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Abstract

The objective of this thesis is to explore theoretical properties of various bootstrap
methods. We introduce the convergence rates of the bootstrap procedure which corre-
sponds to the difference between real distribution of some statistic and its resampling
approximation. In this work we analyze the distribution of Euclidean norm of indepen-
dent vectors sum, maximum of sum in high dimension, Wasserstein distance between
empirical measures, Wassestein barycenters. In order to prove bootstrap convergence
we involve Gaussian approximation technique which means that one has to find a
sum of independent vectors in the considered statistic such that bootstrap yields a
resampling of this sum. Further this sum may be approximated by Gaussian distribu-
tion and compared with the resampling distribution as a difference between variance
matrices.

In general it appears to be very difficult to reveal such a sum of independent vectors
because some statistics (for example, MLE) don’t have an explicit equation and may
be infinite-dimensional. In order to handle this difficulty we involve some novel results
from statistical learning theory, which provide a finite sample quadratic approximation
of the Likelihood and suitable MLE representation. In the last chapter we consider
the MLE of Wasserstein barycenters model. The regularised barycenters model has
bounded derivatives and satisfies the necessary conditions of quadratic approximation.

Furthermore, we apply bootstrap in change point detection methods. In the para-
metric case we analyse the Likelihood Ratio Test (LRT) statistic. Its high values
indicate changes of parametric distribution in the data sequence. The maximum of
LRT has a complex distribution but its quantiles may be calibrated by means of boot-
strap. We show the convergence rates of the bootstrap quantiles to the real quantiles of
LRT distribution. In non-parametric case instead of LRT we use Wasserstein distance
between empirical measures. We test the accuracy of change point detection meth-
ods on synthetic time series and electrocardiography (ECG) data. Experiments with
ECG illustrate advantages of the non-parametric approach versus complex parametric
models and LRT.

Keywords: Bootstrap, Gaussian approximation, Wasserstein distance, change point
detection.



Zusammenfassung

Ziel dieser Arbeit ist theoretische Eigenschaften verschiedener Bootstrap Metho-
den zu untersuchen. Als Ergebnis fiihren wir die Konvergenzraten des Bootstrap-
Verfahrens ein, die sich auf die Differenz zwischen der tatséchlichen Verteilung einer
Statistik und der Resampling-N&herung beziehen.

In dieser Arbeit analysieren wir die Verteilung der 12-Norm der Summe unabhéngiger
Vektoren, des Summen Maximums in hoher Dimension, des Wasserstein-Abstands
zwischen empirischen Messungen und Wassestein-Barycenters. Um die Bootstrap-
Konvergenz zu beweisen, verwenden wir die Gaussche Approximations technik. Das
bedeutet dass man in der betrachteten Statistik eine Summe unabhéngiger Vektoren
finden muss, so dass Bootstrap eine erneute Abtastung dieser Summe ergibt. Ferner
kann diese Summe durch Gaussche Verteilung angendhert und mit der Neuabtastung
Verteilung als Differenz zwischen Kovarianzmatrizen verglichen werden.

Im Allgemeinen scheint es sehr schwierig zu sein, eine solche Summe unabhéngiger
Vektoren aufzudecken, da einige Statistiken (zum Beispiel MLE) keine explizite Glei-
chung haben und moglicherweise unendlich dimensional sind. Um mit dieser Schwierig-
keit fertig zu werden, verwenden wir einige neuartige Ergebnisse aus der statistischen
Lerntheorie.

Dariiber hinaus wenden wir Bootstrap bei Methoden zur Erkennung von Anderungs-
punkten an. Im parametrischen Fall analysieren wir den statischen Likelihood Ratio
Test (LRT). Seine hohen Werte zeigen Anderungen der Parameter Verteilung in der
Datensequenz an. Das Maximum von LRT hat eine unbekannte Verteilung und kann
mit Bootstrap kalibriert werden. Wir zeigen die Konvergenzraten zur realen maxima-
len LRT-Verteilung. In nicht parametrischen Fallen verwenden wir anstelle von LRT
den Wasserstein-Abstand zwischen empirischen Messungen. Wir testen die Genauig-
keit von Methoden zur Erkennung von Anderungspunkten anhand von synthetischen
Zeitreihen und Elektrokardiographiedaten. Letzteres zeigt einige Vorteile des nicht
parametrischen Ansatzes gegeniiber komplexen Modellen und LRT.

Schlagworter: Bootstrap, Gaussche Naherung, Wasserstein-Entfernung, Anderungs-
punkterkennung.
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1 Introduction

1 Introduction

The bootstrap is a very effective and practical tool for confidence interval estimation,
hypotheses testing and models ensemble composition. There are many types of the boot-
strap and each has its own specifics (ref. Horowitz (2003), Bucher and Dette (2013),
Lahiri (2013)). They were designed for parametric and non-parametric statistical models
and may handle both independent and dependent data. Besides that there is a big gap
between experimental precision and theoretical grounds for this procedure. While showing
a good practical results the bootstrap also requires a rigorous theoretical justification.

Proving the consistency of bootstrap procedure means that one has to estimate the
difference by distribution between some statistic depending on a random dataset and
corresponded bootstrap statistic. One may sample the bootstrap statistic multiple times
and thus approximate distribution of the original statistic. In recent years many interesting
works have appeared on this topic with a motivation to reduce this gap between practice
and theory. Spokoiny and Zhilova (2015) investigates independent parametric models
with bootstrap weights. They prove a finite sample bound for difference in distribution
between maximum likelihood estimation and maximum argument of the weighted models.
The convergence rate in this paper is (p3/ n)l/ 8 where p is parameter dimension and n is
dataset size. Further we will discuss this result with more details and will show that it may
be improved to (p?/n)'/2. However, it is still not applicable in high dimensional setting
when n > p. In papers V. Chernozhukov (2014), Chernozhukov et al. (2013b) the authors
study the infinite norm of high dimensional random vectors sum from which one can derive
the bootstrap convergence with rate (log” p/n)'/6. This rate is not optimal (the lower
bound is (log® p/n)'/?) and improving this result is a very challenging task. Naumov et al.
(2019) considers bootstrap procedure in application to covariance matrices of Gaussian
random vectors and their spectral projectors. They show that in high dimensions instead
of parameter p one may treat the spectrum of covariance matrix.

In this research we focus on sparse models with different types of regularisation. In
most cases the regularisation term is /; norm (lasso). It allows to zero insignificant com-
ponents of the high dimensional model parameter and for the nonzero part of interest we
further prove the bootstrap consistency. For the other regularisation types we consider
the projection of the parameter into a low dimensional space and restrict entropy of the
full space. Moreover, we extend bootstrap theory for the composition of multiple models
that share one dataset and then apply it in change point detection task.

Consider a likelihood function L(#) with independent observations Y = (Y1,...,Y,) and

parameter 6:
n

L(0) = > _1:i(6,Y5).
i=1
By means of the bootstrap procedure in application to statistical models one may sample
MLE values of the parameter 6. It could be done in two ways. The first variant is weighted
bootstrap, where we multiply the components of likelihood by random weights. And in
the second variant we sample random indices from the dataset with repetition, which is
called empirical bootstrap. At each resampling iteration we obtain a new value of the
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optimal parameter. In the end we obtain the empirical distribution. Define the likelihood
of the weighted bootstrap as

L) = 3" 10, Yy)u?,
=1

? are independent random weights, such that Ew? = Varw? = 1. The empirical

bootstrap likelihood is

where w

n
L) = Ui (0, V),
i=1
where k[i] are independent random indices from set {1,...,n}.

Our final goal is to prove bootstrap consistency for various examples of parametric and
non-parametric models with independent observations. In Figure 1 it is the last block of
the diagram. And it means that one has to find the difference by distribution between
the deviation of the correspondent MLE parameters or analogically between values of the
likelihood function. We apply the prevalent approach for the theoretical justification (ref.
Spokoiny and Zhilova (2015), V. Chernozhukov (2014)). It consists of two steps. First we
approximate the deviation of the parameter by the sum of independent random vectors &,.
It involves quadratic approximation method from paper Spokoiny (2012a). Also we show
that in analogical sum in the bootstrap case the summands are additionally multiplied by
the random weights. In the second step we have to find the upper bound in multivariate
normal approximation which is a generalisation of the classical Berry—Esseen theorem (ref.
Bentkus (2003a)). Particularly we suppose that >_1* ; &; converges to some normal vector
Z. The same is true for the bootstrap sum. And finally one has to compare two normal
distributions with covariance matrix X' and its empirical estimation )5

Quadratic model approximation
D(QA— 0) ~ > &
D(ab —0) =X €i(wib -1)

I

Multivariate Gaussian approximation
n & - ZeN(0,D)

Y &i(w) —1) -5 2 e N(0, 5)

|

Bootstrap consistency
DO —¢*) -% D@ - 0)
L(6) = L(9*) == L(&") — L(6)

Figure 1. Bootstrap justification technique. The first and second blocks correspond to the main steps
in the proof. From them the last block follows. The sign “d” denotes convergence by distribution.

& =D'V(0"), D=3 Varg, =301 &€



1 Introduction

In the following list the main contributions are selected:

o Bootstrap consistency for high dimensional models. Among them are barycenters
model and different models with lasso regularization;

o Bootstrap consistency in change point detection with likelihood ratio test;
e Improvements in multivariate Gaussian approximation;

e Implementation and experimental study of parametric and non-parametric algo-
rithms for change point detection.

The thesis structure is organized as follows. Chapter 2 includes useful technical results
from probability theory. We prove here Gaussian approximation using Stein’s method,
show how the correspondent bound depends on the norm type, discuss Levy’s concentra-
tion function and the comparison of two Gaussian random vectors. Chapter 3 provides
statistical semi parametric setup and states a number of theorems about finite sample
quadratic approximation of the likelihood in both in “real” and “bootstrap” settings.
These results allow to derive the main theorem about the bootstrap consistency in general
case and we specify them for two particular examples: generalized linear models and sparse
models with lasso regularization. Chapter 4 is devoted to the problem of change-point de-
tection. We propose a new method in which Likelihood ratio test (LRT) is sequentially
applied in a sliding window procedure. Its high values indicate changes in parametric dis-
tribution of the data sequence. Obviously the LRT values require a predefined threshold
for their maximum. The maximum value has unknown distribution and may be calibrated
by the bootstrap. It enables to estimate empirically the LRT distribution. We obtain the
convergence rates of the “bootstrap” quantiles to the “real” quantiles of the LRT distribu-
tion. Moreover we extend the proposed method to non-parametric models, where instead
of LRT we use Wasserstein distance between empirical measures. We evaluate the accu-
racy of change point detection methods on synthetic time series and electrocardiography
data. Chapter 5 deals with maximum likelihood estimation of Wasserstein barycenters
model. Basing on representation of Wasserstein distance in Fourier basis and theory of
support functions we obtain the necessary conditions of quadratic approximation from
Chapter 3. Chapter 6 collects some known useful results from random matrix theory and
about deviations of sub-Gaussian random vectors.
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2 Gaussian approximation

2.1 Generator approach

Let A be generator of a Markov process X; with stationary distribution p. Note that the
necessary and sufficient condition for stationary distribution is IEAf(X) = 0, X ~ p, for

all f where A is defined. Remind that by definition
Tif(x) = E[f(Xy)[ X0 = 2]

d
A=2T
dtt

Consider some examples:
1. Normal stationary distribution N'(0, Y)
Af(z) = {2V f(2)} — 2" V f ()
2. Poisson stationary distribution Po(\)
Af(x) = Af(z+1) —xf(x)
3. Gamma stationary distribution I'(r, A)

Af(x) = 2 f"(z) + (r — Az) f'(2)

Assume one has to find a limit distribution of @, (X;,...,X,), n — oo, where X7, ...

(AN)

(APo)

(AL)

s Xn

are independent and IEX; = 0. Construct Markov chain by means of exchangeable pairs:

1. Start with Z,,(0) = (X1,...,X,)

2. Pick index I € {1,...,n} uniformly at random; replace X; by its independent

copy X7:

Zn(1) = (X1, X711, X7, X141y - -+, Xi)

3. Continue the chain for k € N, k > 1

Zn(k) = (Zo(k = D[+ T = 1], X3, Zp(k — D)[I +1: n))

4. Make time continuous for ¢t € IR+

Zn(t) = Zn(Po(t))



2 Gaussian approximation

The generator of Markov process Z,(nt) is
Anf(z) = n(E[f(Z(1))]2(0) = 2] — f(z))
=N (’:L ZEf($1, e ,.’El;l,Xi,l‘Z;H, e ,l‘n) — f(IE))
i=1

The generator of Markov process @,,(Z,(nt)) is A, f(®@n(z)). Make its Taylor expansion

Au@a(@) = V7 1@ Y- (2

—|—%tr {VQf(an(x)) Zn: < oz, )T (EX;X] + za]) (%ﬁj)}

1 T " [ 0%, T | . T
+2tr{v f(@"(x))z:(axiax ) (EX;X; +xzxi)}

The last equation provides a constructive heuristic of finding generator corresponded to
the limit distribution taking into account only the first and second derivatives of @,,.
Let p be limit distribution of @, (X1, ..., X, ), n — oo, then y is a stationary distribution
of ¢, (Z,(nt)), n — oo, and
FEAf(@(X)) >0

For example, when @, (z) = G >

Anf(@n(@)) = =V f(@n(2))Pn(2)

S|

V2 f(Pn(2))

1

+

N |
—+

-
—

n
(EX;XT + :ci:niT)}
=1

By the Law of Large Numbers for the variance matrix X' of the limit distribution
1 n
5 S EXX] +via]) = X
i=1

and A, f(P,(z)) converges to (AN).
Generators may not only characterize the stationary measure but also reveal the distance
to it. Let the distance between random variables be defined as

sup |[[Eh(X) — IEh(Z)]
heH

[
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Then setting
Afu(@) = h(z) — Eh(Z)

under assumption IEAf(Z) = 0 one has to solve the last equation and estimate |IE'A fy,(X)].
Further we concentrate attention on (AN') and the distance to Normal distribution.

2.2 Berry — Esseen Theorem

Multivariate analogues of Berry — Esseen Theorem have many modifications depending
on space dimension of random vectors and functions set used for measures comparison. V.
Bentkus in his papers Bentkus (2003b), Bentkus (2003a) has presented excellent results
related to this topic. Namely, for a sequence of i.i.d random vectors with identity covari-
ance matrix {X;}7, 2(X;) € IRP, a convex set A and Gaussian vector Z € N(0,1) it

holds " 14 5

1 400p /4 IE)| X4 |
Pl — XieA|-IP(Zc A<
’ <w€ 2 ) ( >’ vz

W <1nZ":Xi’Z> <0 (EHj%H?’)

i=1

and

We extend these two statements for independent random vectors with non-identity covari-
ance . Additionally we remove factor p'/* replacing it with anti-concentration constant

defined below.
Def (Hy). The multivariate Hermite polynomial Hy, is defined by formula

ST, I e,
Hy(x) = (~1)Mem> /2m6 ¥

where z € RP and |k| =k + ...+ k).

Lemma 2.1. Consider a Gaussian vector Z ~ N (0, Y) and two functions h and f; such
that

1 [
fulw) == [ ER(Z(a, 1))t
0
WZ(z,t)) = h(Vtx + 1 —tZ) — [Eh(Z)
Then f, is a solution of the Stein’s equation
h(z) = ((1{V25} — 2TV) fu ()
and

ol*! 1y 4lg- _
a1 = /0 §mEﬂk(Z)h(Z(x,t))dt



2 Gaussian approximation

Consequence.

1
Vfula) = V() = [ G P2 (2w 0) ~ W2t

where
Hy(2)=(27tz2)(xtz)T — x-t
_ 2_1/2{(2_1/22)(2_1/2Z)T _1}2—1/2

Theorem 2.1 (Multivariate Berry—Esseen with Wasserstein distance). Consider a se-
quence of independent zero-mean random vectors X = Y 1" ; X; in IRP with a covariance
matrix

EXXT=x

Then 1-Wasserstein distance between X and Gaussian vector Z € N (0, X) has following

upper bound
Wi(X, Z) < V2pus (1 + log (2\/tr{72}p> - log(us))

n
ps = > EX] 27X X; — X
=1

where

and each X/ is an independent copy of Xj.

Remark. In ii.d case with X' = I,

Wi(X,Z) = O (3/21}5()>

These is the same theorem with a different proof in paper Bentkus (2003a).

Proof. Let 6 be some value in [0, 1] and

ER(X) = Bw{VS},(X) — B XV f,(X)

zn: XT{v2fh X_;+0X;) — Vth(X_i—IrX{)}Xi

= ZE(E*l/QXi)Tzl/Q {v2fh(X—i + QXZ) o vth(X—i + X{)} 21/2271/2)(7;
i=1

For a unit vector ||7y|| = 1 and conditional expectation F_; = IE(-| X;, X])

VB2 {2 fi(X i + 0X) = V2 (X + X[) | D2
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) /0 s Bl (52219 ~ LHMZ 0+ 0,08)) = h(Z(X + XL,1)

1—1%)
< / TR s / ol pa
“Joo 2(1-1) 1o (1—1)1/2

< —élog(a) + 2By«
2B

< -

_A<1+log<A)>

A=|1X; = X[ B (5722)T9)? = 1 [ VA(VHX' + 61X — 62X] + VI = 12)]

B =E_|(£722)"7)? = 1| Z|| IVA(VHX' +6X; + 62T = 12)|

Account that [|[VA(-)]] <1 for W.
O

Theorem 2.2 (Multivariate Berry—Esseen). Consider a sequence of independent zero-
mean random vectors X = > | X; in IRP with a covariance matrix

EXXT =%
Let a function ¢ : IRP — IR be sub-additive:
plz+y) < o)+ oY)
and with Gaussian vector Z € N (0, X)) fulfills the anti-concentration property, such that
P(p(Z) >x) —P(p(Z) >x+ A) < CsA

Then the measure difference between X and Gaussian vector Z has the following upper
bound Vzx

[P(p(X) > 2) — P((Z) > )| < 22Capslog (C‘ﬁg) log (W)

where

n
ps =Y EXT Y7 X20(X;)
i=1

Proof. Define a smooth indicator function

0, t<x
Guna(t) =% (x—1)/A, te[z— A ]
1, t>ux



2 Gaussian approximation

Set h = g, A o ¢. Denote the required bound by ¢:
[P(p(X) > x) = IP(p(Z) > z)| <6
Note that from sub-additive property of the function ¢ follows
9o a(P(X + dX)) < gz a(9(X) + ¢(dX))

and ]
9o (L) = Z]I[.I—A <t <z

and
Ed, 2(¢(2)) = 5 (P(e(Z) > 7~ 4) = P(p(Z) > 7)) < Ca

g, 2(@l2(X,0)) < 5 (Pp(2) > 2 = 4) — Plpl2) > 0)) + 5 <Ca+ 3

Assume X/ is an independent copy of X; and 6 is some value in [0, 1] and

ER(X) = Ba(V2}fu(X) B XIVA,(X)
=1

=Y BXT V(X i+ 0X) - V2fu(X i+ X))} X
i=1

- Z DRI E LG (X i+ 0X:) = V(X + X)) } 225712,

According to the consequence of Lemma 2.1 one has to bound the following expression

FE_h(Z(X_;+0X;,t)) — E_;hMZ(X_; + X],1))
< FB-ige,aA(p(Z(X—i + X[, 1)) + o(Xi = X)) = B—ige,a(p(Z(X-i + X], 1))
< E_igy A(p(Z(X—i + X[, 1) + 00(Xi — X}))p(X; — X;)

2
< (CA + A(S) o(X; — X7)

Analogically

EnNZ(X_;+ X[,t)) — Eh(Z(X' +0X;,t)) < (CA - 22) o(X; — X])

Apply this inequalities in previous Taylor expansion denoting

£ = (27122)T3)2 ~ N2(0,1)
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E_{(£7122)"3)* = 1HMZ(X + 0X;,1) = W(Z(X—s + X/, 1))}

<|r—1] (CA + 22) o(X; — X)) + E 1% > 7]e?

