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ARTICLE INFO ABSTRACT

Keywords: 3CL protease is one of the key proteins expressed by SARS-Coronavirus-2 cell, the potential to be targeted in the
Biflavonoid discovery of antivirus during this COVID-19 pandemic. This protein regulates the proteolysis of viral polypep-
SARS-Coronavirus-2 tide essential in forming RNA virus. 3CL protease (3CLpro) was commonly targeted in the previous SARS-

SCL protease Coronavirus including bat and MERS, hence, by blocking this protein activity, the coronavirus should be erad-

icated. This study aims to review the potency of biflavonoid as the SARS-Coronavirus-2 3CLpro inhibitor. The
review was initiated by describing the chemical structure of biflavonoid and followed by listing its natural
source. Instead, the synthetic pathway of biflavonoid was also elaborated. The 3CLpro structure and its func-
tion were also illustrated followed by the list of its 3D-crystal structure available in a protein data bank. Lastly,
the pharmacophores of biflavonoid have been identified as a protease inhibitor, was also discussed. This review
hopefully will help researchers to obtain packed information about biflavonoid which could lead to the study in
designing and discovering a novel SARS-Coronavirus-2 drug by targetting the 3CLpro enzyme.
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1. Introduction world. The United States of America is the country with the highest
cases reported at 8.5 M approximately [2]. Meanwhile, the cases in
The Covid-19 pandemic has extended for almost 10 months since Indonesia are still increasing. There are approximately 393,000 cases
its outbreak in January 2020 [1]. The present statistic (by 24 October with 318,000 treated and 13,500 death [3]. This situation has made
2020) shows 43 M cases, 29 M recovered and 1.15 M death across the very huge impacts on all aspects of life including the economy, politics,
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Fig. 1. The life cycle of coronaviruses is initiated by the binding of the viral cell through its protein spike (S) to the host cell’s receptor namely angiotensin-
converting enzyme 2 (ACE2). Upon membrane fusion (endocytosis), the virus is coated by the endosome. The following endosomal break down releases RNA from
the virus into the host cell. The incoming viral genome is translated to produce two large precursor polyproteins 1a (ppla) and 1ab (pplab) which are cleaved by
proteases into small products. A series of subgenomic mRNA are transcripted and finally translated into viral proteins. The viral protein along with RNA is packed
into virion in the ER and Golgi and then transported via vesicles and released out of the cell [9].

social, culture, health, and education. For example, United Nations
Industrial Development Organization (UNIDO) reported that since
April 2020, the high-income countries (30 countries) have a 18% aver-
age economic losses, whereas upper-middle-income countries (13
countries) suffer a 24% average losses. The lower-middle-income
countries (6 countries) are hit by a 22% average loss, confirming the
economic crisis unleashed by the pandemic, regardless of the income
level [4]. The SARS-Coronavirus-2 viral vector is still a topic for
debate. However, either bats or snakes are predicted as the first virus
transmitting species to human [5].

Like some other coronaviruses, SARS-Coronavirus-2 is also a family
of coronaviridae, which is genomically composed by the structural as
well as non-structural proteins. This is an RNA virus in which on one
hand, the structural protein contains S protein (spike), M protein
(membrane), E protein (envelope), and N protein (nucleocapsid) [6].
On the other hand, the non-structural protein (NSP) is an open reading
frame (ORF) consisting of NSP1-16 [7]. Upon entry into the host cell,
the incoming viral genome is translated to produce two large precursor
polyproteins 1a (ppla) and 1ab (pplab) that are processed by ORF 1a-
encoded viral proteinases, papain-like proteinase (PLpro), and 3C-like
proteinase (3CLpro) into 16 mature non-structural proteins
(NSP1-NSP16, numbered according to their order from the N-
terminus to the C-terminus of the ORF 1 polyproteins). Many of the
NSPs perform essential functions in viral RNA replication and tran-
scription [8]. The virus life cycle is illustrated in Fig. 1.

One of the common studied NSPs is NSP5, in which chymotrypsin-
like protease (3CLpro) is one kind of this non-structural protein [10].
3CLpro cleaves the polyprotein into viral RNA which is then replicated
and packed in the new mature virus. Therefore, by interfering with this
proteolytic step, the viral RNA replication will be interrupted leading
to the prevention of new viruses for further expansion. 3CLpro is one
of the interesting protein targets in combating coronavirus by compet-
itive inhibition with the peptide substrate [11].

Reviews on natural product compounds potential for SARS-
Coronavirus have been published by targeting diverse proteins. These
includes tanshinones, diarylheptanoids and geranylated flavonoids tar-
geting PLpro [12], quercetine (reverse transcriptase) [13], aloeemodin
and hesperitin (3CLpro) [14], apigenin (viral internal ribosome entry)
[15], isatisindigotica (protease) [16], amentoflavone (biflavonoid;

protease) [17], kaempferol (3a ion channel) [18], glycyrrhizin (pro-
tease) [19], tetradrine (viral S and N) [20], silvestrol (cap-dependent
viral mRNA translation) [21,22], etc.

Biflavonoid is currently attractive to be proposed as the serine pro-
tease inhibitor due to the suitability of its chemical structure with the
active site of the protease [23]. Serine proteases are characterized by a
distinctive structure, consisting of two beta-barrel domains that con-
verge at the catalytic active site. These enzymes can be further catego-
rized based on their substrate specificity as either trypsin-like,
chymotrypsin-like, or elastase-like. Therefore, the dimer form of bifla-
vonoid is such a good inhibitor model that would fully occupy the two
beta-barrel domain (main site and prime site) [24].

In this review, we will focus on the biflavonoid as the interesting
compound, which is potential for the 3CLpro inhibitor of SARS-
Coronavirus-2. The review will start by defining the chemical structure
of biflavonoid and its sources from both natural products as well as
synthesis. The following section would elaborate the 3CLpro structure
and its function as the interesting protein target for biflavonoid. The
review also summarizes the existing SARS-Coronavirus-2 3CLpro 3D
crystal structure in the protein data bank. Last but not least, the cur-
rent study on the biflavonoid as a diverse protease inhibitor will be
carried out to give the insight mechanism on how the biflavonoid
can act as a potential SARS-Coronavirus-2 antiviral agent.

