers to conclude that ‘sophisticated methods that

would in theory be expected to perform better than the naı̈ve ap-

proach described above, were more strongly affected by inaccurate

prior assumptions in practice’ (Marbach et al., 2010). This observa-

tion affirms our initial motivation to design an approach with min-

imal assumptions on the data.

Finally, the DREAM data also allowed us to test if disregarding

low-confidence data points, as suggested by the KEGG pathway

analysis, improves predictions. Thus, considering the confidence ma-

trix with scaled entries between 0 and 1 (Supplementary Material

S2), we removed data points with confidence scores below a thresh-

old and re-engineered the networks from those smaller datasets. The

resulting scores relative to the original scores, which were obtained

from the full response patterns, are shown in Figure 4B. With the ex-

ception of the N¼10 networks, these numerical experiments con-

firmed that removing low-confidence data effectively improved

network inference. Peak performance is reached when approximate-

ly 5% of the data are discarded.

In summary, our benchmarks using the DREAM in-silico chal-

lenges provide a strong indication that the response logic approach

is capable of reverse-engineering biological networks. Its simplicity

not only makes its results comprehensible but the DREAM challenge

showed that they are also more accurate than those of existing

methods.

3.3 Reverse engineering MAPK and PI3K signalling in a

colon cancer cell line
Having benchmarked the response logic formalism, we next used it

to investigate signalling networks in cancer cells. In a first step, we

decided to reverse engineer the Ras-mediated signalling network

including MAPK and PI3K/AKT signalling in SW-48 colon cancer

cells. We performed multiple perturbation experiments using either

ligands or inhibitors that targeted EGFR, PDFR, ERK and AKT,

and measured changes in phosphorylation using a reverse-phase pro-

tein assay (RPPA) platform. Ten of the antibody-based readouts

passed a quality control and were relevant to the considered path-

ways, see details in Supplementary Material S3. Using replicate

measurements of both unperturbed and perturbed conditions, we

constructed the response pattern as well as the according confidence

scores, which are shown in Figure 5A (see Supplementary Material

S3 for details).

The RAS signalling network has been well studied, which

allowed us to compile a literature network shown in Figure 5C that

can be used as a gold standard to measure prediction performance.

We then applied our response logic framework to the response

pattern, and evaluated predictions by means of the areas under the

ROC-, as well as PR curves, as shown in Figure 5B, see

Supplementary Material S3 for details. As it was computationally

impossible to enumerate all networks, we determined the union of

all conforming networks, as described earlier, and scored links based

on whether they are found in all, in some and in no conforming net-

works. Doing so led to PR and ROC curves that were only marginal-

ly better than random (top row in Fig. 5B). The apparent challenge

concerning the network inference for this network is the substantial

disparity between 10 readouts to only 4 perturbations, making the

reverse engineering problem strongly underdetermined. A crucial

benefit of the response logic analysis is that it allows for the incorp-

oration of various additional insights about the structure of signal-

ling networks to reduce the space of solutions. We therefore

investigated how the inclusion of generic and indirect network

knowledge rendered the analysis more meaningful. First, we

enforced a hierarchy in the network (heuristic I). Signalling net-

works typically process signals received on the receptor level

through a chain of intermediate kinases, before they are passed on

to a set of targets. We therefore disallowed any direct connections

between the receptor and the target level (according to the allocation

shown in Fig. 5C) (these ruled-out links were obviously not taken

into account for the scoring procedure, which explains the different

areas under the PR curve for the random classifier in Fig. 5B).

Furthermore, kinase interactions are highly specific, resulting in

sparse signalling networks. Therefore, we found it reasonable to rid

the network of redundant links and apply the parsimony constraint,

as defined earlier (heuristic II). Lastly, we required that any node at

receptor level must have at least one outgoing link (heuristic III).

Adding these three heuristics, I–III in Figure 5B, considerably

improved the performance and reduced the solution space to 666

conforming networks. This makes it possible to enumerate them all

and compute for each possible link the fraction of how many times

it was present in all conforming networks (consensus ratio). We rea-

soned that a higher consensus ratio also implies a higher relevance,

which we found confirmed when using the consensus ratio, rather

than the union of networks to score the predictions (heuristic IV).

From these results, we conclude that the response logic is indeed a

valid assumption for the MAPK and PI3K pathway activity in the

SW-48 cell line and that rather apparent additional information can

effectively compensate for the small number of perturbations.

A B

Fig. 4. (A) Performance of the response logic approach for the gene-network

reverse engineering challenges DREAM3 and DREAM4 (Greenfield et al.,

2010; Marbach et al., 2010) (green bars), compared with a ‘naı̈ve’ scoring ap-

proach (orange bars) and the 10 best approaches that took part in the respect-

ive challenges (grey bars). Scores are calculated as in the original challenge,

with higher scores indicating better performance. (B) Relative changes in per-

formance when excluding data points with confidence below a certain thresh-

old. N: network size

A

B

C

Fig. 5. (A) Response pattern of the SW-48 cell line of selected phospho-pro-

teins after perturbations affecting EGFR, PDGFR, ERK1 and AKT. (B)

Performance of response logic network inference under various (combina-

tions of) heuristics, as explained in text, compared to a random classifier

(shaded colours). (C) Literature network (filled arrows) and final network pre-

diction (finer arrows, only links with consensus ratio �0.4 are shown)
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3.4 Modelling the effects of PI3K mutations in a colon

cancer cell line
Having verified the validity of the response logic approach on the

SW-48 cell data, we next used it to investigate how different muta-

tions in the PI3K change signalling. To investigate this, we used

clones of SW-48, in which two mutations that are commonly found

in tumours were integrated, namely PIK3CAH1047R and

PIK3CAE545K. We generated data using the same scheme as before,

by perturbing the cells with ligands and inhibitors, and measuring

the response using RPPA. Considering that the MAPK and PI3K

pathways are very well studied, we assumed that the literature net-

work depicted in Figure 5C is valid for all three cell lines, except for

those links that could be affected by the different PI3K mutations.

Because PI3K is not among the readouts, we model PI3K mutations

to potentially affect links from and to its next downstream target,

which is AKT. Furthermore, the literature network does not include

context-dependent feedbacks in the MAPK pathway (Lake et al.,

2016). As we observed mutant-dependent upregulation of EGFR as

well as SHC upon MEK inhibition, see Supplementary Figure S4, we

considered this option in the inference as well. Therefore, to model

the different mutant response patterns shown in Figure 6A, we used

a heavily constrained response logic approach in which the presence

or absence of network links is governed by the literature network,

except for those links going in and out of AKT and those links going

into EGFR. Not only did these constraints compensate for the few

perturbations but also connect differences in the data to plausible

alterations of the network. Furthermore, as the parsimony con-

straint has proven beneficial in the response logic validation on the

parental cell line data, Figure 5, it is used as well (with the

constrained literature network, previous heuristics I and III no lon-

ger apply, and IV is not relevant as shown next).

This approach resulted in four, one and two conforming net-

works for the parental, the E545K and the H1047R cell line, re-

spectively. For the two ambiguous cell lines, we decided to isolate

the single, biologically most plausible network hypothesis. In the

case of the parental cell line, the four conforming networks consist

of the combined options of whether or not SHC feeds back to EGFR

and whether EGFR signals directly to AKT or via SHC. SHC has

been found to be an adapter protein that is recruited to the activated

EGFR (but does not activate it) and is essential for the receptor’s sig-

nal relay (Ravichandran, 2001). We thus chose the parental network

hypothesis that excludes the SHC to EGFR and the EGFR to AKT

link. The two H1047R networks only differed in whether a feedback

to EGFR originates from p90RSK or from ERK. Since the ERK to

EGFR feedback is well described in the literature (Lake et al., 2016),

we decided for that option. With this, we could compare the mu-

tant-specific network hypotheses, as shown in Figure 6B, which led

to two main observations. First, in contrast to the parental cell line,

the mutant cell lines do not have a link from the EGFR receptor to

the PI3K pathway. And second, the H1047R cell line is the only one

bearing a feedback from ERK (or any node) to EGFR.

We next aimed to explore if these different network topologies

might explain phenotypic differences between these cell lines. We

therefore evaluated the drug response of these cells for different tar-

geted drugs, as shown in Figure 6C. Some differences in drug re-

sponse can be understood directly from the mutations that have

been added to the cell lines: the PI3K and AKT inhibitors seem to be

slightly more effective in the PI3K-mutant cell lines, which is not

surprising as these cells have constitutively active PI3K signalling.

Similarly, inhibition of IGFR was more effective in the wild-type

cells, as the mutant cells are more self-sufficient in PI3K signalling

and therefore potentially require less IGFR activity. The drug

responses to the EGFR inhibitor, and the MEK inhibitor are more

complex and can only be interpreted when considering the network

rewiring. The PI3KH1047 mutant cell line is rather resistant to the

MEK inhibitor. This can be understood by the presence of the nega-

tive feedback from ERK to EGFR in this cell line, which is known to

cause resistance by re-activating ERK and amplifying AKT signal-

ling upon MEK inhibition (Klinger et al., 2013). EGFR inhibition

effects the cell line with the E545K mutant less, and the cell line

with the H1047R mutant more strongly compared to the parental

cell line. Both mutants decouple the EGF-receptor to the AKT path-

way, so one would expect that they also show a less pronounced ef-

fect upon its inhibition. However, in the H1047R cell line there is a

strong ERK-EGFR feedback that generally reduces the MAPK path-

way activity, and one can speculate that additional EGFR inhibition

can push the MAPK pathway activity to sub-critical levels.

Taken together, the response logic modelling allows to recon-

struct networks from complex perturbation data and provides net-

work information that can be interpreted and linked to phenotypic

behaviour. This example demonstrates how this approach allows to

integrate noisy response data, prior network knowledge and generic

signalling constraints to identify hypothesis on changes in networks

due to mutations that can subsequently be studied experimentally.

4 Discussion

We developed the response logic approach as a method to infer

directed networks from perturbation data. Its central idea is to as-

sume that a perturbation of a node is propagated along the edges

A

C

B

Fig. 6. (A) Response pattern for two PI3K-mutant cell lines derived from SW-

48, carrying either the E545K or H1047R mutations in PIK3CA, as in Figure 5.

(B) Mutant-specific networks derived from the response data arrows in blue

(parental cell line), orange and green (two mutant cell lines), with links con-

strained due to literature knowledge shown with large arrows. (C) Dose–re-

sponse curves for different inhibitors targeting the inferred networks in the

parental cell line (blue) and the two clones with PI3K mutations (orange and

green), and the area under the curve displayed as bar graphs

i640 T.Gross et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/35/14/i634/5529244 by H
um

boldt-U
niversity user on 24 April 2020



and thus causes a response at all nodes to which there is a directed

path, starting from the perturbed node. This simple hypothesis is

integrated in a logic program that allows to identify the networks

whose transitive closure most closely matches that of the experimen-

tal data. The power of logic programming, and more generally de-

clarative programming, has enabled its use in a wide range of topics

in computational biology (Backofen and Gilbert, 2001; Becker

et al., 2018; Bockmayr and Courtois, 2002; Dunn et al., 2014;

Videla et al., 2015; Yordanov et al., 2016). In our approach, logic

programming provides a way to efficiently scan the vast search space

of all directed networks and to easily express and incorporate add-

itional information and prior knowledge about the network.

Many reverse-engineering methods involve tunable parameters,

which can drastically affect the results. However, it is often far from

obvious how these parameters should be set in a specific context. In

contrast, our response logic approach is parameter free and strictly

infers the networks that follow from the provided response pattern

and any additional constraints provided.

At first glance, it might seem wasteful to reduce the data to a bin-

ary information of responding versus non-responding, when many

experimental techniques allow to quantify the magnitude of re-

sponse of the observed components. However, data binarization

renders inference more general and robust, and in many settings,

technical issues such as measurement error, heterogeneous data

sources or various normalization steps, make the interpretation of

magnitudes difficult.

The idea to map an experimentally observable response pattern

onto a transitive closure has been proposed before. It was hypothe-

sized that the sparsest directed acyclic graph whose transitive closure

matches the observed response pattern describes the direct regula-

tory interactions in gene networks (Wagner, 2001a). Such a graph is

also known as the transitive reduction and can be computed effi-

ciently (Aho et al., 1972). This approach was heuristically expanded

to also allow for some cycles, and to refine the inferred network by

incorporating double mutant perturbations and information about

up- and downregulation (Tringe et al., 2004). Yet, this procedure

has several shortcomings: it cannot incorporate existing domain

knowledge, it cannot handle missing data points, but simply consid-

ers an unknown or uncertain response behaviour as non-responding

and it only finds a single, most parsimonious, network, which might

not necessarily represent the underlying structure.

This last point is a strategy to compensate for the fact that net-

work inference is an inherently underdetermined problem, because

the number of independent measurements generally falls short on

the number of possible interactions (De Smet and Marchal, 2010).

The response logic approach explicitly addresses this problem as it

considers the entire ensemble of conforming networks rather than to

single out a particular one, based on some fixed and potentially in-

accurate assumption. It thereby reveals which parts of the network

cannot be inferred from the information provided so far. This im-

portant insight can then be used to either guide additional experi-

ments or to systematically reduce the solution space by adding

constraints that are most warranted in the given context. We con-

sider this as a crucial advantage over existing approaches, whose

inferred networks can generally not be intuitively traced back to the

data and thus tend to disguise if and how the inferred network is jus-

tified by the data.

But while the response logic is based on a simple and intuitive

concept, such simplicity comes at a price. As with any other assump-

tion, it might not actually be representative of the studied system.

Major problems might occur due to robustness, or saturation effects,

all of which disrupt the presumed flow of signal but are an essential

part of various biological systems (Fritsche-Guenther et al., 2011).

Also, from a Boolean perspective, the response logic treats nodes ex-

clusively as OR gates, whereas certain systems require a more

involved logic (Razzaq et al., 2018). But again, the declarative na-

ture of the ASP encoding allows to account for such effects. One

could, for example, rather easily implement a maximal path length

over which a perturbation gets attenuated, or explicitly state a

Boolean function that governs the signal propagation of a certain

node. Another important shortcoming for many questions is that it

does not neither assign any weights nor signs to the inferred links.

Yet, the inferred network can serve as an input for methods that are

devised to quantify link strengths on a given input network (Dorel

et al., 2018).

On the other hand, the response logic’s simplicity makes it suit-

able for various different fields of research. Because it is based on a

formalization of an intuitive network behaviour, it can infer eco-

logical, infection, or even social or transportation networks. Such

generality would even permit to use the response logic to ask the in-

verse question: given a certain network structure and the observed

perturbation responses, can I infer where a perturbation hit the net-

work? This question could be particularly interesting in the analysis

of man-made networks, for which the structure is typically known,

but not the location of the perturbation. The inverted logic program

would then identify where an electric connection malfunctioned, an

intruder attacked or a disease originated from. All these possibilities

show that the simplicity of the response logic does not limit its

applicability.
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S1 Encoding the response logic in ASP
The response logic is formulated in the framework of Answer Set Programming.
We use the syntax of the input language gringo. A straightforward introduction
is provided in section 4 of (Videla et al., 2015). The following facts and clauses
constitute the logic program.

At the beginning, the program needs to state the facts, i.e. the number
of nodes in the network as constant n, the set of perturbations as functions
pert(I,OUT), where variable I names a specific perturbation and variable OUT
indicates the node(s) targeted by the perturbation (could be multiple), as well as
the rectified response pattern as functions response(I,N) and -response(I,N)
(classical negation), where variable I names a specific perturbation and variable
N indicates the node(s) responding or not responding to the perturbation, re-
spectively. If a perturbation is defined to target multiple nodes, it is assumed to
cause a response on all nodes that are path-connected to any of the perturbed
nodes. Strictly speaking, such a response no longer corresponds to a transitive
closure, as it describes a node’s reachability from any of multiple nodes. But
for the sake of simplicity, we will nevertheless keep the terminology.

The program then follows the generate-define-test pattern, as below. The
function tc(I,IN) represents the transitive closure of the answer set network.

%%%Generate%%%
node(0..n-1).
{edge(OUT,IN)} :- node(IN), node(OUT).

%%%Define%%%
tc(I,IN) :- edge(OUT,IN), pert(I,OUT).
tc(I,IN) :- edge(OUT,IN), tc(I,OUT).

%%%Test%%%
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:- not tc(I,N), response(I,N).
:- tc(I,N), -response(I,N).

The last two lines are the integrity constraints that discard any answer set whose
transitive closure is in disagreement with the rectified response pattern. ASPs
distinction between classical (”-”) and default (”not”) negation allows to only
test the integrity for the known entries of the response pattern and to ignore
the test for any entries that are not known.

For large networks the search space of the above program becomes very large
with negative effects on performance. This is especially problematic during
the rectification of the response pattern because in principle every entry of the
response pattern must be tested for consistency. We implemented two strategies
to speed up the process. First, at each step of the iteration, we check if the
previous transitive closure is in agreement with the new data point. If so,
we know that there is a conforming network and can accept the data point
without an explicit test. Second, if there is no additional constraint (see below)
stating the absence of a network edge, we can significantly simplify the logic
program. In that case, if the logic program is satisfiable at all, the network with
directly links from perturbed node to all its responding nodes, i.e. a network with
star topology, constitutes a conforming network. As the rectification process
only needs to determine satisfiability, a much more simple logic program avoids
generating all possible networks but only tests the star network (which we do
not need to state explicitly):

response(I,N) :- response(J,N), pert(J,M), J!=I,
response(I,M).

response(I,OUT) :- pert(I,IN), edge(IN,OUT).
response(I,N) :- response(J,N), pert(J,M), J!=I, pert(I,M).

The idea of this encoding is to define all additional responses that are implied
by the star network from the given response pattern (line 1): if node N re-
sponds to a perturbation of node M (it is reachable from M) then node N will
also respond to any other perturbation for which it is known that it causes a
response at node M. This defines the minimal set of responding nodes consis-
tent with the response logic. Any constraints on the absence of edges would
imply (longer) non-direct paths that could potentially imply more nodes to re-
spond to certain perturbations. This program does not even need to explicitly
state an integrity constraint because an observed non-response given as classical
negation -response(I,N), already rules out that response(I,N) is contained
in the (single) answer set. Furthermore, line 2 adds responses that are implied
by edges that are known to exist and the last line is needed in the case where
multiple perturbations hit the same node, but a perturbed node itself does not
respond.

As discussed at length, we might wish to incorporate additional, external
domain knowledge into the logic program. The most direct way of doing so is
to simply state the knowledge about presence or absence of e.g. the link from
node 2 to node 3 as a fact:

edge(2,3).

or
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-edge(2,3).

respectively.
To encode bounds on the number of links that enter or leave one or a group

of nodes is simple, due to ASPs built-in #count aggregates. If, for example,
we were to maximally allow for 3 incoming edges to node 1 we would add the
following integrity constraint to the logic program

:- #count {OUT : edge(OUT,1) } > 3.

Obviously, this statement could easily be adapted to formulate a lower bound,
or bounds for groups of nodes.

It is more complex to state the parsimony constraint that filters out any
network for which the removal of any link does not change the transitive closure.
Essentially, for a given network, we define a set of links, x edge(OUT,IN) that
are subject to removal. Those are all the edges that are part of the network but
which are not enforced by external knowledge. Then, the idea is to define all
networks with a link removed, determine their transitive closure and compare
it to that of the original network. The final integrity constraint removes the
answer set if any of the reduced networks does not have a reduced (that is, it
has the same) transitive closure as the original one.

r_edge(OUT,IN,NOUT,NIN) :- (OUT,IN)!=(NOUT,NIN),
edge(OUT,IN), x_edge(NOUT,NIN).

r_tc(I,IN,NOUT,NIN) :- r_edge(OUT,IN,NOUT,NIN), pert(I,OUT).
r_tc(I,IN,NOUT,NIN) :- r_edge(OUT,IN,NOUT,NIN),

r_tc(I,OUT,NOUT,NIN).
has_reduced_tc(NOUT,NIN) :- not r_tc(I,IN,NOUT,NIN),

tc(I,IN), x_edge(NOUT,NIN).
:- not has_reduced_tc(NOUT,NIN), candidate_edge(NOUT,NIN).

As this logic creates a significant amount of additional variables, we observed
that the parsimony constraint will suffer performance issues when applied to
more than a few tens of nodes.

Finally, a crucial feature of the response logic approach is the ability to
generate the union of all conforming networks, which points out the links that
can or cannot be uniquely determined. Typically, the number of conforming
networks is intractable which precludes to simply enumerate all solutions and
then compute their union directly. Rather, we let a logic program find it di-
rectly. The union of all answer sets of an ASP program is also termed brave
consequences, hence the naming conventions below. In a first step, we need to
annotate the presence or absence of an edge explicitly.

edge_brave(OUT,IN,1):-edge(OUT,IN).
edge_brave(OUT,IN,0):-not edge(OUT,IN),node(OUT),node(IN).

Then, the idea is to repeatedly solve the logic program, while iteratively building
up the union of conforming networks. That is, we record for each edge whether
the solutions generated so far, found it to be always absent, always present or
neither (sometimes present, sometimes absent). To obtain the union over all
answer sets, the program is further constrained with every new solve call to
only permit networks that are not a subset of the union that was recorded so
far. This is encoded by the following integrity constraint.
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Figure S1: DREAM3 challenge 4: Precision Recall (blue) and ROC (red) curves
for the response logic predictions of the five networks.

:- not edge_brave(OUT,IN,B) : node(OUT), node(IN), B=0..1,
@is_in_union(OUT,IN,B) == 0.

The @is in union(OUT,IN,B) construct is a function called by the solver that
will return 1 if the presence or absence (B is 1 or 0, respectively) of edge OUT to
IN is already recorded in the union and 0 otherwise. Thus, every solve call adds
new elements to the union until there are no more conforming networks that
show the presence or absence of a link, beyond what is already represented in
the union. This is when the program is no longer satisfiable and the repeated
solve calls stop.

S2 Additional information about the inference
of DREAM in-silico networks

The rectification of the response pattern requires confidence scores, C. Those
are defined as a normalized distance of each entry of the global response matrix
R to 1, which was chosen as the response threshold. The normalization is chosen
such that confidence levels range from zero, for Rij = 1, to one, for Rij taking
either the maximal Rmax or minimal Rmin value of all entries. Formally,

Cij =
{
|Rij − 1|/|Rmax − 1| for Rij − 1 > 0
|Rij − 1|/|Rmin − 1| for Rij − 1 < 0.
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Figure S2: DREAM4 challenge 2: Precision Recall (blue) and ROC (red) curves
for the response logic predictions of the five networks.