Lemma 2.2. Let a random variable ¢ has a tail bound Vx > xq
P(e>h(x) <e™

Then for a function g : IRy — IRy with derivative ¢’ : IRy — R4
E1e > h(xo)lg(e) < g(h(sa))e™ + [ e () (i
X0

In particular
IE T[e > h(xo)]e < h(xp)e ™ —i—/ e *h (x)dx

X0

IF T[e > h(xo0)]e" < h(xp)"e ™ + 7“/00 e h(x)" " H (x)dx

X0

For e ~ N(0,1) we have
Pe>V2x)<e™

and by means of the previous lemma we get

E e > 7]e? = 2 e > /7)e? < 2(1 + 2)e /2

E_{(Z7Y22)Ty)? = 1H{h(Z(X_i + 0X;,t)) — h(Z(X_; + X[,1))}

<|r—1] (CA + 22) o(X; — X)) +2(1 + 2)€_T/2

We need also another upper bound for this expectation when t close to 1.
E_{((Z722)")" = 1H(Z(X—i + X[, 1))
= B_i{(£71?2)"7)? = B{h(VHX i + X)) + VI = t2) = h(VH(X_i + X))}
< E_i|(5722)"7) = 1|9, al (V1 = 12)

1
il 2
< V2B (Z)
From the proof of Theorem 2.1 follows
A
|Eh(X)—IEh(Z)| < ~3 log(a) + 2By«

Set A =8/(2C,)
B = % 2IE0*(Z) p

10



2 Gaussian approximation

Set 7 = 2log(4p/(Capus))

A =57 —1|Capz + 2(7 +2)e /?p

4
e

For making step from h expectation difference to probabilities difference involve the next
inequality:
P(o(X)>z) <EWX)=IFEh(Z)+ FEh(X)—IEh(Z)

< P(p(Z) > x — A) + Eh(X) — EW(Z)
< P(p(Z) > z) + BEW(X) — Eh(Z) + CaA

Which gives
§ <|EWX) — FEh(Z)| + CpA

A
5 < -5 log(a) + 2Bva + CaA
< 2A (1 +1og(2B0d) — log(d) — log(A))
< 2A(1+1og(2Bd) — 2log(A) + loglog(2Bd) — loglog(A))

< 920,43 log <4p> o (M)

Caps 20C 4113

Remark. In ii.d case with X' = I, and ¢(z) = O(]|z]|)

P(o(X) > ) = P(p(Z) > z)| = O (Caps log? ()

Note that Lemma 2.2 improves the classical Multivariate Berry-Esseen Theorem Bentkus
(2003b) for the case of sub-additive functions ¢(z) = O(||z||). Namely, it answers the open
question “Whether one can remove or replace the factor p'/4 by a better one (eventually
by 1)”.

Make an extension of the Gaussian approximation for the case when the second moments
of X and Z are slightly different. Let as previously X = >1' ; X; and

1
|[Var X; — Var Z;|| ~ —
n

Then after sequential replacement X; — Z; the approximation bound will not converge to
zero, while

1
||Va1“X —VarZH ~ %

11
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The next lemma resolves this problem. At first one should make Gaussian approxima-
tion with equal variances (Var X = Var Z) and then compare two Gaussian vectors with
different variances.

Lemma 2.3 (Pinsker’s inequality). Let X and Y be two zero mean Gaussian vectors
with X'x = Var(X) and Xy = Var(Y'). Then for any event A

IP(X € A)—IP(Y € A)| < %tr{(gxg;l _ 1)2}1/2

Proof.

P(X € A) — P(Y € A)| < \JKL(Px| Py)/2

1/QX, Y = 2;1/21/ reduces the general case to the

situation when Py is standard normal while Px € N (0, B) with B = 2;1/22)(2;1/2

The change of variables X = X

2KL(Px||[Py) =tr{B — I} — logdet B
tr{B — I} — logdet B = tr{diag A(B) — I} — log det diag A\(B)
=Y (hi—1-logh) <Y (N — 1) =tr{(B- 1)’}

2.3 Anti-concentration

Anti-concentration property (ref. Chernozhukov et al. (2013a)) can be interpreted as
an asymptotic of a probability measure depended on event size. It converges to zero when
the event size goes to zero. Denote by Aa \ A a region of size A around event A. Anti-
concentration is better when the probability of Ax \ A is lower. Many works use more
classical and identical with anti-concentration term Levy’s concentration function (ref.
Petrov (1995)). Consider first one dimensional case where the random variable is ¢(Z)
and Z is a Gaussian vector.

Lemma 2.4. Let Z € N(m, X) € IRP, a function ¢ : IRP — IR be sub-additive:

p(r+y) <o)+ oY)

then Vx > 0
P(p(2) € [, + A]) < ACa,

where

Proof. Note that

12



2 Gaussian approximation

Apply Pinsker’s inequality from Lemma 2.3.
O

The next lemma deals with anti-concentration in one dimensional case where the random
variable is maximum of a Gaussian vector.

Lemma 2.5. Let Z € N(m, X)) € IR,
o1 < Vi < o,

ap = E’IIIE),X(ZZ — mi)/\/ E’ii7

then Vx
IP(max Z; € [z,x + A]) < AC4(log A),
where
_ 4 [ o9 09 o1 o1
Ca(logA) = p (Ulap—i- (Ul 1) 2log (A) +2 02>
Proof. Find by reference Chernozhukov et al. (2013a). O

There is also an extension for maximum of Gaussian process.

Lemma 2.6. Let 7 C L2(P) be a separable class of measurable functions and entropy
of F be finite. Denote by G(f), f € F a Gaussian random process with zero mean and
covariance depended on measure P:

E(G()G(g)] = / f(@)g(x)dP(x)

Suppose that there exist constants o1, oo > 0 such that ¢? < IEf? < o2 for all f € F.
Then V z and A >0

P (sup G(f) € [:U,:U+A]> < CQA,
fer

where

Ca=0 <JE lsup G(f)
feF

+4/1 \/log(al/A)>

Proof. Find in Lemma A.1 from article V. Chernozhukov (2014). We have used finite en-
tropy assumption in this Lemma because it ensures the existence of process G( f) according
to Dudley’s criterion for sample continuity of Gaussian processes. O

2.4 Euclidean norm statistic

The distribution approximation of Euclidean norm of independent vectors sum is very
important in statistics since it characterise the deviations of Likelihood maximum and
MLE (ref. Theorem 3.1). One may use Lemma 2.2 which gives a bound for chi-square

13
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root approximation treating it as a special case of multivariate Berry—Esseen Theorem.
Let X =", X;, X € R? and Z € N(0, EXXT) then

[P(|X]| > z) = P(|Z]| > 2)| < 22Caps0 (10g2 53)
p 2
< —
<0 (\/ﬁlog n>

since C4 = O(1/,/p) for Euclidean norm (Gétze et al. (2019)) and pz = O(p*/2/\/n).
Lemma 2.2 bounds the difference of probabilities by the third moment ps, but it could be
zeroed multiplying X by independent random flip variable which doesn’t change the norm
and has zero third moment. The open question is whether one can improve the previous
asymptotic using the 4-th moment and the generator (AI'). Robert E. Gaunt (2015) has
made such attempt for “smooth” distance between two measures. They have presented
the approximation bound in the following form:

Lemma 2.7. Let EX;X] = 11, and {Xj;} be i.i.d and || Z||* ~ xp. For any h € C3(IR)
it holds
dpEX?

BA(|X )~ Bn(1Z)P) < 27

(collall + ||| + ao|[R"|| + | R"]),
where
ap = 2+ 69| EX?|
o = 38 4+ 1781|EX3, |
ag = 203 + 1781|[EX}, |
a3 = 321 4 1320/ [EX3|

Remark. The bound for the “smooth” difference has significantly better asymptotic
O(1/n) than the analogical asymptotic for measures difference O (% log? n) discussed

above.

The main drawback of Gaussian comparison by Lemma, 2.3 is the asymptotic O(/p), when
2(X),2(Y) € IRP. More complex method based on characteristic functions improves the
comparison bound for s norm.

Lemma 2.8 (Gotze et al. (2019)). Let X and Y be two zero mean Gaussian vectors in
Hilbert space H with Xy = Var(X) and Xy = Var(Y). Denote by Ax, Ay eigenvalues
of Xx,Xy. Then for any non random A € H and Vz

[P((|X + Al < 2) = P([Y]] < =)

1 1 )
= O<(A1xA2X)1/2 + (AIYA2Y)1/2> (H)\X — )\YHl + HAH )7

14



2 Gaussian approximation

where with A\ix > dx > ...

kX_ZA]X, k=1,2
ij=k
2.5 Maximum statistic

Denote by hg(x) a smooth maximum function which converges to max; z; when g — oo.
hg(z) =B~ Nog u(x) Zeﬁmz, x = (z1,22,...)

Explore its derivatives and some other properties. It appears that 1-norm of the smooth
maximum derivatives doesn’t depend on the dimension which enables to make 1 —oco—norm
decomposition in the third moments of Gaussian approximation.

Lemma 2.9. The derivatives of hg(z) of order m = {1,2,3} have the following upper
bounds Vz

IV hg(a)) < ™

Proof.
Vha(z) = 51,
u
VeoVu Vu®Vu
2 -1 .
Vihg(z) = B8 ( ” = >,
Vohs(z) = 5 (V@V@Vu B V®V1;®Vu B V®(V1;®Vu) +2Vu®vg®w¢)
u u U U

Define p; = ( ) that satisfies to condition >, p; = 1. The first tensor norm equals to
the convolution maximum with vectors «, ¢, v under restriction |la|l,, = 1, |||

1loo =

ol V2hg(x) (Z PiciYi — > ity ij’Yj)

= B (FEay — BalEfy) = BEAY < fBllalso|| V]

> vi’jkhg(x)aiqsﬂk = (% (Ea¢y — FalE¢y — Ea¢lEy — FEayE¢ + 2IEalEIEy)
ijk

e (E&&’s%) < 3|aool|@lloo [ lloc

Taking maximum provides the required restriction for the 1-st tensor norms.
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The next property of hg(x) with « € IRP characterises the precision of the smooth maxi-
mum approximation

miax(xi) < hg(x) < mzax(xi) + B~ log(p)

Application of indicator to both parts yields inequality required in probabilities compari-
son.

Lemma 2.10. For a smooth indicator function ga (ga grows from 0 to 1 inside interval
[2,2 + A]) it holds with A = 3~ !log(p) that

I|max z; > z+ A| < gah(zx) <T|max z; >z — A
0<i<p 0<i<p

Now we can explore the difference between the distribution of maximum of independent
random vectors sum and distribution of the maximum of some Gaussian vector. According
to Lemma 2.1 one has to bound the third moment of function f3(z) (the solution of the
Stein’s equation). Consider the case when function h is a composition of a smooth indicator
gn and smooth max hg. The third gradient of the composition is

V3(ga o hg) = gAVhs @ Vhg @ Vhg + 29AV?hg @ Vhg + gAVhs @ V2hg + gAV3hg
From Lemma 2.9 follows that
| V392 0 )|, < 191 + 319418 + 1g/a 15

Assume that g grows from 0 to 1 in interval [z, z+ A] such that g/ = 0 outsize [z, z+ A].
Furthermore in this case

V3(gn o hg) = V3(ga 0 hg) Tz < hg(X) < z + A

It gives us the Gaussian approximation for the smooth function (ref. proof of Theorem 2.1).
Consider as previously sum of independent vectors X = > " | X;, 2(X) € R and Z €
N(O,EXXT)

[Ega(hs(X)) — Bga(hs(2))| < [VP(9a 0 hg)WE L[z < hg(X) < 2+ Dlps,

where

ps =Y 2IE| X2,
p

Move to the approximation of distribution function. The aim is to find upper bound for

Eq = ‘IP (max <ZXZ> < z) — P (max Z < z2)

16



2 Gaussian approximation

Since IF IT[max(X) < z] = IP(max(X) < z) one gets

P(max(X) < z— A)

< Eg(hs(X))

< Eg(hg(2)) + IV (ga © hg) |13

< P(max(Z) < 24+ A) + |[V3(ga o hg) W E [z < h(X) < 2+ Al

Subsequently
|[P(max(X) < z) — P(max(Z) < z 4 2A)| < [|[V3(ga 0 hp)|1E Tz < h(X) < 2+ Alus
Use the anti-concentration property for random variable max(Z) (Lemma 2.5):
P(max(Z) € [z,z 4+ A]) < CyuA

Then
Eg <2040+ V3 (gn 0 hg)WE Mz < h(X) < 2+ Alps

and

F_;(I[z <h(X) <z+A))

< E-; (I[z <max(X) <z +24))

< F(I[z <max(Z) < z+2A]) + Eg

<2044+ Eg
We use conditional IF_; because us elements depends on X;. Denote the restriction for
the third derivative by constant C;:

s o], = 25

Group all together
1

|[P(max(X) < 2) — P(max(Z) < 2)| < 5CY3Cauy

We have proved the following statement.

Theorem 2.3. Let X = > ;| X; € IRP with independent random vectors and Z €
N(EX,EXXT) then Va

|IP(max(X) < z) — P(max(Z) < z)| < 5Ci/3CA,U;,/37

17
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where
C,=6 (1 +3logp+log2p>

ps = > 20E|| X2,
i

and Cy = Cy4(logp) is anti-concentration constant (ref. Lemma 2.5).

Remark. The approximation for maximum function in this Theorem has asymptotic
O(log®® p/n'/%) and has worse dependence on n than in general case (Lemma 2.2). But
it is compensated by logarithmic dependence on the dimension p.

Lemma 2.11. Let X and Y be two zero mean Gaussian vectors with X'y = Var(X)
and Yy = Var(Y). Let also f(X) be a smooth function. Then

BA(X) = BS(Y)] < 5155 = Syl s |EVHZO)]1,

where

Zt) =Vt X +V1—tY

Proof. Without loss of generality assume that X and Y are given on the same probability
space and independent. For each ¢ € [0, 1], define

U(t) = Bf(Z(t) = Ef(VtX +vV1-tY)

/01 W’(t)dt‘

V(1) = BVIZ)TZ0) = B 2X - (1 - 072y Y 9 20)

(1) - (0)] =

To compute this expectation, we apply the Stein identity. Let W be a zero mean Gaussian
vector. Then for any C' vector function s it holds

E[W s(W)"] = Var(W) E[Vs(W)]

E[Vf(Zt)XT] = 2 Ex B[V f(Z(1))]
E[V(Z)YT] = (1) 2Sy B[V f(Z(1))]

& (1)]

IN

Sl (5x — 2 BV (20)])]

IA

1 1
5 1% = Zylloo [E[V2F(ZO)]I], < 5 15x = Byl BV £

18



2 Gaussian approximation

2.6 Multiple statistics

Consider a linear form (AX) with sparse-row matrices and random vector X = (X1,..., Xn)
with independent elements (sub-vectors). In order to make approximation by Gaussian
vector AZ one has to group (Xi,...,Xn), such that elements in one group would have
no common non-zero coefficients in each row of matrix A. It would provide the following
representation

AX =Y1+...4+Y,, Y, =AFX

Vectors {Y;} should be independent and Fj is a filter for the i-th group that sets matrix
columns to 0 which correspond to the other groups. In case each row of the matrix A has
less or equal than n non-zero elements, the minimal groups count equals to n. The next
statement confirms it.

Lemma 2.12. Let each element in a set of subsets { M} has size n. Then exist subsets
{Z41,..., 2} with properties

Uz =UM.. Z(Ms=1, Z[()2:=0

Proof. Build subsets {Z1, ..., Z,} constructively. Take one element from J; M. Exclude
this element from all {M;} and add it to Z;. Mark subsets which contain this element
as {M’'s}. Take another element from (J, M; \ U, M’s and add it to Z;. Repeat this
procedure until | J; M\ U; M's| = 0. Then do the same steps for | J, M\ Z1 and obtain
Zo with the required properties by construction. ]

Basing on the previous Lemma apply Gaussian approximation for maximum from Theorem
2.3 to Y; instead of X;.

Lemma 2.13. Assume that matrix A has at most n non-zero elements in each row and
non-zero elements correspond to independent elements in vector X = (X71,..., Xx). Then
Gaussian approximation with vector Z € N(IEX, IEX XT) has the following upper bound

P (max(AX) < ) — IP (max(AZ) < x)| < 5CL3Capy’”,

where
n

s =2 | X33 NAFT < 20| A3 E (1X]2,
i=1

and C),, C4 are from Theorem 2.3 with p = rows count of A.

Consider a composite maximum function with its smooth approximation hg(p(X))

1?%}%%(96) ~ hg(p(z)), @)= (p1(2),...,0r(x))

Combination of the maximum approximation with property h(z) < max;(z;) 4+ 3~ log(p)
leads to the statement

max(¢i(2)) < hs(p(x)) < max(py()) + 57" log(T)
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This allows to extend Lemma 2.10.

Lemma 2.14. For a smooth indicator function ga (ga grows from 0 to 1 inside interval
[2,2 + A]) it holds with A = 87! log(T) for all x and z that

I > A < h <1 >z—A

max o(z) > 2+ A < galhs(p(e)) < T | max gy(z) > 2

Theorem 2.4. Consider a composite maximum function max<;<7 ¢:(Az), t € N. As-
sume restrictions for derivatives of the functions yy:

m—1

C
Vi Vgl < 22

Assume that matrix A has at most n non-zero elements in each row and non-zero ele-
ments correspond to independent elements in vector X = (Xi,...,Xx). Then Gaussian
approximation with vector Z € N (IEX, EXX T has the following upper bound Vz

[P (p1(AX),...,or(AX) <) — P (p1(AZ),....pr(AZ) < 2)| < 5CY3Capy?

where
ps < 2nl| A3 B (|1X |2,

Cu=6(1+3logT+3C, +log? T + 3C, log T + C2)

and C4 is obtained from condition Vz, A

<
)/ (121%}%%(‘4Z) € [x,m-i—A]) < ACY

Proof. From the restrictions for derivatives of the functions ¢, follows

IVA(X)D I < VALVl <1

logT C
ogT |

IV2 (e (O < V2RIVl + VARVl < =%+ ZF

IV he(XDN1 < V2RIVl + 3IV2RIIVul 1l Vel + VALV o

1
< =

<R3 (log®> T + 3C,log T + Cf,)

So one can override C, used in Lemma 2.13 for this case:
Cu=6(1+3logT+3C, +log? T+ 3C, log T + C2)

Apply Lemma 2.13.

20



2 Gaussian approximation

Find an upper bound for distribution difference with X € A (0, Yx) and X € N (0, Xy),
ie. Vo, t € N:

E=1|IP X)) < — IP Y) <
P (s e) <) = P (g ) <o)

Assume following restriction for the second derivative of the function f from Lemma 2.11
and define C's;:

1 1
§||V29A ohgop|: < ECE

Taking into account IP = IE' 1 we get
IP(H(X)<z)—IP(H(Y) < z£2A)]
< |Ef(X) - Ef(Y)

< IV2S B T |A(X) € 2.2 + 8] 1 Zx - Dyl

1
<

< LGOS [H(X) €22+ m]} 15x — Sy [l

The anti-concentration property allows 2/A\-shift elimination and provides an upper bound
for
FEIH(X) € z+£2A] <2AC4

Combine with previous equation
2
E< ECEACAHEX — EyHoo +2ACy

Optimize over /A value
1/2 _ 1/2
E <4ACH " Cal|Xx — Xy ||3]

Theorem 2.5. Consider X and Y two zero mean Gaussian vectors with Yy = Var(X)
and Yy = Var(Y). Under conditions from Theorem 2.4 Vz, t € N:

<4C20u|1 Zx — 2y || Y2,

<z)— <
’]P (1rélt3§XT P < x) P (@asXT alY) < x)

where
Cy=2(1+1ogT+Cy)

and Cj4 is obtained from condition Vz, A

<
)/ (1?%>§ngt(AZ) € [x,:z-i—A]) < ACy
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2.7 Wasserstein distance statistic

Consider two point clouds of size n and m. They may have the same distribution (null
hypothesis) or different distributions. Assume that samples in each cloud are independent
(when we use block-bootstrap we may assume that blocks are independent). It appears
that the Wasserstein distance between two point clouds under null hypothesis may be
approximated by maximum of some Gaussian vector. In paper Max Sommerfeld (2017)
proposed the following theorem for the case of discrete distributions. Define convex sets:

o :{(u,v)GRNXRN:ux%—UII <d (z,2'), (:B,a:’)GX}

@;:{UGRN:UJ;—U:E/ < dP (z,2'), a:,:c’eX}

Dp(r,s) = {(u,v) €D, (u,r)+ (v,s) = Wg(r,s)}

Theorem 2.6. Let measures 7, s be defined on a discrete set X = {z1,...,zy} and i.i.d.
samples Xi,..., X, ~rand Y,...,Y,, ~s.
Multinominal covariance matrix of the measure r is

70901(1 _'Trl) Tz Ty T T Ty
() = —ng'zrxl Toy (L—7Tpy) ... —rx?rxN
“TanTz “TanTzs o Ty (1 - TIN)

such that with Gaussian random vectors Z, ~ N (0, X(r)) and Zs; ~ N (0, X(s)) it holds
for empirical measures 7, and §,,:
1)One sample - Null hypothesis

B =

L ~ d
n W, (P, r) —= { maxu’ Z,
ucd,

2) One sample - Alternative
nt (Wp (P, 8) — Wy(r,s)) N —Wl}_p(r, s) {( )mgx( )uTZT + vTZs}
u,v)eP;(r,s

3) Two samples - Null hypothesis. If r=s and n and m are approaching infinity such
that n Am — oo and m/(n+m) — X € (0, 1), then:

1 1

nm 2p PN d P

W, (P, 8m) — { max ul'Z,
n-—+m ued,

4) Two samples - Alternative With n and m approaching infinity such that n Am — co
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2 Gaussian approximation

and m/(n+m) — X € [0,1], then:

(nimmf (Wy () = Wy(r. 5)) ~

(u,v)ePs(r,s

1
EWpl_p(r, s) { max )\AuTZr +Vv1-— )\vTZs}

Below we will extend this theorem for continuous case and find out the asymptotic bound
for the convergence rate. Assume below that n = m. Let ¢1, ¢9 be some density functions.
Involve additional notations:

P(¢la ¢25$) =P (ﬁ(un’;)l?exé <’U,, ¢1> + <’U7¢2> > :C)

(u,v)Ee-net(Pp)

P€(¢17¢27x> =P <\/ﬁ max <u7¢1> + <’U7¢2> > x)

Theorem 2.7. Consider i.i.d. samples X = {X1,...,X,} and Y = {Y1,...,Y,,} with a
bounded support space {2 of dimension d. Exist Gaussian vectors Z1, Zo € N (0, Xy) and
generalized Fourier basis {1}, such that

Yy = By’ (X1)

and the Wasserstein distance between the samples can be approximated by the maximum
of Gaussian process with the following upper bound

1
‘P(ﬁwg(X,Y) > ac) — P (z1y, 23 ¢, ) 10gn> ST

SCAO(

where C4 can be written as

0 (E max (u, ZL ) + (v, Z11p) + \/logn>

(u,v)ed,
Remark. From the practical sense, resampling of Wasserstein distance should entail data

normalization in order to restrict {2 and should keep the power p close to the data dimen-
sion d.