2. Chemical structure

Biflavonoid is a natural product compound bearing a dimer of two
sets of flavonoid, linked by either C-C or C-O bond [25,26]. The flavo-
noid itself is chemically constructed by a 15-C skeleton, which is
divided into two aromatic rings (Ring A and Ring B) and connected
by a heterocyclic ring having «, - unsaturated carbonyl chain [27].
In addition to flavonoid being the major form of such compound class,
there are two kind of analogs which enrich the flavonoid structural
diversity. They are isoflavonoid (derived from 3-phenylchromen-4-
one (3-phenyl-1,4-benzopyrone) and neoflavonoid (derived from 4-
phenylcoumarine (4-phenyl-1,2-benzopyrone). Other sub-groups of
flavonoid including flavan, flavanone, flavanonol, anthocyanidin,
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Fig. 2. The structures of a) flavonoid, b) biflavonoid, c) isoflavonoid, d) neoflavonoid, e) flavanone, f) flavanonol, g) anthocyanidin and h) anthoxantin which are

naturally occurred in plants.

and anthoxantin are also widely distributed among natural resources
[28]. Fig. 2 illustrates the structure of flavonoid and their analogs.

The aromatic rings are often decorated by poly-hydroxy group.
Therefore, this compound’s class are frequently called polyphenolic
compounds. The presence of OH group has also given chance for the
flavonoid to be biosynthetically formed in a glycoside. The sugar moi-
ety in the glycosidic form makes the flavonoid more soluble in water
than organic solvents due to the polar character of the sugar [29,30].

Spectroscopically, alike to the polyphenolic flavonoid, the yellow-
ish biflavonoid absorbs UV light at 500-600 nm. The colorimetric
reaction namely bathochromic shift (redshift) occurs when it reacts
with an alkaline solution to prolong the maximum wavelength
(650 nm). Similarly, polyvalent ion such as AI** may shift the wave-
length into a hypsochromic shift (blue shift) with a lower wavelength
(450 nm) [31]. Using the fourier transform infrared (FTIR) spec-
troscopy, the carbonyl of chromone group stretching vibration is trans-
mitted at 1600 cm ™~ "> Meanwhile, the vinyl aromatic group appears at
3600 cm ™! as a bending vibration [32]. The proton of biflavonoid is
indicated as multiplet signals around 6-8 ppm which often overlap
in trans/ cis configuration protons of a, - unsaturated carbonyl chain
as confirmed by nuclear magnetic resonance (NMR) spectroscopy. In
conjunction, the carbon signal of the carbonyl chromone group is indi-
cated at 160 ppm, whereas the vinylic aromatic carbon appears at
150 ppm. Using a mass spectroscopy, the origin of the flavonoid skele-
ton could be the most stable mass/ion (base peak) during the fragmen-
tation due to the electron impact bombardment [33].

3. Natural sources

A naturally occurring biflavonoid is distributed in various plant
species. The first isolated natural biflavonoid was from Ochna squar-
rosa Linn. (Ochnaceae) [34] and later was from Lonicera japonica
(Caprifoliaceae) [35]. Torreya nucifera was also identified as the natu-
ral source producing four biflavonoids [36]. Amentoflavone is another
kind of biflavonoid isolated from abroad family of plants such as
selaginellaceae, cupressaceae, euphorbiaceae, podocarpaceae, and
calophyllaceae [37]. It was reported that at least 127 biflavonoids
are distributed among plants, but the most occurrences are Gingko
biloba, Lobelia chinensis, Polygala sibirica, Ranunculus ternatus, Selagi-
nella pulvinata, and Selagenella tamariscina [37].

A more recent study had identified the biflavonoid I3’ II8-
binaringenin in drupes of Schinus terebinthifolius, which was indicated
by UHPLC-MS [38]. Five biflavonoids were lately found in Ceratodon

purpureus presenting a diastereomeric form in the second biflavonoid
[39]. In the same year, three biflavonoid types were also discovered
in Selaginella doederleinii including the amentoflavone type, robustafla-
vone type, and hinokiflavone type [40]. From the zingiberaceae fam-
ily, new biflavonoids with flavanone-chalcone type can be found in
fingerroot (Boesenbergia rotunda) [41]. The pure biflavonoid with agly-
cones morelloflavone (Mo) type, volkensiflavone (Vo) type, as well as
the morelloflavone’s glycoside fukugiside (Fu) type was characterized
in Garcinia madruno [42]. The genus of garcinia again shows its
resource of biflavonoid by the discovery of seven compounds including
volkensiflavone, fukugetin, fukugeside, GB 1a, GB 1a glucoside, GB 2a,
and GB 2a glucoside from Garcinia xanthochymus fruits [43]. Fig. 3
illustrates the chemical structure of hinokiflavone, ochnaflavone,
amentoflavone, morelloflavone, and volkensiflavone. For more data,
Table 1 tabulates the various studies reporting biflavonid found in a
natural source in the last three years.

4. Synthetic sources

Instead of natural sources, biflavonoid is also produced via a syn-
thetic pathway. This usually aims to derivatize the biflavonoid lead
compound into a modified diverse functional group that could be
responsible for its biological activity. Besides, the synthetic pathway
could be more reproducible than isolating the biflavonoid from its gen-
uine natural sources. This will proportionally reduce the cost of pro-
duction as well as increase the yields [74,75].

Biflavonoid is synthetically formed by two units (monomer) of fla-
vonoid undergoing the Ullmann coupling reaction [76]. This reaction
forms a diaryl ether link between two units of flavonoid, which is con-
ditioned by mixing them with an alkaline carbonate solution, N, N-
dimethylacetamide, and dry toluene solvent under nitrogen exposure,
followed by heating the mixture above 100 °C for several hours [77].
The total synthesis of biflavonoid is initiated by reacting ortho-hydroxy
acetophenone with benzaldehyde under Claissen Smith condensation
to form chalcone as the intermediate compound [78]. The next step
is the synthesis of flavone (monomer) by iodinating the chalcone using
DMSO as the solvent [79]. The detailed total synthesis of biflavonoid is
schemed out in Scheme 1.

An interesting biflavonoid was constructed according to the narin-
genin monomer by reacting to the available phloroglucinol and 4-
hydroxy- or 4-methoxybenzaldehyde. Naringenin is the flavanone-
skeleton structure attached by three hydroxy groups at the 4', 5, and
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Fig. 3. The chemical structures of earlier biflavonoid found in plants: a) hinokiflavone, b) ochnaflavone, c¢) amentoflavone, d) morelloflavone, and e)

volkensiflavone.

7 carbons. The product was confirmed as 3',3”-binaringenin, and four
related biflavonoids with a considerably good yield (15-35%) [81].

Biflavonoid was also prepared electrochemically by reacting to fla-
vonol isorhamnetin, LiClO4, and amine in acetonitrile solvent. The
mixture was electrolyzed in a diaphragm cell at anodic current density
of 5 mA/cm? for 3.5 h. Platinum-plated with a working surface of
2 cm® was used as the anode. Once the electrolysis was completed,
about 90% of the acetonitrile was distilled from the anode compart-
ment. Further purification using chromatography column was applied
and followed by recrystallization to obtain the biflavonoid product
with a good yield (60-70%) [82].