Both DREAM3 and DREAM4 provided five network challenges per network
size. The precision-recall curve and the ROC curve for each network prediction
are shown in Figure S1 and Figure S2.

The official DREAMTools package (Cokelaer et al., 2016) was used to com-
pute the final prediction scores that are shown in main text Figure 4A. The
scoring is based on p-values for the ROC and precision-recall area under the
curves (AUC) that are computed from probability distributions of random net-
work predictions. In the case of the DREAM3, N=100, Yeast3 network the
precision-recall AUC of the response logic prediction is larger than that of any
of the provided random network predictions. Therefore the determined p-value
becomes zero and the overall network score becomes infinity. To obtain a more
reasonable score we decided to modify the p-value computation in that case.
We identified the largest AUC for which the random probability distribution
shows a nonzero probability and simply defined an extended distribution whose
probability decreases linearly from this point to zero probability at AUC=1 and
computed the p-value based on this approximated distribution. This only con-
cerned one of the five scored networks in the DREAM3, N=100 prediction and
the resulting overall score, 139.7, is shown in main text Figure 4A, third panel.
Another strategy to cope with the problem is to remove the network altogether
and compute the overall score (mean of geometric mean of p-values) only from
the remaining four networks. This provides a lower bound for the overall score
of 122.9, which is still clearly better than the score of any of the competitors
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and the naive approach.

S3 Additional information about the analysis of
the SW-48 cell line

A reverse phase protein array (RPPA) perturbation experiment was carried out
on the SW-48 parental, the SW-48 E545K and SW-48 H1047R PI3K mutant
cell lines under full serum conditions. Antibodies were chosen to cover the
activity (phosphorylation) of a range of kinases. Cells were perturbed by single
small molecule inhibitors, by single growth factors or by a combination of one
growth factor and one inhibitor. Measurements were carried out in 8 technical
replicates.

In a first step readouts were filtered as follows. First, we removed all read-
outs whose signal remained within the technical noise level throughout the treat-
ments, as this indicates a malfunctioning antibody. The readout had to be a
component or a target of the MAPK or the PI3K pathway. To decrease re-
dundancy, we removed very closely related readouts. This included readouts of
functionally related phosphosites on the same kinase, or kinases that showed
near-identical qualitative behaviour due to their proximity within the signalling
pathway. This left us with 10 different readouts. Concerning the perturbations,
we filtered out ineffective, or redundant inhibitors and ligands. This resulted in
the data set depicted in Figure S3.

To use this data in the response logic framework we need to convert it to a
response pattern with according confidence scores. First, we need to localize the
targets of the perturbations. As not all the direct targets of each perturbation
were part of the readouts, we replaced those by the ones that were the closest
downstream the signalling chain. Concerning HGF stimulation, we observed a
strong response by the PDGF receptor. C-Met not being amongst the readouts,
we chose the target accordingly. Lacking additional data, it is subject to specu-
lation whether this behaviour could be explained e.g. by receptor co-activation
(Xu and Huang, 2010) or impurities of the used ligand. This resulted in the
following allocations.

perturbation EGFRi MEKi AKTi EGF HGF IGF
target EGFR ERK AKT EGFR PDGFRB AKT

This makes apparent that the perturbations only have four different targets
(PDGFRB, EGFR, ERK, AKT).

Next, we need to determine the response behaviour with respect to pertur-
bations of those four targets. Inhibiting an unstimulated signalling pathway
can lead to saturation effects, when additional reduction of kinase activity is
not possible. Thus, to faithfully track the inhibition response we decided to
investigate inhibition while cells are stimulated, that is to compare ligand +
inhibitor to only ligand. To ensure that such a stimulation actually affects the
inhibited pathways, we chose EGF stimulation for the EGFR and MEK in-
hibitors and IGF stimulation for the AKTi inhibitor. The stimulation effects do
not suffer from such saturation effects and were thus compared to basal levels
(DMSO+PBS) directly. We compiled an overview of the resulting perturbation
comparisons in Figure S4.
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Figure S3: RPPA measurements on SW48 cell lines
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To decide whether a perturbation caused a response, we computed p values
for each pair of perturbed-unperturbed samples using an unpaired, two-sample
t-test. As the data replicates are technical in nature we chose a conservative
significance threshold of 0.01. To compute confidence scores we used the same
procedure as for the DREAM data, section S2, that is, the confidence scores
represent a normalized distance between the p-value and the p-value threshold.
Recall, that the six perturbations only have four different targets. To remove
redundancy in the response logic sense, we decided to remove the two redundant
data points with lower confidence (per cell line and readout). This resulted in
the response patterns shown in main text Figure 5A and 6A.

The computation of the area under ROC and precision recall-curves in main
text Figure 5A requires to rank the predicted links. However, depending on how
the response logic approach is applied, some links can end up with the same
score. We therefore, computed the PR AUC and ROC AUC as a mean over 100
AUC values that were generated by randomly reshuffling groups of links with
equal score. Repeated computation of these PR AUC and ROC AUC values
only varied in the third decimal place.
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4
I D E N T I F I A B I L I T Y A N D E X P E R I M E N TA L D E S I G N I N
P E RT U R B AT I O N S T U D I E S

The simplicity of the response logic offers a crude description of
biological mechanics. Often times, it is necessary to obtain a more
fine grained picture, which does not only classify network edges as
present or absent but associates them with a specific (scalar) interac-
tion strength (Ingram et al. 2006; Guet et al. 2002; Gates et al. 2016).
This is useful for example to interpret signalling differences where
a specific cellular context solely downregulates a phosphorylation
reaction but does not fully eradicate it. A popular method to derive
weighted directed graphs from perturbation data is known as Modular
Response Analysis (MRA). In short, the method considers perturba-
tion responses as steady states of a system of ordinary differential
equations and computes unknown entries of its Jacobian matrix as
proxies for interaction strengths. Early works (Bruggeman and Kholo-
denko 2002; de la Fuente, Brazhnik, et al. 2002; de la Fuente and
Mendes 2002; Kholodenko et al. 2002) highlight the connection to
metabolic control analysis (Kacser et al. 1973; Heinrich et al. 1974).
This explains the naming of MRA, as the molecular description of
metabolic control analysis was subsumed into a modular perspective.
Modules are thought to involve many cellular components that are
interconnected by chemical reactions. However, only few of these com-
ponents influence other modules and so it is justifiable to describe the
system in terms of interaction strengths between modules.

More than one hundred MRA related articles have been published
(Bastiaens et al. 2015), including some rediscoveries of the method
(Timme 2007; Barzel et al. 2013). While in principle, the approach could
be applied to many different biological networks, its main area of
application turned out to be the analysis of signalling pathways. This
includes the discovery of topological variabilities in the MAPK core
network in PC-12 cells which determine the induction of proliferation
or differentiation (Santos et al. 2007). Another study elucidated the
transcription factor network that is induced by RAS signalling in
an ovarian cancer model (Stelniec-Klotz et al. 2012). As described
in a previous chapter, MRA allowed to uncover an EGF receptor
feedback loop that mediates a cross-talk between the MAPK and the
PI3K pathway and conferred resistance to MEK inhibition (Klinger
et al. 2013). Similarly, the method described a negative feedback from
p70S6K to IRS1 in colorectal cancer cells, which entails resistance
to EGFR inhibition (Halasz et al. 2016). MRA was used to analyze
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signaling networks in breast cancer and could detect rewiring within
different cancer types (Speth et al. 2017) and a cross talk between
estrogen and retinoic acid receptors (Jimenez-Dominguez et al. 2020).
Recently, MRA was also applied to single cell CyTOF data and could
elucidate signalling differences between clusters of single cells in
mouse intestinal organoids (Brandt et al. 2019).

To keep up with the ever increasing range of applications, the
method has been continuously advanced, a development that is ex-
tensively reviewed in Santra et al. 2018. For example, it was noted
early on that the inferred interaction strengths are sensitive to noise
in the response data (Andrec et al. 2005). Amongst other things, this
sparked the integration of Monte-Carlo sampling in MRA to obtain
confidence intervals for the inferred parameters (Santos et al. 2007).
Another practical problem is that it is often difficult to perform com-
prehensive perturbation experiments. This requires an extension of
the original formulations of MRA, which assumed the number of
perturbations to equal or exceed the number of nodes in the network.
To this end, a Bayesian variable selection algorithm (Santra et al. 2013)
or a maximum-likelihood formulation (Klinger et al. 2013) allow to
enforce zero interaction strength. Such zero parameters can either
be determined from prior network knowledge about missing edges
or they are inferred from the response data (Klinger et al. 2018). In
addition to incomplete perturbation data, the maximum-likelihood
formulation (Klinger et al. 2013) and its successor the stasnet package
(Dorel et al. 2018) even allow to infer interaction strengths to and
from components that could not be experimentally observed. Another
approach formulated MRA as a mixed-integer quadratic program-
ming problem (Bosdriesz et al. 2018), which can simultaneously infer
a network from perturbation data on multiple systems. This procedure
allows to define which edges are shared or can differ between systems
and thus permits to pinpoint, for example, cell line specific differences,
even when the data on individual cell lines is sparse.

All of this shows that nearly twenty years after its original for-
mulation, MRA has given rise to a versatile and established reverse-
engineering toolbox. Nevertheless, challenges remain. Amongst them
are the closely related issues of identifiability and experimental design,
which will be the focus of the publication referred to by the end of
this chapter. The question is whether a certain interaction strength
can be uniquely quantified from a given set of perturbations and a
certain amount of prior knowledge about the network. Up to now,
this could only be answered within the maximum-likelihood formu-
lation of MRA in terms of a profile likelihood analysis (Raue et al.
2009). However, this iterative procedure needs to frequently evaluate
the likelihood function, which can lead to intractable computational
complexity, it requires a definition of likelihood thresholds and is thus



identifiability and experimental design in perturbation studies 51

not guaranteed to be fail-safe, and it is a post hoc approach that only
works after experimental data has been collected. Therefore, it could
also not address the issue of experimental design, which is the task to
(a priori) determine the sequence of perturbations that maximizes the
number of identifiable interaction strengths. Intervention experiments
are typically laborious and costly, and thus often limited to a handful
of perturbations. Thus, improving experimental design is crucial. But
even as high-throughput perturbation experiments start to be within
reach (Adamson et al. 2016; Datlinger et al. 2017; Dixit et al. 2016;
Jaitin et al. 2016; Schraivogel et al. 2020), an efficient reduction of non-
identifiability remains important to increase the size of confidently
inferred networks. It is therefore surprising how little attention has
been paid to the optimization of experimental design, compared to
the numerous efforts towards reverse engineering methods. Some of
the existing approaches (Birget et al. 2012; Ideker et al. 2000; Lang
et al. 2014; Spieth et al. 2004; Steinke et al. 2007; Tegnér et al. 2003) are
briefly described in the introduction of Ud-Dean et al. 2016. But most
of these either focus on optimizing the inference of boolean networks
or rely on time-series data. Up till now, no experimental design strat-
egy for linear response networks such as the ones described by MRA
was known.

In this context, our article shows analytically that structural pa-
rameter identifiability (Bellman et al. 1970) can be described as a
simple maximum flow problem, which only depends on the prior
knowledge about the network topology and the targets of the applied
perturbations. The maximum flow perspective provides an intuitive
understanding of identifiability before data is collected. This makes it
possible to explore parameter identifiability for different sequences of
perturbations, which can drastically reduce the number of perturba-
tions that is required to determine a set of interaction strengths. This
approach is not specific to MRA but holds in principle for all inference
methods that are based on linearity assumption similar to that of
MRA. Nevertheless, the derivation of the maximum flow formulation
yield some insights that could be beneficial for an MRA based network
inference. To the best of my knowledge, our article shows for the first
time how to reformulate the MRA equations such that the unknown
network parameters are determined by a set of linear equation sys-
tems, within a general setting of arbitrary prior network knowledge
and non-specific perturbations. This formulation not only allowed to
derive the maximum-flow conditions but also improves the parameter
optimization of MRA models, as shown in Chapter 5.
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Abstract

Motivation: A common strategy to infer and quantify interactions between components of a biological
system is to deduce them from the network’s response to targeted perturbations. Such perturbation
experiments are often challenging and costly. Therefore, optimising the experimental design is essential to
achieve a meaningful characterisation of biological networks. However, it remains difficult to predict which
combination of perturbations allows to infer specific interaction strengths in a given network topology.
Yet, such a description of identifiability is necessary to select perturbations that maximize the number of
inferable parameters.
Results: We show analytically that the identifiability of network parameters can be determined by an
intuitive maximum flow problem. Furthermore, we used the theory of matroids to describe identifiability
relationships between sets of parameters in order to build identifiable effective network models. Collectively,
these results allowed to device strategies for an optimal design of the perturbation experiments. We
benchmarked these strategies on a database of human pathways. Remarkably, full network identifiability
was achieved with on average less than a third of the perturbations that are needed in a random
experimental design. Moreover, we determined perturbation combinations that additionally decreased
experimental effort compared to single-target perturbations. In summary, we provide a framework
that allows to infer a maximal number of interaction strengths with a minimal number of perturbation
experiments.
Availability: IdentiFlow is available at github.com/GrossTor/IdentiFlow.
Contact: nils.bluethgen@charite.de
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Rapid technological progress in experimental techniques allows to quantify
a multitude of cellular components in ever increasing level of detail. Yet,
to gain a mechanistic understanding of the cell requires to map out causal
relations between molecular entities. As causality cannot be inferred from
observational data alone (Pearl, 2009), a common approach is to observe
the system’s response to a set of localised perturbations (Sachs et al.,
2005) and reconstruct a directed interaction network from such data.
Examples for such perturbations are ligands and small molecule inhibitors
for the study of signalling pathways, or siRNA knockdowns and CRISPR
knockouts of targets in gene regulatory networks.

A recurring idea within the large body of according network inference
methods (Marbach et al., 2010) is to conceive the system as ordinary
differential equations and describe edges in the directed network by the
entries of an inferred Jacobian matrix (Gardner et al., 2003; Bonneau et al.,
2006; Tegner et al., 2003; Kholodenko, 2007; Bruggeman et al., 2002;
Timme, 2007). Such methods have been successfully applied to describe
various types of regulatory networks in different organisms (Ciofani et al.,
2012; Arrieta-Ortiz et al., 2015; Lorenz et al., 2009; Klinger et al., 2013;
Brandt et al., 2019). They are continuously improved, e.g. to reduce
the effect of noise, incorporate heterogeneous data sets, or allow for
the analysis of single cell data (Greenfield et al., 2013; Santra et al.,
2018; Klinger and Blüthgen, 2018; Santra et al., 2013; Kang et al.,
2015; Dorel et al., 2018) and have thus become a standard research tool.

© The Author XXXX. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1
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Nevertheless, identifiability (Hengl et al., 2007; Godfrey and DiStefano,
1985) of the inferred network parameters within a specific perturbation
setup has not yet been rigorously analysed, even though a limited number of
practically feasible perturbations renders many systems underdetermined
(De Smet and Marchal, 2010; Meinshausen et al., 2016; Bonneau et al.,
2006). Some inference methods do apply different heuristics, such as
network sparsity, to justify parameter regularisation (Gardner et al.,
2003; Bonneau et al., 2006; Tegner et al., 2003), or numerically analyse
identifiability through an exploration of the parameter space using a profile
likelihood approach (Raue et al., 2009). Yet, neither approach provides
a structural understanding on how parameter identifiability relates to
network topology and the targets of the perturbations. However, such
structural understanding is required to systematically define identifiable
effective network models and to optimize the sequence of applied
perturbations. The latter is of particular interest because perturbation
experiments are often costly and laborious, which demands to determine
the minimal set of perturbations that reveals a maximal number of network
parameters. To address these challenges, this work derives analytical
results that explain the identifiability of network parameters in terms
of simple network properties which allow to optimize the experimental
design.

2 Methods
We consider a network of n interacting nodes whose abundances,x, evolve
in time according to a set of (unknown) differential equations

ẋ = f(x,p). (1)

The network can be experimentally manipulated by p different types of
perturbations, each represented by one of the p entries of parameter vector
p. We only consider binary perturbations that can either be switched on or
off. Without loss of generality, we define f(x,p) such that the k-th type
of perturbation changes parameter pk from its unperturbed state pk = 0

to a perturbed state pk = 1.
The main assumption is that after a perturbation the observed system

relaxes into stable steady state, ϕ(p), of Equation 1. Stability arises
when the real parts of the eigenvalue of the n × n Jacobian matrix,
Jij(x,p) = ∂fi(x,p)/∂xj , evaluated at these fixed points, x = ϕ(p),
are all negative within the experimentally accessible perturbation space
(no bifurcation points). This implies that J(ϕ(p),p) is invertible, for
which case the implicit function theorem states that ϕ(p) is unique and
continuously differentiable, and

∂ϕk

∂pl
= −

[
J−1S

]
kl
, (2)

where n × p Sensitivity matrix entry, Sij = ∂fi(x,p)/∂pj , quantifies
the effect of the j-th perturbation type on node i. Dropping functions’
arguments is shorthand for the evaluation at the unperturbed state,
x = ϕ(0) and p = 0.

A linear response approximation

A perturbation experiment consists of q perturbations, each of which
involves a single or a combination of perturbation types, represented by
binary vector p, which forms the columns of the p× q design matrix P .
The steady states after each perturbation, ϕ(p), are measured and their
differences to the unperturbed steady state form the columns of the n× q

global response matrix R. Assuming that perturbations are sufficiently
mild, the steady state function becomes nearly linear within the relevant

parameter domain,

ϕk(p)− ϕk(0) ≈
p∑

l=1

∂ϕk

∂pl
pl. (3)

Replacing the partial derivative with the help of Equation 2 and writing
the equation for all q perturbations yields

R ≈ −J−1S P. (4)

This equation relates the known experimental design matrix, P , and the
measured global responses, R, to quantities that we wish to infer: the
nodes’ interaction strengths, J , and their sensitivity to perturbations, S.

A dynamic system defined by rates f̃(x,p) = W f(x,p), with any
full rank n×n matrixW , has the same steady states but different Jacobian
and sensitivity matrices, namely W J and W S, as the original system,
defined by Equation 1. It is thus impossible to uniquely infer J or S from
observations of the global response alone, and prior knowledge in matrices
J and S is required to further constrain the problem. In the following, we
assume that prior knowledge exists about the network topology, i.e. about
zero entries in J , as they correspond to non-existent edges. Likewise, we
assume that the targets of the different types of perturbations are known,
which implies known zero entries in S for non-targeted nodes. In line with
prior studies (Kholodenko, 2007), we also fix the diagonal of the Jacobian
matrix

Jii = −1.

Thus, for the i-th row of J we can define index lists µ̄i and µ̂i to identify
its known and unknown entries. The first indicates missing edges or the
self loop and the second edges going into node i. These lists have |µ̄i| and
|µ̂i| entries, respectively, with

|µ̄i|+ |µ̂i| = n. (5)

Analogously, for the i-th row of S we define index lists ν̄i and ν̂i, with

|ν̄i|+ |ν̂i| = p, (6)

to report its unknown and known entries. These describe the perturbations
that do not target or respectively target node i.

We show in Supplementary Material S1 that Equation 4 can be
repartitioned to obtain a system of linear equations for each row in J
and S, exclusively in the

ui = |µ̂i|+ |ν̂i|

unknown parameters, which we collect in vectorxi. Thus, there is a ui×di
matrix Vi, such that

xi = Viw + x̃i, ∀w ∈ Rdi , (7)

where x̃i is some specific solution to the equation system. We further show
in Supplementary Material S1 that Vi is a basis of the kernel of

Ψi =

[
ŜiĴ
−1
i I|ν̂i|

S̄iĴ
−1
i 0|ν̄i|,|ν̂i|

]
, (8)

where I|ν̂i| and 0|ν̄i|,|ν̂i| are the identity and zero matrix of annotated
dimensionality. The n × |µ̂i| matrix Ĵ−1

i consists of the columns of
(J−1)T that are selected by indices in µi. Finally, |ν̄i| × n matrix S̄i

and ν̂i × n matrix Ŝi shall be formed by taking rows of ST according
to indices in ν̄i and ν̂i. These matrix partitionings are demonstrated for a
toy example in Supplementary Figure S1. Furthermore, in Supplementary
Material S1 we derive the following expression for the solution space
dimensionality

di = |µ̂i| − rank
(
S̄iĴ
−1
i

)
.
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Identifiability conditions

The system is underdetermined when di > 0. But independent of di, a
parameter is identifiable if the solution space is orthogonal to its according
axis direction. This idea can be expressed as algebraic identifiability
conditions. Accordingly, we show in Supplementary Material S1 that the
unknown interaction strength Jiµ̂ij

is identifiable if and only if

1 + rank(S̄iĴ
−1
i\j ) = rank(S̄iĴ

−1
i ), (9)

where Ĵ−1
i\j is matrix Ĵ−1

i with the j-th column removed. Furthermore,
the unknown sensitivity Siν̂ij is identifiable if and only if

rank

([
S̄i

Ŝ
j
i

]
Ĵ−1
i

)
= rank(S̄iĴ

−1
i ), (10)

where Ŝ
j
i denotes the j-th row of matrix Ŝi. However, the ranks depend on

the unknown network parameters themselves and can thus not be directly
computed. Yet, we can show how a reasonable assumption makes this
possible and allows to express the identifiability conditions as an intuitive
maximum flow problem.

First, we rewrite the identity J−1J = In as

[J−1]kl =
∑

m6=l
[J−1]km [J ]ml − δkl,

with δkl being the Kronecker delta (recall that Jll = −1). We can view
this equation as a recurrence relation and repeatedly replace the [J−1]km
terms in the sum. The sum contains non-vanishing terms for each edge that
leaves node l. Therefore, each replacement leads to the next downstream
node, so that eventually one arrives at

[J−1]kl = l�k [J−1]kk, with

l�k =
∑

ω∈Ωl→k

|ω|−1∏

m=1

[J ]ωm+1 ωm ,

where the set Ωl→k contains elements, ω, for every path from node l to
node k, each of which lists the nodes along that path. Strictly speaking,
these elements are walks rather than paths because some nodes will appear
multiple times if loops exist between l and k. In fact, with loops, Ωl→k
contains an infinite number of walks of unbounded lengths. But as the real
part of all eigenvalues of J are assumed negative, the associated products
of interaction strengths converges to zero with increasing walk length.