Proof. The dual formulation of Wasserstein distance of random vectors X, Y and corre-
sponded densities ¢x, ¢y is

WP(X,Y) = max (u,dx)+ (v,dy)

(u,v)ePp

where
n n

bx(r) = 136z~ X), dy(x) = - > (e - V)

i=1 =1
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Show how the covering number of @, depends on the support space of empirical measures
2. Construct an e-net on empirical measures. Its cardinality is n™ () since each e-cell
of {2 may contain from 0 to n points. For each densities pair (¢7, ¢5) from e-net one may
set in correspondence pair (uc,v:) € @, such that (u.,v.) is constant inside each cell of
{2 and

W91, 82) = (ue, ¢1) + (ve, $3)
The precision of e-net approximation is bounded by mass transfer inside each cell, i.e
Wy (61, ¢2) — Wy (7, ¢3) < 2€¥

and subsequently for each arbitrary pair of empirical measures (¢1, ¢2) on 2 there is an
element (u.,v.) € ¢, with property

<’U;5, ¢1> + <’U€,¢2> = <’U;5, ¢§> + <’U€,¢§>

such that

WE(¢1, ¢2) — (Ue, d1) + (ve, G2) = Wl (91, ¢2) — W](97, ¢5) < 2¢P

max
(ue,ve)€e-net(Pp)
Decompose densities ¢x, ¢y in {1;(x)} basis

(u,px) + (v, ¢y) =

) )

In order to replace {¢(X;)} and {¢(Y;)} by Gaussian vectors and use anti-concentration
one has to make an e-net approximation of (u,v) functions. Update ¢ = el/P. We have
shown above that the cowering number of @, may by restricted by O(nl/ Ed/p)

set

. So one may

1
logpe = 7 log(n) + O(1)

determining the dimension of maximum function. On e-net Theorem 2.3 gives upper

bound

log® p. 1/6
[P(ox.v) = (214, Z3)| < O (gnp>

To make a step from IP. to IP involve the anti-concentration from Lemma 2.6

\P.(Z{p, Z3 ) — IP(Z{ ¢, Z3 )| < O(Ca(logp:)e)

]P<\/HW},’(X,Y) > ﬂs) < P.(¢x,dy,x — 2¢)
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2 Gaussian approximation

log® 18
< PAZT, 2 - 22) 4+ 0 (“)

< P(2]v, 2§ p,2)+ 0 ( =L ) +0(Cae)

1 TR
e=—"+—
<CAn1/6>

Setting optimal

gives the initial statement.
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3 Statistical learning theory

Below we obtain some properties of parametric statistical models. Two important ques-
tions of statistical learning theory are how the model’s parameter distribution depends of
its dimension and dataset size and the second question is how close the parameter distribu-
tion to some Gaussian distribution? Handling these questions we analyse Taylor expansion
of the Likelihood function, consider approximation of MLE by a sum of independent vec-
tors and further involve Bootstrap for the parameter resampling. We also consider the
distribution of Likelihood maximum which according to Wilks Theorem is expected to be
close by distribution to Chi-square. Below we start with sufficient conditions for quadratic
likelihood approximation and in the following subsections we extend these conditions for
Bootstrap and Lasso models.

3.1 Quadratic Likelihood approximation

In this section we consider an infinite dimensional statistical model L(#). Let parameter
6 consists of two parts (u,v), such that v = 6;._, € IRP. Working with a finite dataset we
are going to find MLE deviations basing on three assumptions listed below. Further we
will specify these assumptions for independent models and apply in Bootstrap procedure.

Let the Likelihood function L(#) = L(#,Y) depends on parameters vector § = (u,v)
and random dataset Y of size n. Denote parameter’s MLE and refernce values:

f = argmax L(6)
0

0* = argmax IFL(6)
[4

We are going to study deviations of 0 and u in the following sense. For some matrix D
and random vector &

1. |6 — 6% is expected to be of order O(1/+/n)
2. D6 —0") ~ ¢
3. L(0) — L(6") = |I&]1*/2

Denote the stochastic part of the Likelihood

Involve the Fisher matrix

F, I
D2 — _VQEL 9* _ u uv
®") (F I&)

It would be easier to deal with the model if matrix F has block-diagonal view (F,, = 0).
One can make parameter replacement in order to satisfy to this condition. Define a new
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3 Statistical learning theory

variable ¥ = ¥(u, v) such that
V.VEYEL®*) = VyVIEL®G*) =0
and
v=v+ D;QFWu,

or in other words the parameters transformation matrix is

(1 0 o I 0
5= <DUQIE‘W I)’ 5= <—D,U21FW I)

The gradient in the new coordinates (u, 1) may be obtained by rule V(u,d) = (S~1)TV (u,v).
Use notation V for the first part of it

9

V = Vu(u,9) =V, —Fu,D,?V,

The Fisher matrix after parameters replacement changes by rule F(u, ) = (S~1)TFS—!,
so in the new coordinates it has view

D? 0
2 _ 2 * *)
D?(u,9) = —V2IEL(u*,9*) (0 D§>

D? =F, — Fyu,D; ’F .

Define a local region around point 6*
2(ro) ={0: [|D(6 — )| <o}

Now we write down three conditions on the Likelihood derivatives essential for the devi-
ations of 0. The first and second conditions should be satisfied in the local region £2(xg).
The third condition is required to make expansion of the previous two conditions to the
whole parameter space IR>. Further we will show that these conditions are also sufficient
for deviation bounds of the parameter @ or in other words from deviations bound of 7
follows bound of .

Assumption 1: In the region £2(r)

H—D—l{szL(e) — VEL(6*)} — D(6 — 6%)

< d(ro)ro
Assumption 2: In the region £2(rg) with probability 1 —e™!

sup || DTHVE(0) — VE(6)}| < 5(t)xo
0e2(xo)

Assumption 3: The Likelihood function is convex (—V2L(6) > 0) or the expectation
of Likelihood function is upper-bounded by a strongly convex function Vrg < r, r =
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1D(6 — 67)]] '
EL(H*) — EL(Q) > {1 - (S(I'())} (rgr — 2r(2)) + C;’rQ

Def. (¢)
Olro, t) = {d(ro) +35(t)}ro

Theorem 3.1 (Spokoiny (2016)). Let the Likelihood function be convex (—V2L(#) > 0)
and for ry (assigned further) it holds 6(rg) + 3(¢) < 1/2. Then under Assumptions 1, 2
with probability 1 —e™*

ro < 4|D7'VL(6")]

ID(8 — 67) = DT'VL(07)]| < $(xo.t)
1D(@ — u*) = DT'VL(6*)|| < O(xo, t)

Remark. Case with non-convex function in Assumption 3 is considered in lecture notes
Spokoiny (2016). In this case the previous statements hold under additional condition

C; > 5(t)

Proof. From (=V2L(#) > 0) and (L(A) > L(6*)) follows that the local region £2(r) that
includes 6 should cover the next region

2(r) {0: L) = L(6")}

Estimate the minimum possible radius of {2(r) that satisfy to the previous condition.

0> L(6*) — L(6)

= —(0 - 0")"VL(#") — (6 — ") V2((60) (0 — 0%) + %HD(%)(G —07)|?

1
2
3(t) o, 1-4(x) »
g T T

{with probability (1 —e~%)} > —||D7'VL(0*)|r —
r(1—d(r) —5(t)) < 2|D'V L)
r < 4| D7'VL(6Y)]|
From Assumptions 1, 2 follows that

~

1D — 6%) + DTHVL() = VL(O")}| < &(xo.t)

D6 — 6*) — D~'VL(6*)|| < O(xo,t)

Not that for the coordinates transform S there is an invariant:
D 0\ (u—u N Dt 0 VL(u,¥) — VL(u*, 9*)
0 Dy) \9—0* 0 Dy') \VyL(u,¥) + VyL(u*,9*)
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= |D(6 — %) + D™H{VL(6) — VL") }|
D 0 U
0 Dy )
. o\ |12
|| (DO 1 D%1> (%) |' _ VTS—l[(S—I)TDQ(S—I)]—I(S—I)TV

=vVvID2v

CNT
\Y U\  Ta-lan_ T
() () =vrs-so-o

Subsequently basing on this invariant

Since
2

=07ST[(S~HTD?(S71))50 = || Do||?

ID(@@ — w*) = D'VL(6Y)]

< ||D(6 - 67) = D'VL()| < O(xo.t)

3.2 Independent models

Independent models are models with independent observations Y = (Y7,...,Y},)

n

L(0,Y) =>_1(0,Y;)

=1

They are very popular in statistical literature and have many references to classical theory.
Here we obtain a simpler variant of Assumption 2. Involve three basic lemmas for that.

Lemma 3.1 (Bernstein’s inequality Boucheron S. (2013)). Let X ... X,, be independent
real-valued random variables. Assume that exist positive numbers v and R such that

vi =Y [EX;
i=1
and for all integers g > 3
S EX]] < TvzRe
T2

Then for all A € (1,1/R)

2)\2
log A XXy VX
o e = 2(1- RN
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Def. (H) Entropy of the model parameter space £2(ry) with metric ||D(6; — 62)||

Hqi(2) = /01 \/1og N(exg, 2)de, Hy(2) = /01 \/1log N (exg, £2)de

where N (e, 2) is covering number.

Lemma 3.2 (Dudley’s entropy integral Boucheron S. (2013)). Let f(0) (0 € £2(xp)) be a
collection of random variables such that for some constants a,v, R > 0, for all 81,65 € (2
and all 0 < \ < (Rd(0y,67))~*

V2/\2d2((91, 92)
(I — RAd(61,62))

log IE exp{\(f(61) — f(62))} < aXd(61,02) + 5

Then
]E[s%p f(0) — f(07)] < 3arg+ 6rogvH;(£2) + 6roRH2(12)

Lemma 3.3 (Bousquet’s inequality Boucheron S. (2013)). Consider independent random
variables X7 ... X, and let 7 : X — R be countable set of functions that satisfy conditions
Ff(X;) =0 and | f|lec < R. Define

n
Z =sup y f(X;
fef; (Xi)
Let

n
v2 =sup > Ef*(X;)
feF iz

then with probability 1 — e~?

tR
Z < EZ +\/24(v? + 2REZ) + 5

If the functions class is not bounded by norm (||f|lcc < R) one may use Lemma from
Spokoiny (2016).

Lemma 3.4. Consider independent random variables X;...X,, and let F : X — R be
parametric set of functions that satisfy conditions IFf(X;,6) = 0 and Bernstein type
inequalities ¢ > 2 for all 61,05 € 2(xo)

” I
S BIF(X )~ F(X3,0)]7 < TV2RI2a1(61, )
=1

or exponential moments inequalities

Vz/\2d2((91, 92)
(I — RAd(61,02))

ilOgEeXP{)\(f(Xi,el) — [(Xi,602))} < 5
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Then with probability 1 — e~?

n n

sSup Zf(Xlae)_Zf(lee*)

< vrg (3.4 + 8H1(£2) + 4Vt + 30R(4R*t + 1)H2((2)>
0€2(ro) |i=1 i=1

Apply three previous Lemmas in order to simplify Assumption 2 for independent models.
Likelihood of an independent model is a sum of independent functions:

(L= BL)(6) = ¢(0) = >_G(0)

Note that (; depends from the implicit i-th element from the dataset, such that (;(0) =
Gi(0,Y5).
Assumption 2i: Let D? be Fisher’s matrix defined above and V6 € £2(xo)

sup ZE(UTD_IVZQ(H)D_lu)2 < v
llull=1 =1

and
ID~'V2G(0)D7Y < R

or Bernstein type inequalities hold for ¢ > 3
> E|DTVGO)D 7! < TvIRT
i=1

Theorem 3.2. Assumption 2 follows from Assumption 2i and in the first case when
the second derivative is bounded by R

3(t) < v(6y/2pp + V2t) + R(12pp + 12v/Tpp +1/3)

where pp is entropy of ellipsoid with matrix D

pD:JZIOgWD»

2(D)

7 7

If norm of the second derivative of ( is not bounded but has Bernstein type inequalities
then

3(t) < v<3.4 +4v/2pp + 4Vt + 30R(4R*t + l)pD>

Proof. Set a random process for each :

Xi(1,60) = 9T{VG(6) - VG(0)}
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Such that
sup > Xi(7,0) = [|[D7H{V¢(0) — V(0|

IDv|I<r

Vfixed (v, 0) € £2(x,0) x 2(r,0") and |jul] = 1:
supEZ VoXi(v,0)T D7 1u)? = sup]EZ (YV2¢(0)T D™ 1u)?

< supE2:(1LTD_1V2C(0)TD_11L)2 <v?

Analogically
sup IE > (V4 X;(v,0)" D u)? < v2
u .
7

Viel,...,n
IDTIVX (7, 0)| < R

Apply Lemma 3.1 for the sum of random variables X (v,0) = Y, X;(,0) when (v, 0) are
fixed.

log IE exp A (X (71,01) — X (72,62))

=log IF exp A ((71 — ’)/Q)TV'YX(’Y, 9)) + log IE exp A ((01 — HQ)TVQX(’Y, 0)>
<suplog Eexp A ([ D(m1 — 7)[u” D'V, X (,0))

+ sup log IF exp A (HD(91 — HQ)HUTD_1V9X(% 9))

V2N (ID(y2 — 71)I? n V2N D(0 — 601)|?
T 21 = RAID(v2 —y)ll)  2(1 = RA|[D(62 — 61)]])
o VAN
B 2(1 — R)\dlg)

diy = ||D(02 = 01)[* + [D(v2 — )|

Denote
Y = 02(r) x 2(r)

such that log N(e,7) = 2log N(e, £2(r)). Then with Lemma 3.2 we obtain

E = [Esup X (v,0) < 6rvv2H; + 12rRH>
7,0

Application of Lemma 3.3 to the random variable Z = sup,, g X (v, 6) completes the proof.

3(t) < E+4/2t(v?+2RE) + ?

32



3 Statistical learning theory

where
E =6vy2pp + 12Rpp

The second case follows from Lemma 3.4.

3.3 Entropy

Below one can read a short excerpt about an entropy of ball and ellipsoid. The general

formula for the covering number N of a convex set {2 in RP with an arbitrary distance
d(01, 92) is

N(g, 2) <

volume(£2 + (¢/2)B;) <2>p

volume(By) e

where Bj is a unit ball.
Ball entropy: Let 2 = By and d(01,62) = ||#1 — 62| then
2\ P
N(e,B1) < (1 + 6)

and since N (er, By) = N(e, B1)

/2 1/2
/ \/1og N (e, By)de = r/ \/log N (e, By)de
0 0
1/2
< r\/f)/ \/log(3/e)de < 0.83r\/p
0

r/2
/ log N (g, By)de < 1.4rp
0

and

Ellipsoid entropy: Let 2 = &(D) and d(01,62) = ||D(6; — 62)||. The entropy in this case
is rather complicate in calculation. So we provide here only the the final statement from
V. Spokoiny’s lecture notes Spokoiny (2016).

r/2 r 000 >
T a_ldzlgkg?gf»

1 2

and

3.4 Bootstrap

Approximation of measure IP of some statistic L(X7, ..., X,) by corresponded bootstrap
measure P’ with statistic L(X,w?, ..., X,w]) could be done in three steps: 1) Find a close
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to L(X1,...,Xy) function ¢ (3°; X;); 2) Make Gaussian approximation for ¢ (3, X;) and
(> X;w?) by means of Lemma 2.2; 3) Compare the Gaussian variables ¢ (Z) and ¢(Z°)
using Lemma 2.3.

P{o(X; X)) <z}~ IP {90 (El Xiw;*) < x}

S X -5 Ze N, X)
)

S Xow! % 720 € N(0, 2°)

The bootstrap procedure allows to sample Likelihood function with two options: each
Likelihood component is multiplied by weight (weighted bootstrap) or new data is resampled

from empirical distribution (empirical bootstrap). The Likelihood function in weighted

bootstrap case is a convolution of i.i.d weights (wlb, ceey wg) and independent components

{Li(0) iy .
L(0) =Y w/li(0)
=1

C(6) = 1(6) ~ L(6) = Y (w! — 1)i(6)

Denote parameter’s MLE and reference values:
¢ = argmax L’(6)
0

(0°)* = 6 = argmax L(0)
0

Note that in this setting {l;(¢)}"_,} are non random functions. Each weight element has
Var’ wib =1and ]Ebwf = 1, which is made in order to satisfy to the following conditions

E°L’(0) = L(6)
Var’ VL’ () = zn:vzi(e)vzi(e)T
=1

It is expected that Var’ VL?() is close to Var VL(6) in £2(rp). Remind that by definition

2(ro) ={0: |D(0 — 0%)]| <o}
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The radius r will be defined later. Let model L(#) fulfills the assumptions 1, 2, 3 from
Section 3.1. Check these assumptions for model L°(6).
Proposition 1b: In the region £2(rg)
|-D"HVL(©) = VL@)} - D(O - 8)|| < & (xo)ro
6’ (xo) = 2(6(xo) + 5(t))
Proof. Tt follows from Assumptions 1 and 2 for L(0).

H_D—l{vL(e) — VL(B)} - D( — §)H

< H—D‘l{VL(G) — VL(0*)} — D(0 — 67)

+|-DHVL®) - VL(©O*)} - D@ - 07)

Proposition 2b: Under conditions from Assumption 2i and additional condition

sup ||D7IV2EL(O)D7Y| <R
0e2(r)

in the region §2(rg) with probability 1 —e™*

sup |[DTHVE(0) = V@) <5 (t)mo
0€92(xo)

where

(1) =5(t,v, R) +5(t, VR, )
and 3(t, v, R) defined in Theorem 3.2 and
Rq_QJEb‘wb o 1|q < (Rb)q—Q
Proof. According to Theorem 3.2 for the second assumption one have to find the bounds

for

n
sup Z]E(uTD_1V21i(9)D_1u)2
llull=1j=1
and Bernstein type inequalities ¢ > 3

sup Y E’|w’ —1|7E|D~'V*;(0)D 7|
0€(r) 5=

One can split [;(0) into (;(f) and IEl;(6). These bounds holds for (;(6) by Assumption 2i
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with replacement R to R’. For IFl;(0) it holds with replacement v to \/nR and R to R’.

sup
0e(x)

D HYVEL (0) - VIEL' (D)} < 5(t, ViR, R)rq

O]

Proposition 3b: From Assumption 2 and Assumption 3 follows that Vry < r with
probability 1 — e~

L(8%) ~ L(6) 2 (1~ 8(z0)) (rox — 528) + (€, — 3(0)e* - [ D1 96(6)]x
where
r = | D(0 - 0%
Proof.

L(6%) — L(0) = IEL(6") — IEL(0) + ¢(67) — ¢(0)

From Assumption 2 one can bound the last difference
[€(8) = ¢(6%) = VC(0%)(8 — 67)] < 5()|1D (6 — 67|

6(8) = ¢(0%)] < IDTIVCOIIDO — %) + 3] DO — 67)|?

Thus
L(6%) = L(0) > (1 = 8(x0))(xol D(0 — 6%)|| — x5 /2) + C4[|D(6 — 67|

—[ID=ICO)IN DO — 67| - 3(6) DO — )]

Summarise the propositions.