A step-economical preparation of a very rare biflavonoid has been
performed by combining the methylated biaurone undergoing a mod-
ular and divergent synthesis strategy. The divergent synthesis was car-
ried out by using bialdehyde as the building block such as
isophthalaldehyde, terephthalaldehyde, and benzene-1,3,5-
tricarbaldehyde to produce the chalcone intermediate under Claissen
Smith condensation. The following reaction was oxidative cyclization
to obtain the biflavonoid as the targeted compound. Interestingly,
instead of biflavonoid, the divergent method is also applied in the pro-
duction of triflavonoid [83].

The synthesis of biflavonoid was further explored by applying the
Suzuki-Miyaura cross-coupling reaction followed by alcohol methyla-
tion for the synthesis of rare ‘hybrid’ derivatives. These derivatives
belong to different sub-classes of monomers. The second biflavonoid
was constructed as homodimeric compounds in which a methylene-
dioxy group acts as the linker between the two flavonoid monomers.
This reaction facilitates the probing of uncharted regions of biologi-
cally interesting chemical space [84].

The first stereodivergent synthesis of biflavanone was conducted by
exclusively controlling the temperature to produce a stereoselective
product. The scaffold of 2,2'-biflavanones was attached by diverse sub-
stitution at the phenyl ring and conditioned by SmI,/Methanol/THF,
confirmed by a highly selected good yield for both stereoisomers of
the expected compounds. On one hand, the (R*R*)-stereoisomer
was only formed when the temperature was controlled at —40 °C.
On the other hand, the reaction generated the (R*,S*)-isomer when
the mixture was refluxed [85]. The control of regioselective reaction
was performed using aromatic prenyltransferase from Aspergillus ter-
reus (AtaPT). Prenylation was applied to produce biflavonoids 1-3
dimerized connected by a diphenyl linkage at the hydrogen bond

involving C5”-OH group. This OH is chemically less accessible than
other OH groups in the ring. The AtaPT was used as the substrate that
successfully yielded the different regio and chemoselective products.
This study would be recommended for developing green synthetic
reactions for such prenylated biflavonoids [86].

5. 3-Chymotrypsine-like protease

The extensive process of proteolysis releases the functional
polypeptides which are mainly achieved by the main proteinase and
are also frequently named 3C-like proteinase (3CLpro). This indicates
a similar cleavage site with the early picornavirus of 3C proteinases
(3Cpro), although further studies showed that the similarity is limited
by two families of the protease. 3CLpro cleaves at least 11 conserved
amino acid residues includes GLN---(SER, ALA, GLY) sequences (the
cleavage site is indicated by ---) [87]. This process is initiated by the
autocleavage of its enzyme from two polypeptides (polypeptide A
and polypeptide B). There are three non-canonical 3CLpro cleavage
sites at the P2 position employing PHE, MET, or VAL residues in
SARS-Coronavirus polyproteins. The cleavage site of 3CLpro SARS-
Coronavirus is illustrated in Fig. 4 [10,88].

The availability of experimentally determined three-dimensional
(3D) structures of the SARS-Coronavirus-2 3CLpro has greatly aided
in the design of anti-SARS-Coronavirus-2 drug [91]. Recently, the sud-
den increase in the number of crystal structures of 3CLpro is deposited
in the protein data bank (PDB) [92]. Most of the earlier crystal struc-
tures are devoid of inhibitor. Thus, it could not explain the particular
binding site of 3CLpro properly [93]. Therefore, many efforts con-
ducted to understand the structure and function of 3CLpro relied
mainly on the models developed based on the crystal structures of
other betacoronavirus such as SARS-Coronavirus, MERS, Bat Corona,
etc [94].

To date, there are more than 100 3D structures of SARS-
Coronavirus-2 3CLpro deposited in the protein data bank (PDB)
(www.rcsb.org). In general, the crystal structures of 3CLpro reveal
the presence of three structural domains in each monomer, in which
domains I (position 8-101), II (position 102-184), and III (position
201-303) have a chymotrypsin-like characteristic fold with a catalytic
cysteine (CYS145) and histidine (HIS41). This is linked to a third C-
terminal domain by a long loop (position 185-200) by orienting the
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Table 1
Biflavonoids from natural resources have been reported in the last three years.
No Biflavonoid Plants References
1 dihydrodaphnodorin B Fumana procumbens [44]
2 daphnodorin B Fumana procumbens [44]
3 volkesiflavone Garcinia gardneriana [45]
4 morelloflavone Garcinia gardneriana, Garcinia madruno [45]
5 7,7”-di-O-methylchamaejasmin Ormocarpum kirkii [46]
6 campylospermone A Ormocarpum kirkii [46]
7 a dimeric chromene [diphysin Ormocarpum kirkii [46]
8 amentoflavone 7''-O-$-d-glucopyranoside Ginkgo Biloba [47]
9 bilobetin Ginkgo Biloba [47]
10 isoginkgetin Ginkgo Biloba [47]
11 sciadopitysin Ginkgo Biloba [48]
12 agathisflavone Schinus terebinthifolius; Anacardium occidentale [49,50]
13 tetrahydroamentoflavone Schinus terebinthifolius [49]
14 uncinatabiflavone C 7-methyl ether Selaginella uncinata [50]
15 7,4, 7", 4”-tetra-O-methyl amentoflavone Cephalotaxus harringtonia [51]
16 7, 4, 7”-tri-O-methyl amentoflavone Cephalotaxus harringtonia [51]
17 sequoiaflavone Cephalotaxus harringtonia; Ouratea ferruginea [51,52]
18 amentoflavone monomethoxy derivatives Cunninghamia lanceolata [53]
19 dihydrochalcone flavanone Sophora flavescens [54]
20 2/,3'-dihydroochnaflavone Ochna mauritiana [55]
21 dulcisbiflavonoid B Garcinia dulcis [56]
22 dulcisbiflavonoid C Garcinia dulcis [56]
23 umcephabiflovin A Cephalotaxus oliveri [571]
24 umcephabiflovin B Cephalotaxus oliveri [57]
25 S-taiwanhomoflavone-B Cephalotaxus oliveri [57]
26 5, 6, 6/-trihydroxy-[1,1’-biphenyl]-3,3'-dicarboxylic acid Mesua ferrea [58]
27 fukugiside Garcinia madruno [59]
28 neochamaejasmin B Stellera chamaejasme [60]
29 oliveriflavone A, B, and C Cephalotaxus oliveri [61]
30 rhusflavanone Mesua ferrea [62]
31 mesuaferrone B Mesua ferrea [62]
35 sinodiflavonoids A Sinopodophyllum emodi [63]
36 sinodiflavonoids B Sinopodophyllum emodi [63]
37 oxytrodiflavanone A Oxytropis chiliophylla [64]
38 oxytrochalcoflavanones A Oxytropis chiliophylla [64]
39 oxytrochalcoflavanones B Oxytropis chiliophylla [64]
40 hinokiflavone Selaginella sinensis [65]
41 isocampylospermone A Ochna Serrulata [66]
42 campylospermone A Ochna Serrulata [66]
43 cupressuflavone Cupressus sempervirens [67]
44 (8-hydroxy-3'-3-D-galactosyl-isoflavone)-2'-8"-(4'"-hydroxy-flavone)-biflavone Solanum nigrum [68]
45 2,3’ ,5-trihydroxy-5"-methoxy-3"-O- a-glucosyl-3-4'“-O-biflavone Solanum nigrum [68]
46 7’-O-methyl hinokiflavone Selaginella tamariscina [69]
47 (2R,3S)-volkensiflavone-7-O-p-acetylglucopyranoside Allanblackia floribunda [70]
48 (28,3S)-morelloflavone-7-O-B-acetylglucopyranoside Allanblackia floribunda [70]
49 (S)-2”R,3”R- and (R)-2”S,3”S-dihydro-3”-hydroxyamentoflavone-7- methyl ether Cardiocrinum giganteum [71]
50 (S)-2”R,3”R- and (R)-2”S,3”S-dihydro-3”-hydroxyamentoflavone Cardiocrinum giganteum [71]
51 4,4',7-tri-O-methylisocampylospermone A Ochna serrulata [72]
52 4"-de-O-methylafzelone A Ochna serrulata [72]
53 serrulone A Ochna serrulata [72]
54 sumaflavone Juniperus phoenicea [73]
=X
O
il -
< | =
x OH a) x OH b) X 0 . c)
’ = | | —
= CHy = X >
o (o} (e}
O-hydroxyaectophenone O-hydroxychalcone flavonoid
28
= biflavonoid
|