To simplify our notation, we want to expand the network by considering
perturbations ν̄i as additional nodes, each with edges that are directed
towards that perturbation’s targets. Furthermore, letting the interaction
strength associated with these new edges be given by the appropriate entries
in S we can rewrite the matrix product

[
S̄iĴ
−1
i

]
kl

= ν̄ik� µ̂il [J−1]µ̂il µ̂il

where µ̂il and ν̄il denote the l-th entry in µ̂i and ν̄i, respectively. As
every finite-dimensional matrix has a rank decomposition, we can further
write

S̄iĴ
−1
i = Υi Yi, (11)

where |ν̄i| × rank(S̄iĴ
−1
i ) matrix Υi and rank(S̄iĴ

−1
i )× |µ̂i|matrix

Yi have full rank. Finding such a decomposition therefore reveals the rank
of S̄iĴ−1

i . To this end, we propose

[Υi]kn = ν̄ik�yin, and [Yi]nl = yin� µ̂il [J−1]µ̂il µ̂il
,

where yin denotes the n-th component of a certain list of nodes yi. In
order for Equation 11 to hold, it must be possible to split each path from

any perturbation ν̄il to any node µ̂il into a section that leads from the
perturbation to a node in yi and a subsequent section that leads from this
node to µ̂il. For an extended graph that includes an additional source node,
with outgoing edges to each perturbation in ν̄i, and an additional sink
node, with incoming edges from all nodes in µ̂i (see Figure 1B), yi thus
constitutes a vertex cut whose removal disconnects the graph and separates
the source and the sink node into distinct connected components. Next,
we want to show that if yi is a minimum vertex cut, the rank of S̄iĴ−1

i

equals the size of yi. Because Equation 11 is a rank decomposition this
is equivalent to showing that the according matrices Υi and Yi have full
rank. To do so, we apply Menger’s theorem (Menger, 1927), which states
that the minimal size of yi equals the maximum number of vertex-disjoint
paths from the source to the sink node. This also implies that each of these
vertex-disjoint paths goes through a different node of the vertex cut yi.
Recall that entries in Υi constitute sums over paths from perturbation to
vertex cut nodes, so that we could write

Υi = Ῡi + Υ̂i,

where Ῡi only contains the vertex-disjoint paths and Υ̂i the sums over the
remaining paths. As each of these vertex disjoint paths ends in a different
vertex cut node, any column in Ῡi can contain no more than a single
non-zero entry. Furthermore, as a consequence of Menger’s theorem there
are exactly |yi| non-zero columns. Because these paths are indeed vertex
disjoint also no row in Ῡi has more than a single non-zero entry. Thus,
the non-zero columns are independent, showing that Ῡi has full rank. We
further assume that adding Υ̂i does not reduce rank, which also gives
Υi full rank. In the context of biological networks there are two different
scenarios that could lead to a violation of this non-cancellation assumption.
The first is that network parameters are perfectly tuned to lie inside a
specific algebraic variety (a manifold in parameter space) such that certain
columns (or rows) of Υi become linearly dependent or zero. This would
for example be the case if, for a given vertex disjoint path, there also is an
alternative path whose associated product of interaction strengths has the
same magnitude as that of the vertex disjoint path but opposite sign, making
their sum vanish. However, we consider it implausible for biological
networks to be fine-tuned to such a degree that they could achieve such
perfect self-compensation of perturbations, and rule out this possibility.
A more realistic scenario is that network parameters are zero and thereby
lead to zero columns or rows in Υi or Yi, which make these matrices
rank deficient. In practice, such zero-parameters can occur, for example,
if a perturbation is not effective on (one of) its target(s), or if robustness
effects (Fritsche-Guenther et al., 2011) obstruct the propagation of the
perturbation signal at a certain link. But essentially, this means that our
prior knowledge about the network included practically non-existing links
or perturbation targets. If the network topology and perturbation targets
are correctly stated and take these effects into consideration, there will be
no zero-parameters and therefore the non-cancellation assumption holds.
We explore the consequences of incomplete or flawed prior knowledge in
Supplementary Material S5.

Having shown Υi to be of full rank, the same line of reasoning will
demonstrate a full rank for matrix Yi as well, which implies that indeed

rank(S̄iĴ
−1
i ) = |yi|, (12)

where yi is a minimum vertex cut between source and sink node. This
equation has the crucial benefit that |yi| does not depend on any unknown
parameters and can be computed as the maximum flow from source to sink
node with all nodes having unit capacity (Ahuja et al., 1993), as detailed in
Figure 1B. A flow is defined as a mapping from a network edge to a positive
real number that is smaller than the edge’s capacity. Additionally, the sum
of flows entering a node must equal the sum of the flows exiting a node,
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except for the source and the sink nodes. The maximum flow problem is to
attribute (permissible) flow values to all edges, such that the sum of flows
leaving the source (which is equal to the sum of flows entering the sink) is
maximal. In our case however, we did not define edge but node capacities,
meaning that the sum of flows passing through any node must not exceed
one. Yet, we can express such unit node capacities as unit edge capacities
in an extended flow network. It is defined by replacing every node by an in-
and an out-node, where all incoming edges target the in-node, all outgoing
edges start from the out-node, and the in-node has an edge to the out-node.

This maximum flow problem allows to express the algebraic
identifiability conditions 9 and 10 in terms of network properties, providing
an intuitive relationship between network topology, perturbation targets
and identifiability. Specifically, Jiµ̂ij

is identifiable if and only if the
removal of the edge from node µ̂ij to the sink node reduces the maximum
flow of the network, see Figure 1C, and Siν̂ij is identifiable if the
maximum flow does not increase when an additional edges connects the
source node with perturbation node ν̂ij , see Figure 1D. In Supplementary
Material S5, we simulate a perturbation experiment to numerically verify
these findings.

Identifiability relationships

Often, network inference is an underdetermined problem (De Smet and
Marchal, 2010; Gross et al., 2019). Thus, to achieve identifiable effective
network models, certain parameters have to be set to constant values,
such that the remaining parameters become uniquely determinable. This
requires an understanding of the identifiability relationships between
parameters, i.e. we need to know which parameter becomes identifiable
when other parameters are fixed. Supplementary Equation 18 formally
relates these relationships to the ranks of certain linear subspaces of the
range of V Ti as defined in Equation 7. It shows that for each network node
there is a set of parameters amongst which identifiability relationships can
exist. Such a set contains those interaction strengths that quantify the edges,
which target the associated node, and the associated node’s sensitivities to
perturbations. Furthermore, we show in Supplementary Material S2 that
the identifiability relationships of such parameter groups can be described
as a matroid (Whitney, 1935). Matroids can be defined in terms of their
circuits. Here, a circuit is a set of parameters with the property that any of
its parameters becomes identifiable after fixing all of the others. Therefore,
circuits describe all minimal parameter subsets that could be fixed to obtain
an identifiable network.

We enumerated the set of circuits with an incremental polynomial-time
algorithm (Boros et al., 2003). This algorithm requires an independence
oracle that indicates linear dependence of subsets of columns of V Ti .
Supplementary Material S2 shows that we can construct such an oracle
by considering linear dependence within the dual matroid, which amounts
to determining

rank

([
P̃T2 Ŝi
S̄i

]
Ĵ−1
i P1

)
.

Matrices P2 and P1 are truncated identity matrices defined in
Supplementary Equations 19 and 20. Yet, the crucial point of this
expression is that it has the same form as the left hand side of Equation
12. We can therefore conveniently determine it by solving a simple
maximum-flow problem.

Supplementary Material S2 shows how to transform the circuits
into cyclic flats. These provide a more convenient representation of
the identifiability relationships, which we clarify at an example in
the next section. Finally, certain scenarios constrain the choice of
fixable parameters, for example when quantifying multiple isogenic cell
lines (Bosdriesz et al., 2018). Supplementary Material S2 describes a
greedy algorithm that takes such preferences into consideration.

Experimental design strategies

We assume that we are given a set of p perturbations, each of which
targets a different subset of nodes. In the following, we will define different
experimental design strategies that suggest different sequences in which
these perturbations should be applied. By means of our understanding of
identifiability, we can determine ξi, the number of identifiable edges after
having performed the first i perturbations in such a sequence. Our goal
is to find a strategy for which this number of identifiable edges increases
fastest. Thus, as a measure of a sequence’s optimality, we can define an
identifiability area under the curve

1

p

p∑

i=1

ξi

ξ
, (13)

where ξ is the number of edges in the network. For any network and
perturbation sequence, this score ranges between zero and one.

Consider a directed graph with 2p nodes, each of which represents
a different subset of the p perturbations. Each edge in this graph shall
connect such a perturbation subset to one of its proper supersets that
contains one additional perturbation. Then, we can view perturbation
sequences as paths on this graph, starting from the empty perturbation
subset. We shall define design strategies as rules that describe which
perturbation(s) should be performed next, given the perturbations that have
already been applied. These rules thus represent the edges on the graph
and will therefore determine which perturbation sequences are associated
with the given strategy. To enumerate these perturbation sequences,
we implemented a depth-first search. The details of our algorithm are
described in Supplementary Material S3. Here, we provide an overview
over the different implemented strategies.

An obvious approach to design an optimal strategy is to simply consider
all remaining perturbations as next possible perturbations. This exhaustive
strategy is therefore associated with the entire set of possible perturbation
sequences. We are therefore guaranteed to find those sequences amongst
them that maximize the identifiability area under the curve. On the
downside, this strategy quickly becomes computationally intractable
when the set of perturbations becomes large (we analyse computational
complexity of the different strategies in Supplementary Material S3).
Therefore, we also implemented strategies with more restrictive rules. A
random strategy will, at each step, randomly choose one of the remaining
perturbations. This will thus result in a single random perturbation
sequence. A naive strategy is based on the notion that perturbations should
be more informative if they cause a response at a possibly large number
of nodes. Thus, this strategy considers the perturbed nodes for each of the
remaining perturbations and computes the number of network nodes to
which these are connected to by a path. It then selects those perturbations
as possible next perturbations, which maximize this number. In contrast,
the single-target strategy makes use of the maximum-flow approach, as it
selects perturbations that will, first, maximize the number of identifiable
edges, and second, minimize the overall dimensionality of the solution
space,

∑
i di. Finally, the multi-target strategy is similar to the single-

target approach, except that it not only considers single but combinations
of perturbations. That is, we allow any perturbation combination to be
considered as a single perturbation experiment, which will then perturb all
targets of the combined perturbations. Clearly, this can open an excessively
large search space, when the number of possible perturbations is big.
We therefore implemented a tractable, step-wise procedure to build up
perturbation combinations, which is described in Supplementary Material
S3.

As these strategies allow for multiple perturbations to be considered
next in the sequence, they are associated not only to a single but to many
sequences (which we enumerate by the depth-first search). Amongst them,
we can then choose the ones that maximize the optimality score defined
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Fig. 1. A maximum flow problem determines the identifiability of interaction strengths
and perturbation sensitivities when reconstructing a network from perturbation data. (A)
Example network with three perturbations (yellow squares) to illustrate the algorithm. (B)
The corresponding flow network to determine the identifiability of the edges into node 3
and the sensitivity of node 3 to perturbations. A path carrying the maximal flow of one is
denoted in red (note that it is not unique). (C) The interaction strength between a given node
and node 3 is identifiable if and only if the maximum flow is reduced after removing that
node’s edge to the sink node. In this example, there are alternative max-flow paths that re-
establish a unit-flow after removal of the according edges. Thus, the respective interaction
strengths are non-identifiable. (D) Similarly, the sensitivity of node 3 to perturbation 3 is
identifiable, if and only if the depicted extension of the flow network does not increase the
maximum flow. In this example, the maximum flow is increased by one, again revealing
non-identifiability. Note that such flow representations provide an intuitive understanding
on how alterations in the network or perturbation setting affect identifiability. For example,
it is obvious that if the toy model would not contain an edge from node 3 to 4, the edge
from 2 to 3 would become identifiable.

in Equation 13. However, for large systems the number of these strategy-
associated sequences can become too large to be completely enumerated.
We therefore also implemented an approach to randomly sample from this
sequence set, as follows. For a given strategy, instead of considering the
entire set of possible next perturbations, we only randomly pick a single
one. The strategy will then be associated with a single sequence. Every
time we repeat this procedure, we randomly sample from the (original)
strategy-associated sequences.

3 Results

Identifiability and identifiability relationships

Perturbation experiments are frequently used to infer and quantify
interactions in biological networks. But whether a given network edge can
indeed be uniquely quantified from experimentally observed perturbation
responses depends on the specific targets of the perturbations and the
topology of the network. In order to build interpretable network models
and guide experimental design, we need to elucidate this identifiability
status of the network parameters. Here, we view a biological system as a
weighted directed network, and assume that perturbations are sufficiently
mild to cause a linear steady state response. This allows to relate the
interaction strengths between nodes (i.e. the entries in the Jacobian matrix
J) and the sensitivity to perturbations (i.e. the entries in the Sensitivity
matrix S) to the measured responses (Equation 4), an approach that is
widely known as Modular Response Analysis (Kholodenko, 2007). We
derived analytical identifiability conditions (Equations 9 and 10) that
describe whether this relation allows to uniquely determine the network
parameters for the given network topology and the experimental setting.
However, these conditions can not be directly evaluated, as they depend
on the (unknown) network parameters themselves. But instead, they can

BA

1

2

3

4 5 6

1

2 3 :

:

Fig. 2. (A) An example network with three perturbations (yellow squares), where nodes
4 and 5 are associated with non-identifiable parameters (grey). (B) Their identifiability
relationships are represented by the lattices of cyclic flats of rank r. Each cyclic flat
consists of the annotated elements in addition to elements from its preceding cyclic flats.
All parameters of a cyclic flat with rank r become identifiable if at least r independent flat
parameters are fixed.

be reformulated as intuitive maximum flow problems, if one disregards
singular conditions of self-cancelling perturbations.

The derivation and details are given in the Methods section but briefly,
to determine the identifiability of either the interaction strength from node
j to node i, or the sensitivity of node i to perturbation p, the following flow
network is considered: The original network is extended by (i) adding a
node for each perturbation that does not target node i and connecting
it to the respective perturbation’s target(s), (ii) adding a “source” node
that connects to all those perturbation nodes, and (iii) having all nodes
that target node i connect to an additional “sink” node, see Figure 1B.
Furthermore, all nodes (except source and sink) and all edges have a
flow capacity of one. To reveal identifiability, we need to determine the
network’s maximum flow from source to sink. This is a classic problem
in computer science, which we solve using the Edmonds-Karp algorithm
(Dinic, 1970; Edmonds and Karp, 1972) as implemented in the Networkx
package (Hagberg et al., 2008). Then, the interaction strength from node j
to node i is identifiable if and only if the removal of the edge from node j
to the sink node reduces the maximum flow, see Figure 1C. Similarly, node
i’s sensitivity to perturbation p is identifiable if and only if the maximum
flow does not increase after linking the source to an additional node that
is in turn connected to all targets of perturbation p, see Figure 1D.

Often, experimental settings do not allow determining all unknown
parameters (De Smet and Marchal, 2010; Gross et al., 2019). Nevertheless,
they constrain the solution space such that after fixing one or multiple
parameters, others become identifiable. We found that such identifiability
relationships can be described by matroids, which are combinatorial
structures that generalize the notion of linear dependence (see Methods).
This is demonstrated for an example perturbation experiment on the
network displayed in Figure 2A.

Each node is associated with a set of parameters amongst which
identifiability relationships can exist. Such a set contains those interaction
strengths, which quantify the edges that target the associated node, and that
node’s sensitivities to perturbations. Here, nodes 4 and 5 are associated
with sets of non-identifiable parameters. For example for node 5, these
are J56 and S53. We represent the matroid for such a parameter set as a
hierarchy (lattice) of cyclic flats, as show in Figure 2B. A cyclic flat is a
set of parameters with an associated rank r. It has the property that all of
its parameters become identifiable, if amongst them at least r independent
parameters are fixed. Parameters are independent if none of them becomes
identifiable after fixing the others. For node 5, parametersJ56 andS53 only
form a single cyclic flat with r = 1, and thus fixing either one parameter
makes the other identifiable. The identifiability relationships among the
six parameters associated with node 4 are more complex. For example,
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Fig. 3. (A) The same network topology as in Figure 2 was subjected to a set of perturbations that target each node individually. Shown are distributions of numbers of identifiable edges for
different experimental design strategies and an increasing number of perturbations. (B) All perturbation sequences associated with the single-target strategy and (C) one sequence associated
with the multi-target sequence.

J43 and S41 form a cyclic flat with r = 1 and thus fixing one, fixes the
other. Yet together with J45 and S43, they form a cyclic flat with r = 2,
thus fixing e.g. S41 and S43 will allow unique determination of J43 and
J45. In contrast, fixing J43 and S41 does not render any other parameter
identifiable because they are not independent. This illustrates how the
matroid description allows to generate effective models, i.e. models where
a minimum number of parameters has to be set to fixed values to allow
for a unique estimation of all other parameters. Importantly, the lattice
of cyclic flats can be derived without specifying unknown parameters by
solving a sequence of maximum flow problems (see Methods).

Collectively, our results provide a concise framework to algorithmically
determine identifiability of network parameters and to construct
identifiable effective networks when the experimental setting does not
suffice to uniquely determine the original network structure.

Experimental design

Next, we applied our identifiability analysis to optimize experimental
design, i.e. to minimize the number of perturbation experiments that is
required to uniquely determine a network’s interaction strengths. For this,
we designed the following strategies to determine an optimal sequence
from a set of available perturbations: The exhaustive strategy considers all
possible sequences and selects the best performing amongst them. As this
approach entails a prohibitive computational effort for larger networks, we
also designed approaches that select perturbation sequences in a step-wise
manner: The single-target strategy chooses next perturbations such that
they increases the number of identifiable edges most. The multi-target
strategy is similar to the single-target strategy except that it not only
considers a single but any combination of perturbations. In contrast, the
naive strategy does not use our identifiability analysis. Rather, it chooses

perturbations first that cause a response at the largest possible number of
nodes (see Methods for details).

We first scrutinised the proposed experimental design strategies on
the example network shown in Figure 2. We defined six different types
of perturbations, each of which targets a (different) single node, or any
combination of such for the multi-target strategy. Figure 3A shows how
the number of identifiable edges increases with the number of performed
perturbations for each strategy. A single strategy is associated with multiple
sequences, as described in Methods. Accordingly, Figure 3A shows the
performance distribution over all these sequences. In practice, we would
only select the best performing sequence amongst them. Nevertheless,
the depicted distributions are informative because for larger networks we
can no longer enumerate all but only a (random) subset of conforming
sequences, as described in Methods.

When comparing the methods, we found that each strategy’s average
performance is higher than the average performance of all possible
sequences.

Moreover, the “naive” strategy that did not use our framework mostly
required all six perturbations to fully identify all parameters, whereas the
single-target and exhaustive strategies only needed five, and the multi-
target strategy only four perturbations. Figures 3B and C display all
perturbation sequences associated with the single-target strategy, and
one sequence associated with the multi-target strategy respectively, and
illustrate which network edge becomes identifiable at which step in the
sequence.

To systematically analyse if and how our approach improves
experimental design, we benchmarked the different strategies on all 267
nontrivial human KEGG (Kanehisa et al., 2019) pathways, ranging from
5 to 120 nodes (see Supplementary Material S4 for details). Again,
we assumed that perturbations can target (all) single nodes. For each
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Fig. 4. Performance of different experimental design strategies on 267 human KEGG
pathways. (A) Identifiability AUC, defined as area under the number of identified nodes
vs. number of perturbation curve, see Eqn. 13, (B) For each network and strategy, the average
number of perturbations required for full identifiability is shown relative to the average
number required for a random strategy. (C) The fraction of required perturbations correlated
against the isolation score of a network (Eqn. 14), r : Spearman’s rank correlation. (D) The
fraction of multi-target perturbations with a specific number of targets to all multi-target
perturbations (experiments) in KEGG networks of the annotated size range.

network, we sampled 10 conforming sequences per strategy (as described
in Methods) and compared against the performance of 10 randomly
chosen sequences. As a performance measure of each sequence, we
considered the number of identifiable edges as a function of the number
of perturbations and computed a normalised area under the curve, as
defined in Equation 13. Figure 4A shows the result of this benchmark,
and confirms the trend already observed for the example in Figure
3A: Compared to choosing perturbations randomly, the naive strategy
improved identifiability. Performance was further increased when we
applied our single-target strategy, yet the multi-target strategy clearly
performed best. An exhaustive enumeration of all sequences is not feasible
for all KEGG networks. However, we found for a subset of small networks
that there is no performance difference between the exhaustive and the
single-target strategy, as shown in Supplementary Figure S5A.

Furthermore, we determined the number of perturbations that is
required for full network identifiability (shown in Supplementary Figure
S6) and computed the fraction between a given strategy and the random
sequences, see Figure 4B. We found that the average number of required
perturbations can be reduced to less than one third or even less than a
quarter, when using a single-target or multi-target strategy, respectively.
To verify that the performance of the multi-target strategy is not only
due to its much larger set of perturbation choices, we also measured the
performance of random sequences of perturbation combinations, shown in
Supplementary Figure S7. While such a multi-random strategy increases
the performance compared to the random strategy, it is still inferior to the
single- and multi-target approach.

We next investigated which network properties led to a performance
increase using our strategies. Intuitively, perturbations might be more
informative if their response propagates to large parts of the network. We
therefore hypothesised that a careful experimental design is particularly
beneficial when networks contain many isolated nodes with little
connection to the rest of the network because, in contrast to a random
choice, a good strategy could then avoid perturbing such non-informative
targets. On the contrary, the sequence of perturbations is irrelevant in the
extreme case of a fully connected network. To investigate this hypothesis
we defined a network’s isolation score as

1−
n∑

ij

πij

n (n− 1)
, with πij =

{
1, ∃ path i→ j

0, @ path i→ j
. (14)

Figure 4C shows that indeed the isolation score negatively correlates with
the previously defined fraction of perturbations required for full network
identifiability. Furthermore, we also observed a positive correlation
between isolation score and the difference in the identifiability AUC
between non-random and random strategies, as shown in Supplementary
Figure S5B. This suggests that indeed our experimental design strategies
increase their performance with increasing network isolation.