Theorem 3.3. Let Assumptions 1, 2i and 3 be true. Assume also additional bootstrap
conditions
sup [|D”'V2EL(0)D!| < R
0e(x)
RI2IE°|w’ —1]9 < (R")472

Then all properties of model L(f) obtained from Assumptions 1,2 and 3 also true for L°(6)
with replacement of {(ry,t) to Ob(ro,t) and 6* to 6, where

{26(x0) + 23(t, v, R) + 3(t, v, R’) + 3(t, v/nR, R") }xo = &’ (x0, t)

The local region £2(xg), | D(6” — )|| < ro in this case is (jw” — 1| + 1) times bigger and
has the following radius

L 2ADTIVEE) | (jw” — 1]+ 1)
0 1— 6(ro)
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under condition that
Cy > 3(t) +35°(t)

Proof. Use a short notation for differences of functions L, L, ¢
L(6,0") = L(9) — L(6%)

r=|D(0—6%)|

One have to show that L°(#,6*) < 0 for r > ry which means that §° € 2(rg). From
Proposition 2b follows

1C(6,6%) = V¢ (67)(0 — 6%)| < 3" (1)r”
VG (67) (0 — 6%)| < | D'V L") ||[w” — 1|r
Remind that L’(6,6*) = ¢"(0,6*) + L(6,6*) and
L’(6,6%) < L(6,6%) + ¢ (6,6)]
Condition L’(6,0*) < 0 follows from
L(6%,6) > ¢(6,6")]

So according to Proposition 3b

(1= 8(z)) (ror = 518) + (€~ 5(0)x* ~ [ D1 VG(6)]z

> | DTIVLOY)|[|w® — 1| + 3 ()r?
After simplification it gives the required inequality for ro and Cj.

O]

Let function ab(Q,HO) denotes quadratic approximation error for the bootstrap Likeli-
hood function.

0*(6,600) = L*(6) — 1 (8) ~ (6 — )"V L’ (60) + 3| D(0 — 60)

Theorem 3.4 (Weighted bootstrap Wilks). Under conditions from Theorem 3.3 with
probability 1 — 3e~* -

(8", 8)| < O (x0, Do (AD)
and consequently

_Ip'2(6)
2

L’(¢°,6) I < &P (0, t)ro

where 6, 0 are MLE parameters of the weighted and non-weighted Likelihood functions.
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A modification of Fisher expansion (Theorem 2.2 in Spokoiny (2012b)) for the bootstrap
Likelihood could be proved using the following property

X' (6,60) = DTH(VL(6) = VL*(6)) + D(0 — o),
X’ (60,60) = D'V’ (6, 60).
Theorem 3.5 (Weighted bootstrap Fisher). Under conditions from Theorem 3.3 with

probability 1 — 3¢~ R R
ID(6* - 6) — D'V L (0)]| < O’ (xo, 1)

where 6, 0 are MLE parameters of the weighted and non-weighted Likelihood functions.
In empirical bootstrap case with dataset size n one deal with
n
INOEDNI0
i=1
where random indexes k(i) € {1,...,n} and independent.

[E°LF(0) = L(6)

¢°(0) = L°(6) — L(0)

Denote parameter’s MLE and refernce values:

0¢ = argmax L°(0)
0

(0)* = 6 = argmax L(0)

0
Define -
w; = (0, ’k(lz‘)’ ,0)
and
1(0) = [1(0), - . ., 1n(0)]
Then

L) =1(0) > ws
=1

Propositions 1b and 3b may be also applied to IEL¢(0) = L(f). Proposition 2b has some
differences in this case.

Proposition 2e: Under conditions from Assumption 2i and additional condition

sup |D7IV2EL(O)D7Y <R
QGQ(IQ)
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in the region {2(ro) with probability 1 —e™*

sup ||DTHVC(9) - VE @)} | < 5°(t)mo
0e(xo)

where

3°(t) = 23 (t,v, R) +3(t,V/nR, R)

Proof. Denote

According to Theorem 3.2 for the second assumption one have to find the bounds for
sup sup EE[u D7V2(0) D u(w — Ew))?
0€92(x) [lull=1

and Bernstein type inequalities ¢ > 3

sup S | DI VA(0) D (uf — )|
GEQ(I()) i=1

Let @@ be ones matrix of size n. Note that
1
E(w — Ew)(w — Ew)’ =1--Q
n

thus

EE[LD7V2(0) D u(w — Ew) Z [ul D™1V?1;(0) D1 u)?

As for the second term

EFE|D~'V21(0) D™ (w§ — IEwS)||?
q

1v2 Z D lvz —

1
:521':1]5

q
1 B B 1, _
< EZIE (HD V21;(0)D 1\|+Z;HD 1V21,(0)D 1”)
T J

One can split 1;(#) into ¢;(0) and IEl;(#). These bounds hold for ¢;(#) by Assumption 2i.
For IEl;(9) it holds with replacement v to 2 y/nR and R to 2R.

sup |[D"YVIEL () — VJELE(é)}H < 3(t,2v/nR, 2R)xg

0ef2(r)
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The other statements are identical to weighted bootstrap with replacement 3¢(t) to 3°(t).

3.5 Sandwich lemma

Gaussian approximation justifies Bootstrap consistency in terms of measures difference
with fixed arguments. But in some situations (for example in change point detection) we
use Bootstrap in order to find quantile an then compare the measures with this quantile as
an argument. The following Lemma allows to extend Bootstrap consistency for the case
when measures argument depends on the dataset.

Lemma 3.5. Let differentiable measure IP” depends on r.v. from a continuous measure
P,z = (z1,...,2K) is a multivariate quantile. Assume following error in distance between

the measures Vz
’P(zl,...,zK> —Pb<21,...,2’1{>‘ <6

Then each quantile z,bc(a), 1 < k < K from measure IP° may be bounded by quantile from
measure IP:
zr(a+06) < 20 (@) < ze(a —0)

where

]P(zk(a)> =1-q, ]Pb<z,b€(oz)> =1-«a

And if ¢° is the multiplicity correction parameter such that

le<zl(qboz), L ,zK(qboz)) =1-a
then
‘P (2(ea) - (1 - a)‘ < 2K +1)6
Proof. Define two sets
Zo(8) = {z: P(z) < 1 — a + 0},

Z_(6)={z:PP(z)>1—a—0}

For all points z from Z, N Z_ it holds that |[IP(z) — (1 —a)| < §. If IP°(z*) = 1 then
2’ € Zy since for all fixed z € RK\ Z,: IP’(z) > IP(z) = > 1 — a. Analogically 2* € Z_
and 2 € Z, N7Z_.

In case K = 1 one can choose non-random quantiles in the border of Z4 N Z_ which
will bound 2°. So each component of z* could be bounded in the same way:

zp(a+0) < 2(a) < zi(a —0)

In case K > 1 the these bounds become random because of multiplicity correction which
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involves random multiplier ¢°. We have to bound zk(qba + 0) by a non-random quantile
in order to use it as an argument for measure IP.

2(a+68) < 2(a) < z(a—6)
L) < 2(Pa—68) <2 (Pa—20)
l—a< Pb<z(qboz - 5)) < ]Pb<zb(qba - 25))

Lemma 3.6. For a differentiable measure IP(§ < z) and event A:

P <z, A),
PE<a), -
P (2(da - 2)) = P*(2(d0) ) + (P, () 25
(Pb)’ ( b)/ B (Pb(zli, .. .,zz, .. ,z%))’zz -
o PG,

“k

P <zb(qba - 25)) <l—-a+2K)

l—agle(z(qba—(S)> <l—-a+2K)
l—a—-2K0 < Pb<z(qba+5)> <l-a

According to the arguments from the beginning of the proof z(¢’a — &) and z(¢’« — 6)
belongs to Z (2K §+6)NZ_(2K5+6). Due to one dimensional parametrization if z(q”a—4)
there exist two fixed points on the border of Z (2K 4+ §) N Z_(2Kd + §) such that

zp =max z(¢’a —6), z_ =minz(Ca+ )

Finally,
2o <2(fa+06) < 2(Pa) < 2(Pa—68) < zy

and subsequently

l—a— (2K +1)0 > P(z_) < P(2 () < P(zy) <1—a+ (2K +1)8
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3.6 Generalised linear models

Generalized linear models (GLM) are frequently used for modeling the data with special
structure: categorical data, binary data, Poisson and exponential data, volatility models,
etc. All these examples can be treated in a unified way by a GLM approach. This section
specifies the previous results and conditions to this case. Let Y = (Y1,...,Y,) ~ IP be a
sample of independent r.v.s. The parametric GLM is Y; ~ ]PwiT@, where 1); are predefined
features in IRP. Generalised linear model may be presented in form

L(#) = STo — A(6)

where
n

AB) =Y olwT0), S=3Viux

i=1

This model has following properties
n
—V2EL(O) = D*(0) = _ g" (%] 0) iy
i=1

Proposition 1:

d(r) = agdyr
where ()
_ x _ —1,,
(g = max (@) Oy = max HD 05

Proof. For each 6 € ©(rp) and i < n, it holds

;6 — ] 6| = | (D~"4:)  D(6 — 6%)| < ||D" ] o < 6w To
D(0) — D(0%) = > {g" (¥ 0) — g" (W] 0)} iy,

=1

", T po
§'wl ) o o) = L)

FpTgny (V0= 0) W)

" T po
max g (%’ 0 )

i<n | g" (1 60%) (wiTe - %TH) < ag(ro) dw ro

O]

Since g(-) is convex, it holds ¢”(z) > 0 for any z and thus D?(#) > 0. An important
feature of GLM is that the stochastic component ((f) of L(6) is linear on 6: with

5= Yi— BY,
n

= eah 0
im1
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Consequently 3(¢) = 0 in Assumption 2. Linearity in 6 of the stochastic component ((6)
and concavity of the deterministic part IFL(6) allow for a simple and straightforward
proof of the result about localisation of the MLE 6 in the region 2(rp) (Theorem 3.1).

Theorem 3.6. Consider GLM Likelihood function L(#). Let for ro (assigned further) it

holds d(rp) < 1. Then
2

- o
ID(6 — %) = DT'VL(0)[| < O(xo, t)
ID(@ —w*) = DT'VL(#)|| < O(xo, 1)

12L(6,0%) — |DTYVL6")|)?] < 28(xo, t)ro

1DV L)

To

where .
VL(O*) = tiei
i=1

and
O(xo,t) = 6(xo)ro = agdyry

Theorem 3.7. Assume that ¢; = Y; — IEY; are independent and

1
log IE exp(\s; 'e;) < 5)\2, i=1,...,n, [N<g

Ve =Y s

i=1
B =WD"*V
Then with high probability (approx. 1 — 2e~t)
ID™IVLE")|| < 2(B,1)
where z(B,t) defined in Lemma 6.6.

Proof. Denote
€= Vi VL@

Show that £ is sub-Gaussian and apply upper bound from Lemma 6.6.

log IE exp{y'¢} = Z log IE exp(\; 57 '¢;)
i=1

Nl = 7TV il s < g ||[Vy il si < g
2 n
1%
log Eexp{y ¢} < ' 3 N

i=1
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Vg S T .2\ 1,1 1/3 2
:EZ’Y Vo (wi iﬁi)vo VZEH’YH
i=1

O

An important property of GLM Likelihood function is convexity: —V?L = —V2IEL > 0.
This property helps in MLE concentration proof (Theorem 3.6). The Bootstrap Likeli-
hood is also convex with high probability under an additional condition described in the
following statement.

Theorem 3.8. Assume that for some ¢ Vi V0

Vo' wTo) D7 @)

then with probability 1 — 2e~*

V2t < 1

—V2L’(0) > 0

Proof.

n

—V2D(0) =Y " (F O)pp]w] = D() (I + > did] ez> D(6)
=1 :
~V2L’(0) > 0 1 — Amax (— ZdidH) >0

where d; = \/¢"(YFO)D~1(0);, S, did] = I. Use Lemma 6.4 in order to get matrix
deviation bound which states that with probability 1 — 2e~*

Amax (— Zdid;fa?) < max ||ds|| V2t

Additionally in the bootstrap case ¢*(8) is not linear.
Proposition 2b: Assume condition for ¢ > 3

q!

E°lw’ —1]7 <
2

In the region §2(rg) with probability 1 —e™*

sup |[D7HVC(0) - VCO)}| < 5 (1)

0en(r)

where

3(t) = 5(t,V/nlg"|6,,62)
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3.7 Lasso model

Consider a model with [; penalty

0y = argmax L(0) — X [|0]|, p (L1)
0co ’

Where ||-[|; p o 0P|, = > icp |0s] and P denotes the set of penalized components of the

parameter vector 6. Define the true value of parameter of interest as

0" = argmax IEFL(0) (EL)
0eO

Also define an active indices set as S = {i|6] # 0} and its complement as C' = {i|0] = 0}.
Denote the power of the active set as p, = |S|. Another problem which is important for
our argument is

0y = argmax IEL(0) — X|0], (EL1)
0:.=0 &0cO

In this paper we employ primal-dual witness approach. First, note that under assumptions
of convexity of L(-) and existence of solution of the problem (L1) it is characterized by

VL) —AZ =0 (gL1)

where Z € 0||0||, p. Consider yet another model in which penalty components include
linear combinations of

0\ = argmax L(0) — X\ ||A0||, p (L1P)
p :

which is equivalent to

max L(A'n) = Xlnll, p, ATA=1
n=A0 ’

Require that 6 be a sub-vector of n that allows to find 0 from the solution of the last
task. Stationarity condition for this task is

VaL(A%) = AV, Il p
where
V,L(A™) = ATV L(6)
Gradients in subspaces: {(A60*). = 0} and {(A60*)s # 0}, which will be useful further, have

forms

VZL(ATy) = AITV2L(9)Al, V4 L(AYy) = AITV2L(9) Al

where

Ai = (AT)OCﬂ Al = (AT).S
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We construct a primal-dual witness solution (9>\, ) as follows. Define ) as a solution of
the following optimization problem:

0x = argmax L(0) — A (6], p
0€0&0.=0 '

Next we choose Z; to be an element of 0 H(g,\) s and Z. are chosen in the following

manner:

)

1 .
c— 5 cL
3 Vel (63)

Note that it does not ensure the feasibility of Z.. The next lemma provides sufficient
conditions for strict dual feasibility to hold which imply the equality 9,\ = 9)\ Let

Ja € (0,1] s.t. max

ecc

DL(DL)| <1-a (A)
where D? % —V2EL(6).

Lemma 3.7. Assume that L is convex and the problem (L1) has a unique solution. Also
let (LA) hold for ~some positive . Furthermore, suppose the residual of approximation of
the gradient at 0, with its first-order Taylor expansion

def

R(A) = VIEL(A) + D?*(6 — 6%),

is bounded as well as stochastic component of the gradient

a\

(@)Hw} <=

maX{HR(gA)HOO, 3

And finally, suppose that all the components of the parameter vector which does not
belong to the active set S are penalized: C' C P. Then

Z <1

oo

and therefore 5)\ = 5,\.

Proof. Since the problem (L1) is convex and has a unique solution, the solution is charac-
terized by the gradient condition (gL1). Replacing the gradient with its first-order Taylor
expansion yields

V¢(0y) — DX(0y — 0°) + R(6y) — AZ =0

Denote A = (A — %) such that A, = 0 by construction. Use short notation V¢ = V¢ (6))
and do the same for R. Rewrite this equation for active and inactive sets separately:

Vo — D2 A+ Ry — AZg =0
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Vel — D> Ay+R. — A2, =0
Now we can solve the first equation for Ag and substitute it to the second one:
As = (DX)(Rs — \Zs + V()

Vel — D2 (D2 )Ry = AZs + V() + Re — A\Z. =0

Observe that due to (A) |]|D38(D28)Uu1 <1—a. Since C € P, the region of strict dual
feasibility for Z. is just an oo-ball: ||Z.||oc < 1. Finally we show that the latter bound
holds:

~ 1
‘ Zc - H)\(VCC - Dgs(Dsz,s)T(RS - )‘ZS + vsg) +RC)
o0 o0
1 1
< F B+ Ve + 1A =) [R+ V(o +1-a
2
< SIR+ Vel +1-a
< g (oz)\ + a/\) +1—«
— A\ 8 8
o
<1-——
- 2
<1
as claimed. =

Define a local region with center 6* and radius rg

2(x0) = {0+ || D2(6, - 02)

ST 0.=07=0]

Assume exponential moment restriction for process V{(0*):

Assumption OL1: For all v € IRP takes place

2 2
logIEexp{vTVC(W)} < 1/0”27”

This property yields with probability 1 — e~

IVEO) oo < voy/2tp,  tp =t +log(p)

Define two properties related to the second derivative of IEL(6) deviations. For that define
following matrices

D3(0) = =(Vs ® V) EL(9), D%,(0) = —VIEL(0).
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Assumption 1L1: For all v: ||v| <1 in the local region {24(ro)
|(D2,(0) = D2)D2 | < bielxo)

|(D2(0)D? = | _ < 6u(xo)

Relying on this condition of can trivially bound the R term:

”RSHOO < 55(1"0)1'0

||RCHOO < 605(r0)r0

And therefore
||R”oo < max{dcs(ro), ds(r0) }ro

Assumption 2L1: In the local region (24(r() the following statements hold with prob-
ability at least 1 — et

IVeC(0) = Ve (07) o < 31(t, ps; log p)
HVSC(Q) - vsg(a*)Hoo < 31(tap87logps)

Assumption 3L1: The Likelihood function is convex and has unique solution.
—V2L(6) >0

Lemma 3.8. Under Assumptions 1L1, 3L1 and additional assumption 05(2)\) < 1/2
it holds
<2A

[e.e]

HD?S(G* - ej\)s

Proof. Let r 4f o). Also denote the difference of solutions of the problems (EL) and

EL1) as A* = 6% — 6*. Consider a continuous function
( A
F(D?sAs) = VEL(0* + A) — \Zs + DgsAs

where Z; € 0s ||03]|; and A, = 0.
Observe that A, is a fixed point iff. VEL(6*4+A)—AZ; = 0 which means that 6*+A = 65
or equivalently A* = A. Now consider a ball

B ={D%A,: |D%A,

<r}
o0

Next we show that F'(B) C B. Really, replacing the gradient in (F) with its first-order
Taylor expansion at point 6* yields

F(D%,A,) = V,EL(6*) + VAEL(6°) Ay — M\Z, + D2, A
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where 6° is a point on the line connecting #* and 6* + A. But due to the definition of §*
and assumptions imposed on the problem (EL), V,EL(6*) = 0. Therefore,

F(D%A,) = V2EL(6°) Ay — A\Z, + D%, A,
Further re-arrangements give

F(DgsAS) = _AZS - DES(QO)D;SZDESAS + DzsAS
= —\Z, + (=D%(0°YD; 2 + I)D?, A,

Now using the fact that || Z,||,, <1 and Assumption 1 we finally obtain

|F(D2,4.)] < a+ 6,
< 17" + 17"
=2 72
<r

At this point we have a continuous function which maps a closed ball on itself. Therefore
by Brouwer’s Theorem, this function has a fixed point A, but, by construction of the
function A = A*, and by construction of the ball || D2, A%|| < r =2\

O]

Lemma 3.9. Under Assumptions 0-3 L1 and two additional conditions for some ¢

3
531(75’]7& Ings) + 58(6)\) <

=

and
2, < A

with probability at least 1 — 4e™!

<4\

o0

HDgs(g)\ - Qi)s

Proof. By Lemma 3.8 we have ||D2(6* — 6%).]|.. < 2\. Define A° % (6% — ¢%) and

def . . .
A0, — 0%. Now consider a continuous function

F(D%,A,) = V,L(0% + A) — \Z, + D% A,

Observe that D2 Ay is a fixed point iff. V,L(05+A)—\Z = 0 which means that 05 +A = 0,
or equivalently A* = A. Now consider a ball B = {D%A, : ||D4,A4]| < 4A}. Next
we show that F/(B) C B. Really, decomposing the gradient in (F) into deterministic and
stochastic components with subsequent replacement of the gradient of the deterministic
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one with its first-order Taylor expansion at point 8* yields
F(D3,As) = ViEL(0Y) = D3,(0")As = AZs + DLA + V(03 + A)

—DL(0")As + DL A, = (—DL(0°) D32 + )DL A, < 6, (|| D2(A2 + A,)

IVSEL(03) oo = 1A 01163111l < A

loo

Now we employ the the assumptions 0-3 L1 along with the fact that || 7] < 1:

|F%A.)