Scheme 1. Total synthesis of biflavonoid. Reagents and conditions: a) benzaldehyde, KOH, MeOH, rt, overnight, 70-87%; b) I, DMSO, 100 °C, overnight,
75-86%; and c) Ullmann modified coupling reaction, 8-58% [80].
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Fig. 4. The 3CLpro cleavage sites of SARS Coronavirus which recognize 11 sequences of peptide substrate with their respective Kcal/Km. These Kcal/Km values
reflect the canonical recognition which is supported by the recognition sites of a series of other coronavirus 3C proteases [89,90].

N-terminal residues that are essential for the dimerization [95-98].
Domain I and domain II are decorated in an antiparallel g-barrel struc-
ture, whereas domain III is composed of five a-helices arranged in a
globular cluster. The helical domains of the two monomers form a
dimer through H-bond interactions from the end to end of the N-
terminal residues and the key residues from the individual monomers.
The catalytic activity is suggested to be contributed by the salt bridge
between the N-terminal SER1 of one monomer and GLU166 of the
other monomer [97,99]. Table 2 presents the 115 3D-structures of
3CLpro available in the protein data bank.

SARS-Coronavirus-2 3CL pro in complex with a novel inhibitor
5,6,7-trihydroxy-2-phenyl-4H-chromen-4-one solved its 3D-crystal
structure in 2.20 A solution. This flavonoid inhibitor binds the active
site of the protease through the hydrogen bond interaction between
ortho-hydroxyphenyl (ring A) of the ligand with GLY143, and the car-
bonyl group of ring C with GLU166. The non-bonding interaction was
also observed between the phenyl of ring B with HIS41 and CYS44.
Fig. 5 illustrates the interaction between 5,6,7-trihydroxy-2-phenyl-4
H-chromen-4-one and the active site of SARS-Coronavirus-2 3CLpro
(PDB ID 6M2N) [100].

Two peptidomimetic-based inhibitors are complexed with SARS-
Coronavirus-2 in different monomer of trimer with 2.15 A of the crys-
tal resolution (PDB 6WTT) [101]. (1S,2S)-2-({N-[(benzyloxy)
carbonyl]-L-leucyl}amino)-1-hydroxy-3-[(3S)-2-oxopyrrolidin-3-yl]pr

opane-1-sulfonic acid binds the active site in monomer A by interact-
ing it with CYS145, GLU166, GLN189, HIS164, and PHE140 at the
respective atoms of O (OH), O (C = O), H (NH-amide), H (NH-
amide) and H (NH-pyrrolidinone) (Fig. 6). Monomer B demonstrates
the same binding mode as monomer A, whereas monomer C is bound
by N ~ 2 ~ -[(benzyloxy)carbonyl]-N-[(1R,2S)-1-hydroxy-3-[(3S)-2-0x
opyrrolidin-3-yl]-1-(trimethyl-lambda ~ 4 ~ -sulfanyl)propan-2-yl]-L-
leucinamide. In monomer C, the ligand interacts with GLU166,
HIS164, HIS41, and GLN189 at the respective atoms of O (C = O),
N (NH-amide) and N- (NH-pyrrolidinone), O (OH), and N (NH-amide).

A class of imidazole-4-carboxamide compound was also complexed
to SARS-Coronavirus-2 3CLpro and the 3D crystal structure was
resolved at 1.46 A (PDB ID 6W79; Fig. 7a) [102]. This inhibitor binds
the active site of the protease by interacting it with the residues
GLY143 and GLU166 at atom O (C=0O-amide) and also the next O
(C=0-amide), respectively. The hydrophobic interaction was also per-
formed via the interaction between ASN142- O (C=0-amide), THR26-
H-CH-imidazole), CYS145-imidazole ring, and LEU141-ASN142-
pyridine.

An inhibitor which was a repurposed drug from antineoplastic, was
complexed with SARS-Coronavirus-2 3CLpro in 1.60 A of 3D-crystal
resolution (PDB ID 7BUY; Fig. 7b) [103]. Interestingly, this inhibitor
binds covalently (distance 1.8 /o\) at its O (C=0) to CYS145 which is
one of the catalytic site residues. This inhibitor’s name is carmofur,



Y. Hartini et al.

Results in Chemistry 3 (2021) 100087

Table 2

The list of 3CLpro 3D-crystal structure available in protein data bank.
PDB ID Co-crystallized Ligand Resolution Reference

A&

6M2N 5,6,7-trihydroxy-2-phenyl-4H-chromen-4-one 2.20 [100]
6M2Q - 1.70 [100]
6WQF - 2.30 [105]
6XB1 1-ethyl-pyrrolidine-2,5-dione 1.80 [106]
6XB0 dimethyl sulfoxide 1.80 [106]
6XB2 1-ethyl-pyrrolidine-2,5-dione, dimethyl sulfoxide 2.10 [106]