When response signals converge at a node, the individual contribution
from each incoming edge can not be distinguished. Thus, the advantage of
a multi-target perturbation to potentially track signal propagation through
larger parts of the network is counter-balanced if it leads to more convergent
signal propagation. This is prevented when the (combined) perturbations
target isolated parts of the network. Therefore the strongest correlation
in Figure 4C is found for the multi-target strategy because with higher
isolation score we can expect to find more such isolated subnetworks. And
indeed, Figure 4D shows that the multi-target strategy typically suggest
combinations of multiple single target perturbations, especially in larger
networks.

In summary, we have developed an algorithmic approach to determine
structural identifiability for a given network. This approach allows to derive
experimental design strategies that drastically reduce experimental effort
in perturbation studies. In particular, the multi-target strategy proved most
efficient. Potentially, this finding has practical relevance because in many
experimental contexts it easy to combine perturbations, e.g. by multiplexed
CRISPR knockouts (Minkenberg et al., 2017).

4 Discussion
We have shown analytically that the identifiability of parameters in linear
perturbation networks can be described as a simple maximum flow problem
(summarised in Figure 1). All that is required to perform this analysis is an
accurate specification of the (directed) network topology and the targets of
the perturbations. This includes the consideration of, e.g., robustness, or
perturbation off-target effects that are specific to the experimental setup and
that can influence the wiring of the network. A failure to do so might break
the non-cancellation assumption (discussed in Methods) and thereby lead
to flawed identifiability statements, as shown in Supplementary Material
S5.

Our intuitive description of identifiability not only explains how
to achieve fully identifiable effective network models (Figure 2), but
also enables us to optimize the design of perturbation experiments
(Figure 3). As a test case, we examined all human KEGG pathways
and found that our method typically allows to cut down the number
of perturbations required for full identifiability to one fourth compared
to choosing perturbation targets randomly (Figure 4). We provide a
python implementation of our results github.com/GrossTor/

IdentiFlow, which allows to determine identifiability, perform matroid
computations that display identifiability relationships between parameters,
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and optimize experimental design. The package relies on standard
maximum flow algorithms from the Networkx package (Hagberg et al.,
2008).

Technically, it would be possible to cope with non-identifiable
parameters numerically, as was done previously (Gardner et al., 2003;
Bonneau et al., 2006; Tegner et al., 2003; Dorel et al., 2018). Yet,
these procedures tend to be computationally expensive, might depend
on heuristic thresholds and are thus not guaranteed to work in general,
which makes them inadequate tools for experimental design. Even
more importantly, the benefit of the maximum flow perspective is that
identifiability can be intuitively understood in relation to the network
topology and the targets of the perturbations. This means that instead
of requiring numerical procedures on a case by case basis, our approach
uses intuitively understandable flow networks to link identifiability to the
network topology and perturbation set-up. This provides a comprehensive
overview on which edges become identifiable under which perturbations.
For one, this permits a straightforward optimisation of the experimental
design, as shown before. But even in a situation where the set of
perturbations is a priori fixed because of experimental constraints, our
approach concisely reveals which network topologies are in principle
amenable to a meaningful analysis. Thereby, it maps out the range of
answerable biological questions. For example for the toy network depicted
in Figure 1A, we could ask whether node 2 or node 4 activates node 3 more
strongly, which would be an important question if the activity of node 3 is
associated with a certain phenotype that we try to influence by inhibiting
either node 2 or node 4. Figure 1C showed that this is not answerable
because both edges are non-identifiable. However, the maximum flow
approach makes it obvious that the question could indeed be addressed if
there was another edge from node 1 to node 3 (as this creates an additional
edge from node 1 to the source node in the flow net in Figure 1B that
increases the maximum flow to two).

Our analysis describes the identifiability of parameters in a network
model whose steady state changes linearly with the magnitude of a
perturbation. But clearly, biological systems generally break linearity
assumptions in varying degrees, which bears asking how useful our
description is. In principle, we could expand the steady state function
Equation 3 to higher orders and attempt to also infer nonlinear
rate terms, which are products of different node and perturbation
magnitudes. However such products no longer have any meaningful
network interpretation, as they cannot be reasonably assigned to any edge.
Therefore we argue that the linearity assumption is essential to derive a
useful effective network description, if we choose to interpret the biological
systems in terms of ordinary differential equations. On the downside, the
biological meaning of interaction strengths becomes increasingly obscure
the more the system violates the linearity assumption (Prabakaran et al.,
2014). Even though our method could still correctly reveal which linear
network parameters are uniquely determined by the data, it is questionable
how useful this information is, if this value no longer holds a biological
meaning. In particular, this could diminish the benefit of a multi-target
experimental design strategy, as combined perturbations might push the
system into saturation. Hence, even though our maximum-flow approach
is independent of the actual measured response data, a strongly non-linear
behaviour of the underlying biological system can render it irrelevant. We
therefore need to carefully consider when a linear network model is an
adequate description.

Importantly, our approach described in this article solely addresses the
problem of structural identifiability. In contrast, problems with so-called
practical identifiability arise from insufficient quality of experimental
data (Raue et al., 2011). Thus, even when the structural identifiability
condition for a specific parameter holds, it does not necessarily mean
that its value can be reliably estimated. The maximum flow approach
can be used before experiments are conducted, and thus is agnostic

to information about noise that could potentially render a structurally
identifiable parameter practically non-identifiable. Similarly, it cannot
cope with missing measurements of a node’s steady state response, which
is a common challenge in novel single cell perturbation studies (Jaitin
et al., 2016; Datlinger et al., 2017). Yet, in these scenarios our approach
can provide an experimental strategy to construct a structurally identifiable
model. And subsequently, established methods can be used efficiently to
handle practical non-identifiability (Raue et al., 2009; Dorel et al., 2018).
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Sections S1 and S2 constitute an extended version
of the sections on identifiability and identifiability rela-
tionships in the Methods part of the main text. They in-
clude additional information and examples, and explicit
derivations that were abbreviated in the main text.

Section S4 provides additional details and data for
the optimization of experimental design in KEGG path-
ways.

S1 Identifiability
We want to consider a network of n interacting nodes
whose abundances or magnitudes, x, evolve in time ac-
cording to a set of (unknown) differential equations

ẋ = f(x,p). (1)

We assume that we can experimentally manipulate the
system with p different types of perturbations, each of
which is represented by one of the p entries of parameter
vector p. We shall only consider binary perturbations
that can either be fully switched on or off. To keep
notation simple and without loss of generality, we thus
define f(x,p), such that the k-th type of perturbation
changes parameter pk from its unperturbed state pk = 0
to a perturbed state pk = 1.

One of the main assumptions about the observed sys-
tem is that its temporal dynamics eventually relaxes
into different constant states depending on the per-
formed perturbation. These states are thought to rep-
resent stable fixed points, ϕ(p), of Equation 1, where
stability arises because the real parts of the eigenvalue
of the n×n Jacobian matrix, Jij(x,p) = ∂fi(x,p)/∂xj ,
evaluated at these fixed points, x = ϕ(p), are all
negative within the experimentally accessible perturba-
tion space (no bifurcation points). This implies that
J(ϕ(p),p) is invertible, for which case the implicit func-
tion theorem states that ϕ(p) is unique and continu-
ously differentiable, and

∂ϕk
∂pl

= −
[
J−1S

]
kl
, (2)

where n × p sensitivity matrix entry, Sij =
∂fi(x,p)/∂pj , quantifies the effect of the j-th perturba-
tion type on node i. Dropping functions’ arguments is

shorthand for the evaluation at the unperturbed state,
x = ϕ(0) and p = 0.

A linear response approximation
A perturbation experiment consists of q perturbations,
each of which involves a single or a combination of per-
turbation types, represented by binary vector p. These
vectors shall form the p×q design matrix P . After each
perturbation the system is allowed sufficient time until
the newly established steady states, ϕ(p), can be mea-
sured. Let their differences to the unperturbed steady
state form the columns of the n × q global response
matrix R. The central approximation is to assume that
perturbations are sufficiently mild, such that the steady
state function becomes nearly linear within the relevant
parameter domain,

ϕk(p)− ϕk(0) ≈
p∑

l=1

∂ϕk
∂pl

pl. (3)

Replacing the partial derivative with the help of Equa-
tion 2 and writing the equation for all q perturbations
yields

R ≈ −J−1S P. (4)
Note that this equation holds exactly and independent
of perturbation strength for a linear system

ẋ = Jx+ Sp,

which can be seen by considering its steady state

x0 = J−1S p.

The crux of Equation 4 is that it relates the known
experimental design matrix, P , and the measured global
responses, R, to quantities that we wish to infer, namely
the nodes’ interaction strengths, J , and their sensitiv-
ity to perturbations, S. Thus, as a next step we shall
rewrite the equation to disentangle the known and the
unknown entries.

A dynamic system defined by rates f̃(x,p) =
W f(x,p), with any full rank n × n matrix W , has
the same steady states but different Jacobian and sen-
sitivity matrices, namely W J and W S, as the original

1
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Figure S1: Three perturbations (yellow squares) are performed
on a toy network (A). Network topology and perturbation tar-
gets determine the index lists from Equation 5 and Equation 6.
Here they are depicted for i = 3 (B). A graphical representa-
tion of Equation 4 demonstrates the definition of various matrix
partitions (C and D).

system, defined by Equation 1. It is thus impossible to
uniquely infer J or S from observations of the global re-
sponse alone. However, some entries in matrices J and
S might be known a priori and thus further constrain
the problem. This is the case, when e.g. certain reac-
tions rates are known. Typically however, such values
are hard to come by. Rather, we assume prior knowl-
edge about the network topology. That is, we know
the zero entries in J as they correspond to non-existent
edges. Likewise, we assume to know the targets of the
different types of perturbations which imply zero entries
in S-rows corresponding to perturbations that that are
known to not directly affect the network node associ-
ated with that row. In line with prior studies, we fix
the diagonal of the Jacobian matrix

Jii = −1.

Thus, for the i-th row of J we can define index lists µ̄i
and µ̂i, with

|µ̄i|+ |µ̂i| = n, (5)
identifying its known and unknown entries. The first
correspond to missing edges or the self loop and the
second to edges going into node i. Analogously, for the
i-th row of S we define index lists ν̄i and ν̂i, with

|ν̄i|+ |ν̂i| = p, (6)

to report its unknown and known entries. These de-
scribe the perturbations that do not target or respec-
tively target node i, see Figure S1B.

To see whether prior knowledge about J and S entries
could render other entries determinable, we first rewrite
Equation 4 as n linear equation systems

RT ji = −PTsi, i = 1, 2, . . .n, (7)

one for each column in JT and ST , denoted as ji and si.
Then, we collect the known and unknown ji-entries into

vectors j̄i and ĵi following the indexing by µ̄i and µ̂i.
In the same manner, si is split into the known vector
s̄i and unknown vector ŝi according to ν̄i and ν̂i. To
rewrite Equation 7 as a linear system of the unknown
variables, we first partition its terms into known and
unknown parts

RT ji = R̄i j̄i + R̂i ĵi and PTsi = P̄i s̄i + P̂i ŝi,

where q×|µ̄i| matrix R̄i and q×|µ̂i| matrix R̂i consist
of those columns of RT that are selected by µ̄i and µ̂i,
respectively. Analogously, q×|ν̄i| matrix P̄i and q×|ν̂i|
matrix P̂i are formed from the columns of PT selected
by ν̄i and ν̂i, respectively. These vector and matrix
partitions are illustrated in Figure S1C. Introducing
abbreviations

xi =
[
ĵi
ŝi

]
and ki =

[
R̄i P̄i

] [j̄i
s̄i

]
,

an equivalent reformulation of Equation 7 reads
[
R̂i P̂i

]
xi = −ki, i = 1, 2, . . .n. (8)

The point of such algebraic acrobatics is that Equation 8
represents systems of linear equations, each in the

ui = |µ̂i|+ |ν̂i|

unknown parameters xi, compared to Equation 7 in
which the solution vector comprised unknown and
known components. It thus allows to study the iden-
tifiability of xi.

Identifiability conditions
Clearly, Equation 8 is underdetermined if

di = ui − rank(
[
R̂i P̂i

]
) > 0.

To analyse this solution space dimensionality, let n×|µ̂i|
matrix Ĵ−1

i consist of the columns of
(
J−1)T that are

selected by µi. Similarly, |ν̄i| × n matrix S̄i and ν̂i × n
matrix Ŝi shall be formed by taking rows of ST accord-
ing to indices in ν̄i and ν̂i, as shown in Figure S1D.
Also, we have Ii denote the i-dimensional identity ma-
trix and 0i,j the i× j zero-matrix. We use these defini-
tions and Equation 4 to write

R̂i = −PTST Ĵ−1
i and PTST =

[
P̂i P̄i

] [Ŝi
S̄i

]
,

and arrive at
[
R̂i P̂i

]
= −

[
P̂i P̄i

]
Ψi, with (9)

Ψi =
[
ŜiĴ

−1
i I|ν̂i|

S̄iĴ
−1
i 0|ν̄i|,|ν̂i|

]
. (10)

Note that
[
P̂i P̄i

]
is nothing but a rearrangement of

the columns of PT and therefore

rank(
[
P̂i P̄i

]
) = rank(P ) = p.
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Claiming P to have rank p assumes that throughout
the experiment every type of perturbation was applied
in a non-trivial combination. This is not a limiting con-
straint as it is for example satisfied for a perturbation
scheme in which each type of perturbation is applied
once individually, which is the case for the examples
discussed here.

From
[
P̂i P̄i

]
having full (column) rank follows that

rank([R̂i P̂i]) = rank (Ψi)
= rank([ŜiĴ−1

i I|ν̂i|]) + rank([S̄iĴ−1
i 0|ν̄i|,|ν̂i|])

= |ν̂i|+ rank
(
S̄iĴ

−1
i

)
,

so that the solution subspace has dimensionality

di = |µ̂i| − rank
(
S̄iĴ

−1
i

)
. (11)

From the dimensionality of matrix product S̄iĴ−1
i we

can conclude that di ≥ max(0, n−|µ̄i|− |ν̄i|). Thus, to
fully determine xi we need to provide at least as many
elements of prior knowledge as there are nodes in the
network, which agrees with our earlier observation that
we can transform the rate equations with an arbitrary
n× n matrix without altering the steady states.

If indeed di > 0, there is a ui × di matrix Vi whose
columns form a basis of the kernel of

[
R̂i P̂i

]
, so that,

given x̃i, a specific solution to Equation 8, any

xi = Viw + x̃i, ∀w ∈ Rdi (12)

is also a solution of Equation 8. But even though the
equation system is then underdetermined, not all net-
work parameters are necessarily unidentifiable. Rather,

[xi]j identifiable ⇐⇒ eTj Vi = 0

⇐⇒ ∃w ∈ Rq :
[
R̂i P̂i

]T
w = ej ,

(13)

where ej is the j-th standard basis vector of according
length. We shall use Equation 9 to reformulate this
identifiability condition. To this end, recall the earlier
assertion about the full (column) rank of

[
P̂i P̄i

]
, from

which follows that

∀ w̃ ∈ Rp, ∃w ∈ Rq : w̃T = wT
[
P̂i P̄i

]
,

so that we can write

[xi]j identifiable ⇐⇒ ∃ w̃ ∈ Rp : w̃T Ψi = eTj .

Next, let w̃1 and w̄2 consist of the first |ν̂i| and the
last |ν̄i| components of w̃, such that w̃T = [w̃T

1 w̃T
2 ].

Accordingly, standard base vector ej is split into its first
|µ̂i| and last |ν̂i| components, eTj = [fTj gTj ]. This
allows to rewrite the previous equation as

w̃1 = gj , and

w̃T
2

(
S̄iĴ

−1
i

)
= fTj − gTj

(
ŜiĴ

−1
i

)
.

Recall that [xi]j denotes unknown interaction strengths
for j ≤ |ν̂i| ⇐⇒ gj = 0 and thus

[ĵi]j identifiable ⇐⇒ rank
([
S̄iĴ

−1
i

fTj

])
= rank(S̄iĴ−1

i )

⇐⇒ 1 + rank(S̄iĴ−1
i\j ) = rank(S̄iĴ−1

i ), (14)

where Ĵ−1
i\j is matrix Ĵ−1

i with the j-th column re-
moved. For the unknown sensitivity coefficients, where
j > |ν̂i| ⇐⇒ fj = 0, we find the identifiability condi-
tions

[ŝi]j identifiable

⇐⇒ rank
([

S̄i
Ŝji

]
Ĵ−1
i

)
= rank(S̄iĴ−1

i ), (15)

where Ŝji denotes the j-th row of matrix Ŝi.

Structural identifiability
The identifiability conditions in equations 14 and 15 re-
late the identifiability of the unknown parameters to a
discussion of the rank of matrix product S̄iĴ−1

i . The
product however depends on the unknown parameters
themselves, so that its rank cannot be directly com-
puted. Here we show that a reasonable assumption
make this possible nevertheless and allows to express
the identifiability conditions as a very intuitive maxi-
mum flow problem.

First, we rewrite the identity J−1J = In as

[J−1]kl =
∑

m6=l
[J−1]km [J ]ml − δkl,

with δkl being the Kronecker delta (recall that Jll =
−1). We can view this equation as a recurrence relation
and repeatedly replace the [J−1]km terms in the sum.
The sum contains non-vanishing terms for each edge
that leaves node l. Therefore, each replacement leads
to the next downstream node, so that eventually one
arrives at

[J−1]kl = l�k [J−1]kk, with

l�k =
∑

ω ∈Ωl→k

|ω|−1∏

m=1
[J ]ωm+1 ωm ,

where the set Ωl→k contains elements, ω, for every path
from node l to node k, each of which lists the nodes
along that path. Strictly speaking, these elements are
walks rather than paths because some nodes will ap-
pear multiple times if loops exist between l and k. With
loops, Ωl→k even contains an infinite number of walks
of unbounded lengths. But as the real part of all eigen-
values of J are assumed negative, the associated prod-
ucts of interaction strengths will eventually converge to
zero with increasing walk length. Here however, we can
safely ignore these subtleties.
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Figure S2: A maximum flow problem determines the identifiability of interaction strengths and perturbation sensitivities when
reconstructing a network from perturbation data. Here, this is illustrated for the toy model from Figure S1A. To inquire about the
identifiability of either edges going into node 3, or the sensitivity of node 3 to perturbations, we construct a flow network (A) with
unit edge and node capacities, as described in the text. We highlight in red a path carrying the maximal flow of one. While this
max-flow path is not unique, no other combination of paths could yield a larger flow. The interaction strength between a given node
and node 3 is identifiable if and only if the maximum flow is reduced after removing that node’s edge to the sink node (B). Yet here,
we can always find alternative max-flow paths that re-establish a unit-flow after removal of the according edges. Thus the respective
edges are non-identifiable. Similarly, the sensitivity of node 3 to perturbation 3 is identifiable if and only if a specific extension of the
flow network (C) does not increase the maximum flow. But here the maximum flow is indeed increased by one, which again reveals
non-identifiability. Such flow representations also provide an intuitive understanding on how alterations in the network or perturbation
setting affect identifiability. For example, it is obvious that if the toy model would not contain an edge from node 3 to 4, the edge
from 2 to 3 would become identifiable.

To simplify our notation, we want to expand the
network by considering perturbations ν̄i as additional
nodes, each with edges that are directed towards that
perturbation’s targets. Furthermore, letting the inter-
action strength associated with these new edges be given
by the appropriate entries in S we can rewrite the ma-
trix product

[
S̄iĴ

−1
i

]
kl

= ν̄ik� µ̂il [J−1]µ̂il µ̂il

where µ̂il and ν̄il denote the l-th entry in µ̂i and ν̄i,
respectively. As every finite-dimensional matrix has a
rank decomposition, we can further write

S̄iĴ
−1
i = Υi Yi, (16)

where |ν̄i|× rank(S̄iĴ−1
i ) matrix Υi and rank(S̄iĴ−1

i )×
|µ̂i| matrix Yi have full rank. Finding such a decompo-
sition therefore reveals the rank of S̄iĴ−1

i . To this end,
we propose

[Υi]kn = ν̄ik�yin, and [Yi]nl = yin� µ̂il [J−1]µ̂il µ̂il
,

where yin denotes the n-th component of a certain node
set yi. In order for Equation 16 to hold, it must be pos-
sible to split each path from any perturbation ν̄il to any
node µ̂il into a section that leads from the perturbation
to a node in yi and a subsequent section that leads from
this node to µ̂il. For an extended graph that includes
an additional source node, with outgoing edges to each
perturbation in ν̄i, and an additional sink node, with
incoming edges from all nodes in µ̂i (see Figure S2A), yi
thus constitutes a vertex cut whose removal disconnects
the graph and separates the source and the sink node
into distinct connected components. Next, we want to
show that if yi is a minimum vertex cut, the rank of
S̄iĴ

−1
i equals the size of yi. Because Equation 16 is a

rank decomposition this is equivalent to showing that
the according matrices Υi and Yi have full rank. To do
so we apply Menger’s theorem [11], which states that
the minimal size of yi equals the maximum number of
vertex-disjoint paths from the source to the sink node.
This also implies that each of these vertex-disjoint paths

goes through a different node of the vertex cut yi. Re-
call that entries in Υi constitute sums over paths from
perturbation to vertex cut nodes, so that we could write

Υi = Ῡi + Υ̂i,

where Ῡi only contains the vertex-disjoint paths and
Υ̂i the sums over the remaining paths. As each of these
vertex disjoint paths ends in a different vertex cut node,
any column in Ῡi can contain no more than a single non-
zero entry. Furthermore, as a consequence of Menger’s
theorem there are exactly |yi| non-zero columns. Be-
cause these paths are indeed vertex disjoint also no row
in Ῡi has more than a single non-zero entry. Thus,
the non-zero columns are independent, showing that
Ῡi has full rank. We further assume that adding Υ̂i

does not reduce rank, which also gives Υi full rank.
In the context of biological networks there are two dif-
ferent scenarios that could lead to a violation of this
non-cancellation assumption. The first is that network
parameters are perfectly tuned to lie inside a specific
algebraic variety (a manifold in parameter space) such
that certain columns (or rows) of Υi become linearly
dependent or zero. This would for example be the case
if, for a given vertex disjoint path, there also is an al-
ternative path whose associated product of interaction
strengths has the same magnitude as that of the vertex
disjoint path but opposite sign, making their sum van-
ish. However, we consider it implausible for biological
networks to be fine-tuned to such a degree that they
could achieve such perfect self-compensation of pertur-
bations, and rule out this possibility. A more realis-
tic scenario is that network parameters are zero and
thereby lead to zero columns or rows in Υi or Yi, which
make these matrices rank deficient. In practice, such
zero-parameters can occur, for example, if a perturba-
tion is not effective on (one of) its target(s), or if robust-
ness effects [7] obstruct the propagation of the perturba-
tion signal at a certain link. But essentially, this means
that our prior knowledge about the network included
practically non-existing links or perturbation targets.
If the network topology and perturbation targets are
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correctly stated and take these effects into considera-
tion, there will be no zero-parameters and therefore the
non-cancellation assumption holds. We explore the con-
sequences of incomplete or flawed prior knowledge in
section S5.