3
. < {231(t,ps,logps) + 55(6)\)} AN+ A+ X+ 1p4/2t,
And finally we use the rest of assumptions of the lemma:

|P(D24,)

<4\

as claimed.
O

Theorem 3.9. Suppose Assumptions 0-3 L1 of Lemma 3.9 and 3.8 hold. Moreover,

let rq 416 and (A) hold with parameter «. Also assume that the parameters belonging
to the inactive set are penalized: C' C P. Finally, suppose A is large enough:

«
max{dsc(IO)a 5s(r0)> 31(t7p87 Ing)} < 2

48
)\>§1/,/2t
a0 P

Then §>\ = 5)\ with probability at least 1 — 5¢~* and therefore

| D20, - 0),

< rg=06A
o
and (0A)C —0
Proof. Lemmas 3.9 and 3.8 provide with probability at least 1 — 4e~* that

“Dgs(g)\ - 9*>s

<6

Next, using Lemma Assumptions 0L1, 1L1 and 2L1 one obtains with probability at least
1—et
a

||RHoo < max{ds(ro), ds(ro) jro < )

and
[VC(02)]] < 6X31(L, ps,logp) + 104/ 2t),
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Therefore, Lemma 3.7 applies here which means that §>\ = §>\ and therefore

HD.gs(é\)\ - 9*>s

< 6A

and (5)\)6 = 0 by construction of 0.

Now we are interested in sign selection consistency.

Consequence. Suppose, the assumptions of Theorem 3.9 hold. Moreover, assume the
lower lower bound for the minimal absolute value of non-zero element of 6*:

def .
Omin = mi

D—2
min [65] > ol || D32

o)

Then R
1P {¥i : sign(f,); = signd; } > 1 — e

Proof. Defining 7 of D2 (8 — 6*), one obtains

H@A —0%)s

_In-2
<= [[pa
And from Theorem 3.9 with probability 1 — 5e~* we have ||n||,, < ro. Therefore,

=

< ollID2

And finally making use of the lower bound 6,,;, we obtain the statement claimed.

O]

Theorem 3.10. Suppose the assumptions of Theorem 3.9. Then with probability at least
1—5et
| D2(0x = 07)s = VoLn(0°)||_ < {51(t, sy log ps) + 84 (x0) o

Proof. Theorem 3.9 along with its corollary provides us with 0y = 0, and Vi : sign(@\,\)i =
signf} with probability at least 1 — 5e~‘. The latter means that the function EL) is
differentiable at the points 5)\ and 0* and due to the definition of the active set S, so
the vector £ does exist. Moreover, the function is differentiable at any point on the line
connecting these points. Now we just write down the first-order Taylor expansion of the
function EL) at point 9:

VELy(6) = VSELy(6%) — D2,(0\ — 0%)s + 1

where r is the remainder term. Next we make use of the fact that V,IEL(6*) =0

V,EL()) + AV,

aAHl =AVs

é\)‘Hl — DES(@ — 9*)3 +7r
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But AV

5’\H1 = AVs

5,\H1 due to sign consistency:
VEL(0y) = —D2,(0) — 0)s +7
Now recalling the definition of R and using the equality 5)\ = §>\ we obtain r = Rs. Thus
ViELy(0)) = VsELy(6%) — D(0) — 6)s + R
Now by the definition of the stochastic component (¢) one gets
VoL(B3) +C(0) = C(67) = V,LA(6%) — D,(6x — 67), + R,
But V,L(0)) = 0:

VsC(6y) — VsC(6°) — Ry = V L\ (6") — D2,(6 — 6%),
Now we can bound the right-hand side:

HVSL)\(Q*) - Dss(é\)\ - 9*)5

_=|jc@) - ¢ - &,
< | Rolloe + | Vs¢0) = Ve )]
S 31(t7p87 Ings)ro + 55(1'0).'['0
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4 Change point detection

4.1 Introduction and related work

The problem of change point detection appears each time one needs to explore a set of
random data and make a decision about homogeneity of its structure. In other words, the
problem can be stated as two following questions: were there any structural changes in
the nature of observed data? At which moments, if so? The present work mainly focuses
on the sequential or online change point detection. In this case the data is aggregated
from running random process. Formally a time moment 7 is a change point, if stochastic
properties of the observed signal {¥;}}.; have undergone changes in its distribution:

Y; «~ IP; t <,
Y, IPy t>T.

The goal is to find such structural breaks as soon as possible. Such problem arises across
many scientific areas: quality control Lai (1995), cybersecurity Blazek and Kim (2001),
Wang et al. (2004), econometrics Spokoiny (2009), Mikosch and Starica (2004), geodesy
e.t.c. Article Shiryaev (1963) describes classical results in change point detection theory.
Overview of the state-of-art methods are presented in Polunchenko and Tartakovsky (2011)
and Shiryaev (2010).

This research considers sequential hypothesis testing, in which each hypothesis (IP; =
IP,) monitors the presence of change point through Likelihood Ratio Test (LRT) using
sliding window. At each time step the procedure extracts a data slice, splits it in two
parts of equal size and executes LRT on it. High values of LRT indicate possible dis-
tribution difference in the window parts (IP; # IP;). Procedures with LRT are rather
popular in related literature. The work Quandt (1960) proposes application of LRT for
detection of breaks in linear regression model. It was further developed by many authors,
e.g. Haccou et al. (1987), Srivastava and Worsley (1986). Papers Liu et al. (2008), Zou
et al. (2007) investigate LRT for change point detection for nonparametric case. Non-
parametric approaches are easily adaptable for complex data but in general they need
more information for model building than their parametric alternatives. Introduction of
parametric assumption: IPy, P> € {IP(0) : 6 € IRP} allows to reduce the suffisient number
of observations as soon as IP(6) has less degrees of freedom than nontapametric model.
The state-of-the-art review of parametric models based on LRT and its application to eco-
nomics and bio-informatics are presented by Chen and Gupta (2012). The paper Gombay
(2000) explores how LRT can be used for sequential change point detection in case IP(6)
is exponential family.

The LRT statistic requires its quantiles or critical values to be set from the signal
data {Y;}}-;. Many works are dedicated to asymptotic behaviour of LRT, e.g. Jandhyala
and Fotopoulos (1999) obtains lower and upper bounds for distribution of asymptotic
maximum likelihood estimator. The work Kim (1994) provides a very detailed study of its
asymptotic behaviour in linear regression models. Similar results for change in mean of a
Gaussian process are given in Fotopoulos et al. (2010). In Biau et al. (2016) an approach
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with Wiener process and Donsker—Prohorov Theorem describes relatively general method
for LRT-like statistics distribution approximation.

Instead of asymptotic distribution for LRT one may find a benefit of resampling and
bootstrap. This technique is popular, e.g. Frick et al. (2014), Spokoiny (2009), since
it provides a way to simulate a complex distribution of LRT statistic (for wide family
of IP(9)) through empirical data distribution. Using bootstrap one can generate LRT”
statistic multiple times in order to obtain quantile distribution of the initial LRT. Both
LRT and LRT” statistics have approximation by the following norms with high probability

LRT ~ || + 4, LRI’ ~ ¢ + 4°| (Qf)

Bigger A values correspond to more confident hypothesis rejection (more apparent changes
in the data sequence). Argument £ could be treated as a noise component. For LRT critical
value calibration one requires data without change points and consequently with A = 0.
We also describe below a modified LRT which enables the calibration even if data contains
change points.

The cornerstone of this novel change point detection procedure is the concept of change-
point pattern. The geometry of a pattern depends on a type of transition region between
two distributions that the data obeys before and after a change respectively. Three ex-
amples are presented at the Fig. 2. The triangle (spades) pattern appears in case of an
abrupt transition from IP(6;) to IP(f3). A smooth transition between two distributions
entails trapezium change-point pattern. And a horn pattern appears due to an abrupt
change in variance. Processing of a change-point pattern instead of a single LRT-value
allows to reduce noise influence £(¢) and false-alarm rate. The presence of change-point
patterns is the corollary of (Qf) representation.

In case of a single change point one may find the pattern position by maximising con-
volution with a pattern function Py (t):

argmax > Pr()]E) + A

In order to set critical value correctly quantiles of the statistic max, Y, P-(¢)]|€(¢)]| should
be close in distribution to quantiles of max, 3=, Py (t)]|€°(t)]|.

4.2 Algorithm

Provide the description of the Change Point Detection algorithm which employs Like-
lihood Ratio Test (LRT). Let (IP(6), 6 € IRP, L(#) = log(0™IP(A)/0Y)) be a parametric
assumption about the nature of data inside the window (Y;_p,...,Ys1n_1) with central
point ¢ and size 2h. Here and further we assume, that the observations {Y;}!' ; are inde-
pendent, so

L(0,Y) = 3 1(6) (L)
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Figure 2. Types of change point and the geometry of change-point patterns: triangle pattern — abrupt
mean transition, trapezium pattern — smooth mean transition, horn pattern — abrupt variance transition.

Remind the denotations for argmax of the Likelihood function and the reference model
parameter

6 = argmax L(0,Y), 6* = argmax IEL(6,Y)
0 0

The algorithm sequentially computes LRT statistic (7 (t)) for each ¢ in the sliding window
procedure. The LRT statistic itself corresponds to the gain from window split into two
parts (Y;,Y,): R R R

Th(t) = L(QZ,YZ) +L(HT§YT) _L(07Y) (T)

Yl = (}/t—ha"'axft—l)a Y?" = (}/;57"'71/:‘,+h—1)
0, = argmax L(6,Y;), 6, = argmax L(6,Y,)
0 [%

According to the Theorem 4.1, encountering change point, statistic 273 (t) = [|€(t) + A(¢) |

starts growing according to change point pattern type (for example spades, trapezium,
horn, ref. the Figure 2). In order to match pattern positions, the procedure monitors 2h
values of the LRT simultaneously and convolves them with each of the predefined pattern

functions P (t):
TPh(T) =Y Pr(t)y/2Th(t) (TP)

High values of TP(7) correspond to a sufficient correlation of \/2T} and P; (similar to
the dependence on t). The algorithm marks a time moment 7 at a scale h as a change
point, if the test statistic TPy (7) exceeds a calibrated (by bootstrap procedure) critical
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LRT statistics

t

[#h=20eh=50-+n=100]

Figure 3. LRT statistic example with different window sizes: i = 20, 50, 100.

MY
4% A Ly

e

Figure 4. LRT illustration for a simple constant regression model.

value zy:
{7 is a change point } < {3h: TPy(7) > 21}

The greater window size h is chosen, the more probably the algorithm will mark 7 as a
change point. Again, small windows may mark 7 faster.

Weighted bootstrap procedure enables resampling of the statistic max;<,<, TPp(7) and
thus calculation of the critical value zj, for the window size 2h. It generates a sequence of
weighted likelihood functions, where each element is a convolution of independent Likeli-

hood components and weight vector (w?, ..., w}):
L(0,Y) = > w/li(9) (Lb)

where {w/}7; areii.d. and w} € N(1,1). At each weights generation one gets a new value
of L"(Q) and its optimal parameter #° and thus bootstrap procedure enables to estimate
L(#) fluctuations. The corresponding bootstrap LRT” statistic is

T)(t) = L°(67, Y1) + L°(6), Y,) — St;p{Lb(ﬂYz) + (0406, — 01, Y,)} (Tb)

0* = argmax L’(0,Y)
0
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Figure 5. LRT smoothing by triangle pattern P(t) with different window sizes: h = 20,50, 100.

Parameter (@ —51) is required for condition T} = Hgb H (ref. Theorem 4.2). In this case one

MY
‘4 {e°+1)* ‘4

€0 +1)7 ¥ e

L
* i} b +1)
L2
v t

Figure 6. Bootstrap LRT illustration for a simple constant regression model.

-~

can estimate max<,<, TP’ (7) quantiles under the null hypothesis (A" (t) o 0,(t) —6,(t))
instead of the false assumption (A”(t) = 0).

Empirical bootstrap version generates subsamples of data {Y}} from the complete dataset
with random independent indexes of size n. In this case

L0, Y) = 3 by 6) (Le)

where {k(i)}™_, are iid. and k(i) € {1,...,n}. For all window positions 6, = f; = § and
here bias correction is not required. So the corresponding LRT* statistic is like (T):

T;(t) = L(07, Y1) + L(0;, Yr) — L(0°, Y) (Te)
0¢ = argmax L°(0,Y)
0

Empirical bootstrap works better in applications with independent models but less suitable
for models with block-independent dataset and theoretical investigations (the distribution
is discontinuous) .
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Algorithms 1, 2 summarises above ideas for sequential case and the case with pretraining
data. Designation (¢; : t2) is a range of natural values t1,t1 + 1,.. ., t.

Algorithm 3 presents the procedure of calculation of a critical value zj for window size
2h and for one window position. R L

12 =0, — 0,

We use multiplicity correction for multiple hypothesis testing: Hp, : max, TPZ(T) < z(h)
for each h. Let z(h,a) be o quantile of variable max,; TP’ (7). The probability that at
least one hypothesis is false equals to

P({3h: max TP (1) — z(h,@)) > 0}) = IP({3h : p—value(mTax TP (7)) < a}) > «
One may decrease above probability by confidence reduction:

P({3h: p—value(mTax TP (1)) < a—d'}) =«

4.3 Implementation and experiments

In order to substantiate patterns utility we compare procedure from this Section with
the similar one but without pattern (i.e. P(t) = L[t = t]). The experiment scenario
is following. The dataset {Y;} consists of 500 normal random vectors from IR® with one
change point at position 7" = 250.

Y; € N(0,I5), 0<i< 250

Y; € N(0.25,15), 250 < i< 500

The procedure searches for the change point location as 7 = argmax_ TP, (7). Then the
quality of the detection is measured by average error |7 — 7*| (c.p. position error) and
fraction of the detected change points (power) (ref. Figure 7).

The second experiment describes bootstrap convergence depending on window size (2h).
We set bootstrap confidence level equal to 0.1 and compute p-value from real distribution

with bootstrap quantile 2°.

P’ <max TP (1) > zb) =0.1

1<7t<n

’P ( max TPy (1) > zb> - 0.1‘ =0 (1>

1<r<n hB

From the plot below (ref. Figure 8) one can observe that
1
B> 5

which suppose better convergence in comparison with the theoretical study (ref. Theorem
4.3), where 8 = 1/6.
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Qr(t) = 0 — change point signals;
H — window sizes set;
get z(h) by Algorithm 3;
foreach window position t do
foreach h do
add Tp(t) to Tp;
TPy, = (Th(t — h), Pn);
if TP, > z(h) and
Q1:n)(t —2h : t) = 0 then
| Qu(t) =1;

end

end

if maxp Qh(t) =1 then
‘ t is change point;

end

end
Algorithm 1: LRTOnline

S — change points set;
H — window sizes set;
function FindCP(Y7,...,Y):
get z(h) by Algorithm 3;
foreach h do
foreach window position t do
‘ compute Ty (t);
end
foreach 7 do
| TPu(7) = (Tn(7), Pr);
end

end

T = argmax, y_pcp TPp(7);

if 3h : Ty (7) > 2(h) then
add 7 to S;
FindCP(Y3,...,Y;);
FindCP(Y;,...,Yy);

end

Algorithm 2: LRTOffline

Data: (}/1, RN ,YM), h, Ph,

S — weights generation count

Result: f}bb — bootstrap distribution of
maximal convolution across
the dataset

for s=1to S do

generate w’ = (w},...,w});

foreach window position t do

‘ compute T} (t);
end
foreach 7 do
| TP} (r) = (T},(r), Ph):

end

add max, TP () to f2;

end

Data: H = (hi,...,hn), f7,

« — confidence value

Result: critical values z(h)

Multiplicity correction:

for s = 1 to S do

generate w’ = (w}, ..., w));

add miny, p-value(max, TP (7), f2)
to empirical distribution Py

end
find o/ from condition

IP¢(miny, p-value(-) < o — o) = o
foreach h in H do

‘ z(h) = quantile(f}, @ — o);
end

Algorithm 3: Critical values calibration
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Figure 7. Change point localisation test and power test for the proposed algorithm. One case with
triangle pattern and the other case without pattern.
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Figure 8. Bootstrap convergence. Homogeneous data: Y; € NV(0,1,),0 < i < 6h, data with change
point: Y; € N(0,1,),0 < i < 3h, Y; € N(0.3,1,),3h < i < 6h. The parameters are p = 30,
h € {10, 20, 30,40, 50}.

The last experimental part presents results of the comparison of the proposed algorithm
of change point detection (LRTOffline) with two other methods: Bayesian online change
point detection (BOCPD) from Adams and MacKay (2007) and (RMeanVar) from R
package (cpt.meanvar(PELT, ...)). The first method is constructed for online inference,
but so far as it returns CP location with each CP signal, it is also applicable for offline
testing scenario. The idea of this method is predictive filtering: its forecasts a new data
point using only the information have been observed already, where the distribution family
is fixed (Normal for the tests in this paper). Bayesian inference calculates the length of the
observed data (from the last CP). The second algorithm also uses preliminary specified
model. Its design focuses into finding multiple changes in mean and variance in Normally
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4 Change point detection

(another distributions also supported) distributed data. The returned set of change points
is the result of sequential testing Hy (existing number of change points) against H; (one
extra change point) applying the likelihood ratio statistic of the whole data coupled with
the penalty for CP count. RMeanVar performs better than well known method CUSUM
due to synchronous changes in both data parameters mean and variance.

Quality of measurements uses Normalised Mutual Information (NMI). The next equa-
tion defines NMI measure of two partitions (X, Y) of time range by change points

H(X)+ H(Y) - H(X,Y)

NMI(X,Y) = 2 50 + AV

H(X) and H(X,Y) and entropy functions. Higher NMI values (they are in [0, 1]) corre-
spond to better quality.

Synthetic test data have been generated with different values of the distribution parame-
ter transition (A). Each A value corresponds to 10 sampled data sequences over which one
compute measure average. Each data sequence has two, one or none change points. The
data has two distributions: normal (N(0(1),6(2))) and Poisson (Po(f)). Parametric as-
sumption for all methods is N (6(1),60(2)), so Poisson data corresponds to misspecification

scenario.
08 — &
0.7
0.6

0. 0
02 03 04 05 06 07 08 09 10 11 12 1.3 14 15 02 03 04 05 06 07 08 09 10 11 12 13 14 15
delta delta

= a

NMI
NMI
°

-# LRTOffline -+~ BOCPD -®- RMeanVar - LRTOffline -+ BOCPD -#- RMeanVar

Figure 9. First data: A (6(1),0(2)), second data: Po(f), data size = 340, parametric assumption for
all methods is N'(6(1),60(2)), NMI — Normalized Mutual Information between predicted and reference
partitions of time interval with change points, change points count per test {0,1,2}.

In the tests with normal data all the methods achieves similar NMI scores. In the tests
with Poisson data (misspecification) RMeanVar has relatively low quality and LRTOffline
outperforms slightly BOCPD method. One may find Scala implementation of our change
point detection algorithm (LRTOffline) by link

https://github.com/nazarblch/cpd
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4.4 Quadratic LRT approximation

Further consider a fixed window position ¢ and window size 2h. We are going to derive an
explicit dependence between statistic Tj,(¢) and parameter difference from left and right
part of the window (6 —6;). Approximation of T} (t) by its quadratic form splits noise and
deterministic parts, such that 27} (t) =~ ||D(6) — 60]) + & /|2, In the fixed window position
the likelihood function has view

L(9) = Li(6) + L,(6) = L(8,Y,) + L(6, Y,

D} =~V ELy(0}), &= Dy 'Li(6;), i={lr}

From Assumptions 1-3 for function L(#) it holds with probability 1 — e~! (ref. Theorem
3.4 with Th(t) = L(g, 90)) that

6 —6)
(60,

Find relation between 6, 8, 6, using Theorem 3.1 with notation &,(6) = D, 'V Li(0)

‘\/2Th - HDZ < 28(V2rg, t)

|p@E-0) < HD*{D@(@) + Dy&,(0)}| + 20 (xo, )

< 20 (V/2rg, t)

}

H D1D{&,(6) — e 0, |
D™D {€,(0) - 0r)}

Define vector 6 that is close to @

o~

D,.(6—0,)

6= argénin{HDl(O — @)"2 +

§ = (D? + D2)"1(D2, + D20,)

D@ -0y | Di@-a) .

|'|Dr<9 6|~ HD,@ 2l <||p@-9)]| < 20(x0.0) + 20(v2r0,)
D —86) o
| B PR e

An intermediate result is (with probability 1 — 3e~)
V2T — | Din (B, — B1)]|| < 40(v2r0,1) + 20(x0, 1)

Involve &; and &, by means of Fisher expansion (Theorem 3.1) for the model with two
independent components

HD » D~ 1{Dz(91—91) &1} < &(V2ro, t)

DiDHD, (0, — 07) - &}
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4 Change point detection

The final result is Theorem 4.1, which enables to describe T} function depending on
change point type and subsequently choose appropriate pattern Py (t) (ref. the Algorithm
Section).

Theorem 4.1. Assume conditions from Theorem 3.1 for models L; and L,. Then with
probability 1 — 4e™ for each ¢

\\/m(t) — 1D (07 — 6)() + 0, (B) ]| < TO(V2r,x)

where

glr(t) = DlT{Dl_2vL(‘977Yl) + DT_ZVL(Q:;YT)}’ Dlr = DZD_lDr

Theorem 3.4 enables to prove statement similar to Theorem 4.1 for the bootstrap LRT
statistic TZ. The proof steps are the same as in Theorem 4.1.