6L00 and 6LNY

7JFQ
6XKF
6XKH
6XOA
6LNQ

7JUN
7JR3
7JR4
6XHU
6XQT

6XQS

6XQU
6W2A

6WTK
6WTM
6WTJ

6 W63

and

6 W79

6WCO
6XBH
6XBG
6XFN
7JU7
3SZN
3SNE

3SNA, 3SNB,
and 3SNC

6XBI
6XHO
6XHN

6XHL and 6XHM

6XA4
6Y2E
6Y2G,

7JKV

S5RHF
S5RHE
SRGG
5RG1
5RGH
5RGR
5RG3
5RG2
5RGS
S5RGK
5RGJ
5RGM
5RGM
5RGO
5RGN
5RGQ
5RGP
5R8T
5RGZ
SRHA

6Y2F

(2~{S})-4-methyl-~{N}-[(2~{S})-1-oxidanylidene-3-[(3~{S})-2-oxidanylidenepyrrolidin-3-yl]propan-2-yl]-2-[[(~{E})-3-
phenylprop-2-enoyl]amino]pentanamide

1,2-ethanediol, formic acid

1,2-ethanediol, chloride ion

1,2-ethanediol, acetate ion, formic acid

1,2-ethanediol
N-[(25)-3-methyl-1-[[(25)-4-methyl-1-oxidanylidene-1-[[(2S)-1-oxidanylidene-3-[(3S)-2-oxidanylidenepyrrolidin-3-yl]propan-
2-yl]lamino]pentan-2-yl]lamino]-1-oxidanylidene-butan-2-yl]-1H-indole-2-carboxamide

(1R,28,5S)-3-[N-({1-[(tert-butylsulfonyl)methyl]cyclohexyl}carbamoyl)-3-methyl-L-valyl]-N-{(15)-1-[(1R)-2-(cyclopropyla
mino)-1-hydroxy-2-oxoethyl]pentyl}-6,6-dimethyl-3-azabicyclo[3.1.0]hexane-2-carboxamide
(18,3aR,6a8)-2-[(25)-2-({(2S)-2-cyclohexyl-2-[(pyrazin-2-ylcarbonyl)amino]acetyl }amino)-3,3-dimethylbutanoyl]-N-[(2R,3S)-
1-(cyclopropylamino)-2-hydroxy-1-oxohexan-3-yl]octahydrocyclopenta[c]pyrrole-1-carboxamide

boceprevir (bound form)

[4,4-bis(fluoranyl)cyclohexyllmethyl ~{N}-[(2~{S})-1-[[(1~{R},2~{S})-1-[bis(oxidanyl)-oxidanylidene-$1"{5}-sulfanyl]-1-
oxidanyl-3-[(3~{S})-2-oxidanylidenepyrrolidin-3-yl]propan-2-ylJamino]-4-methyl-1-oxidanylidene-pentan-2-yl]carbamate,
(18,28)-2-[(N-{[(4,4-difluorocyclohexyl)methoxy]carbonyl}-L-leucyl)amino]-1-hydroxy-3-[ (3S)-2-oxopyrrolidin-3-yl]propane-
1-sulfonic acid

N ~ 2 ~ -[(benzyloxy)carbonyl]-N-{(25)-1-hydroxy-3-[(35)-2-oxopyrrolidin-3-yl]propan-2-yl}-L-leucinamide
(18,25)-2-({N-[(benzyloxy)carbonyl]-L-leucyl }amino)-1-hydroxy-3-[(3S)-2-oxopyrrolidin-3-yl] propane-1-sulfonic acid
N-(4-tert-butylphenyl)-N-[(1R)-2-(cyclohexylamino)-2-oxo-1-(pyridin-3-yl)ethyl]-1H-imidazole-4-carboxamide

N-(4-tert-butylphenyl)-N-[(1R)-2-(cyclopentylamino)-2-oxo-1-(pyridin-3-yl)ethyl]-1H-imidazole-4-carboxamide

Masitinib
ethyl (4R)-4-({N-[(benzyloxy)carbonyl]-l-phenylalanyl}amino)-5-[(3S)-2-oxopyrrolidin-3-yl]pentanoate
2-(N-morpholino)-ethanesulfonic acid

ethyl (2E,4S)-4-{[N-(4-methoxy-1H-indole-2-carbonyl)-L-leucyl]amino}-5-[(3S)-2-oxopyrrolidin-3-yl] pent-2-enoate
(35)-3-{[N-(4-methoxy-1H-indole-2-carbonyl)-L-leucyl]amino}-2-ox0-4-[(3S)-2-oxopyrrolidin-3-yl]butyl 2-cyanobenzoate
N-[(25)-1-({(25)-4-hydroxy-3-0x0-1-[(3S)-2-oxopyrrolidin-3-yl]butan-2-yl }amino)-4-methyl-1-oxopentan-2-yl]-4-methoxy-1H-
indole-2-carboxamide
~{tert}-butyl~{N}-[1-[(2~{S})-3-cyclopropyl-1-oxidanylidene-1-[[(2~{S},3~{R})-3-oxidanyl-4-oxidanylidene-1-[(3~{S})-2-
oxidanylidenepyrrolidin-3-yl]-4-[(phenylmethyl)amino]butan-2-yl]lamino]propan-2-yl]-2-oxidanylidene-pyridin-3-
yllcarbamate

N-[(25)-1-({(1S,25)-1-(1,3-benzothiazol-2-y1)-1-hydroxy-3-[(3S)-2-oxopyrrolidin-3-yl] propan-2-yl }amino)-4-methyl-1-
oxopentan-2-yl]-4-methoxy-1H-indole-2-carboxamide

1-acetyl-N-methyl-N-phenylpiperidine-4-carboxamide

1-acetyl-N-(6-methoxypyridin-3-yl)piperidine-4-carboxamide

4-methyl-N-phenylpiperazine-1-carboxamide

N-alpha-acetyl-N-(3-bromoprop-2-yn-1-yl)-L-tyrosinamide
5-fluoro-1-[(5-methyl-1,3,4-thiadiazol-2-yl)methyl]-1,2,3,6-tetrahydropyridine
N,1-dimethyl-N-(propan-2-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine

N ~ 2 ~ -acetyl-N ~ 1 ~ -prop-2-en-1-yl-L-aspartamide

N ~ 2 ~ -acetyl-N-prop-2-en-1-yl-D-allothreoninamide

[(2~{R})-4-(phenylmethyl)morpholin-2-ylJmethanol

2-fluoro-N-[2-(pyridin-4-yl)ethyl]benzamide

(55)-7-(pyrazin-2-yl)-2-oxa-7-azaspiro[4.4]nonane

N'-acetyl-4,5,6,7-tetrahydro-1-benzothiophene-2-carbohydrazide
N'-acetyl-4,5,6,7-tetrahydro-1-benzothiophene-2-carbohydrazide