Having shown Υi to be of full rank, the same line of
reasoning will demonstrate a full rank for matrix Yi as
well, which implies that indeed

rank(S̄iĴ−1
i ) = |yi|, (17)

where yi is a minimum vertex cut between source and
sink node. This equation has the crucial benefit that
|yi| does not depend on any unknown parameters and
can be computed as the maximum flow from source to
sink node with all nodes having unit capacity [1], as
detailed in Figure S2B. A flow is defined as a mapping
from a network edge to a positive real number that is
smaller than the edge’s capacity. Additionally, the sum
of flows entering a node must equal the sum of the flows
exiting a node, except for the source and the sink nodes.
The maximum flow problem is to attribute (permissi-
ble) flow values to all edges, such that the sum of flows
leaving the source (which is equal to the sum of flows
entering the sink) is maximal. In our case however, we
did not define edge but node capacities, meaning that
the sum of flows passing through any node must not ex-
ceed one. Yet, we can express such unit node capacities
as unit edge capacities in an extended flow network. It
is defined by replacing every node by an in- and an out-
node, where all incoming edges target the in-node, all
outgoing edges start from the out-node, and the in-node
has an edge to the out-node.

This maximum flow problem allows to express the
algebraic identifiability conditions 14 and 15 in terms
of network properties, providing an intuitive relation-
ship between network topology, perturbation targets
and identifiability. Specifically, Jiµ̂ij is identifiable if
and only if the removal of the edge from node µ̂ij to the
sink node reduces the maximum flow of the network,
see Figure S2C, and Siν̂ij

is identifiable if the maximum
flow does not increase when an additional edges con-
nects the source node with perturbation node ν̂ij , see
Figure S2D. In section S5, we simulate a perturbation
experiment to numerically verify these findings.

S2 Identifiability relationships
Network inference typically is an underdetermined
problem for which the number of measurements falls
short on the number of unknown interaction terms [4, 9],
resulting in many non-identifiable parameters. To
tackle this problem, we could construct identifiable
models by fixing certain parameters to some constant
values. Clearly, the remaining, inferred parameter val-
ues will then disagree with those that would have been
obtained from a fully-determining experiment. Never-
theless, such effective models are useful as they allow for

meaningful comparisons of the inferred parameters be-
tween perturbation experiments on similar systems, e.g.
when studying the same signalling pathway in different
cell lines [3]. To derive such a determined system re-
quires to study the relationship between non-identifiable
parameters in the sense that we ask which parameters
need to be fixed in order to render which other parame-
ters identifiable. Even though the dimensionality of the
solution space, di, is known, this question is not triv-
ial, because even groups with di or fewer parameters
might already be linearly dependent and fixing them
will therefore not effectively reduce the degrees of free-
dom of the equation system.

Take as example a case where the first two rows of ker-
nel matrix Vi from Equation 12, are linearly dependent,
that is αV 1

i = V 2
i . Then [xi]1 and [xi]2 are linearly

dependent as well, [xi]2 = V 2
i v = αV 1

i v = α [xi]1,
which implies that [xi]2 becomes identifiable if [xi]1 is
known, and vice versa, even if di > 1 (x̃i was dropped to
simplify notation). Moreover, prior knowledge on both
[xi]1 and [xi]2 would overdetermine this linear subsys-
tem and not further reduce the degrees of freedom for
the remaining unknown parameters. Examining such
parameter dependencies is a direct generalization of the
original identifiability condition in Equation 13. There,
identifiability of an unknown parameter relied on a Vi-
row being zero, that is, on a one-row submatrix being
rank deficient. Now, we inspect not only single but
groups of Vi-rows for rank deficiency. But which groups
of rows should we consider to achieve an effective de-
scription of dependency? To answer this question let us
first generalize the previous example.

We were asking if the j-th xi component becomes
identifiable if a set of other xi components is known.
With I denoting the set of indices of these other com-
ponents, let us recall Equation 12 and name their ho-
mogenous parts

x̂Ii = V j
i v and x̄Ii = V Ii v,

where V j
i is the j-th row of Vi, and V Ii the matrix that

gathers all Vi rows with indices in I. We can then put
down a formal identifiability statement

∃ I ⊆ {1, . . . ,ui} \ j, ∃ w ∈ R|I| : V j
i = wT V Ii

⇐⇒ x̂Ii = wT V Ii v = wT x̄Ii .
(18)

In other words, if the j-th Vi-row lies within the row-
space of the set of Vi-rows with indices I, the j-th un-
known parameter can be expressed as a linear combina-
tion of the set of parameters with indices I. This means
that knowledge of the set of parameters with indices I
then implies identifiability of the j-th parameter. How-
ever, this statement does not imply the uniqueness of
I. On the contrary, if the j-th Vi-row lies within the
I-associated rowspace, it will also do so if additional Vi
rows are added to the set. Similarly, there could be a
linearly dependent subset of Vi-rows that all lie within
the I associated row-space. This would allow for multi-
ple row-combinations to span the I-associated rowspace
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and thus implicate the identifiability statement. Both
cases show, that various combinations of additionally
fixed parameters can imply the identifiability of a cer-
tain other parameter.

A comprehensive description of this combinatorial
space arises from a mathematical structure that has
been termed matroid [16]. Matroids are a general-
ized description of linear independence in vector spaces.
Here we are concerned with representable matroids,
which are those that specify linear (in-)dependence of
any combination of columns of a matrix. Amongst their
various equivalent definitions, the one that relates di-
rectly to our problem is the definition in terms of cyclic
flats (also called circuit closures) and their ranks [13].
To specify these we need to define a few terms. First,
let E be the ground set of matroid M, that is, the set
of indices enumerating the columns of the associated
matrix. Furthermore, define a circuit as a dependent
set (of columns) whose proper subsets are all indepen-
dent. The set of circuits can be enumerated with an
incremental polynomial-time algorithm [2]. Finally, we
define a flat as a subset of E , with the associated sub-
matrix having rank r, such the addition of any other
element to the set would increase the rank. With this
we can define Cr, a cyclic flat of rank r, as a flat that is
the union of a set of circuits with rank r. We show in
the next section how to obtain cyclic flats from circuits
and vice versa.

Let us now consider Mi, the matroid whose ground-
set εi covers the ui columns of (Vi)T . Each element in εi
is thus associated with an unknown parameter. The key
inside is thatMi’s set of circuits fully characterizes the
identifiability relationships between the non-identifiable
parameters. This is because the circuit dependency im-
plies that any parameter represented by a given circuit
element is identifiable when the remaining circuit ele-
ments are known. Additionally, this set of remaining
parameters is guaranteed to be minimal because they
are linearly independent. The enumeration of the cir-
cuits with the aforementioned algorithm requires a de-
pendence oracle that indicates whether a column subset
is dependent or not. For this, we first consider another
matroid M′i, which is associated with the ui columns
of Ψi, as defined in Equation 10. Because Vi spans the
kernel of matrix Ψi,M′i is dual toMi [16]. This impli-
cates that the rank of the (Vi)T column-subset I relates
to that of the complementary columns Ĩ = εi \ I of Ψi

as follows

rankMi
(I) = rankM′

i
(Ĩ) + |I| − (ui − di).

To investigate the dual rank, we note that we can estab-
lish the column subset of Ψi by a right multiplication
with the ui × |Ĩ| matrix P, which is an identity matrix
where columns that correspond to missing indices in Ĩ
are removed. Furthermore, we subdivide elements in Ĩ
into sets Ĩ1 and Ĩ2 based on whether they are less than
or equal to |µ̂i| or not, which allows to define matrices

BA

1

2

3

4 5 6

1

2 3 :

:

Figure S3: In this toy network (A), nodes 4 and 5 are asso-
ciated with non-identifiable parameters. These can take values
from certain linear sub-spaces whose hierarchy is represented by
the lattices of cyclic flats of rank r (B). Each cyclic flat consists of
the annotated elements in addition to elements from its preceding
cyclic flats. To achieve identifiability requires to set certain pa-
rameters to a constant value. A preference to which parameters
this should be is represented here as a ranked list (arrow indi-
cates direction of increasing preference). The matroid formalism
identifies the smallest and most preferred set of parameters that,
when set to a constant value, render the network model fully
identifiable. Here these are marked by red stars.

P1 and P2 by the partitioning

P =
[ P1 0|µ̂i|,|Ĩ2|
0|ν̂i|,|Ĩ1| P2

]
. (19)

Then,

rankM′
i
(Ĩ) = rank(Ψi P)

= rank
([

ŜiĴ
−1
i P1 P2

S̄iĴ
−1
i P1 0|ν̄i|,|Ĩ2|

])

= |Ĩ2|+ rank
([
P̃T2 Ŝi
S̄i

]
Ĵ−1
i P1

)
, (20)

where P̃2 is the identity matrix without the columns
that appear in P2. Left-multiplication by P̃T2 thus se-
lects rows that correspond to missing indices in Ĩ2. The
crucial point of this calculation is that we arrived at
a matrix product that has the same form as the one
discussed in the previous section. Therefore, the dual
rank can be evaluated independently of the unknown
entries in J and S because the last term in the previous
equation equals to the maximum flow through the as-
sociated network, with connections from the source and
to the sink nodes that are chosen according to Ĩ, as
shown. This allows to construct the oracle and identify
the set of circuits. Therefore the identifiability relation-
ships between unknown parameters can be inferred from
information about network topology and perturbation
targets alone.

Instead of listing the set of circuits, we propose cyclic
flats as an equivalent but more concise representation of
the identifiability relationships. They form a geometric
lattice when ordered by inclusion (a cyclic flat precedes
another if it is its proper subset) and can thus be graph-
ically represented as a compact hierarchical structure.
We demonstrate this for the example network shown in
Figure S3. The depicted lattice makes the identifiability
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relationships evident. All elements of a cyclic flat with
rank r become identifiable if at least r independent flat
elements are fixed. A set of elements is independent if
fixing any combination if its elements does not render
any of its other element identifiable. Let us clarify this
at an example where we are interested in determining
the parameters that need to be fixed in order to make
J43 identifiable. Following the previous rules, Figure S3
reveals that this could be achieved by fixing either S41
alone, or the parameter pairs J45 ∪ S43 or J41 ∪ S42. In
the latter two cases S53 would become identifiable as
well.

When the goal is to achieve a fully identifiable net-
work model, as discussed before, there typically are
preferences as to which non-identifiable parameters
should be fixed. For example, if there is noisy ex-
ternal data on parameter values we would rather fix
those parameters values in which we have high confi-
dence. Or, if we are to construct the aforementioned
effective signalling models for the comparison of differ-
ent cell lines, we would want to fix those parameters,
which we expect to be equal between different cell lines
and infer those parameters for which cell line differ-
ences are expected [3]. Thus, in these scenarios fixing of
each parameter is associated with a certain preference
(weight) and our goal is to find a minimum number of
parameters that need to be fixed such that their sum of
weights is maximal. In fact, matroids owe their striking
appearance in combinatorial optimization because this
problem is solvable with the Greedy Algorithm [12, 8]:
Amongst the set of non-identifiable parameters in εi,
sequentially select the parameters with highest weight,
that have not yet become identifiable from fixing the
so-far selected set. Thus, instead of providing numer-
ical weights for unknown parameters it is sufficient to
rank them. We depict examples of such ordered lists
in Figure S3 and show the resulting fully identifiable
maximum-weight-model.

Circuits and circuit closures
As both, the set of circuits and the circuit closures
combined with their ranks, are an equivalent definition
of a matroid they imply each other. Recall that circuits
that contain a given network parameter describe the
minimal sets of network parameters that need to be
fixed to render that parameter identifiable. The flat of
closures conveniently display these circuits as follows.
By definition, any circuit is a r + 1-element subset, S,
of some cyclic flat Cr with rank r. Thus, to obtain all
circuits containing a certain parameter, consider all
such subsets of cyclic flats that include this parameter.
Yet S is only a circuit if none of its subsets S ⊂ S
is dependent, in which case there is another circuit
C ⊆ S. Since the lattice of cyclic flats is ordered by
inclusion, C is a subset of a cyclic flat that precedes Cr
in the lattice. Therefore, S is only a circuit if no cyclic
flat preceding to Cr contains a circuit that is a proper

subset of S.

We mentioned that circuits can be enumerated in in-
cremental polynomial-time [2]. In a next step, we gen-
erated circuit closures from the set of circuits. To this
end, we first order circuits by size and iterate through
that list. For each circuit of a given rank we identify
circuits of up to its size whose intersection is equal or
larger to its rank. Their union forms a circuit clo-
sure. Next, one continues the circuit iteration while
skipping circuits that have already been assigned to a
circuit closure. Eventually, this generates the entire en-
semble of circuit closures. Find an implementation in
the function circuits2cyclic flats which is part of
the identifiability module of the IdentiFlow pack-
age available at github.com/GrossTor/IdentiFlow.

S3 Experimental Design
Next, we describe the algorithmic implementation of the
experimental design strategies.

Depth-first search in strategy graph
The power set of the set of perturbations ordered by in-
clusion forms a directed graph (more formally a graded
poset), where ancestors are proper subsets with one less
element (e.g. {P1, P2}, {P1, P3}, and {P2, P3} are
all ancestors of {P1, P2, P3}). Any perturbation se-
quences can thus be represented as a path on this graph,
starting from the empty subset. Different experimen-
tal design strategies remove different subsets of edges,
which yields what we want to call the strategy graph.
Therefore strategies are associated with different sub-
sets of (or even just single) sequences. To enumerate
all strategy-associated perturbation sequences, we im-
plemented a recursive depth-first search on the strategy
graph:

1: procedure dfs({S})
2: S+ ← next perts({S})
3: for {S} ∈ S+ do
4: fully identifiable ← max flow({S})
5: if not fully identifiable then
6: dfs({S})
7: else
8: save S
9: end if

10: end for
11: end procedure
Here, S denotes a perturbation sequence and {S} the
set of perturbations in the sequence. To enumerate
perturbation sequences, the DFS procedure is called
with the empty set. It then parses the strategy graph
and adds perturbations to the sequence sequentially.
The strategy graph is built up dynamically in line 2
by the NEXT PERTS({S}) function, as it returns S+,
the set of descendants of {S}. We will define it for the
different strategies further below. Every descendant
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(line 3) will instantiate a new instance of the DFS
procedure (line 6), which will in turn continue parsing
the graph, unless the descendent is either the maximal
perturbation set, or a set of perturbations that fully
determines the network. In this case, additional per-
turbations provide no additional network information,
so that the search can be aborted and a strategy-
associated sequence is found (and therefore saved in
line 8). To query for network identifiability (line 4),
we employ the maximum flow approach described in
the previous sections. Note that, to enumerate all
sequences the depth-first search does not terminate
when it reaches a perturbation set that has previously
been encountered. To avoid redundant computational
effort, the calls to NEXT PERT and MAX FLOW are
stored (Memoization). Strictly speaking, this violates
the definition of a depth-first search. Nonetheless, we
want to keep the terminology due to our procedure’s
apparent analogy.

Let {S̄} denote the set of all perturbations that are
not in {S}, and let Ŝ denote all proper supersets of {S}
with size |{S}| + 1. That is, Ŝ contains all perturba-
tion sets that we can obtain by adding one element from
{S̄} to {S}. As mentioned before, NEXT PERT({S})
returns a strategy-dependent subset of Ŝ. For the ex-
haustive strategy a call to NEXT PERT({S}) simply
returns Ŝ itself. Therefore, in this case the strat-
egy graph coincides with the original power set inclu-
sion graph and DFS({∅}) will store all perturbation
sequences. The random strategy works similarly ex-
cept that only a single perturbation set is chosen ran-
domly from Ŝ. Thereby, DFS({∅}) will return a sin-
gle random perturbation sequence. The naive strat-
egy considers the perturbed nodes for each perturbation
and computes the number of network nodes to which
these are connected to by a path. It then selects the
perturbations in {S̄} that maximize this number and
NEXT PERT({S}) returns the according subset from
Ŝ. In contrast, the single-target strategy selects the
next perturbation candidates based on whether they
efficiently reduce the degrees of freedom of the net-
work. More specifically, the maximum-flow approach
is applied (and memoized) for every perturbation set
in Ŝ. Amongst them, NEXT PERT({S}) returns those
that first maximize the number of identifiable interac-
tion strengths and second minimize the sum of solution
space dimensionalities,

∑
di, as defined in Equation 11.

Finally, the multi-target strategy is equivalent to the
single-target strategy, except that it expands the set
of possible perturbations by allowing for any combina-
tion of perturbations. For example, if originally there
is a perturbation targeting each single node of the net-
work, the multi-target approach would allow to pool
perturbations such that there are single perturbations
to target any set of nodes. Clearly, considering the en-
tire power set of perturbation combinations makes such
an approach feasible only for less than ten (original)

perturbations (see a discussion on computational com-
plexity further below). Therefore, we also also imple-
mented a more efficient, hierarchical multi-target strat-
egy, which was also the one applied in the analysis of
the KEGG pathways (see next section and main text).
Here, the considered set of perturbation combinations is
built-up in a step-wise manner. First, we only consider
single and pair perturbations (of elements in {S}). Out
of these, we perform a selection as in the single-target
strategy. If a pair perturbation was within the selection,
we also consider all combinations of three perturbations
for the selection procedure. This continues until no per-
turbation combination of largest size is in the selection
or the entire power set of {S} is considered.

Analogous to the random strategy that makes a ran-
dom choice amongst the candidate perturbations of
the exhaustive strategy, we implemented the option to
randomly pick a single perturbation set amongst the
possible candidates also for the naive, the single- and
multi-target strategies. Thus, a run of DFS({∅}) will
then select a single perturbation sequence. Repeated
calls to DFS({∅}) will thus generate random samples
amongst the set of perturbation sequences that are as-
sociated with the chosen strategy. This sampling pro-
cedure becomes essential if the number of perturbations
and strategy associated sequences becomes too large
to make a complete depth-first search computationally
tractable. Let us thus briefly characterize the computa-
tion complexity of the experimental design strategies.

Computational complexity of experimen-
tal design strategies
The computational complexity of the depth-first search
is dominated by the calls to the MAX FLOW routine.
We therefore want to count how many times it gets
called by different strategies. As the parsing of the
strategy graph stops whenever a fully determining per-
turbation set is reached, this number is not just a func-
tion of network size (n) and number of perturbations
(p), but will crucially depend on the specific network
topology and perturbation targets. To still provide
a rough estimate for an upper complexity bound, we
will disregard such early stopping. Due to memoiza-
tion, MAX FLOW will not be called repeatedly if a cer-
tain perturbation set is revisited during the depth-first
search. Thus, its number of calls equals to the number
of different perturbation sets that were parsed during
the depth-first search. For the exhaustive strategy this
will be all 2p nodes. For all other strategies besides the
random strategy, this number will again be highly sensi-
tive to the specific perturbation network so that we can-
not make any general statements. Thus, we want to con-
sider the case where we randomly sample a single strat-
egy associated sequence, as described before. Then the
naive and random strategies will parse p perturbation
sets (where for each perturbation set the naive strat-
egy has the additional overhead of computing the most
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Figure S4: Computational running times to compute pertur-
bation sequences on KEGG pathways with different experimen-
tal design strategies. Lines go through mean wall times over all
KEGG pathways of the same size in the upper graph and all
KEGG pathways that require the same number of perturbations
for full identifiability in the lower graph.

upstream perturbations as described above). For every
perturbation set {S} that is parsed by the single-target
strategy, NEXT PERT({S}) will call MAX FLOW for
every descendant of {S} in the strategy graph. Due
to memoization, this yields

∑p
i (p − i) ∝ p2 calls. The

number of MAX FLOW calls used by the (hierarchical)
multi-target strategy is again highly dependent on the
specific perturbation network. But at least, this strat-
egy will additionally consider all pair perturbations and
thus yield more than

∑p
i (p + p (p−1)/2− i) ∝ p3 calls.

Finally, we also require an estimate for the complexity
of MAX FLOW({S}). Also here, the flow network as
defined in previous sections varies with network topol-
ogy and perturbation targets and so does the computa-
tional effort to compute maximum flow. We will thus
make some estimations based on the assumption that
biological networks are rather sparse, with a number
of edges that is roughly proportional to the number of
nodes and that perturbations tend to be specific to a few
nodes. Thus for the unit edge capacity flow network (re-
call the definition in the Methods of the main text), we
assume for the number of edges, E ≈ n + n + p +O(1)
(≈ edges in original network + edges between in- and
out-nodes + source edges + sink edges). Due to the con-

version in in- and out-nodes, a flow network hasN = 2 n
nodes. As noted in the main text, algorithms are known
to find maximal flows in unit capacity networks with
O(min(N2/3E, E3/2) computations [1]. However, in
the IdentiFlow package, we implemented the well es-
tablished Edmonds-Karp algorithm which has a com-
plexity of O(N E2). To determine the identifiability
of the entire networks requires to solve n maximum-
flow problems. Thus, we can estimate the computa-
tional complexity of a call to MAX FLOW({S}) with
O(n4 + n2p2). Overall, this gives the following upper
bounds for the complexity of the experimental design
computations

strategy complexity
random / naive O(n4p + n2p3)

single-target O(n4p2 + n2p4)
multi-target O(n4p3 + n2p5)
exhaustive O(n42p)

In practice, the computational effort is often much
lower than these theoretical bounds suggest. To this
end, we measured computational running times that
were needed to determine the experimental designs for
a collection of KEGG pathways (for more details see
next section). Figure S4 shows the according wall times,
where each perturbation sequence was computed on a
single core with 2.3 Ghz. Note that network size and
the number of perturbations that is required for full
identifiability are not independent of each other (see
Figure S6).