Theorem 4.2 (Weighted bootstrap LRT'). Assume conditions from Theorem 3.4 for mod-
els le and L?. Then with probability 1 — 4e™* for each window position ¢

V230) = D@~ Bo(e) + 0| < 70 (VEro,)

where

&.(t) = D, {D;2V L6, Y)) + D2V L (6,,Y,)}

4.5 Bootstrap consistency

Below we present the Theorems that describes difference between probabilistic measures
of TP, () and TP%(7) (precision of the bootstrap calibration) and LRT sensitivity to
parameter 6* transition at change point. In independent models each noise vector &;,.(t) =
&(t) € IRP is a sum of independent vectors (ref. Section 4.4 for &;,.(¢) definition)

t+h—1

t—1
&, (t) = Z & — Z &, & o< VI(6)
1=t

i=t—h i=

Aggregate all £; into one vector

ET: (5{7753:)

Theorem 4.3 (Buzun N. (2017)). Let dataset size be n, the window size 2h, the model
dimension — p, pattern functions P-(¢) be independent from ||&;.(¢)| and normalized
>t |P-(t)] = 1. Include conditions from Theorems 4.1 and 4.2. Then for each fixed z
with high probability

’P (lrgaéc TPy(1) > z) — P < max TP%(7) > z> < Apr
STSN

1<7<n

Apr = Crpy™ + Co| Var(€,,) — Var’ (€)% + TCa {0 (x0, x) + O°(x), )}
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where

I Var(&;,) — Var’(&],)[los < 104/log(np)v/2h| Var(€)[|o(3 + [[b]]) + [|b]*

t+2h
(b7 = max Y |12 %
i=t
ns < 2hIE €],
The rest parameters are C; = 5C,£/BCA, Cy = 40;/2014.

Remark. Parameter App has asymptotic

Ap _plog’(n) | p*2log'n
h1/6 hl/2

since O, ~ log?(n), Cs; ~ log(n), C4 ~ \/plog(n) and

log'/*(n)
(Qh) 1/4 7

1/3 log!/?(n)

M3~ Wa | Var(§;,) — Val"b(ézbr)HiéQ ~

b D
O+ NW

Remark. For quantile estimation of the statistic maxj<,<, TPp(7) with quantile of
maxj< < TP?L(T) one has to show that

b _
’]P (félﬁé{nTPh(T) > z (a)) a’ < Apr
for 2’(a) defined by equation

P’ ( max TP} (1) > zb(a)> =«

1<7<n

This statement is a consequence of the Theorem (4.3) but not a direct one since the
argument z°(a) is random and depends on maxi<,<p TPp(7). Involving sandwich Lemma
3.5 fulfills this issue.

Proof. Describe the bootstrap approximation for the quadratic form of the statistic TP (1)
on the grounds of Theorems 4.1 and 4.2. The quadratic form of TPy (7) is

gggn{ZP )& (1) } (maxTP)

The corresponded bootstrap quadratic form is

max {Z P (t)]|&).(t) }

Our aim is to show that these two forms are close by distribution. For simplification
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4 Change point detection

assume that for all window positions the true model parameter is fixed 0] = 0; = 6*.
Then &, (t) doesn’t depend on parameter changes and

t+h t+2h

&, (1) 25—26

i=t+h

where &, = D™'V1;(6*) and D™ = Derf2 = Dy, D; 2. Use smooth-max approximation
for the composite maximum function with argument §;, = Ag.

max{zp ME(t) } ~ hﬁ(‘P(AE))

where ||WA£||
ZP \t/ﬁ W; = diag(0,. .., lips -, Lipaps-- -, 0)

One should estimate the distribution difference from replacement of the random argu-
ment in statistic (maxTP): & — € — £°. Note that € € N(IEE, Var(€)) and & e
N(0,diag(&;£7)). Taking into account 3, |P-(t)] = 1 estimate ¢’s derivatives required
for Theorems 2.4 and 2.5.

HWthl
IVer(@)lly =) |Pr(t <
Z \/ﬁHthH
Wi — aWia /W21 2\p
V%07 (@)l =D [P-(1)] <
zt: VPIIWez|| [Wea||
|Wt®WtZE||1 |£L'th'T®Wt.’E||1 6p
V3, (2)|1 < S 3P (¢ +3 3| P(t <
Z fIIW:vH3 Et: VPIWez|[® Wi

Then the constant C,, from Theorem 2.4 has bound

VopA
C,<FEF——-<1
W AE| —

and therefore with 7" = n one get
C,=6 (5 + 610gn+log2n>

Cx =2(2+1logn)
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Finally the bootstrap approximation error for statistic (maxTP) is

‘zp <1g13§n Po(0)& (1) > ) - P <m Po0)€h (1)l > )’

<7<
p 1<7<n p

< zp(lg% = ()] 0] >z> - P’ (;gggn;a(wuéru)u >)’
- P(lrgggn = P01 0] >z> - P <m = P01 0] >>|

< 5CY3Cany + 402 Ca)| B — Sl

We have to consider further || X4¢ — Ezgﬂéég and Cy.

b
|Zac — Pelloo =  max [aT (T — Z2)b|

aT bT erows A

Let for a fixed rows a, b with probability 1 — et
aT'(2 = 2")0 = | aibj Ze(i, ) — > aibs&&;| < O(t)
ij ij

Note that elements in sum (aibiﬁiﬁj) are independent due to the specific block structure
of matrix A. Then the joint bound with probability 1 — e~ is

1Za¢ — Zhelloo < Dt + 21og(np))

Involve the upper bound for covariance matrix deviations (ErrVD) with &; = §; and
UZ‘ = a; / \%

2
D(t) = V2 (3R55X + 2V£8\/5>X+ 52 ||bH2>

where vee = §1/[[ 2] (3 + [[0]]),
Vo= |Alloe, V2= aib;Zi; < lAIPIZelloos  [BII° = > EE

] i:a; >0

Finally under assumption %R%t < ve-\/5t with probability 1 —1/n

1Z4¢ = Zelloo < 10\ log(np) A Allool| oo (3 + [1BI1) + | All5 16
= 10/log(np) V2h| Zelloo (3 + [1BI]) + [I0]*
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4 Change point detection

For parameter C'4 from Lemma 2.5 one has to estimate a,, o1 and o».
p < —]Emax P( HWtAEH}
VP {Z
Since &€ € N(0, EEET) we get
2
~ logn7 maXZP (t)IE||W,AE|| ~ logn
p

As for o1 and oo with |||, ||vs]] =1

pos = max Z P.(t)P-(s )vatAE(EET)Angvg

t,s
< max W AS ATWE || ~ 1

and
pot =min Y P ()P () WAB(EE ) ATWI 5]

t,s
> Amin(AZeAT) ~ 1
Subsequently

Cy~+/plogn

The next part of this Section evaluates the smallest parameter 6* transition that is suffi-
cient for change point detection in a fixed position 7 and window size 2h. Let z;(«) be a
quantile of >, P-(t)[|&;,(t)|| such that

(ZP & @)1 > 2n (e )) =a

The sufficient condition for change point detection in position 7 is

T+h

Z P (t)4/2Tx(t) > zp()

t=17—h

One has to compare zj,(a) with >, P(t)||D(0; — 6;)(t)||. Find out the upper bound for
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zp(a). Consider triangle pattern example

0, t<T—h,
(t—7)/h+1/2, T—h<t<T, P)
(r—t)/h+1/2, 7<t<T+h,

0

, t>1t+h

Theorem 4.4. Let each random vector &;,.(t) be sub-Gaussian with the second moment
IE|&,,.(t)||?> = p. Assume conditions from Theorem 4.1. The sufficient condition for abrupt
type change point detection of size A with probability 1 —2e~! in position 7 using triangle
pattern (P) is

10065 — )l = A > /S 2(B.1) + 21000,

where matrix Dy, and 05, 6] are defined in Theorem 4.1, z(B,t) defined in Lemma 6.6
such that
tr{B} = 2hp, [|B|| < 2h[| 2|

Proof. Set 7 = h. From sub-Gaussian assumption and property

2h 2h
ZP Mg @Il < D P2 D & @12
t=1 t=1

follows that (Lemma 6.6) with probability 1 — 2e™*

\ ZH&r )I? < 2(B, 1)

tr{B} = JEZ 1€ (£)]1* = 2hp

where

and
A(B) < 2h[| X

The integral sum with pattern (P) gives

@M—‘

Z Px(t)
Finally with probability 1 — 2e~*

2,(2e71) <

z(B,t)

==
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4 Change point detection

The abrupt type change point statistic without noise component has view

J2Th(t) = (Pr(t) + 1/2)A£70, 7—h<t<T+h

Involve the sufficient condition for change point discussed above

1 7 h
AL | 2x(B
5 h 2h<>> 62( ,t)

4.6 Covariance matrices

In the current study we are interested in a particular kind of a break — an abrupt
transformation in the covariance matrix — which is motivated by applications to finance and
neuroimaging. In finance the dynamics of the covariance structure of a high-dimensional
process modeling return rates is crucial for a proper asset allocation in a portfolio Serban
et al. (2007); Bauwens et al. (2006); Engle et al. (1990); Mikosch et al. (2009). Analogously,
break analysis in covariance structure of data in functional Magnetic Resonance Imaging
is particularly important for the research on neural diseases as well as in context of brain
development with emphasis on characterization of the re-configuration of the brain during
learning Bassett et al. (2010); Sporns (2011); Friston (2011).

We consider the following setup. Let X1, ..., Xy € IRP denote a sample of independent
zero-mean vectors. In online setting the sample size is not fixed in advance. The goal is
to test the hypothesis

HO = {VZ : Var Xi = Var Xi+1}

versus the alternative suggesting the existence of a break:

H; = {37 : Var X, # Var X}

and localize the change-point 7 as precisely as possible or (in online setting) to detect a
break as soon as possible.

Now we present a formal definition of the test statistic. In order to detect a break
we consider a set of window sizes 9t C N. Denote the size of the widest window as h4
and of the narrowest as h_. Given a sample of length n for each window size h € N
define a set of central points t € {h 4+ 1,h +2,...,n — h + 1}. Next, for all h € 9 define
a set of indices which belong to the window on the left side from the central point ¢ as
T (t) = {t — h,t — h+1,...,t — 1} and correspondingly for the window on the right side
define 7 (t) = {t,t + 1, ...,t + h — 1}. For each window size h € 91 and each central point
t define a pair of estimators of covariance matrix as

~ 1 ~ 1
l _ T T _ T
2u(t) = 7 | El X:X;, Xp(t)= W E X X;
€T (t) €] (t)
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Let some subset of indices Zg C 1..n of size s (possibly, s = n) be chosen. Define a scaling
diagonal matrix

S = diag(al,l, 01,2.--Op,p—1, Up7p)
where the elements o are standard deviations of corresponding elements of X; XTI aver-
aged over Zg:

1
2 T
Tk = > Var (X; X])jk
i€l
In practice the matrix S is usually unknown, hence we propose to plug-in empirical esti-
mators ;. For each window size h € 91 and central point ¢t we define a new test statistic

Th(t)

Th(t) = H\/ES‘@A@) 2 10)

Here and below we write A for a vector composed of stacked columns of matrix A and use
|-l to denote the sup norm. Finally, the family of test statistics {1}, } nem is obtained via
maximization over the central points:

Th = m?x Th (t)

Remark. Generally, one can choose the diagonal matrix S arbitrarily as long as its ele-
ments are bounded. The choice does not affect Theorem 4.5. However, we prefer to bring
all the elements of the covariance matrices to the same scale first, so the test focuses on
a relative change. Ideally, we would like to use the UJQ»’ > yet due to its unavailability we
resort to their empirical estimates, whose consistency can be easily demonstrated based

on sub-Gaussian assumption.

Decision rule and bootstrap calibration scheme

Our approach rejects Hy in favor of Hj if at least one of statistics T}, exceeds a corre-

sponding threshold 2, () or formally if 3h € 9N : T, > @ («). In order to choose thresholds

x%(a) the following bootstrap scheme is proposed. Define vectors Z for i € Iy as

= |
Zi=X; XI' ==Y X, xT
5 iet,

Elements Zib for ¢ € 1..n of bootstrap sample are proposed to be drawn with replacement
from the set J;cz, {—Z, Z} Denote the measure which Z? are distributed with respect to
as P*. By construction P is not absolute continuous w.r.t to Lebesgue measure, which is
not a problem per se, yet “high jumps” naturally complicate quantile estimation. Bringing
in both Z and —Z reduces the “jumps”.

Now we are ready to define a bootstrap counterpart T} (t) of Ty (t) for all b € 9% and ¢
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4 Change point detection

Ty (t) \/> St >z - Z Z;

eZl (t) zGI’
o0

The counterparts Th of Ty, for all h € M are naturally defined as

T = max Ty (t)

Now for each given a € (0,1) we can define quantile functions 2’ () such that

zb(a):inf{z:}P’b{Tg>z} Sa}

n

Next for a given significance level a we apply multiplicity correction choosing o as
o = sup {a i {Hh eEN:T) > zlr’l(a)} < a}

and finally choose thresholds as 2% () = 22 (a*).

Remark. In most of the cases one may simply choose Zs; = 1...n but at the same time it
seems appealing to use some sub-sample which a priory does not include a break, if such
information is available. On the other hand, the bootstrap justification result (Theorem
4.5) benefits from larger set Zs.

In order to localize a change-point we have to assume that Z, C 1..7. Consider the
narrowest window detecting a change-point as h:

h= min{h eEN:Typ > x%(a)}
and the central point where this window detects a break for the first time as
~ . b
t = min {t 1 T5(t) > $ﬁ(a)}

By construction of the family of the test statistics we conclude (up to the confidence level
«) that the change-point 7 is localized in the interval

[tA—?L;tA—i—ﬁ—l}.

Clearly, if a non-multiscale version of the approach is employed, i.e. || = {h}, h = h and
precision of localization (delay of the detection in online setting) equals h.
Discuss the theoretical result demonstrating validity of the proposed bootstrap scheme i.e.

P(Vhe‘ﬁ:Tth%(a))ml—a (1)

Our theoretical results require the tails of the underlying distributions to be light. Specif-
ically, we impose sub-Gaussian vector condition.
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a’ X; 2
JL >0:Vie 1.N sup JEexp<< 7 ) ) <2 (sG)

acIRP

llall,<1
Theorem 4.5 (Avanesov and Buzun (2016)). Let Assumption (sG) hold and let the
dataset X1, Xo, ..., X;; beii.d. Allow the parameters p, ||, s, h—, hy grow with n. Further
let n > 2hy > 2h_ and n > s and let the minimal window size h_ and the size s of the
set Z grow fast enough such that

|91 L* log™ (pn)
min{h_, s}

=o0(1)

Then
‘P (Vh eEN: Ty < :L’?Z(a)) —(1- oz)’ = 0p(1)

Proof sketch The proof consists of four straightforward steps.

1. Approximate statistics T by norms of a high-dimensional Gaussian vector up to
the residual Rp using the high dimensional central limit theorem by Chernozhukov
et al. (2017).

2. Similarly, we approximate bootstrap counterparts T,'; of the statistics up to the resid-
ual RBb .

3. Prove that the covariance matrix of the Gaussian vector used to approximate T,';
in step 2 is concentrated in the ball of radius Ay centered at its real-world coun-
terpart involved in step 1 and employ the Gaussian comparison result provided by
Chernozhukov et al. (2017) and Chernozhukov et al. (2013b).

4. Finally, obtain the bootstrap validity result combining the results of steps 1-3.

The formal proof of the theorem can be found in paper Avanesov and Buzun (2016) along
with the finite-sample-size version of the result.

Proof discussion The proof of the bootstrap validity result mostly relies on the high-
dimensional central limit theorems obtained by Chernozhukov et al. (2017). That paper
also presents bootstrap justification results, yet does not include a comprehensive boot-
strap validity statement. The theoretical treatment is complicated by the randomness of
x%(a). Indeed, consider Lemma 3.5 which is a straightforward combination of steps 1-3.
One cannot trivially obtain result of type (1) substituting {2? (@) }nem from T}, due to the
randomness of 27, () and dependence between 2 () and T},. We overcome this by means
of so-called “sandwiching” proof technique (see Lemma 3.5), initially used by Spokoiny
and Willrich (2015). The authors had to assume normality and low dimensionality of the
data. Our result is free of such limitations.
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4.7 Non-parametric method

Non-parametric change point detection is encouraged by arrhythmia detection in Elec-
trocardiogram (ECG). ECG is a one dimensional time sequence close to a periodic signal,
where each period consists of 3 main parts: P wave, QRS complex and T wave. Arrhyth-
mia corresponds to some significant perturbations of periodicity and may be one of the
following types: atrial flutter, atrial fibrillation, supraventricular tachycardia, premature
atrial contraction and ventricular rhythms. All this types of arrhythmia has different
changes in ECG signals. But we do not distinguish between them and make only a binary
classification. The formal problem statement is the following. Let X; be the quasi-periodic
signal with a period T'. One has to test the hypotheses

Ho : {X¢ ~ Pyo(e/m), ¥t € [0,m]}
Hy {3770 Xy ~ Proyry s Xe ~ Py }
te0,7%] and t€[r%,n]

In the notation above IP represents a probability distribution, n is the dataset size, 7* is
the change point time, fo(¢t/7T") and f1(t) are the functions parametrizing the distributions.

The major difficulty in the statistical study of the problem (1) is twofold: the dependent
data and the lack of a suitable parametric model for an intricate signal, such as ECG. To
address these challenges, we propose a new pipeline shown in Figure 10. In the proposed
algorithm, we resort to the optimal transport (OT) approach that is capable of building
a non-parametric change point statistic to test the hypotheses. We propose to apply the
TDA/OT approach not to the original signal, but to a projection of the quasi-periodic
function into a closed curves space (the point cloud), allowing both the periodic and the
morphologic components of the original signal’s waveform to be considered. Eventually,
we estimate quantiles of the change point statistic with the bootstrap procedure in order to
set a threshold under the null hypotheses assumption. Below we prove a theorem about the
convergence of the bootstrap distribution of the statistic to the real distribution, setting a
foundation stone for a plethora of possible future works on TDA/OT analysis on periodic
signals.

te[t—h1) e

Raw signal Points cloud ———» / Wasserstein distance
1st sliding antta /o S b
window & 2" sliding ’ maxy vap (#l (®), /1712 (t))
> QA —1 window .
t€[t—hT+h] T Anomaly

\9\ ,} Bootstrap = 4+ction

vest

t €[r,7+ h]

Figure 10. Pipeline of the proposed algorithm, where 7 — the second sliding window center, 2h — the
second sliding window size, 1, — Wasserstein distance, (), u’(t) — Bootstrap measures in the left
and the right parts of the second sliding window.
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Algorithm The first step of the algorithm is mapping of the original time series into
points cloud. We use method described in paper Perea (2013). Denote

Xi
X
SW(t) — t+s

A&+AB
The integer M determines the window size and real number s is a step parameter. The
sliding window makes an embedding of values of X; into IRM*!. Tterating by ¢ gives a
collection of points called sliding window point cloud for X;. Furthermore we apply PCA
to extract the most meaningful dimensions. An example with 3 PCA components for
M-dimensional points cloud is presented in Figure 11.

normal sinus beat

point cloud for normal beat

1300

1100

< 1000

a

8OO

HHHH

700

0 000 4000 6000 8000 10000 12000 14000
t

Figure 11. Example of points cloud with 3 PCA components. Left: original time series, right:
projection into sliding window point cloud.

In order to find structural changes in point cloud which corresponds to structural changes
in original time series we involve the second sliding window that in each step splits the
points in two parts of equal size and computes Wasserstein distances on it. The size of the
second sliding window equals to several curve loops. Let X1,..., X, are considered points
in cloud. Define the statistic for change point detection for the window size 2h, position
t and power parameter p.

T—1 T+h—1
T(r) =W2 | 3 6(Xy), Z 5(X1)

t=7—h

The empirical measures in the formula correspond to data in left and right parts of the
second sliding window. An example of T} (7) computation for data with multiple change
points is presented in Figure 12.

For the critical values calibration in this case one should use rasampling procedure
that accounts dependency between data points. We use here moving blocks bootstrap for
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Wasserstein distances
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Figure 12. Original time series and corresponded Wasserstein distances between points clouds.

arrhythmia detection. As previously the bootstrap statistic looks similar to T}, (7)

T—1 T+h—1
Tir) =Wy > 68X, Y 6(xp)
t=1

t=1—h

where {X?}7_, are sampled by Moving Block Bootstrap(MBB). MBB was formulated in
separate works Kunsch (1989) and Lahiri (2013) as new scheme to create pseudo-samples.
The usual bootstrap forms new samples taking only random observations from the initial
sample, whereas, the MBB performs this procedure only within a row of the formed blocks.
We use a weighted block structure of the MBB, which generates random weights for each
block and, importantly, preserves the structure of the original time series.