1,1'-(piperazine-1,4-diyl)di(ethan-1-one)

1-{4-[(4-methylphenyl)sulfonyl]piperazin-1-yl}ethan-1-one

1-(4-fluoro-2-methylphenyl)methanesulfonamide

1-{4-[(2,4-dimethylphenyl)sulfonyl]piperazin-1-yl}ethan-1-one

2-(3-cyanophenyl)-N-(pyridin-3-yl)acetamide

1-{4-[(thiophen-2-yl)methyl]piperazin-1-yl}ethan-1-one

1.94 and 2.25 [107]

1.55 [108]
1.80 [109]
1.28 [110]
2.10 [111]
2.24 [107]
2.30 [112]
1.55 [113]
1.55 [114]
1.80 [115]
2.30 [116]
1.90 [116]
2.20 [116]
1.65 [117]
2.00 [118]
1.85 [118]
1.90 [118]
2.10 [102]
1.48 [102]
1.60 [119]
1.45 [120]
1.70 [121]
1.60 [122]
1.69 [123]
2.60 [124]
3.05, 2.40 [124]
and 2.58

1.70 [125]
1.45 [126]
1.38 [126]

1.47 and 1.41 [126]

1.65 [127]
1.75 [128]
2.20, and [128]
1.95

1.25 [129]
1.76 [104]
1.56 [104]
2.26 [104]
1.57 [104]
1.70 [104]
1.41 [104]
1.58 [104]
1.63 [104]
1.72 [104]
1.43 [104]
1.34 [104]
2.04 [104]
2.04 [104]
1.72 [104]
1.86 [104]
2.15 [104]
2.07 [104]
1.27 [104]
1.52 [104]
1.51 [104]

(continued on next page)
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PDB ID Co-crystallized Ligand Resolution Reference
A&
5RH3 (2R)-2-(3-chlorophenyl)-N-(4-methylpyridin-3-yl)propanamide 1.69 [104]
5RH4 (2R)-2-(6-chloro-9H-carbazol-2-yl)propanoic acid 1.34 [104]
5RGU N-(3-{[(2R)-4-oxoazetidin-2-yl]oxy}phenyl)-2-(pyrimidin-5-yl)acetamide 2.11 [104]
5RH6 N-[(1R)-2-[(2-ethyl-6-methylphenyl)amino]-2-oxo-1-(pyridin-3-yl)ethyl]-N-[6-(propan-2-yl)pyridin-3-yl]propanamide 1.60 [104]
5RGT N-[(1R)-2-(tert-butylamino)-2-oxo-1-(pyridin-3-yl)ethyl]-N-(5-tert-butyl-1,2-oxazol-3-yl)propanamide 2.22 [104]
5RH5 N-(5-tert-butyl-1,2-o0xazol-3-y1)-N-[(1R)-2-[(4-methoxy-2-methylphenyl)amino]-2-oxo-1-(pyridin-3-yl)ethyl]propanamide 1.72 [104]
5RGW 2-(5-cyanopyridin-3-yl)-N-(pyridin-3-yl)acetamide 1.43 [104]
5RH8 2-(cyanomethoxy)-N-[(1,2-thiazol-4-yl)methyl]benzamide 1.81 [104]
5RGV 2-(isoquinolin-4-yl)-N-phenylacetamide 1.82 [104]
5RH7 N-(5-tert-butyl-1H-pyrazol-3-y1)-N-[(1R)-2-[(2-ethyl-6-methylphenyl)amino]-2-oxo-1-(pyridin-3-yl)ethyl]propanamide 1.71 [104]
5RGY N-(4-methoxypyridin-2-yl)-2-(naphthalen-2-yl)acetamide 1.976 [104]
5RGX 2-(3-cyanophenyl)-N-(4-methylpyridin-3-yl)acetamide 1.69 [104]
5RH9 N-{4-[(159)-1-methoxyethyl]phenyl}-N-[(1R)-2-[(4-methoxy-2-methylphenyl)amino]-2-oxo-1-(pyridin-3-yl)ethyl]propanamide 1.91 [104]
S5RHO N-(5-methylthiophen-2-yl)-N'-pyridin-3-ylurea 1.92 [104]
5RH2 2-(3-chlorophenyl)-N-(4-methylpyridin-3-yl)acetamide 1.83 [104]
5RH1 2-(5-chlorothiophen-2-yl)-N-(pyridin-3-yl)acetamide 1.96 [104]
5REA (azepan-1-yl)(2H-1,3-benzodioxol-5-yl)methanone 1.63 [104]
SREB 1-[(thiophen-3-yl)methyl]piperidin-4-ol 1.68 [104]
5REC 2-{[(1H-benzimidazol-2-yl)amino]methyl}phenol 1.73 [104]
5REE (2R,3R)-1-benzyl-2-methylpiperidin-3-ol 1.77 [104]
7JVZ - 2.50 [130]
6W9oQ - 2.05 [131]
7BRR (18,25)-2-({N-[(benzyloxy)carbonyl]-L-leucyl }amino)-1-hydroxy-3-[(3S)-2-oxopyrrolidin-3-yl] propane-1-sulfonic acid 1.40 [132]
7BRO - 2.00 [133]
7BRP (1R,28,5S8)-n-[(15)-3-amino-1-(cyclobutylmethyl)-2,3-dioxopropyl]-3-[(2S)-2-{[(tert-butylamino)carbonyl]amino}-3,3-dimet 1.80 [134]
hylbutanoyl]-6,6-dimethyl-3-azabicyclo[3.1.0]hexane-2-carboxamide
7C2Q - 1.93 [135]
7C8T N-[(benzyloxy)carbonyl]-O-(tert-butyl)-1-threonyl-3-cyclohexyl-N-[(15)-2-hydroxy-1-{[(3S)-2-oxopyrrolidin-3-ylJmethyl}ethyl]- ~ 2.05 [136]
l-alaninamide
7C8R Ethyl (4R)-4-[[(25)-4-methyl-2-[[(2S,3R)-3-[(2-methylpropan-2-yl)oxy]-2-(phenylmethoxycarbonylamino)butanoyl]amino] 2.30 [136]
pentanoyl]amino]-5-[(3S)-2-oxidanylidenepyrrolidin-3-yl]pentanoate
6XCH - 2.20 [137]
6L70 (18,25)-2-({N-[(benzyloxy)carbonyl]-L-leucyl }amino)-1-hydroxy-3-[(3S)-2-oxopyrrolidin-3-yl] propane-1-sulfonic acid 1.56 [138]
6FV1 (2~{S})-4-methyl-~{N}-[(2~{S},3~{R})-3-oxidanyl-4-oxidanylidene-1-[(3~{S})-2-oxidanylidenepyrrolidin-3-yl1]-4- 2.30 [139]
[(phenylmethyl)amino]butan-2-yl]-2-[[(~{E})-3-phenylprop-2-enoyl]amino]pentanamide
6FV2 (S)-N-benzyl-3-((S)-2-cinnamamido-3-phenylpropanamido)-2-oxo-4-((S)-2-oxopyrrolidin-3-yl)butanamide 2.95 [139]
7D31 (3~{S},3~{a}~{S},6~{a}~{R})-2-[3-[3,5-bis(fluoranyl)phenyl]propanoyl]-~{N}-[(2~{S})-1-oxidanylidene-3-[(3~{S})-2- 2.00 [140]
oxidanylidenepyrrolidin-3-yl]propan-2-yl]-3,3~{a},4,5,6,6~{a}-hexahydro-1~{H}-cyclopenta[c]pyrrole-3-carboxamide
2
7D10 (1R,28,5S)-3-[N-({1-[(tert-butylsulfonyl)methyl]cyclohexyl}carbamoyl)-3-methyl-L-valyl]-N-{(15)-1-[(1R)-2-(cyclopropyla 1.78 [141]
mino)-1-hydroxy-2-oxoethyl]pentyl}-6,6-dimethyl-3-azabicyclo[3.1.0]hexane-2-carboxamide
7C7P (18,3aR,6a5)-2-[(25)-2-({(2S)-2-cyclohexyl-2-[(pyrazin-2-ylcarbonyl)amino]acetyl }amino)-3,3-dimethylbutanoyl]-N-[(2R,3S)- 1.74 [142]
1-(cyclopropylamino)-2-hydroxy-1-oxohexan-3-yl]octahydrocyclopenta[c]pyrrole-1-carboxamide
(3~{S},3~{a}~{S},6~{a}~{R})-~{N}-[(2~{R},3~{S})-1-(cyclopropylamino)-2-oxidanyl-1-oxidanylidene-hexan-3-y1]-2-
methanoyl-3,3~{a},4,5,6,6~{a}-hexahydro-1~{H}-cyclopenta[c]pyrrole-3-carboxamide
7COM boceprevir (bound form) 2.25 [143]
6ZRU boceprevir (bound form) 2.10 [144]
6ZRT (18,3aR,6a5)-2-[(25)-2-({(2S)-2-cyclohexyl-2-[(pyrazin-2-ylcarbonyl)amino]acetyl }amino)-3,3-dimethylbutanoyl]-N-[(2R,3S)- 2.10 [145]
1-(cyclopropylamino)-2-hydroxy-1-oxohexan-3-yl]octahydrocyclopenta[c]pyrrole-1-carboxamide
6MOK - 5.10 [146]
6LZE ~{N}-[(2~{S})-3-cyclohexyl-1-oxidanylidene-1-[[(2~{S})-1-oxidanylidene-3-[(3~{S})-2-oxidanylidenepyrrolidin-3-yl]propan-2-  1.50 [147]
yllamino]propan-2-yl]-1~{H}-indole-2-carboxamide
7C6S boceprevir (bound form) 1.60 [148]
7CX9 3-iodanyl-1~{H}-indazole-7-carbaldehyde 1.73 [149]