S4 Perturbation experiments for
KEGG pathways

KEGG data [10] was retrieved using the KEGG API.
We retrieved KGML files for human pathways and
from them build network representations based on their
’relation elements’. For each such representation we
computed the size of its largest connected component.
The pathway was filtered out if it was smaller than
five.

The performance of the exhaustive strategy could be
observed for small pathways Figure S5 A. In addition,
we further confirmed our hypothesis that the isolation
score is predictive with respect to the performance of the
design strategies Figure S5 B. Furthermore, Figure S6
compares for each KEGG pathway the number of per-
turbations that are required to achieve a fully identi-
fiable network using the different strategies. We also
studied how our experimental design strategies com-
pared against a strategy that chooses random sequence
of combination perturbations. Thus, for each KEGG
pathway, we generated perturbation sequences by se-
quentially drawing perturbation combinations from the
power set of single perturbations (excluding the empty
set) and measured their performance, shown in Fig-
ure S7 (annotated as multi-random). The multi-random
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Figure S5: Performance of different experimental design strategies on 78 human KEGG pathways with up to 15 nodes (A). The
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Figure S6: Number of perturbations required for full network
identifiability for each considered KEGG pathway (of size n) and
strategy. For the random strategy, we show the average number
over 10 random perturbation sequences.
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Figure S7: Identifiability AUC, defined as area under the num-
ber of identified nodes vs. number of perturbation curve, see
Eqn. 13 in main text (top figure). Average number of pertur-
bations required for full identifiability is shown relative to the
average number required for a random strategy (bottom figure).
Same data as in main text Figure 4 A and B with additional
multi-random strategy.

strategy is approximately en par with the naive strat-
egy but is outperformed by the single- and multi-target
strategies.

S5 Verification by numerical
simulation

To verify our analytical description of identifiability of
network parameters, we numerically simulated the per-
turbation experiment depicted in Figure S3A. This was
done by allocating random numbers to each network pa-
rameter, where all random numbers were drawn from
a standard normal distribution. We then computed
steady state responses to perturbations, R, according
to Equation 4 (with P = Ip). From this synthetic data,
we infer the original network parameters by solving the
following least squares problem

min
J,S

n∑

i

p∑

j

(
Rij −

[
J−1S

]
ij

)2
,

where only the unknown parameters in J and S are al-
lowed to vary. To this end, we employ the least-squares
solver from the SciPy library [15]. We repeated the
procedure for 50 different sets of random network pa-
rameters. For each of these synthetic perturbation ex-
periments, we perform the fitting with 50 different ini-
tial conditions generated by Latin Hypercube sampling
within the interval -1 to 1. The absolute differences
between the fitted and the original parameters are de-
picted in Figure S8A.

Each parameter that is declared identifiable by the
maximum flow approach (see Figure S3A) shows indeed
a near zero deviation. Whereas all non-identifiable pa-
rameters show considerable deviations. This confirms
our analytical findings. It also shows that the numer-
ical simulations are generally unreliable, as we observe
many non-zero deviations for identifiable parameters
and near-zero deviations for non-identifiable parame-
ters. An identifiability analysis through numerical sim-
ulation thus relies on many repetitions and arbitrary
thresholds, which also makes it computationally expen-
sive and therefore inept for experimental design espe-
cially for larger systems.

Furthermore, we analysed the fit’s sensitivity to
noise. Random numbers drawn from normal distribu-
tions with zero mean and different standard deviations
(Noise levels in Figure S8B) were added to each entry
in the simulated R. The same fitting procedure was
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Figure S8: Absolute differences between inferred and original
network parameters for the synthetic perturbation experiments
depicted in Figure S3A. Shown are distributions over 50 ran-
dom original parameter sets and 50 initial fitting conditions each.
Network parameters that were declared non-identifiable by the
maximum-flow approach are annotated in red. A Deviations for
all network parameters in the absence of noise. Only identifiable
parameters (according to maximum-flow approach, compare Fig-
ure S3A) have nearly zero deviations. B Deviations of identifiable
network parameters with different levels of noise in the synthetic
response data.

carried out for such noisy response data and the results
are shown in Figure S8B (only identifiable parameters
are shown). We observe that the median inference
error for each parameter is approximately equal to the
(additive) noise level. In individual fits however, some
inferred parameters can drastically differ from their
original counterpart. Yet, the fitting procedure is not
the focus of this article and we refer to the reader to
other references that aim to improve the robustness to
noise [14, 5].

Numerical simulations also allow to investigate how
the identifiability of network parameters is altered when
assumptions in the maximum-flow approach are bro-
ken. For this purpose, we simulate saturation effects

by setting some of the original network parameters to
zero without considering them as known parameters.
Therefore the identifiability analysis by the maximum-
flow approach remains unchanged. However Figure S9
shows that indeed some previously identifiable parame-
ters become non-identifiable and vice versa in such satu-
ration setting. In detail, we performed noise-free numer-
ical simulations of the perturbation experiment outlined
in Figure S3A as before. However in Figure S9A and
Figure S9B, we considered the possibilities that multi-
target perturbation 3 is not effective with respect to
either of its targets. Interestingly, Figure S9A shows
that an ineffective perturbation of node 4 does not alter
identifiability, including the fact that it remains impos-
sible to infer from the response data that the sensitivity
of node 4 to perturbation 3 is in fact zero. On the other
hand, a zero sensitivity of node 5 to perturbation 4 is,
contrary to the maximum-flow results, actually identi-
fiable, as shown in Figure S9B (which is rather trivial
as perturbation 3 no longer causes a response at node
5). However, this comes at the cost of losing identifia-
bility of the interaction strength from node 5 to node 6.
Similarly, we explored the loss of connectivity between
nodes. Again, in our examples, we observed qualita-
tively different possibilities. While a vanishing interac-
tion strength from node 2 to node 4 does not alter the
identifiability of any network parameters (Figure S9C),
we observe that the previously non-identifiable interac-
tion strength from node 3 to node 4 becomes identifiable
when it is set to zero (Figure S9D).
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Bernards, Nils Blüthgen, and Lodewyk F. A. Wes-
sels. Comparative Network Reconstruction us-
ing mixed integer programming. Bioinformatics,
34(17):i997–i1004, January 2018.

[4] Riet De Smet and Kathleen Marchal. Advantages
and limitations of current network inference meth-
ods. Nat. Rev. Microbiol., 8(10):717–729, October
2010.

[5] Mathurin Dorel, Bertram Klinger, Torsten Gross,
Anja Sieber, Anirudh Prahallad, Evert Bosdriesz,

11



no
de

1-
>

no
de

2
no

de
1-

>
no

de
3

no
de

1-
>

no
de

4
no

de
2-

>
no

de
4

no
de

3-
>

no
de

4
no

de
4-

>
no

de
1

no
de

5-
>

no
de

4
no

de
5-

>
no

de
6

no
de

6-
>

no
de

5
P1

->
no

de
1

P1
->

no
de

4
P2

->
no

de
3

P3
->

no
de

4
P3

->
no

de
5

0

2

4

6

8

10

Ab
s.

 d
ev

ia
tio

n

A Zero-link: P3 -> node 4

no
de

1-
>

no
de

2
no

de
1-

>
no

de
3

no
de

1-
>

no
de

4
no

de
2-

>
no

de
4

no
de

3-
>

no
de

4
no

de
4-

>
no

de
1

no
de

5-
>

no
de

4
no

de
5-

>
no

de
6

no
de

6-
>

no
de

5
P1

->
no

de
1

P1
->

no
de

4
P2

->
no

de
3

P3
->

no
de

4
P3

->
no

de
5

0

2

4

6

8

10

Ab
s.

 d
ev

ia
tio

n

B Zero-link: P3 -> node 5

no
de

1-
>

no
de

2
no

de
1-

>
no

de
3

no
de

1-
>

no
de

4
no

de
2-

>
no

de
4

no
de

3-
>

no
de

4
no

de
4-

>
no

de
1

no
de

5-
>

no
de

4
no

de
5-

>
no

de
6

no
de

6-
>

no
de

5
P1

->
no

de
1

P1
->

no
de

4
P2

->
no

de
3

P3
->

no
de

4
P3

->
no

de
5

0

2

4

6

8

10

Ab
s.

 d
ev

ia
tio

n

C Zero-link: node 2 -> node 4

no
de

1-
>

no
de

2
no

de
1-

>
no

de
3

no
de

1-
>

no
de

4
no

de
2-

>
no

de
4

no
de

3-
>

no
de

4
no

de
4-

>
no

de
1

no
de

5-
>

no
de

4
no

de
5-

>
no

de
6

no
de

6-
>

no
de

5
P1

->
no

de
1

P1
->

no
de

4
P2

->
no

de
3

P3
->

no
de

4
P3

->
no

de
5

0

2

4

6

8

10

Ab
s.

 d
ev

ia
tio

n

D Zero-link: node 3 -> node 4

Figure S9: Absolute differences between inferred and original parameters for the same setting as in Figure S8, except that the
parameters denoted in the titles of each subfigure are set to zero when simulating the response data. Again, network parameters that
were declared non-identifiable by the maximum-flow approach are annotated in red.

Lodewyk F. A. Wessels, and Nils Blüthgen. Mod-
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5
A T O TA L L E A S T S Q UA R E S A P P R O A C H I M P R O V E S
M R A O P T I M I Z AT I O N

5.1 abstract

Modular Response Analysis (MRA) is a network reconstruction method
that is based on the assumption that a system’s steady state responds
linearly to a perturbation. It models this response by a set of interac-
tion parameters that describe the influence of one system component
on another. The computational task is to tune these parameters such
that the predicted responses best match those that were experimen-
tally observed. Generally, this is a complex non-linear optimization
problem that is solved by gradient descent.

In the context of the MRA implementation that is proposed in the
stasnet package (Dorel et al. 2018), it was observed that the optimiza-
tion landscape contains many local optima. The pragmatic strategy to
identify the global (or at least a satisfactory) optimum is to rerun the
optimization multiple times (up to millions of repeats) with varying
initial conditions. This gives rise to a computational bottleneck that
currently limits the size of inferable networks. To this end, this chapter
provides new results to improve the computational performance of
MRA.

It can be shown that under a certain independence assumption, op-
timal MRA parameters form the solution of a set of total least squares
(TLS) problems. These can be solved deterministically with a compu-
tational effort that is negligible in comparison to an iterative gradient
descent optimization. However, the independence assumption breaks
down under increasing levels of noise, such that the computed param-
eters no longer represent a network model that accurately describes
the experimentally observed steady states responses. The retrieved
parameter values nevertheless reside within the vicinity of the global
optimum of the original optimization problem. This makes them ideal
candidates for the initialization of a subsequent iterative optimization.

A benchmark on a range of toy networks generated from human
pathway topologies shows that a TLS-based initialization drastically
improves the optimization performance. In particular, it is shown to in-
crease the fraction of optimization runs that reach the global optimum,
while substantially decreasing the required number of iterations.

75
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5.2 methods

The following provides a condensed summary of the derivation and
solution of the TLS problem in MRA. The comprehensive description
can be found in Appendices A to F.

A TLS solution to MRA has been proposed before (Andrec et al.
2005; Sontag 2008). However, previous formulations cannot incorpo-
rate prior network knowledge that fixes certain interaction parameters,
and only describe the case where perturbations target each node
individually. While these assumption considerably simplify the math-
ematical problem, they are rarely applicable in practice. Here, for the
first time, a TLS solution is derived for the general case.

The MRA approach considers a system of n interacting components
whose abundances, x, evolve in time according to a set of (unknown)
differential equations

ẋ = f (x,p). (5.1)

The system can be experimentally manipulated in p independent
ways, each of which is represented by one of the p components of
parameter vector p. The experimental set-up is assumed to exclusively
allow for binary types of interventions, in which a particular type of
perturbation can only be switched on or off. A perturbation experi-
ment consists of q perturbations, each of which involves a single or
a combination of perturbation types. It can thus be represented by a
binary p× q matrix P. Each perturbation alters the system’s steady
state. It is assumed that we can experimentally observe the according
steady state differences to the unperturbed state and collect them as
columns of the n× q response matrix R. Assuming that perturbations
are sufficiently mild as to cause a linear response, it can be shown that

R− E = −J−1S P, (5.2)

where Jij = ∂ fi/∂xj is the system’s Jacobian, and Sij = ∂ fi/∂pj is the
system’s sensitivity matrix, both evaluated at the unperturbed steady
state. Error matrix E accounts for the linear response approximation
and measurement noise.

A Jacobian matrix entry Jij quantifies the influence that the j-th
system component exerts on the i-th component. Similarly, a sensi-
tivity matrix entry Sij quantifies the influence that the j-th type of
perturbation exerts on the i-th component. These are the network
characteristics that we hope to infer from the measurements of steady
state difference. However, not all of the matrix entries are unknown.
In line with prior studies (Kholodenko et al. 2002), the diagonal of
the Jacobian matrix is fixed, Jii = −1. Furthermore, we assume that
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we have prior knowledge about the network topology and the direct
targets of the perturbations. This implies that there are zero entries in
J whenever a component is not linked towards another component,
and zero entries in S whenever a type of perturbation does not directly
target a component.

The aim of MRA is to determine the remaining unknown parameters
such that the (weighted) sum of squared residuals becomes minimal,
that is

minimize
unknown J, S

∑
i,j

[
R + J−1S P

]2

ij
/σ2

ij, (5.3)

where the factor σij quantifies the inverse weight that is allocated to the
according response measurement, and could for example correspond
to the standard deviation of the according measurement error. This
optimization problem could then be solved by an iterative gradient
descent based method that starts from some initial parameter configu-
ration.

Alternatively, it is shown in Appendix A that Equation (5.2) can be
rewritten as n linear systems in the unknown network parameters

[
R̂i − Êi P̂i

] [ĵ i

ŝi

]
= −

(
ki − εi

)
, i ∈ {1, 2, . . . n}. (5.4)

Vectors ĵ i and ŝi denote the unknown parameters in the i-th row
of J and S. Matrices R̂i, P̂i and error matrix Êi are prior knowledge
dependent submatrices of R, P, and E. Vector ki and error vector εi

are prior knowledge dependent linear combinations of R and P, and
E respectively. See Appendix A for detailed definitions.

The systems take the form of total least squares problems (Golub et
al. 1980; Huffel et al. 1991; Schaffrin et al. 2008). However, depending
on the configuration of prior knowledge, certain components of the
error terms reappear in and thus effectively couple the n different
linear systems. The error term is thus not independent, which means
that a "closed-form solution . . . may not exist" (Abatzoglou et al. 1991).
To nevertheless allow for an efficient parameter inference, we shall
first ignore the interdependence of the error terms and revisit this
approximation in the next section. Specifically, we shall assume that
all error terms in Êi and εi, ∀i ∈ {1, 2, . . . n} are independent and
identically normally distributed with zero mean. This decouples the
equation systems such that the sets of unknown parameters ĵ i and
ŝi can be determined separately, as the solution to the following
optimization problem

minimize
εi Êi

∥∥∥
[
εi Êi

]∥∥∥
F

,

subject to rank
([
ki − εi R̂i − Êi P̂i

])
= ri,

(5.5)
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where the solution space dimension ri is determined by the maximum
flow through a prior knowledge dependent flow network, as illustrated
in Figure 1 B of (Gross et al. 2020).

It is shown in Appendix A, that there is an analytical solution to
this optimization problem, expressed by Equations (A.10) and (A.11).
Its numerical evaluation requires one singular value decomposition
and one QR decomposition, for which highly efficient deterministic
algorithms are known (Anderson et al. 1999). In contrast to the itera-
tive optimization of problem (5.3), these finish within a fixed number
of steps.

However, the original assumption of identical noise levels for all
entries in error matrix E is often not realistic. If replicate measure-
ments are performed, noise levels can instead be estimated empirically,
otherwise Appendix E provides an error model that accounts for a
mixture of additive and multiplicative noise terms. Then, Appendices
A and F show how to modify the TLS problem in order to account for
non-identical noise levels.

5.3 results

The previous sections showed how a network reconstruction within
the MRA framework can be solved as a TLS problem. This approach
relied on the assumption that the set of linear systems (5.4) decouples,
so that their sum of squared errors can be minimized independently of
each other. However, as the same entries of the error matrix can appear
in multiple of these systems, the solutions of the TLS problems are
approximations that are expected to deteriorate with increasing noise
levels. The question is how the TLS solutions compare to those that are
found by solving optimization problem (5.3) with an iterative method.
But before this can be addressed, initial parameter configurations have
to be defined as the starting point of the iterative optimization. The
stasnet package (Dorel et al. 2018) generates such initial conditions
(ICs) by Latin hypercube sampling around parameter values of zero.
Depending on the network, it was observed that many initializations
do not converge or only find local optima of low quality. This requires
a large number of repeated optimizations to increase the chances of
convergence to the global optimum. For large systems this can be too
computationally expensive.

Gradient-descent based optimization is known to perform better
the closer the IC is to the optimum. Therefore, it could be beneficial to
generate ICs within the neighbourhood of the TLS solution because,
even if the TLS solution is erroneous due to the breakdown of the in-
dependence assumption, it might still be closer to the global optimum
than ICs that are sampled from a Latin hypercube around the origin.
In this section, we will therefore compare the performance of three dif-
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ferent MRA optimization strategies, the TLS approach (non-iterative),
an iterative optimization of Equation (5.3) with ICs drawn from a
zero-centred Latin hypercube (iterative), and an iterative optimization
with ICs drawn from a Latin hypercube that is centred around the
TLS solution (iterative primed).

The different strategies were tested in simulated perturbation exper-
iments on human KEGG pathway (Kanehisa et al. 2000) topologies
with up to 30 nodes. Each of their (directed) edges is associated with
an interaction strength drawn from a standard normal distribution.
It is assumed that these networks can be perturbed at each node in-
dividually (p = n) with a perturbation sensitivity that is also drawn
from a standard normal distribution. Perturbation responses are then
simulated according to Equation (5.2), where the error matrix was
generated according to the error model introduced in Appendix E
with β = 0.75 and various magnitudes of error, ε. Given this (noisy)
response matrix R, the goal is to reconstruct the network parameters
using one of the three strategies. To this end, error rescaling was
performed (see Appendix A) to account for the different noise levels
as defined by the standard deviations generated by the noise model.
Moreover, Latin hypercube sampling of ICs was carried out with a
spread of two. Thus, initial parameter values were set to x− 1, x, or
x + 1, where x is zero or the solution of the TLS problem, for the itera-
tive or the primed iterative method, respectively. Iterative optimization
was performed with a trust region reflective algorithm (Branch et al.
1999), as implemented in the SciPy library (Virtanen et al. 2020).

While the TLS approach is a deterministic algorithm that always
delivers a solution, the iterative procedures are not guaranteed to
converge. To compare the influence of the choice of ICs on conver-
gence, network parameters were (iteratively) fitted 100 times and
Figure 5.1a shows the fraction of optimization runs that converged af-
ter a maximum of ∑N

i vi iterations, where ∑N
i vi is the number of fitted

parameters. This clearly indicates that while the iterative method does
not converge most of the time, the large majority of primed iterative
optimization runs find an optimum. In addition, Figure 5.1b shows
that those runs that converge require fewer iterations if they were
initialized around the TLS solution. This is a clear indication that the
initialization around the TLS solution makes the iterative optimization
more reliable and reduces computational effort.

However, the computational efficiency of the primed iterative method
is only beneficial if it converges to the global optimum. Moreover, we
need to investigate whether already the TLS solution alone recon-
structs the network sufficiently well. Therefore, we consider a solu-
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Figure 5.1: MRA network reconstruction for an ensemble of simulated perturbation
experiments with different noise levels ε. Comparison of convergence
behaviour of an iterative optimization where ICs were either generated
by Latin hypercube sampling around the origin (iterative) or around
the solution of the TLS problem (iterative primed). A: The fraction of
100 optimization runs that converged to an optimum. B: The number of
iterations per fitted parameter needed to reach the optimum (for converged
runs only).

tion’s sum of squared residuals, recall Equation (5.3), normalized by
number of data points

〈e2〉 =
∑

n,p
i,j

[
R + J−1S P

]2
ij /σ2

ij

np
(5.6)

If we were to plug in the true parameter values into this formula, the
term in square brackets would correspond to the according entry in the
error matrix, which was drawn from a normal distribution. We would
thus expect the entire numerator to be chi-square distributed with np
degrees of freedom, so that 〈e2〉 would have a mean of one (and a
slightly smaller median). This is therefore the smallest value that can
be expected to be obtained without overfitting. And indeed, Figure 5.2a
shows that this is what is found for the parameters that are obtained
from both of the iterative optimization methods. We can thus conclude
that both methods are capable of finding the global minimum, albeit
with different computational performance as discussed before. In
contrast, the TLS solution deteriorates as expected with increasing
noise level and network size.

Furthermore, as the method performances is measured on synthetic
data, we can compare the inferred (J and S) to the true parameters (J†
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Figure 5.2: Comparison of the quality of inferred network parameters between the
TLS solution, the iterative, and the TLS-primed iterative optimization. For
each network, scores are computed for the (single) converged optimization
run that minimizes 〈e2〉 (if any). A: The (square root) of the sum of squared
residuals per data point, defined in Equation (5.6). B: The (square root) of
the sum of squared parameter errors between inferred and true parameter
values, normalized by number of parameters.

and S†) and define a sum of squared parameter errors, normalized by
the number of inferred parameters

〈δ2〉 =
(

∑
i,j∈unknown

(Jij − J†
ij)

2 + ∑
i,j∈unknown

(Sij − S†
ij)

2

)
/

N

∑
i

vi. (5.7)

Even when the optimization finds the global optimum, it will not yield
the true parameters exactly, due to the presence of noise. This is what
can be observed in Figure 5.2b. If both iterative optimization methods
converge to the global optimum, their solutions are expected to yield
approximately the same error, which is in fact the case.

Notably, the parameter error has approximately the same magni-
tude as the noise. This seems plausible, yet, considering that the true
parameters were drawn from a standard normal distribution, it points
out some limits of MRA. For ε = 0.3, which is a realistic noise level,
for example in antibody-based phosphoprotein measurements, some
of the inferred parameters can thus be considered inaccurate and even
have the wrong sign. This the restricts the interpretability of MRA
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parameters. Yet, the impact of this issue and how to overcome it has
already been studied in different contexts (Shayeghi et al. 2012; Klinger
et al. 2018; Schulthess et al. 2011).