After the MBB resampling, we create a list of change point statistic values (max 7, ,2 =
max, T} (7)) and set the threshold with a confidence level corresponding to the border
between the normal points and the points of arrhythmia (see Figure 13). It is assumed
that quantiles of max Tg are close to the quantiles of max 7} (bootstrap consistency),
which we justify theoretically below.

We suppose that points located in peaks of T}(7) plot may correspond to arrhythmia
intervals on original ECG. But to be sure we need a critical level which corresponds to
some quantile of max T,E. In every MBB iteration we compute max, Tg(T). In the result,
we have list of the maximum values, and after we take a-quantile we will find the board
between normal points and points corresponded to arrhythmia.

Bootstrap consistency

Theorem 4.6. Let the blocks in MBB be i.i.d. and the dataset X7,..., X, have bounded
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Figure 13. Example of Wasserstein distances plot with bootstrap bound corresponded to 95%-quantile
of max T}.

support space. Then for a fixed 7 with h — oo
b d
Tp(1) — T(7)

Proof. Bootstrap validity follows from combination of Theorem 2.7 and Theorem 2.5.
Denote
b, = {(u,v) Sy + vy < dP (z,2)), (x,2)) € Rd}

There exist Gaussian vectors Zi, Zs € N(0,Xy) and generalized Fourier basis {1;}2,
such that (Theorem 2.7)

P(Ty(1) > x) — IP ( max (u, Z{ ) + (v, Z§¢>>

u,veEP,

Analogically for bootstrap statistics and some Gaussian vectors Z'{, Zg e N(0, Z’fp)

P(I}(r) > ) - P ( ma (w.(Z2)76) + (0, (23)7))

u,veP,

By definition
Ty =B gt (Xi), Ty =3 vy’ (X))

EZ) converges by probability to X, and according to Theorem 2.5 the maximum of Gaus-
sian vectors converges to each other by distribution. O

Experiments We used the MIT-BIH arrhythmia dataset from the PhysioNet Moody and
Mark (2001). The MIT-BIH Arrhythmia Dataset contains 48 half-hour excerpts of two-
channel ambulatory ECG recordings, studied by the BIH Arrhythmia Laboratory between
1975 and 1979. 23 recordings were chosen at random from a set of 4000 24-hour ambulatory
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ECG recordings and include most common arrhythmia types. The remaining 25 recordings
include less common but clinically significant arrhythmias. Each record contains two 30-
min ECG lead signal (mostly MLII lead and lead V1/V2/V4/V5) sampling the data at
a frequency of 360Hz. Our algorithm proved to work without any data pre-processing or
noise reduction and detected all types of arrhythmia (see results in Table 1).

Each ECG series was split to parts of different size (40,000, 80,000, and 120,000 points).
If we take the indexes of the points, whose values are above the separation line calculated
in the bootstrap procedure, these points in the original ECG will be the points with the
arrhythmia. The PhysioNet dataset has the annotations accompanying the data; therefore,
it is possible to compare the predicted labels of the points with the ground truth.

The parameters of the first sliding window have the following values Ms = 450, s = 1,
At = 2 (At is step of moving window), corresponding to the typical ECG sampling
parameters, such as those in the MIT-BIH dataset. The size of the second sliding window
is equal to 4 curve loops, it means that the window separates the series into 2 parts with
2 curve loops in each. We chose the confidence level a=5%.

To gauge the performance of the algorithm, we use sensitivity and specificity of the
prediction. To calculate them we used a hold-out test set comprising the ECG signals
with the normal heart beat (160 parts) and the ECG with arrhythmias (192 parts). As
a result, the specificity of 86%, and the sensitivity of 92% were obtained. We have also
calculated the same metrics for the artificial data, and for all types of arrhythmia (42
time series, with arrhythmia in different parts of series). The results are the following:
sensitivity 97.2% with 4.1% standard deviation; specificity 96.2% with 3.1% standard
deviation. Optimal choice of prediction threshold and the size of the sliding windows
define the trade-off between the high recall and the low false positive rate.

Comparison of our algorithm against several other approaches is shown in Table 1. We
note that the pipeline in Figure 10 was meant to be as simple as possible, providing a robust
statistical approach to predict abnormal rhythms in an unsupervised manner with high
computational efficiency. Enhancing the pipeline by obvious combination with the deep
learning or the hybrid model-based analysis methods is beyond the scope of this paper.
Relevant to the clinical approbation, the method was tested (and correctly detected) on
the short-episode arrhythmia in the long-term monitoring data stream (Figure 14).

More experiments and quality estimation are described in paper Shvetsov et al. (2020).
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Table 1. Comparison of proposed approach with state-of-the-art. Definitions of sensitivity and speci-
ficity follow those in Ref. Jun et al. (2018).

Method Sens% Spec% Supervision
1 92.0 £ 4.0 86.0 £ 6.0 O
1* 97.2 + 4.1 96.2 £3.1 O
2 Truong et al. (2018) 91.6 77.0 O
2* Truong et al. (2018) 88.9 84.1 O
3 Adams and MacKay (2007) 92.0 80.6 O
3* Adams and MacKay (2007) 85.8 88.9 O
4 Hua et al. (2018) 70.0 98.0 A
5 Jun et al. (2018) 99.6 97.8 O
6 Alfaras et al. (2019) 84.4 99.7 O
7 Philip de Chazal et al. (2004) 75.9 e O
8 Kawazoe et al. (2016) 97.0 63.0 O
9 Faganeli and Jager (2010) 98.1 85.0 O

¢ Unsupervised A Semi-supervised [ Supervised

1: Bootstrap on real data, 1*: Bootstrap on artificial data
2: Ruptures(PELT) on Wasserstein distance data

2*: Ruptures(PELT) on Euclidean distance data

3: BOCP on Wasserstein distance data

3*. BOCP on Euclidean distance data

4: SVM + PCA 5:2D CNN 6: Echo State Network

7: LD QRS- and time interval-based features

8: LR 9: DT+Heart rate features
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5 Wasserstein barycenters

Monge-Kantorovich distance or Wasserstein distance is a distance between measures. It
represents a transportation cost of measure pp into the other measure po.

1/p
W(u,p2) = min ( / e — y||pd7r<x,y>)

TI'GH[[Ll,,LLQ]

where the condition 7 € Iy, po] means that 7(x,y) has two marginal distributions:
J,dn(z,y) = dp(z) and [, dr(z,y) = dpz(y). We focus on regularized W1 distance with

probabilistic space {IR?, B(|| - ||2), L'}

Wi o) = _min [ llo = yldn(a, ) + Re(r)

where R.(7) is a relatively small addition which improves differential properties of the
distance. Namely without R.(m) we can only bound the first derivative, with it we can
bound also the second derivative. There is the notion of mean in Wasserstein distance,
called barycenter fi. And it is the main object in this paper. Consider a set of random
measures {/; 7.
n
fi = argmin Y Wi (p, )

B=1
Barycenters are center-of-mass generalization. If we look at the barycenter of a set of
uniform measures it extracts the common “shape” form of these measures. If the measures
are sampled from some distribution then their barycenter can be treated as an empirical
approximation of the distribution mean. A simple example is a circles set with means
{m; € IR?} and radius’s {r;}.

Figure 15. lllustration for W5 distance computation between two circles (mq,r1) and (ma,r3).

Wg((mlﬁ 7“1), (m27 T2>)
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5 Wasserstein barycenters

1 2

=5 [(mg —my) — (ro — 1) cos(a)]? + [(r2 — 71) sin(a)]?da

= (mg — m1)2 + (7’2 — T1)2

Their W3 barycenter is also a circle with mean m = % Yoy m; and radius r = % Yo T
We refer to papers Agueh and Carlier (2011), Jeremie Bigot (2016) for an overview of the
barycenters and related study.

It is well known that the center-of-mass in Il norm converges to a Gaussian random
vector. As for the barycenter it is also expected to have some Gaussian properties. For
example if the measures are Gaussian themselves or one-dimensional or circles set then the
Gaussian approximation of the barycenter is proven in papers Agueh and Carlier (2011),
Kroshnin et al. (2019). In circles set case the mean and radius converges to some Gaussian
variables as a sum of independent observations according to Central Limit Theorem. In
one-dimensional case denoting distribution functions by F;(x)

1
wﬁmwsz|ﬂ%$—£%ﬂ%s

one gets

In the case of Gaussian measures with zero mean and variances {5;}
W3 (pa, p2) = tr{S1} + tr{Sa} — 2tr{(83/%818,%) /%)

and for some non-random matrix S, (ref. Thomas Rippl (2015)) the corresponded barycen-
ter variance is "
S = Z (SY/28,8\12 L o(1/n)
In both last cases one deals with a mean of independent random variables that converges
to a Gaussian variable (or to a Gaussian process in case of F ~1(s) by Donsker’s Theo-
rem). In general case it appears to be very difficult to reveal such convergence because
the barycenter doesn’t have an explicit equation and it is an infinite-dimensional object.
In order to handle with this difficulty we propose an approximation of the barycenter
by a sum of independent variables using projection into Fourier basis and some novel
results from statistical learning theory. The perspective of Fourier Analysis provides a
suitable representation of the Wasserstein distance and it is already studied in the litera-
ture Steinerberger (2018). Denote a range of size p of the barycenter Fourier coefficients

by
~ dji(x)

The first our result states that for some non-random matrix ﬁ, non-random vector 6 and
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independent random vectors {;}
. R n
HD (6, 0;) - >
i=1
Further we show that for some Gaussian vector Z

oo~ 3/2
Wi (D@, —6;),2) = 0 (%)

o (%)

and Vz:

}P (||D(5p—0;)\| > z) —P(|Z] > z)‘ _0 (\%)

Statistical Application: The last statement allows us to obtain the confidence region of
parameter ép and describe the distribution inside the region. Besides, the bootstrap pro-
cedure validity Max Sommerfeld (2016) follows from our proof as well. If one sample
| D(f5ot — gp)H using bootstrap it would be close by quantiles to the random variable

D, — 6 , which also relates to the construction of the confidence region.
p P

5.1 Statistical model

Consider a set of random measures (random measure is a measure-valued random ele-
ment) with densities ¢1, ..., ¢,. Let the barycenter measure fi has density ¢ and Fourier
coefficients 6 = 0(¢) € IR>.

¢ = argglin > Wi, 6i)

i=1
Let Fourier basis {1}, has a Gram function of the scalar product G(x), such that for
any function f

<ﬁmm:/ﬂmmmmmmE

and

mwmz/ﬂ@wmm

Denote Fourier coefficients of the other measures Vi : 6; = 0(y;) € IR>. Basing on Lemma
5.6 define an independent parametric model with dataset (1, ...,#0,) and parameter 6.

n

L(0) = 10 —6:),

i=1
where

10— 6;) = max (1,0 = 0;) — en (K o Gy = Wi (¢, 1)
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and ) &, is a Sobolev ellipsoids intersection. Each ellipsoid &, has matrix K, = VIyVyT (x)

such that )

> V() | =n"Ku
keNd

and
ﬂg :{U:Vx:nTKmnS 1}

Define a positive matrix K o G = [ K,G(x)dz such that in case ¢y (z) = cikTa/T

1/T? 0 0 ...0
KoG=| 0 " 0 ..0
0 ... K¥T? ...0

Define for this model MLE parameter value and reference parameter value:

6 = argmin L(6)
0

0" = arg;nin L)
Define a local region around 6*
2(ro) ={0: DO - 6%)]| < ro}
where D is a Fisher matrix of the model
D? = —V2IEL(0*)

Theorem 5.1. Let the random Fourier parameters of the dataset have a common density
01...6, ~ q(f) and it fulfills condition

C
D 'vq(0)||do = =&
/9 e 17 Va@)a0 = 72

Let 5, 0* € IR* be Fourier coeflicients of the MLE and reference barycenter defined above,
then with probability 1 — e~

HD(@— 0*) — DLVL(6*)

S <>(I'0, t)

where {(r,t) is defined in Section 3.1 and has asymptotic

~ V/nO(xoCq + ro/PD + V21) 1
Olzo,t) = Eain (DK 0 GD) o (ﬁ)
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and pp is an ellipsoid entropy (Section 3.3) with matrix D and eigenvalues {\;(D)}2,

o JZ log” Z(D))

\2(D)

i i
and with probability 1 — e~*

8v/n(1 4 v/2t)
A2 (DK o GD)

min

ro < 4|D7'VL(0")] <

Proof. Basing on Theorem 3.1 one has to prove Assumptions 1,2,3 from which follows

[D@=67) = DTVLE")| < {6(x0) +5(t)}ro = O(xo, 1)

with probability 1 — e~

that

The Assumptions 1,2,3 are proven below, where also is shown

Iron

D™1vq(6)|do
EAmin(DKO GD) /969(1”0) H ( )H

tR
3(t) = E +/2t(v? + 2RE) + 5

d(ro) =

E =6vy2pp + 12Rpp

where
9 n

V' T 22 (DK oGD)

min

and
1

EAmin (DK 0 GD)

R:

Setting v and R in the previous equations gives an asymptotic

Vn(12y/2pp + V21) 1
EAmin (DK 0 GD) O <n>

3(t) =

Lemma 5.4 provides bound

1
A2 (DK o GD)

min

1D~V <

From this bound and Hoefding’s inequality Boucheron S. (2013) follows bound for || D=1V L(6*)]|.
O

Define additional Fisher matrix corresponded to the projection into the first p elements of
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the parameter 6 (ref. for details in Section 3.1).

2 2 2 -2 2
D* = Dp><p - DpxooDooXooDooXp
such that
2 2
D2 — D2p><p D2p><oo
Dooxp Doo><oo

and define the gradient of the projection into first p elements of the parameter 6.

9]

V=Vi,-D2 DV oo

PX 00~ 00X00

Theorem 5.2. Let ép, 0, € IRP are the first p Fourier coefficients of the MLE and reference

barycenters, and Z is a Gaussian vector A (O,Var[D_lﬁL(H*)]). Then, with probability
(1 —e%), Wy and probability distance to Z are bounded as follows

Wi(D(8, — 62), Z) < 3 O(log n) + $(xo. t)
and Vz € R,
[P| DO, — 03)]| > 2) = P(| Z]| > 2)| < Ca(us O(log® n) + O(ro, 1))

where {(ro,t) is defined in Theorem 5.1, C4 = O(1/,/p) is anti-concentration constant
defined in Theorem 2.2 and Theorem 2.7 (Gétze et al. (2019)) and

44/2p
(DK o GD)

p3 < NE

min

Proof. Bind Theorems 5.1 and 2.1. Form Theorem 3.1 follows that the bound in Theorem
5.1 also holds for projection of the parameter 6:

ID(8, — 6;) — DT'VL(#)|| < O(ro,t)
So with probability 1 — e~*

Wi(D(0, — 03),Z) = min E|D(8, - 03) — Z||
w(6,2)

< WUDTIVL0%), Z) 4+ (o, t)

Furthermore from Theorem 2.1 follows

WA(D VL"), 2) < Vaps (1 log2y/tr{ Zhz) — logs)
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where X = Var[D~'VL(#*)] and setting X; = D~'VI(6* — 6;)

n n
s = BIS7V2G - XDIIIE2 XG0l X - XT)| < 4max || X Y BX] 27X,
i=1 i=1

n n
YN EXIYX;=tr {21 > IEXiXZ.T} —p
=1 =1

1
(DK o GD)

Analogically one can make a consequence from Theorems 5.1 and 2.2. Let Cy4 is the
anti-concentration constant of the distribution IP(||Z| > z), then

mas X = [ D790 0] < |D7VUO" = 0] < g

min

[P(ID @, — ;)] > =) = P(| Z] > =)
< [P(ID'VLE)| > 2) = P(IZ]| > 2)| + Cad(xo, )

and
[IP(|D'VL(6")|| > z) = P(| Z|| > 2)| < CapsO(log® n)

As for the anti-concentration constant it can be estimated from Theorem 2.7 (Gotze et al.

(2019)):
P(|1Z]? € [z, + A]) < O ((AZAAZ)/) _0 (2) |

where with eigenvalues of matrix X: Az > Aoz > ...
o
A%Z:ZAgz, k:1,2
j=k

O]

We are going to show that Assumptions 1,2,3 are fulfilled for the barycenters model
defined above. Also we need to estimate {(rp,t). Remind that we deal with Likelihood
function L(0) = L(0,{6;},) where implicit random vectors {6;}I is a dataset of Fourier
coefficients corresponded to the random measures {p; }" ;.

Assumption 1: Set r = || D(6 — 6*)||, then

|D~YV2EL®) — VPELO)YD Y| < |D"HV3EL®)D}D7Yr

Let ¢(6;) be distribution of each 6; then
VAEL( —0;) =) / V3O — 60;)q(6:)db; = = / V21(0 — 6;) x Vq(6;)db;
=1 =1

|ID-YVPELW®)D YD < / |D™'V2L(9 — 0,) D ||| D~ Vp(6,) || db,
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and from the consequence of Theorem 5.5 one gets

1
D7'W21(0—60,)D7 Y| <
| ( )l = EAmin (DK o GD)
D YV2EL() — V2ELG*)\D| < T / DVq(6)||do
1D~ (0) (0)}D7H| < o (DE o GD) [ a(0)||

Subsequently
ron

D~1vq(0)|do
EAmin (DK o GD) /eeg(m) | ©)l

Assumption 2: From Theorem 3.2 follows that if:

6(ro) =

i < v?
22X (DK oGD)
and
1 <R
s)\min(DK o GD) -
then
tR
3(t) < E+/2t(v2+2RE) + 5
where

E =6vy/2pp +12Rpp

and pp is ellipsoid entropy with matrix D.
Assumption 3: Each model component /(6 — 6;) without regularisation is convex since

l()\@l + (1 — )\)92 — 92) = l()\(91 — QZ) + (1 — )\)(92 — 01))

= max <77, )\(91 — 91') + (1 - )\)(‘92 - 92)))

ne() Ex
< e (n, AM(01 — 63)) + nlenﬁl?zm (L= A) (01— 6:))

= X0y — 6;) + (1 = N6 — 6;)
Note that regularised { and 2 are also convex as a composition of convex functions and
the complete model L is convex (V2L > 0) as a positive aggregation of convex functions.
Combination of these assumptions is used in the proof of Theorem 5.1 which gives the
deviation.

5.2 Support functions

Bounds for the first and second derivatives of the Likelihood of barycenters model in-
volves additional theory from Convex analysis.

Def (*). Legendre-Fenchel transform of a function f : X — IR or the convex conjugate
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function calls
f*(y) = sup({z,y) — f(z))

zeX

Def (s). Support function for a convex body E is

sp(f) = sup 0T77
nek

Note that for indicator function dg(n) of a convex set E the conjugate function is support
function of F

0p(0) = su(0)

Def (®). Let f1, fo : E — IR be convex functions. The infimal convolution of them is

(i f)(@)=_inf (fi(x1)+ fo(x2))

T1+To=2

Lemma 5.1. Bauschke and Combettes (2011) Let fi, fo : E — IR are convex lower-semi-
continuous functions. Then

(e ) =f+1f
(it f) =fof

Lemma 5.2. The support function of intersection £ = Fq1 N F» is infimal convolution of
support functions for F; and Es

sp(f) =, mf (sp1(01) + sp2(62))

Proof. According to the previous Lemma

5E10E2 (77) = 5E1 (77) + 5E2 (77)7
(6E1 + 6E2)* = 5*E1 ® 5*E2
With additional property
intdom g, Ndom g, = intE; N Ey # ()

one have
(6E1 + 6E2)* = (5*E1 EB (5*E2

O

Lemma 5.3. Let a support function sg(6) be differentiable, then its gradient belongs to
the border of corresponded convex set F

Vsg(0) =n"(0) € OF
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dn/do

Figure 16. Optimization related to support function.

where

n* () = argmaxn’ @
nek

Proof. 1t follows from the convexity of £ and linearity of the optimization functional.

o) _ . onre)",
a9 =0= 50 0=0
on*(0)T
Var(®) = 2O g 0 = o)

O

Lemma 5.4. Bauschke and Combettes (2011) Let fi, fo : E — IR be convex continu-
ous functions. Then the subdifferential of their infimal convolution can be computed by
formula

Afr@f)z)= | 0f(z1)NOf(z2)

T=x1+x2

Consequence. If in addition fi, fo are differentiable, then their infimal convolution is
differentiable and Jx1, 29 : x = 1 + 22 and

V(1 @ f2)(x) = Vfi(z1) = V fa(z2)

Lemma 5.5. Let fi,..., fn : B — IR be convex and two times differentiable functions.
There is an upper bound for the second derivative of the infimal convolution

Vit : Zgl t; =1
VT (fr@ ... @ fm)(m) 2D 13V f(:)

=1
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where Y 1" x; = x.

Proof. Use notation f = f1 @& ... D fm,. Let
flx) =" fi(z:)
i
According to Lemma 5.4 if all the functions are differentiable then
Vi)=Y t:Vfi(w:)
i
From the definition @ also follows that

flx+2) < Zfz‘(%' +ti2)

)

Make Tailor expansion for the left and right parts and account equality of the first deriva-
tives.