bearing hexylcarbamide acid structure, in which the fatty acid tail
occupies the hydrophobic S2 sub-site. A study reported that carmofur
inhibits viral replication in cells (ECso = 24.30 pM) and is a promising
lead compound to develop a new antiviral treatment for SARS-
Coronavirus-2.

A more diverse inhibitor’s structure was observed from the 3D-
crystal structure with PDB ID 5RGG which was resolved at 2.26 A of
resolution [104]; Fig. 7c). The inhibitor is a carboxamide derivative
namely 4-methyl-N-phenylpiperazine-1-carboxamide, binds at HIS80
via H-bond interaction. Instead of H-bond, HIS80 was also interacting
with the inhibitor via hydrophobic interaction which was co-bound
with LYS90. This experiment could give an insight into understanding
that even a small molecule is able to bind the protease. However, the
potency of such inhibitor could be low due to the larger cavities which
need an extending occupation.

6. Biflavonoid as the protease —Inhibitor

There are a few studies of biflavonoid-class compounds reporting
their activities as protease inhibitors. Amentoflavone from Torreya
nucifera was the early biflavonoid studied in its inhibitory activity
against SARS-Coronavirus 3CLpro by showing ICsq 8.3 uM. The results
were compared to three types of flavonoid (apigenin, luteolin, and
quercetin) which showed less inhibition and therefore, the struc-
ture—activity relationships were generated to confirm that the more
potent activity of biflavonoid appeared to be associated with the pres-
ence of benzene ring moiety at C-3' position of flavones, as biflavone
affected 3CLpro inhibitory activity [36].

Based on Ryu et al. findings, a QSAR study of biflavonoid and its
analogs was carried out to generate a QSAR model defining the
increasing value of the dipole moment along the X-axis that may be
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Fig. 5. The interaction between 5,6,7-trihydroxy-2-phenyl-4H-chromen-4-one and the active site of SARS-Coronavirus-2 (PDB ID 6M2N). The 3CLpro is presented
in a blue ribbon model, whereas the inhibitor is in a stick model (yellow = C, white = H, and red = O). The H-bond and hydrophobic interactions are presented in
black and yellow dot lines, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. The trimer structure of 3CLpro as indicated by blue (monomer A), red (monomer B), and green (monomer C) surface models. Inset is the ligand complex to
the active site of the enzyme (presented by blue stick and green stick, for monomer A and monomer C, respectively), presented in a stick model (orange = C,
white = H, blue = N and red = O). The H-bond is presented in black dot lines, respectively. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 7. The presentation of a) imidazole-4-carboxamide, b) carmofur, and c) 4-methyl-N-phenylpiperazine-1-carboxamide bound into the active site of SARS-
Coronavirus-2 3CLpro. The protein is visualized in the surface model with the green area = hydrogen bond acceptor residues, white area = neutral residues, and
magenta area = hydrogen bond donor residues. The ligands are presented in a stick form with yellow = C, white = H, blue = N, and red = O. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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conducive to the activity. Therefore, the steric character of this part
may be favorable for its activity. Compounds having higher dipole
moment due to the much bulky aryl groups, therefore, have a higher
activity than the compound having less bulky aryl group [23].