The error of the TLS solution is even larger and the solution is
thus only acceptable at noise levels up to 0.1 or even below for larger
networks. But this was expected due to the breakdown of the indepen-
dence assumption at higher noise levels.

5.4 discussion

This chapter presented a numerical simulation of perturbation ex-
periments which showed that iterative MRA optimization can be
made more stable and less computationally expensive if its ICs are
chosen within the vicinity of the solution of the TLS problem (5.5).
The improved performance becomes especially beneficial when net-
works have to be refitted many times, as is the case in the network
extension/reduction feature in the stasnet (Dorel et al. 2018) package.
Here, network edges are added or removed from the network and the
resulting change in residuals indicates whether a more appropriate
topology was reached. As this requires many tests to sufficiently cover
the space of topologies, the performance improvement by TLS ini-
tialization could become crucial. Likewise, a TLS initialization might
become key to enable the inference of much bigger networks that
are increasingly accessible as experimental perturbation techniques
become more powerful (Adamson et al. 2016; Datlinger et al. 2017;
Dixit et al. 2016; Jaitin et al. 2016; Schraivogel et al. 2020).

Yet, the presented results are preliminary and further steps are re-
quired to establish the benefits of the TLS initialization. An important
concern is that so far only synthetic data has been analysed. It remains
to be seen if the observed improvements withstand the non-linearities
inherent to real data sets. Furthermore, the current TLS solution does
not take into account two important features of the stasnet package.
For one, this includes an extension of the MRA model to describe
saturation effects, when inhibitions of non-active nodes do not trigger
any measurable response. The other unaccounted feature is stasnets’
capability to model nodes for which there are missing measurements
or no measurements at all. Future research will need to assess if
the TLS solution can also address these points while retaining its
computational benefits.



6
C O N C L U S I O N

Networks are indispensable descriptions of biological complexity. They
are used to conceptualize transcriptional regulation (Sorrells et al.
2015), signal transduction (Janes et al. 2013), gene-disease relationships
(Goh et al. 2007; Leiserson et al. 2015), intra-cellular interactions (Arnol
et al. 2019), host-microbiota relationships (Guven-Maiorov et al. 2017),
and many more biological systems (Alon 2003). A network perspective
not only provides a coherent mental model of an intricate interplay of
system components, it can also reveal the system’s emergent properties
(Bhalla et al. 1999) and allows to predict its response to perturbations
or environmental changes (Hill et al. 2016). Unsurprisingly, it has
become a common task in molecular biology to infer network models
from experimental observations of the considered system.

For the past 20 years, a series of technological breakthroughs made
it possible to detect or quantify an astounding array of cellular compo-
nents in a high-throughput manner (Hasin et al. 2017). This unprece-
dented wealth of data has the potential to comprehensively explain the
behaviour and mechanisms of complex cellular networks. But typically,
’Omics’ technologies cannot directly elucidate interactions between
the system’s components. Network reconstruction methods therefore
attempt to derive effective network models from observations of com-
ponents’ abundances or activities. Research on these methods has
thrived since the onset of the ’Omics’ revolution, and resulted in thou-
sands of research articles (Jurman et al. 2019) about new approaches
and applications. Nevertheless, the problem remains essentially un-
solved (Saint-Antoine et al. 2020).

Depending on the available type of data and the goal of the analysis,
different kinds of networks can be inferred. Observational data allows
for the reconstruction of undirected networks to describe gene co-
expression, functional associations of proteins, or amino-acid residue-
residue contacts, amongst others (Stein et al. 2015). Mechanistic or
causal relationships can be represented by directed networks. To be
able to trace cause-effect relationships or information flow through
the network, reconstruction methods typically rely on time-course or
perturbation data to infer directed links. In many applications, ob-
taining sufficiently dense time samples is often excessively laborious
or costly. Therefore, the focus of this thesis lies on the analysis of
targeted perturbation data. Depending on context, such perturbations
are performed, for example, by gene knockouts or kinase inhibitions,
and the resulting changes of abundance or activity of the system

83



84 conclusion

components are measured. The data thus describes a global network
response that is mediated by the aggregated effects of local interac-
tions. Various methods attempt to derive these local interactions from
global responses in a range of contexts (Wagner 2001; Bruggeman,
Westerhoff, et al. 2002; Bonneau et al. 2006; Molinelli et al. 2013). Yet
many of these approaches do not rigorously characterize network
identifiability, cannot be contextualized, or return networks that are
difficult to interpret. These issues motivated the development of the
response logic approach (Gross et al. 2019), that was introduced in
Chapter 3.

The response logic simply hypothesises that in a perturbation ex-
periment, a node will only show a response if it is directly targeted
by a perturbation or by another responding node. The objective of the
method is then to identify the network topologies that imply the chains
of perturbation responses that best fit to the (binarized) response data.
As the number of possible topologies grows super-exponentially with
network size, a powerful logic programming approach using Answer
Set Programming (Gebser et al. 2014) is required to solve this hard
combinatorial search problem. The response logic approach was tested
in DREAM3 and DREAM4 (Marbach et al. 2010; Greenfield et al. 2010)
community-wide reverse-engineering challenges, which provide syn-
thetic perturbation data that can be compared against a known gold
standard network and have become a de facto standard benchmark
suite. In nearly all sub-challenges, it outperformed other participating
methods. This indicates that the response logic approach is a suitable
method to reconstruct biological networks.

One of the method’s key features is to reveal all network topologies
that conform to the data. It thereby characterizes network identifia-
bility directly. Even if the solution set is too large to be enumerated,
logic computations can nevertheless indicate whether a specific link is
always present or absent (identifiable), or whether some conforming
networks contain it whereas other do not (non-identifiable). This is
different to most other methods that apply regularization techniques
or sparsity constraints to single out one solution network (Wagner
2001; Bonneau et al. 2006), which is not necessarily the biologically
relevant network. Instead, an explicit display of network identifiability
avoids such bias and helps to select appropriate additional perturba-
tions or external information to further constrain the solution space.
Concerning the latter, the logic program formulation can flexibly in-
corporate prior network knowledge. This allows for adaptation to a
biological context, for example by enforcing known links, or specifying
restrictions on maximal or minimal numbers of connections in some
part of the network.

Finally, the response logic approach stands out against methods
for which inferred interactions are difficult to interpret. Often, meth-
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ods are based on assumptions that are expressed in a mathematical
form that is difficult to relate to a biological context. This impedes
an intuitive understanding of how the data relates to the inferred
network, which makes the method a “black box” whose suitability is
hard to evaluate. In contrast, a link within the response logic setting
solely indicates that a perturbation of a node is directly relayed to
another node. While such a simple concept cannot capture details
about the nature or scale of the interaction, it is applicable to and
easily interpretable in a wide range of contexts. This also allowed
the response logic approach to explain mutant-specific sensitivities to
targeted drugs. Here, a perturbation experiment measured phosphory-
lation changes in kinases of the MAPK and PI3K signalling pathways
in a colon cancer cell line, using a reverse-phase protein assay. The ex-
periment was repeated on two different PI3K mutant cell lines, which
enable the response logic approach to infer topological differences. In
particular, both PI3K mutants seem to break the connection between
the EGF receptor and the PI3K pathway, and one of them shows an
EGF to EGFR feedback. These hypotheses helped to understand the
mutant-specific growth differences in response to an array of targeted
inhibitors.

Not always can biological systems be understood from their bare in-
teraction topology. Sometimes, more gradual differences in a network
can explain new phenotypes. A way to account for these more subtle
aspects is to infer weighted networks. Weighted networks assign a
continuous value to each edge to indicate a strength of interaction. For
such a description to be meaningful, the weights need to be properly
defined. A popular approach is thus to model a biological network
as a system of ordinary differential equations. This allows to express
interaction strengths as the entries of its Jacobian matrix. These values
then describe the influence that one node has on the rate of change
of another node. The goal of many reconstruction methods is to infer
these entries from perturbation data (Gardner et al. 2003; Tegnér et al.
2003; Bonneau et al. 2006; Timme 2007). A well-established method
amongst these is the Modular Response Analysis (MRA) (Bruggeman,
Westerhoff, et al. 2002). It has been applied in a range of contexts
(Santos et al. 2007; Stelniec-Klotz et al. 2012; Klinger et al. 2013; Ha-
lasz et al. 2016; Speth et al. 2017; Bosdriesz et al. 2018; Brandt et al.
2019; Jimenez-Dominguez et al. 2020) and its many extensions (Santra
et al. 2018) turned it into an established tool of network inference. Yet
until now, the identifiability of interaction strengths within the MRA
formalism has not been sufficiently analysed. Some studies avoid the
issue altogether by assuming extensive perturbations at each node
that fully determine the system. Often, this is not realistic, because
certain components cannot be experimentally targeted. Thus, other
MRA approaches allow to relax these assumptions (Klinger et al. 2013;
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Dorel et al. 2018) and study parameter identifiability with a profile
likelihood approach (Raue et al. 2009). But this has the disadvantage
that it requires to define thresholds that are not fail-proof and more
importantly, it can only be applied after data has been collected. The
analysis that is presented in Chapter 4 (Gross et al. 2020) addresses
these challenges by showing analytically that identifiability can be
understood as an intuitive maximum flow problem, which solely con-
siders the structure of the network and the targets of the applied
perturbations. In contrast to existing methods, the maximum flow per-
spective thus reveals identifiability without having to consider actual
experimental data. This permits to systematically analyse any poten-
tial perturbation constellation and thereby to optimize experimental
design.

Perturbation experiments are often highly laborious and costly, es-
pecially in phosphoproteomic studies for which MRA is commonly
used. Therefore, improving experimental design and reducing the
number of required perturbations is crucial for a comprehensive net-
work analysis. To this end, we designed a depth-first search algorithm
that builds on the maximum flow approach and determines from a
set of possible perturbations those that maximally reduce the number
of non-identifiable interaction strengths. We tested the approach on
a set of KEGG topologies (Kanehisa et al. 2000). Provided that per-
turbations target a single node, the optimized experimental design
reached full network identifiability with, on average, less than a third
of the perturbations that would be needed in a random experimental
design. If perturbations could also be combined to simultaneously
target multiple nodes, this number could further be reduced to less
than a quarter.

It is worth mentioning that MRA is based on a linearity assump-
tion (see Equation (3) in Gross et al. 2020) that might not always
correctly describe biological reality. Yet, this would not compromise
the accuracy of the maximum flow approach, which merely reveals
structural properties of such linear model. That being said, knowing
that a parameter can be uniquely determined does not mean that its
inferred value could be meaningfully interpreted, if model assump-
tions break. On a similar note, the maximum flow approach describes
structural identifiability only (Bellman et al. 1970). Being agnostic to
the actual data, it cannot assess whether a structurally identifiable
parameter is practically non-determinable because of missing or noisy
data. Nevertheless, the approach can help to design a structurally
identifiable model, for which established methods can then handle
practical non-identifiability (Raue et al. 2009; Dorel et al. 2018).

In summary, the maximum flow approach reliably reveals which
network parameters are uniquely identifiable from a perturbation
experiment, within an MRA context. As the approach builds on struc-
tural information only, it also allows to substantially optimize experi-
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mental design. This could considerably increase the scope of future
perturbation experiments.

In the original formulations of MRA (Bruggeman, Westerhoff, et al.
2002; Kholodenko et al. 2002; de la Fuente, Brazhnik, et al. 2002), the
Jacobian matrix could essentially be obtained from a simple inversion
of the response matrix. However, to make the approach more appli-
cable requires to account for prior network knowledge, unobserved
nodes, measurement noise, and a limited number of perturbations,
each of which could target multiple nodes. These requisites turn the
inference of the Jacobian into a complex optimization problem. Cur-
rent approaches (Klinger et al. 2013; Dorel et al. 2018) solve it with
iterative methods that significantly increase the computational effort.
In practice, interaction strengths can only be inferred in this way if the
number of network nodes does not exceed the low tens. This calls for
improvements that were presented in Chapter 5.

The derivation of the maximum flow problem showed that the
MRA relationship between response data and network parameters
can be described as a set of linear equation systems. These involve
error terms to describe noise in the data. The goal is to determine
network parameters that fulfil the equation systems while minimizing
the weighted sum of squared errors, as described by Equation (5.5).
It was possible to show in Chapter 5 that this leads to a set of total
least squares (TLS) problems. This novel formulation of MRA can
incorporate any prior network knowledge and any choice of pertur-
bations. But generally, the different TLS problems are coupled, in
which case closed-form solutions are not known. However, under an
independence assumption these become available and can be obtained
from matrix operations with negligible computational complexity com-
pared to an iterative optimization. But with increasing noise levels
the independence assumption breaks down and the inferred solutions
become imprecise.Numerical experiments on synthetic response data
generated for an ensemble of KEGG (Kanehisa et al. 2000) pathways
indicate that the TLS solution becomes inaccurate for a signal to noise
ratio of less than 10 (Figure 5.2). This makes the TLS solution unfit
for typical experimental settings. Nevertheless, it is sufficiently close
to the optimal solution to drastically improve the performance of an
iterative optimization, when used as initial condition (IC). This was
demonstrated in a comparison between the current standard proce-
dure, which samples ICs from a Latin hypercube centred around the
origin, and a sampling of ICs from a Latin hypercube centred around
the TLS solution. Independent of the noise level, the fraction of opti-
mization runs that converge to an optimum within a fixed number of
iterations was drastically increased by using TLS-ICs (Figure 5.1a). Fur-
thermore, the converging optimization runs needed a much smaller
number of iterations to reach the optimum in the TLS-ICs case (Fig-
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ure 5.1b). Therefore, even though the TLS solutions themselves are
typically imprecise, they provide effective ICs for a subsequent itera-
tive optimization. This makes the MRA optimization procedure more
reliable and efficient, and thereby allows to infer larger networks. To
substantiate these preliminary results, the next step will be to integrate
the TLC-ICs into the stasnet (Dorel et al. 2018) package and to analyse
their performance on real data sets.

More than two decades of research on network inference produced
an impressive body of biological insights (Natale et al. 2017). Nev-
ertheless, many questions are left unanswered (Saint-Antoine et al.
2020). This comes as no surprise.

As biologists we often try to deduce the circuitry of mod-
ules by listing their component parts and determining
how changing the input of the module affects its output.
This reverse engineering is extremely difficult. Although
an electrical engineer could design many different circuits
that would amplify signals, he would find it difficult to
deduce the circuit diagram of an unknown amplifier by cor-
relating its outputs with its inputs. It is thus unlikely that
we can deduce the circuity or a higher-level description
of a module solely from genome-wide information about
gene expression and physical interactions between pro-
teins. Solving this problem is likely to require additional
types of information and finding general principles that
govern the structure and function of modules. (Hartwell
et al. 1999)

But such “general principles” are sometimes unattainable from the
reductionist perspective that is inherent to network reverse engineer-
ing (Anderson 1972; Gu et al. 2009). Sand patterns that emerge on a
Chladni plate cannot be understood from a comprehensive character-
ization of the interactions between individual sand grains. Here, an
effective description would rather deduce the rules that describe the
form of the sand patterns as a function of the shape of the plate and
the applied vibration frequency (Bizzarri et al. 2019). Conceptually, the
idea here is to replace an enumeration of microscopic components and
their individual interactions by a description of higher-order struc-
tures and overarching principles that govern them. Such top-down
models were successfully applied in a range of biological systems
(Pezzulo et al. 2016; Noble 2012). This includes the description of
pattern formation in embryogenesis as a minimization of free-energy
(Friston et al. 2015), understanding neural computations in terms of
linear filtering and divisive normalization (Carandini 2012), or the
decoding of cellular position by information theoretic constraints on
morphogen gradients (Zagorski et al. 2017; Tkačik et al. 2015). How-
ever, such elegant, wholistic principles are often simply unavailable
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or imprecise, and the only available approach is indeed a bottom-up
assembly of the cellular puzzle. In that regard, network reconstruction
is an essential tool. Yet, its value crucially depends on whether in-
ferred networks allow to derive meaningful biological interpretations,
and whether the applied method clearly indicates which parts of the
network can be uniquely determined from the data and which parts
are non-identifiable. Achieving this was the main focus of this thesis.
I believe that such emphasis on the methods’ biological relevance
is especially important as new generations of ’Omics’ technologies
(Adamson et al. 2016; Dixit et al. 2016; Jaitin et al. 2016; Datlinger
et al. 2017; Schraivogel et al. 2020) expand the possibilities but also
the complexity of biological network reconstruction.





A P P E N D I C E S

a a total least squares approach to mra

Recap

To derive the total least squares (TLS) problem, I need to recapitulate
a few of the key points from the study on “Identifiability and exper-
imental design in perturbation studies” (Gross et al. 2020) that was
introduced in Chapter 4.

The MRA approach considers a system of n interacting components
whose abundances, x, evolve in time according to a set of (unknown)
differential equations

ẋ = f (x,p). (A.1)

The system can be experimentally manipulated in p independent
ways, each of which is represented by one of the p components of
parameter vector p. The experimental set-up is assumed to exclusively
allow for binary types of interventions, in which a particular type of
perturbation can only be switched on or off. A perturbation experi-
ment consists of q perturbations, each of which involves a single or
a combination of perturbation types. It can thus be represented by a
binary p× q matrix P. Each perturbation alters the system’s steady
state. It is assumed that we can experimentally observe the according
steady state differences to the unperturbed state and collect them as
columns of the n× q response matrix R. Assuming that perturbations
are sufficiently mild as to cause a linear response, it was shown in
Equation 4 of Gross et al. 2020 that

R ≈ −J−1S P,

where

Jij = ∂ fi/∂xj

is the system’s Jacobian and

Sij = ∂ fi/∂pj

the system’s sensitivity matrix, both evaluated at the unperturbed
steady state. This equation can be made exact, if we account for
the error E that is due to the linear response approximation and
measurement noise

R− E = −J−1S P. (A.2)
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A Jacobian matrix entry Jij quantifies the influence that the j-th system
component exerts on the i-th component. Similarly, a sensitivity matrix
entry Sij quantifies the influence that the j-th type of perturbation
exerts on the i-th component. These are the network characteristics
that we hope to infer from the measurements of steady state difference.
However, not all of the matrix entries are unknown. In line with prior
studies (Kholodenko et al. 2002), the diagonal of the Jacobian matrix
is fixed

Jii = −1.

Furthermore, we assume that we have prior knowledge about the
network topology and the direct targets of the perturbations. This
implies that there are zero entries in J whenever a component is not
linked towards another component, and zero entries in S whenever a
type of perturbation does not directly target a component.

The aim of MRA is to determine the remaining unknown parameters
such that the (weighted) sum of squared residuals becomes minimal,
that is

minimize
unknown J, S

∑
i,j

[
R + J−1S P

]2

ij
/σ2

ij, (A.3)

where the factor σij quantifies the inverse weight that is allocated to the
according response measurement, and could for example correspond
to the standard deviation of the according measurement noise. This
optimization problem could then be solved by an iterative, gradient
descent based method that starts from some initial parameter configu-
ration.

Alternatively, Equation (A.2) can be rewritten as n linear systems

(RT − ET) j i = −PTsi, i ∈ {1, 2, . . . n} (A.4)

for each row in J and S, denoted as j i and si. We can then collect
the µ̄i known entries of j i in vector j̄ i and the ν̄i known entries of
si in vector s̄i. Similarly, let us collect the remaining µ̂i = n − µ̄i
unknown components of j i in vector ĵ i, and the ν̂i = p− ν̄i unknown
components of si in vector ŝi. To rewrite Equation (A.4) as a linear
system in those unknown variables, we first split its two sides into
their known and unknown parts

(
RT − ET

)
j i =

(
R̄i − Ēi

)
j̄ i +

(
R̂i − Êi

)
ĵ i and

PTsi = P̄is̄i + P̂iŝi,

where q× zi
J matrices R̄i and Ēi consist of all columns of RT or ET

with indices of known j i elements, and q× (n− zi
J) matrices R̂i and

Êi collate the remaining columns of RT or ET. Analogously, q× zi
S
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matrix P̄i and q× (p− zi
S) matrix P̂i are formed from the columns

of PT according to the known and unknown elements of si. With
abbreviations

ki =
[

R̄i P̄i
] [j̄ i

s̄i

]
and εi = Ēi j̄ i,

we can then find a suitable equivalent formulation of Equation (A.4)

[
R̂i − Êi P̂i

] [ĵ i

ŝi

]
= −

(
ki − εi

)
, i ∈ {1, 2, . . . n}, (A.5)

which is a set of linear equations in the µ̂i + ν̂i unknown parameters
ĵ i and ŝi.

A central finding in Gross et al. 2020 is that

ri ≡ rank
([

R̂i − Êi P̂i
])

= ν̂i + yi,

where yi is the maximum flow between source and sink node in a
specific flow network, as illustrated in Figure 1 B in Gross et al. 2020.
It is there shown that this maximum flow does not depend on any un-
known network parameters but can be uniquely determined from the
knowledge about the network topology and the perturbation targets.
Considering the sizes of the matrices involved in Equation (A.5), this
implies the solution spaces of the linear systems to have dimensionality

di = (µ̂i + ν̂i)− ri = µ̂i − yi. (A.6)

Total least squares problem

Equation (A.5) constitutes an ensemble of linear systems for the un-
known parameters ĵ i and ŝi, ∀i ∈ {1, 2, . . . n}. However, the involved
error terms are unknown. Therefore, we seek to solve the systems in
a least squares sense, in which the identified solutions minimize the
square sum of the error terms. However, depending on the configura-
tion of prior knowledge certain components of the error terms reap-
pear in and thus effectively couple the n different linear systems. The
error term is thus not independent, which entails that a "closed-form
solution . . . may not exist"(Abatzoglou et al. 1991). To nevertheless
allow for an efficient parameter inference, we shall first ignore the
interdependence of the error terms and revisit this approximation in
Section 5.3. Specifically, we shall assume that each component in the
error terms Êi and εi, ∀i ∈ {1, 2, . . . n} is identically independently
distributed with zero mean. This decouples the equation systems such
that the sets of unknown parameters ĵ i and ŝi can be determined
separately.
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Each of the according linear systems has errors in both the obser-
vation vector ki and in the first columns of the data matrix

[
R̂i P̂i].