ZTOVT f(x 4 02)z < Z 22TV fi(w; + 0;2) 2

Since the direction z was chosen arbitrarily, dividing both parts of the previous equation
by |z]|> = 0, we come to inequality

VT f(z) = > 17V filas)
]

Remark. One can find another provement of the similar Theorem in book Bauschke and
Combettes (2011) (Theorem 18.15).

Theorem 5.3. Let fi,...,fn : E — IR be convex and two times differentiable func-
tions. There is an upper bounds for infimal convolution f = f1 & ... ® f,, derivatives Vv

dxq, ..., Tm:
fi(z:)

f(x)

YPOVT f(z)y < maxyT V2 fi(z)y

and
V'OV f2(x)y < 2(v" V(@) + 2maxy V2 fi(wi) 1 i)

Proof. Choosing appropriate {¢;} in Lemma 5.5 one get the required upper bounds. Set
Ji(i)

S )
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and since

> filz) = f(=)
j=1

DtV fimi)y < maxtiy" V2 fi(wi)y = maxyTV? fi(wi)y fi(zi)

)

In order to prove the second formula apply this inequality in

oVl 2 =ov vl +2f0vyf

O
Consequence. Let sq,...,s,, : E* — IR are support functions of the bounded convex
smooth sets F1, ..., E,,. There are upper bounds for the derivatives of support function
s of intersection F1 N ...N E,,, such that Vi

AV TOVTs(6)y < max; vL On} /00;vs:(0;)
s(0)
Y1 OV s (0)y < 2(y")? + 2max T On; /00rysi(6:)

Proof. 1t follows from Theorem 5.3 and Lemma 5.3. 0

5.3 Wasserstein distance as a support function

Def (W-dual). Consider two random variables X and Y € RP with densities px and py.
Define Wasserstein distance in dual form between them as

x {Ef(X) - Ef(Y)}

Wilex,ey) = ma
(pxyov) = B

where Va : ||V f(x)|]| < 1 means that function f is 1-Lipshits. Note that if 7(z,y) is
a joint distribution with marginals ¢x and ¢y then this definition is equivalent to the

original one
Wi(ex, py) = min E||X —Y||

which follows from Kantorovich-Rubinstein duality Edwards (2011). Involve a normalized
Fourier basis {9y()},cne With a scalar product Gram function G(x).

Def (W — dual — regularised). Consider two random variables X and Y € RP with
densities px and ¢y. Define a penalized Wasserstein distance between them in dual form
as

Wiexor) = max B0 - BY) ¢ [ 1910) PGos)

The regulariser term in this definition allows to bound the second derivative of the distance
which will be shown below. Wasserstein distance in Fourier basis is a support function
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(ref. Def(s)). In which connection

F@)=> m(f)vn(a)

k

where

m(f) = (F.in)a = / F(@)n(2) G () da

Now we can rewrite the expectation difference as

Ef(X) = Bf(Y) = (1.7 )a — (f. G ) = (D). 00ex)) = (n(F).0(ev))

where

i) = / (@) (@)de

Define positive symmetric matrices

VT (x)
K= grne) (Ven(e) .. Vi) ) = (V@) (Ve (2)

and
KoG= /KxG(l‘)dIE

Each K, is positive, since n7 K,n = ||V f(2)||?>. Condition Vz : ||V f(z)|| < 1 is equivalent
in Fourier basis to

2
ne()& = {77 :Vr: (anvwk@)) =n" K < 1}
k
An important remark is that

ﬂ(‘:x C {7] (K oG)n < 1}

Finally we have come to the Wasserstein distance in Fourier basis.

Lemma 5.6. Let random vectors X and Y have densities ¢ x and ¢y with Fourier co-
efficients fx and 0y, then the Wasserstein distance is the support function of the convex
set (&, defined above, i.e.

Wi(px,ey) = max (n,0x — 6Oy)
ne() €
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5 Wasserstein barycenters

As for regularised case

/Wvl(gox,@y) = max (n,0x —Oy) — 577TK oGn
ne( &

Remind that the barycenters Likelihood consists of independent components 1;(6 —6;) with
random vectors §; € IR* and parameter 6 € IR*°.

160 —6;) = max (0,0 —6;) —en” K o Gn
ne() &

Note that by definition the dual function of [ is

(1) = 0nye, (n) +en’ K o G
Consequently from Lemma 5.1 follows that

1(0—6;) = 6551(6 —0) @ (en’ K o Gn)*(0 — 6;)

_ v Lo 0T (K o c-L(a _ 0.
—éﬁEWﬁ 0i) & Z(0 = 0:)" (K 0 G)71(6 — 0,) (0.1)

Application Theorem 5.3, taking into account (&, C {77 T (K oG)n < 1}, provides the
following bounds on the derivatives of function [.

Theorem 5.4. The gradient upper bounds of functions [ and I? are

1D~V <
A2 (DK o GD)

2/|(K 0 G)~'/*(6 — 6|
A2 (DK o GD)

min

IDIVE(0 - 6;)]| <

Proof. Denote
n*(0) = argmaxn’ g
ne() Ex

Use equation (0.1). By the consequence of Lemma 5.4 and Lemma 5.3 36;:
Vi(0 — 6;) = n"(6o)
Since ||(K o G)Y/?p*|| < 1
1DV = [ D' || = IDH (K 0 G)TVA(K 0 G) || < | DTHK 0 )|
and from VI? = 2IVI one gets

ID™'VE(0 — 6:)]| < 210 — 6;)| D' VI|| < 2||(K 0 G)~2(0 - 6)[[[|D~ V|
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Theorem 5.5. The second derivative upper bounds of functions [ and 2 are

1

D 'ovTie —6,)D71| <
| ( )07 = ming Amin (DK, D)||(K o G)~1/2(0 — 6;)||

1
D 1ovTie—6,)D7! <
” ViU ) = aAmin(DKo GD)
2
D—l T 2D—1 <
H oV = ming Apin (DK, D)

Remark. Matrix K, may be singular which makes the first bound non-informative. The
second bound comes from the regulariser en’ K o Gn and has big coefficient (1/¢). It is a
weak part of the current theory and requires an improvement or an example which shows
that this bound it tight.

Proof. Consider support function with one ellipsoid.

L(0) = 0) = || K Y29
52(0) nTr;g;Slm, ) = 1K /=0|

Denote 7*(6) = argmax(n, §), and account that n7 K,n < 1.

K10

() = —2 - —
1K %0

on*(0) K 0TK 10— K 100TK !

00 (9T Kol 9) 3/2

For some vector ||v|| = 1 by means of property ||al/?||b||> > (a'b)?

VTR 0T E 0 — AT K0T R Yy < || K0T K

Han*@ H [l
= 172
. (07K 6) /
Apply Theorem 5.3that gives the first bound
ID-19V716 — 6,)D|| < max D—lang(:w)p—l ("”9“"9))
x S — 0;

maxy ||D_1K;1D_1H
T (K o G)71/2(0 - 6))]]

The second bound for this norm follows directly from Lemma 5.5 and equation (0.1). Now
consider the squared Wasserstein distance (I2) which has a better derivative bound. From
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5 Wasserstein barycenters

Theorem 5.3 one gets

ID~*oVTED7Y| < 2max | D™ " (6;)n* (0;)" D™ + D™ 1877( >||K 2% D1

Note that 1
HKa: 9||2
* * a
O 0 + 22 )HK 1/2g)
Finally

N | £ 2max K, D™
D7oVTIPD | < 2 ax [ D7D
O

Remark. Wasserstein distance also may be differentiated directly. Paper Max Sommer-
feld (2016) contains corresponded lemma about directional derivative. For directions hy, ho
it holds

Wipx,py)(hx,hy) = — max  —((u,hx) + (v, hx))
(u,0) €D (px py)

where

@ = {(u,v) : (u, px) + (v, py) = Wilpx, py), V(z,y) s u(@) +v(y) < [z -y}
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6 Supplementary math tools

6.1 Matrix Bernstein inequality

Lemma 6.1 (Master bound). Assume that Si,...,S, are independent Hermitian matri-
ces of the same size and Z = ;" | S;. Then

< — 2
)\max (Z) égf} 9 log tr exp (Z . log IFe >

P{\max(Z) > 2} < inf ™% 1 o5
{Amax(Z2) > 2} < infe trexp (Z og Ee >

i=1
Proof. By the Markov inequality

P{ ax(Z2) > 2} < iréfe_ozlEexp(O)\max(Z))

Recall the spectral mapping theorem: for any function f: IR — IR and Hermitian matrix
A eigenvalues of f(A) are equal to eigenvalues of A. Thus

exp(Amax(Z)) = exp(Amax(02)) = Amax(exp(62)) < tr e
Therefore,

P{\pax(2) > 2} < i%f e Etrexp(02)

and the second statement follows. To prove the first statement fix 6. Using the spectral
mapping theorem one can get that

FEXpax(Z) = %E)\max(ez) = élogJEeXp(AmaX(QZ)) = %log IEmax (exp(02))
Thus we get
FElpax(Z) < élogtrlEexp(QZ)
The final step in proving the master inequalities is to bound from above IF trexp (31 S;) .
To do this we use Jensen’s inequality for the convex function trexp(H +log(X)) (in ma-

trix X ), where H is deterministic Hermitian matrix. For a random Hermitian matrix
X one can write

Etrexp(H + X) = Etrexp(H +loge™) < trexp(H + log [Ee™)
Convexity of function (trexp(H + log(X))) is followed from

trexp(H + log(X)) = r});l%([tr(YH) —(D(Y;X) —tr X)]
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where D(Y'; X) is relative entropy
DY;X) = ¢(X) = [o(Y) +(Vo(Y), X =Y)] ¢(X) = tr(X log X)

due to the partial maximum and D(Y; X) are concave functions. Denote by IF; the
conditional expectation with respect to random matrix X;. To bound F trexp (31 S;)
we use the sum of independent Hermitian matrices by taking the conditional expectations
with respect to ¢-th matrix:

n n—1
IE trexp (Z Si> = IFIE, trexp (Z S; + Sn>

i=1 i=1

n—1
< Ftrexp (Z Si + log(IE, eXP(Sn))>
i=1

< trexp (i log Eeesi>
i=1
O
The next statement was taken from Koltchinskii (2013) with the proof sketch.
Lemma 6.2 (Bernstein inequality for moment restricted matrices). Suppose that
Si
Vi: Ey? (%’) <1
n
v = Z ES?
i=1 op
R=My~! <§”ﬁ2> . §€(0,2/%(1))
Then under condition zR < (e — 1)(1 + §)v?
52
Pl Zllop = 2} < 2pexp {_2(1 T oW 4 2Rz/3}
If Y(u) = e*” — 1 then R = M log!/*(21M> 4 1),
Proof. According to Master bound one have to estimate Ee?® for S in Si,...,S,. Denote
a function 1 —u
flu) =

Taylor expansion yields
ES < I, +0*ES*f(0]S||)
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log "5 < 02BS2f(0|1SI]) < 02/(0r)ES® + LI ||S)> £(0 | SI)I(1S] = 7)
S -1 —1
Bl felshriis) = < e (1) (o (L)) < (v (1))
R -1 g2
2 —_
v (v(3r) =5
log Ee?S < 0% f(AR)IES? + IPHQZV:

n 2
tr exp (Z logIEeXp(HS,-)> < trexp <92f(6R)IEZ S?) exp <925‘2/>

i=1

Consequence. In case ¥(u) = e — 1 with probability 1 — 2e™*
2
z < ngp—i—v 5%y, R~M

Condition for function ¥ (u) = e* — 1 follows from sub-Gaussian moment restriction

L
E 2——P ) <2
exp ( M ~

Lemma 6.3 (Deviation bound for matrix convolution with sub-Gaussian weights). Let a

set of symmetric [p X p] matrices (41,..., A,) satisfy
>4z <
i
Let &; be independent sub-Gaussian, i =1,...,n.

Z = iEZAZ

i=1

fulfills

P(\Z\Op > \/2va2> < 9

where x, = x + log p.

Proof. Apply the Master inequalities for the case

1 1
Ay = U AUL, log Befifti = §UZ-A§UZ.T = 5A,?
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1
tr exp {Z log Eea‘”Ai} < pexp {292v2}
O

Lemma 6.4 (Deviation bound for rank one matrix convolution with sub-Gaussian weights).
Let vectors u1,...,u, in IRP satisfy

lual| <

for a fixed constant §. Let &; be independent sub-Gaussian, ¢ = 1,...,n. Then for each
vector b= (b1,...,b,)" € IR™, the matrix Z; with

n
Zl = ZEzquzu;r
=1
fulfills

zP(nZlnop > 62|b||¢2x) < 907

Proof. As ¢; are i.i.d. standard sub-Gaussian and Fe®i < ¢2°/2 for la| < 1/2, it follows
from the Master inequality and property
T) UZUZT

= exp(e;u?)

exp(g;uu

that

n
P(|Zilop > 2) < 2]t o exp{glogmexpwabiuiui )}

n
< 2inf e %% trex {
- 60>0 P ;

i

2 ffualf?

6207 |lui|* wiu }

Moreover, as ||u;|| < 6 and U; = wsu, /||ug]|? is a rank-one projector with trU; = 1, it
holds

92 n 9254 n 0254 b 2
treXp{2i§:1b?HuiH4Ui} < eXptr<2iZ:b?U¢> — eXp2||||
This implies for z = 62||b||v/2x

. 1 L
P(HZlHop > Z) < Qégf(;e)q)(_gz + 29254|b”2> — %

and the assertion follows. ]
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6.2 Variance deviation

Consider a sequence independent random variables {eis;f}, cor(g;, €5) = Xjj, flatted into
one vector . The subject of interest is upper bound for operator norm of

U blockDiag (ee" U™ — 1,,

UblockDiag (ee"\U" = Uil U], UU" = I, \uf MjH < 4%
— op
2

Analogically divide € into mean and stochastic parts
e=1IFe+ (¢ —IFe) =B+(.
Then initial term includes three parts:
U blockDiag(BB U™

+ U blockDiag(¢B U + U blockDiag(B¢H U
+ U blockDiag(¢¢T — U

Estimate successively each component.

n
on = supZ’yTZ/liBiBJTUf %
7 =1

n
sup Z Bf
7 i=1

| blockDiag(BB )T

IN

u}’ujHOp < 82| B

For the second and the third component one may apply Master bound 6.1, in which one
have to estimate exponential moments of each element of the >, Z/liAiLIiT :

trlog IE exp{U; AU}
With condition IFA; = 0 an intuition hint is

< U AUl

1
log AU < 5E(U¢Aiug)2 + O(‘

3
).
op
Consequently by means of Bernstein matrix inequality 6.2 one have to restrict the second
UiAul| 3.
op

moment and tail by log I exp{‘

2 _
Vo= i )

§max‘
K3

ur ujHOp HZUZ-EAZ-L{-T
ij

> EWUAU)?
ij

op op
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vi/8? = (G - Zipuf

op

< max | 2y, [ BT 25 )6 25 -1

< max |5, ((A? 0+ B ESGPUTEG>N), AL

Upper bound for IE ||&]|* T(||£]| > V/A) from SGI with £2 = CZ.TEi;le leads to asymptotic
V%C = 952 maxs; HEZ] Hopp

vep/s® = > UIE(GBT)UT

ij
max |2¢j||0pizj\

2 2
< max |, 02 B

op

2
il B
op

IN

Es for exponential moments for tails restriction

log IE exp{

ALYy T
i

= log IF exp { sup uiTAijuj} , ||ul||2 , ||u]||2 < 62

Ui ,Uj

Sub-Gaussian properties for exponential moments (Lemma 6.7) lead to IM¢¢, M¢p:

2 262
log IE exp { sup M—u (CzC - 'Lj)uj} < log IF exp {M(HQHQ - )\min(Eii))}
uq,ug CC <<

252
< SG{||¢)I?, 26* [ Ziillop /Mec} — MTCAmm(En-) < log(2),

2
log]Eexp{sup ]\/[CBUiTCz‘BjT“j} < SG{H§H,252 ”EiiHop 1Bl /M¢p} < log(2),
UjyUsj

where M¢c = 30%p | Ziillyp and Mep = 36%p | Ziillop [1Bill- Finally, as a consequence of
Theorem 6.2 with probability 1 — 2e™ and x; = = + log(2¢) and R.. = M,

Hu blockDiag(¢BT) uTH < gRCqu + 2VCB\/@,

u blockDiag(CCT)UTH ;Rcqu +2v¢cy /5%
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So, the summarized error with probability 1 — 2e™7* is

. 2
HL[ blockDiag (eeT U™ — 1, o < gR&;xq + 2veey /5%, + 02| B)?, (ErrVD)
where
Ree Mg+ Mec = 30%pma (15l + /53l 151
and

Vee = Vep + Ve = dmax /| 2|, (3vP + || BI)).

6.3 Quadratic forms
Consider vector ¢ which has restricted exponential or sub-Gaussian moments: 3 g > 0

log Eexp(y'€) < |4?/2, ~eR, ||y|<g (SG)

For ease of presentation, assume below that g is sufficiently large, namely, 0.3g > \/p.
In typical examples of an i.i.d. sample, g =< \/n. Define x. = g?/4.

Lemma 6.5 (Spokoiny (2016)). Let (SG) hold and 0.3g > \/p. Then for each x > 0
P(|¢]] > z2(p,x)) < 2e™* +84e * II(x < %)
where z(p,x) is defined by
(p+2px + 2X)1/2, x < X,
z(p,x) = Y
g+2g ' (x— %), X > X

Usually the second term in previous equation can be simply ignored. Obtain similar result
for quadratic form with matrix B. Define

p = tr(B), vZ = tr(B?), A = Amax (B)

ze = p+vg+Ag’/2

VP/A+gv/A+g?/2
1+v/(\g)

Lemma 6.6 (Spokoiny (2016)). Let (SG) hold and 0.3g > \/p/\. Then for each x > 0

o

gc =

P(|BY%¢|| > 2(B, %)) < 2e7* + 8.4e * M(x < x.)

where z(B,x) is defined by

1/2 <
+(B,x) = \/p—|—2vx +2Xx, x <xc
Ze + 20X — %X0)/8ey X > Xc
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The upper quantile z(B,x) = \/p + 2vx1/2 4 2Xx can be upper bounded by VP + V2Xx
and thus

2\ < X
+(B,x) < VP + V2%, x<x
Ze +2Mx — %0) /8, X > X

Lemma 6.7. Suppose (SG). For any p < 1 with g > pu, it holds

Eexp(“”;c”z) 1(|i€] < g/n—/p/p) <201 - p)

If g is sufficiently large than approximately

IEeXP(MHgHQ) < (1—p) PP

Lemma 6.8. Suppose (SG) and ||B|lop = 1. For any p < 1 with g?/u > p, it holds
Fexp(ull BY2¢/2) 1| BE| < g/p— \fo/n) < 2det(T, — uB) /2

Proof. With ¢,(B) = (2r) "/* det(B~1/2)

1
o(B) [ exp(a7¢ = 5187 P) 1l < @)y

Bl/2£ 2 1 B B 9

= B ep( M=) [ep(=5 10282 - i 25724 1| < gy
B/2¢|12 -

_ Iup/QeXp(MH ; €l )PE(HM 1/231/2€+Bl/2§“ Sg/,u)

where € denotes a standard normal vector in JRP and IP; means the conditional prob-
ability given ¢. Moreover, for any u € IRP and r > p'/? + ||ju|, it holds in view of
P(||B'?¢|? > p) < 1/2

P(|B"?e —ul| <) > P(|BY?€| < \/p) > 1/2
This implies
exp (ul| B'/2¢|2/2) T(I1BE|| < g/n— /p/n)

_ Lo
< 2w, (B) [[exp(y7¢ = S IBT ) Wil < gy
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Further, by (SG)
B)E Te = 1B 129)2) (||| < g)d
p(B)E [ exp(y €~ o YI7) T[] < g)dy
I
||7||2 1 -1/2,_12
< o(B) [ (- 51574y
< det(B~Y%)det(p 1B~ — I,)"V% = pP/? det(I, — uB) /2

and the initial statement follows. O

The next object of interest is IF||£]|" L(]|£]| > ¢). Rather useful form of it is

+oo
Elel 1iel > ) = Pl > ¢ +r |- POl > £t tdt

With z¢ = (t — /p)?/2

+oo 400 26720t7‘71
P > Ot dt = / 20 (V2 + /p) L dV2z <
(1€l > t) . ( VD) 1= (r — 1) log(a0) /70

Consequently, if (r — 1) log(zo)/zo < 1/2, than

t

E|j&|" 0(|g]| > ) < 26~ VP2 (47 4 oar1) (SGI)
Analogically one is able to restrict moment with exponent part and rlog(xo)/xo+a < 1/2

B[l am([|¢ ] > ¢) < de VP2t (tT + rtH) (SGIexp)
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