This is the form of a TLS problem (Golub et al. 1980; Huffel et al.
1991; Schaffrin et al. 2008) with a specific dimension of the solution
space, given by Equation (A.6). To solve it, let us first reformulate
Equation (A.5),

([
ki R̂i P̂i

]
−
[
εi Êi 0

])



1

ĵ i

ŝi


 = 0, (A.7)

and state the appropriate objective

minimize
εi Êi

∥∥∥
[
εi Êi

]∥∥∥
F

,

subject to rank
([
ki − εi R̂i − Êi P̂i

])
= ri.

(A.8)

In other words, we seek to find the nearest approximation to
[
ki R̂i P̂i]

in terms of Frobenius norm, such that its rank becomes ri, while keep-
ing the ν̂i columns of P̂i unchanged. The solution to this problem has
been proposed in Golub et al. 1987 as follows.
For any m× l matrix X, with m ≥ l, exists a singular value decompo-
sition

X = UΣVT, where

UTU = Im, VTV = Il and

ΣT = [diag(σ1, σ2, . . . , σl) 0l,m−l ], with σ1 ≥ σ2 ≥ . . . ≥ σl .

Set

Σ̂T = [diag(σ1, σ2, . . . , σk, 0 . . . 0) 0l,m−l ].

According to the Eckart–Young–Mirsky theorem (Eckart et al. 1936),

X̂ = UΣ̂VT ≡ Hk(X)

is a matrix with

rank(X̂) ≤ k, and ‖X̂− X‖F = inf
rank(X̄)≤k

‖X̄− X‖F.

Let Pi denote the orthogonal projector onto the column space of P̂i

and P⊥i the orthogonal projector onto its orthogonal complement.
Then, the TLS-corrected data matrix

[
ki − εi R̂i − Êi

]
= Pi

[
ki R̂i

]
+Hri−ν̂i

(
P⊥i

[
ki R̂i

])

satisfies Equation (A.8). A small error in Golub et al.’s original formu-
lation is discussed in Appendix B.
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From the rank constraint in Equation (A.8) follows that there are

1 + µ̂i + ν̂i − ri = 1 + di

distinct kernel basis vectors, which we collect in matrix KD (dropping
index i for convenience), as to write

[
ki − εi R̂i − Êi P̂i

]
KD = 0q,di+1. (A.9)

We denote the first row of KD as KT
1 and that row’s orthogonal

complement as K⊥1 , such that

KD =

[
KT

1

K2

]
, KT

1 K⊥1 = 0.

Comparing Equation (A.9) to Equation (A.7), we realize that we can
express any element of the solution space as follows




1

ĵ i

ŝi


 = KD

(
K⊥1 wi +K1/|K1|2

)

=

[
0

K2K⊥1 wi

]
+

[
1

K2K1/|K1|2

]
,

with an undetermined vector wi of length di. We abbreviate
[
ĵ i

ŝi

]
≡ ρi, K2K⊥1 ≡ Qi, and K2K1/|K1|2 ≡ ρ0i ,

and choose the kernel basis such that Qi has orthonormal columns, so
that

ρi = Qiwi + ρ
0
i , and QT

i Qi = Idi . (A.10)

A procedure for the computation of Qi and ρ0i can be found in Ap-
pendix C.

Summing up, under the assumption of independence of error terms,
the ensemble of linear equations in (A.5) decouples, so that we can
identify each solution space, with dimensionality stated in Equa-
tion (A.6), independently. This leads to the TLS problem (A.8), whose
solution is found in Equation (A.10).

Minimum norm solution and parameter variance

In situations where a constellation of perturbations and prior knowl-
edge does not fully determine the solution (di > 0), there might still
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be expectations on plausible parameter ranges that will restrict the
solution space. Here, we propose a simple probabilistic assumption
about such expectations and from it conclude that the most likely
point in solution space coincides with the minimal norm solution. Fur-
thermore, this will allow to quantify the degree to which a (non-trivial)
solution space determines individual parameters.

It is a plausible assumption to avoid arbitrarily high parameter
values but rather center them around zero. We could quantify this
believe about the parameters ρi via an isotropic normal distribution
of a certain spread σρ,

ρi ∼ N (0, σ2
ρ Iµ̂i+ν̂i).

Yet, we know that ρi is bound to the solution space, specified in
Equation (A.10). Still it is possible to identify the point in solution
space with the highest probability according to the above distribution.
To do so, we solve Equation (A.10) by wi,

wi = QT
i (ρi − ρ0i ),

and interpret ρi as random variables under the above definition. Then,
wi will likewise be normally distributed with

wi ∼ N (−QT
i ρ

0
i , σ2

ρ Idi).

This distribution maps the believe about the parameter distribution
onto the solution space. Accordingly, we can find the most likely point
in solution space by plugging the most likely wi, that is w∗i = −QT

i ρ
0
i ,

into Equation (A.10), to obtain

ρ∗i =
(

Iµ̂i+ν̂i −Qi QT
i

)
ρ0i . (A.11)

As can be seen in Appendix D, it is straightforward to show that ρ∗i in
fact constitutes the minimum norm solution

min
wi

∣∣Qiwi + ρ
0
i

∣∣ = ρ∗i .

While the derivation of the minimum norm solution does not require
the presented probabilistic approach (as shown in Appendix D), it
becomes useful to discuss the degree of determination of single param-
eters within the solution space. For example, if the solution space is
(nearly) orthogonal to the j-th coordinate axis, different solutions that
show a small difference in the j-th parameter will typically show large
differences in the remaining parameters. Thus, the j-th parameter can
be considered as nearly determined. To quantify this concept, let us
return to the probabilistic approach and consider the variance of the
j-th parameter,

σ2
wi
([ρi]j) =

∫
P(wi)

(
[ρ∗i ]j − [ρi]j

)2 dwi

=
∫
P(wi)

(
∑

k
[Qi]jk

(
[wi]k + ∑

l

[
QT

i

]
kl

[
ρ0i
]

l

))2

dwi,
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where P(wi) represents the probability distribution of wi as defined
above. We can simplify the integral by a variable shift

w̃i = wi + QT
i ρ

0
i ⇒ w̃i ∼ N (0, σ2

ρ Idi),

and denote the shifted probability distribution as P̃(w̃i) to arrive at

σ2
wi
([ρi]j) =

∫
P̃(w̃i)

(
∑

k
[Qi]jk [w̃i]k

)2

︸ ︷︷ ︸
∑m ∑n[Qi ]jm[w̃i]m[Qi ]jn[w̃i]n

dw̃i

= ∑
m

∑
n
[Qi]jm [Qi]jn

∫
P̃(w̃i) [w̃i]m [w̃i]n dw̃i

= σ2
ρ

[
QiQT

i

]
jj

.

(A.12)

Thus, each parameter’s relative variance, σ2
wi
([ρi]j)/σ2

ρ , within the
probabilistic solution space, as defined above, can be computed from
the diagonal of the data-derived projector QiQT

i . The degree of deter-
mination of a particular parameter becomes higher with decreasing
relative variance. In view of the mean of the relative variances,

1
µ̂i + ν̂i

µ̂i+ν̂i

∑
j=1

[
QiQT

i

]
jj
=

di

µ̂i + ν̂i
< 1,

we could consider a parameter [ρi]j as approximately identifiable if
[

QiQT
i

]
jj
� 1.

It is important to stress that this is not a strict criteria. Even if a
parameter has a very small but non-zero relative variance it is still
structurally non-identifiable, and would be characterized as such by
the maximum flow approach presented in Chapter 4. The relative vari-
ance has to be interpreted in a statistical sense under the assumption
that parameters are sampled from a centred normal distribution, as
discussed above. Moreover, the relative variance is also not a measure
of parameter uncertainty due to measurement noise. Even in the ab-
sence of noise, a parameter can have a large relative variance because
the solution space is far from orthogonal to the according coordinate
axis, and vice versa.

Altogether, assumptions about reasonable parameter ranges allow
to identify the most appropriate parameter vector within the solution
space, as described by Equation (A.11), and to quantify each parame-
ter’s degree of determination, as specified in Equation (A.12). In the
following, we refer to this minimum norm parameter vector as the
solution to the ensemble of TLS problems.
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Error model and error scaling

A TLS regression as in Equation (A.8) finds a rank deficient approxima-
tion of a given input matrix whose difference is minimal in Frobenius
norm. In this way, the deviations from different matrix entries all
contribute equally to the sum of squares. Facing measurement er-
ror, this might be undesirable if the uncertainty about the values of
different components of the input matrix varies considerably. Prefer-
ably, the rank deficient approximation will differ mostly in entries
with a relatively high noise level and show little deviations for more
precisely known entries. For that purpose, we will introduce error
scaling matrices which rescale the response matrix in order to achieve
homoscedasticity. Yet, the derivation of such scaling matrices requires
a quantification of measurement error for each entry of the response
matrix. These noise levels could be estimated from the variance of
replicate measurements. However, often there are no or few replicate
measurements so that it is not possible to estimate them from the
data directly. To this end, we introduce a simple, two parameter error
model in Appendix E. For each entry of the response matrix, Rij, it
specifies measurement noise as a normal distribution with zero mean
and a specific standard deviation [σR]ij. Considering that the response
matrix describes steady state differences, the error model includes the
contribution of noise from measurements of the unperturbed as well
as the perturbed steady states, see Equation (E.2). It describes a mix
between additive and multiplicative noise whose relative contribu-
tions can be tuned with a free parameter β, and has an overall error
magnitude that is determined by an additional free parameter ε, as
defined in Equation (E.1).

As discussed above, non-uniformity in σR will distort the solution of
the TLS problem (A.8). A straightforward way to compensate for this,
is to rescale the response matrix prior to the regression such that the
associated standard deviations of all its entries are equal. Subsequently,
we can apply an appropriate reverse scaling to the solution of the
rescaled TLS problem to obtain the solution of the original problem.
More precisely, we shall assume that there are diagonal row- and
column scaling matrices T = diag(t) and C = diag(c), for which

[σR]ij
ti cj

≈ 1. (A.13)
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We can then define rescaled matrices

R̃ = T−1 R C−1

Ẽ = T−1 E C−1

J̃ = J T

S̃ = S

P̃ = P C−1,

for which Equation (A.2) holds in identical form

R̃− Ẽ = − J̃−1S̃ P̃.

The difference is that we now assume the entries of Ẽ to be ho-
moscedastic. We can then carry out the error-scaling corrected pa-
rameter inference in completely analogous form by replacing the
matrices with their rescaled counterparts, and eventually scaling back
(essentially, J = J̃ T−1). However, this requires scaling matrices T and
C, which we shall derive in the following.

There are n · q components in E versus only n + q components in t
and c. We can thus not expect a perfect error-scaling but will rather
attempt to find t and c to maximally approach homoscedasticity of Ẽ.
More formally, referring to Equation (A.13), we shall attempt to

minimize
t c

n

∑
i=1

q

∑
j=1

(
ti cj − [σR]ij

)2 ,

subject to ti > 0, cj > 0 ∀ i ∈ {1 . . . n}, j ∈ {1 . . . q}.
(A.14)

We will first ignore the positivity constraint and identify t∗ and c∗,
the extreme points of the objective function, by setting to zero its
partial derivatives ∂/∂ti and ∂/∂ci. Obviously the objective function
remains constant if a scaling of vector t∗ is compensated with the
inverse scaling of c∗. To make the extreme points unique we can thus
set |t∗|2 = 1. Taken together, this produces two equations

σR c
∗ = |c∗|2 t∗

σT
R t

∗ = c∗,

that can be combined into an eigenvalue problem

σR σT
R t

∗ = |c∗|2 t∗.

The n× n matrix σR σT
R is real and symmetric and thus has n real

eigenvalues with associated eigenvectors. To determine which of these
solves the minimization problem, we can use the previous equations
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to determine the value of the objective function for the possible eigen-
vectors.

n

∑
i=1

q

∑
j=1

(
t∗i c∗j − [σR]ij

)2
= tr

(
(c∗ (t∗)T − σT

R)(t
∗ (c∗)T − σR)

)

= tr
(

σT
R σR − c∗(c∗)T

)

= ‖σR‖F − |c∗|2

This shows that the global minimum is found by choosing the
eigenvector with the largest eigenvalue |c∗|2. Furthermore, standard
deviations of the response matrix are strictly positive, such that also
σR σT

R is a positive matrix. In that case the Perron–Frobenius theorem
(Perron 1907) holds, which states that a positive matrix has one real
largest eigenvalue and its associated eigenvector is unique (up to scal-
ing) and only has positive components. From this we can conclude that
the optimal t∗ (and the according c∗) that satisfies Equation (A.14),
including the positivity constraint, is given by the (unique) eigenvector
of σR σT

R that is associated with the largest eigenvalue. This transforms
the constrained least squares optimization in (A.14) into a simple
computation of eigenvectors, for which efficient algorithms exist (An-
derson et al. 1999), especially because σR σT

R is symmetric. Appendix
F assesses the degree to which the derived error-scaling matrices can
establish homoscedasticity for different classes of random matrices.

b erratum to : a generalization of the eckart-young-
mirsky matrix approximation theorem (golub et al . ,
1987)

In their paper (Golub et al. 1987) about a generalization of the Eckart-
Young-Mirsky matrix approximation theorem, Golub et al. show “how
to obtain a best approximation of lower rank in which a specified set of
columns of the matrix remains fixed”. Their main result is expressed
in the theorem on page 319:

THEOREM. Let X be partitioned as in (1.8) where X1 has k columns, and
let l = rank(X1). Let P denote the orthogonal projection onto the column
space of X and P⊥ the orthogonal projection onto its orthogonal complement.
If

l ≤ r,

then the matrix

X̂2 = PX2 + Hr−l(P⊥X2)

satisfies (1.9).
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A small error in the definition of P and P⊥ render the theorem
incorrect. A corrected definition should read:

Let P denote the orthogonal projection onto the column space of X1 and
P⊥ the orthogonal projection onto its orthogonal complement.

That is, X should be replaced by X1. To justify the correction let us
write down the corrected operator definitions. To do so, we make use
of the QR decomposition of X as stated in the paper’s Equation (2.3).
Due to the upper triangular shape of R, the first k columns of X,
that is X1, are solely expressed as linear combinations of the first k
columns of Q. Thus, as X1 has full rank the first k columns of Q, that
is Q1, form an orthonormal basis of X1 and the corrected projection
operators write

Pcorr = Q1QT
1

P⊥corr =
[

Q2 Q3

] [
Q2 Q3

]T
.

Let us apply these definitions to the final statement in the proof to the
above theorem.

It now remains only to observe that

Q1R12 = PX2 and Q2R22 = P⊥X2. �

Making use of the orthogonality of Q and extracting the expression
of X2 from the paper’s Equation (2.3) one can easily see that the
statement holds for the corrected definitions Pcorr and P⊥corr. In contrast,
the original P constituted a projection onto the column space of (all of)
X. The columns of X2 are obviously elements of this space. Therefore,
by the definition of a projection this amounts to

PX2 = X2 = Q1R12 + Q2R22 and P⊥X2 = 0,

which would only coincides with the above statement in the trivial
case of

Q2R22 = 0

⇔ rank(X) = rank(X1).

c computing an orthonormal solution space basis

Here we present an algorithm to compute Qi and ρ0i , as used in
Equation (A.10). For convenience, we will not always include index i
in the notation.

1. Compute the singular value decomposition of the data matrix
that solves the total least squares problem (A.8)

[
ki − εi R̂i − Êi

R P̂i
]
= UΣVT.
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The last di + 1 columns of V, denoted as KD, form a basis of
the data matrix’s kernel, and thus [1 ρT

i ]
T ∈ range(KD). Let us

partition them as

KD =

[
KT

1

K2

]
.

2. Compute the QR-decomposition of vector K1 to obtain its or-
thogonal complement K⊥1 ,

K1 = [K̃1 K⊥1 ]



|K1|

0
...


 .

where [K̃1 K⊥1 ] is orthogonal.

3. Compute

ρ0i = K2 K̃1/|K1|
Q̃i = K2 K⊥1 .

4. The columns of Q̃i are not orthonormal. But we show below that
rank(Q̃i) = di. Thus, compute a QR-decomposition of Q̃i and
find Qi as the first di columns of the resulting orthogonal matrix.

Since rank(KD) = di + 1, there are two possibilities

rank(K2) =





di + 1, if K1 ∈ range(KT
2 )

di, if K1 /∈ range(KT
2 ).

Recalling that K⊥1 has dimensions (di + 1)× di, it is obvious that

rank(Q̃i) = di,

in the first case. The second case implies that

range(KT
2 ) = range(K⊥1 ),

so that we can write

KT
2 = K⊥1 Z,

with any matrix Z, with rank(Z) = di

Q̃i = ZT
(

K⊥1
)T

K⊥1 = ZT,

makes obvious that rank(Q̃i) = di, also in the second case.
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d deriving the minimum norm solution

Section A identified a particular solution, ρ∗i from Equation (A.11)
within the solution space described by Equation (A.10). Here we show
that ρ∗i is in fact the minimal norm solution, by directly minimizing
the norm of the solution vector. That is, we want to show that

min
wi

∣∣Qiwi + ρ
0
i

∣∣ = ρ∗i .

Thus, let us analyse the extrema of the solution norm

0 =
∂ρT
i ρi

∂[wi]j

∣∣∣∣∣
w∗i

=
∂w2

i

∂[wi]j

∣∣∣∣∣
w∗i

+ 2
∂wT

i QT
i ρ

0
i

∂[wi]j

∣∣∣∣∣
w∗i

= 2

(
[w∗
i ]j +

v

∑
k=1

[QT
i ]jk[ρ

0
i ]k

)

⇔ w∗
i = −QT

i ρ
0
i

⇔ ρ∗i =
(

Iµ̂i+ν̂i −Qi QT
i

)
ρ0i .

This coincides with the statement in Equation (A.11).

e an error model for the response matrix

A perturbation experiment yields read-outs for n unperturbed network
nodes and n nodes under q different perturbations and each of which
could have been measured in replicates. Thus, let Ur

i and Vr
ij denote

the unperturbed and the perturbed read-outs of node i ∈ {1 . . . n},
perturbation setting j ∈ {1 . . . q}, and replicate r ∈ {1 . . . rU

i or rV
ij }. We

shall define an error model that assumes measurement error for some
read-out x to be independently sampled from a Gaussian distribution
with zero mean and standard deviation

σ(x) = ε (β |〈x〉|+ (1− β)x̄) , (E.1)

where ε and β are free parameters, 〈x〉 is the mean taken over all
replicates of x, that is

〈Ur
i 〉 ≡ Ui =

1
rU

i

rU
i

∑
r=1

Ur
i and 〈Vr

ij〉 ≡ Vij =
1

rV
ij

rV
ij

∑
r=1

Vr
ij,

and where x̄ quantifies a typical absolute read-out value within the
perturbation experiment, e.g.

x̄ =
1
2

(
1
n

n

∑
i=1
|Ui|+

1
n q

n

∑
i=1

q

∑
j=1
|Vij|

)
.
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Figure F.1: 100 random matrices (see text) are rescaled (by row and column factors t∗

and c∗) according to Equation (A.14) to increase homoscedasticity. Each
panel displays a different measure of homoscedasticity (H(t, c) = 0 ⇔
perfect homoscedasticity) for which its ratio distribution of scaled to
unscaled (t = 1, c = 1) matrices are shown. Matrix entries were either
drawn from a folded normal distribution (grey boxes) or matrices are a
mix of folded normal and structured entries (blue boxes), as detailed in
text.

Thus, errors for replicates are identically distributed with a standard
deviation that scales with error magnitude ε and that consists of a
relative and an absolute term, with ratio β.

As expected, this implies that replicate measurements reduce the
uncertain of the mean,

σ(Ui) =
σ(Ur

i )√
rU

i

and σ(Vij) =
σ(Vr

ij)√
rV

ij

.

Thus, given β and ε the error model allows to specify the variances of
the entries of the response matrix

Rij = 〈Vij〉 − 〈Ui〉
[σR]

2
ij = σ

(
Vij
)2

+ σ (Ui)
2 . (E.2)

f examination of homoscedasticity after error-scaling

The measure of homoscedasticity of the rescaled response matrix is
not unique. While the one chosen in Equation (A.14) is convenient, we
can evaluate the quality of the data rescaling in different ways. We do
so by generating random matrices σR, rescaling them and computing
homoscedasticity scores, see Figure F.1. As homoscedasticity measures,
we choose in the left panel the one from Equation (A.14), the middle
panel shows the mean deviation from unit standard deviation, whereas
the relative mean deviation from the unit standard deviation,

1/(n q)
n

∑
i=1

q

∑
j=1
|(σij/ticj − 1)/(σij/ticj)| = 〈|1− ticj/σij|〉,
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is illustrated in the right panel. All measures are positive and quantify
the divergence from perfect homoscedasticity, for which they become
zero. To make ratios of measures between scaled and unscaled matrices
meaningful, the mean of the entries of the random matrices is 1.
Consequently, if the rescaling increases homoscedasticity, the ratio
will be between zero and one.

We evaluated two scenarios. First, random matrix entries were
drawn from a folded normal distribution. Here, on average homoscedas-
ticity could be increased independently of the considered homoscedas-
ticity measure, but not in every case and the increase remains rather
small. However, this is a particularly difficult scenario as matrix entries
are independent of each other. When standard deviation are estimated
from actual data sets, we might expect to find a more eminent struc-
ture. If the typical magnitude of certain read-outs differs considerably
from that of other read-outs and there is relative error, the rows of σR

will scale accordingly (the same holds for columns if certain pertur-
bations are more potent than others). Then, we expect to be able to
achieve homoscedasticity more easily. To model such a scenario we
consider the sum of folded normal matrix with entry mean 0.5 and a
structured matrix t̃ c̃T with entry mean 0.5 (such that the sum has entry
mean 1), where the entries of t̃ and c̃ are drawn from a folded normal
distribution. As expected the rescaling of this more structured matrix
increases homoscedasticity more drastically and in every case. For
both scenarios we observe that increasing homoscedasticity becomes
more difficult for larger matrices. This is to be expected as the ration
between the number of scaling factors n + q to the number of matrix
entries n · q becomes smaller.

In summary, we established a two parameter error model that pro-
vides standard deviations for the entries of the response matrix. To
account for them in the total least squares regression (A.8), we iden-
tified scaling factors, such that the standard deviations of a rescaled
response matrix are maximally similar. Figure F.1 shows that this
rescaling does in fact increase the level of homoscedasticity.
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