The antiproteolytic activity of biflavonoid was determined early on
morelloflavone-4”-0-p-D-glycosyl, (*)-fukugiside, and morellofla-
vone. These biflavonoids were isolated from the fruit epocarp of Gar-
cinia brasiliensis which were further semi synthesized into three
moreflavone derivatives i.e. morelloflavone-7,4',7”,3"”,4'"- penta-O-
acetyl, morelloflavone-7,4',7”,3"” ,4” -penta-O-methyl, and
morelloflavone-7,4',7”,3”,4”-penta-[-butanoyl. High inhibitory activ-
ity was demonstrated by this biflavonioid against r-CPB2.8 and r-
CPB3 isoforms which are papain-like protease of Leismania mexi-
cana with ICsy 0.42-1.01 uM for the four most active compounds.
Interestingly, there was no cytotoxic activity towards the normal cell
lines as observed from the in vitro study [150].

Further study was pursued by the same research group in evaluat-
ing those biflavonoid activities against the cysteine protease (papain
and cruzain) and serine protease of Trypanozoma crugzii. All biflavonoid
compounds demonstrated excellent inhibitions toward all protease
enzymes (ICso 0.02-106 uM). However, morelloflavone-7,4',7”,3",4"
'- penta-O-acetyl showed the best activity which might be due to the
carbonyl group in the structure. This functional group could favor a
higher nucleophilic attack by serine and cysteine proteases. This is
in accordance with morelloflavone-7,4',77,3”,4”-penta-O-methyl
(ICs0 = 15.4 = 0.7 pM for papain), in which the compound having
no carbonyl group in structure was less active in the inhibition process.
This was confirmed by the structure-activity relationships (SARs)
study which had been performed using flexible docking simulations
[151].

A study by Assis et al. reported that fukugetin, a biflavone origi-
nated from Garcinia brasiliensis, demonstrated partial competitive and
hyperbolic-mix type inhibitions against the major cysteine protease
of Trypanosoma crugzii (cruzain and papain), respectively. The potency
of such biflavone was expressed in a slowly reversible type of inhibi-
tion with Ki 1.1 and 13.4 uM for cruzain and papain, respectively,
describing that the biflavone has 12 times faster inhibition toward cru-
zain than papain in inhibiting the enzymes. The molecular docking
study predicted that this activity is due to the chemical interaction
between biflavone at ring C with S3 pocket, whereas the ring C’ binds
at S2 pocket through hydrogen bonds as well as the hydrophobic inter-
actions [152].

Virtual screening was performed to identify the hits of the tryptase
inhibitor followed by in vitro experiments to identify the lead com-
pounds. Tryptase is a class of serine protease enzyme released as the
allergic response such as skin inflammation and asthma from the mast
cells. Out of the 98,000 compounds screened, 2.28% of the library
(2503 compounds) were selected as the hits. Interestingly, biflavo-
noids were one of the most frequently represented in the 200 com-
pounds with the strongest tryptase binding energy. Using
fluorescence resonane energy transfer (FRET)-based assay, these 200
compounds were further in vitro screened to afford the lead compound,
and then the biflavonoid podocorpus flavone A blocks the tryptase
activity by 61.6.%. The docking study suggested that the biflavonoid
is favorably binding at the S4 of tryptase [153].

Biflavonoid was also reported to down-regulate the expression of
matrix metalloproteinase-1 (MMP-1) from human skin fibroblasts.
MMP is a zymogen (zinc-dependent peptidase) that degrades the extra-
cellular matrix to perform angiogenesis, inflammation, cell migration,
and tissue remodeling. The high expression of this enzyme is often
associated with cancer and wound diabetic foot ulcers. 2/,8”-
biapigenin, sumaflavone, taiwaniaflavone, amentoflavone, and robus-
taflavone which were isolated from Selaginella tamariscina showed sig-
nificant MMP-1 inhibitory activity in primary human dermal
fibroblasts after UV irradiation. The ICs( values of sumaflavone, amen-
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toflavone, and retinoic acid (used as the positive control) were 0.78,
1.8, and 10 pM, respectively [154].

7. Perspectives

Two main protein targets in the coronaviral genome are classified
into structural and non-structural proteins. Structural protein which
is composed of the membrane, envelope and nucleocapsid is formed
in the inner viral cell, whereas the spike protein is located in the outer
cell [155,156]. It might be difficult to control the activity of such struc-
tural protein because they control the virus’s life during the viral cell
assembly which could be too fast to control. Most likely, the host will
be suddenly infected by the virus while there is no time to block the
activity of the S protein during viral-host attachment as well as its
endocytosis. Therefore, in designing the protein inhibitor for coron-
avirus, the non-structural protein could be more favorable than the
structural protein due to its role in controlling the polypeptide prote-
olytic, reverse transcription, RNA replication as well as protein trans-
lation, which might take more time than the viral assembly.

Among the 16 non-structural proteins, NSP5 is the most attractive
target while the others are still elusive [157]. The NSP5 main protease
(3CLpro) is the most common targeted protein in coronavirus because
it is formed in the host and acts during cleavage and post-translational
polyprotein synthesis. Thus, it is relatively easier to control their activ-
ities. Two classes of the compound are reported to have these protein
activities, including peptide and non-peptide compound. Naturally,
the protease has a peptide substrate due to its function to hydrolyze
the peptide bond upon proteolysis. Therefore, for a competitive inhibi-
tor, a compound having a peptide-like structure should be suitable to
block the enzyme-substrate binding. There are notable peptide (like)
compounds demonstrating low micromolar activity towards the pro-
tease such as lopinavir and ritonavir [158].

Although peptide is the suitable structure designed for the protease
inhibitor, however, the physic-chemical properties of this class of com-
pound often make it fails under clinical trials. The peptide has a num-
ber of flexible bonds which makes it energetically unstable either
during preparation or the pharmacokinetic stage. The structure is
mimicking protein, therefore, it is sensitive towards denaturation
and hydrolysis during preparation. At the pharmacokinetic stage espe-
cially during absorption, the peptide is less absorbed due to its isoelec-
tric character which makes it very polar in aqueous biological fluids.
Thus, it is hard to penetrate the intestinal membrane lipid bilayer
[159]. This causes the peptide to become unsuitable for oral prepara-
tion which requires the absorption process.

Another alternative is formulated in the parenteral preparation.
However, this is costly and not applicable to be administered by the
patient. Therefore, the peptide is practically used as the model only
and then should be further modified to the more rigid character to
improve the stability. One effort has been conducted to formulate
the drug delivery system to improve bioavailability such as using lipo-
some technology. However, the use of organic solvents in the liposome
dosage form could make it toxic [160,161].

Non-peptide or often called as small molecule inhibitors currently
takes more attention used as the molecule target for protease inhibi-
tors. The presence of aromatic rings could make the compound ener-
getically more stable than the peptide due to its rigid character
[162]. The rigid character causes less entropy of the compound and
thus stabilizes the compound-enzyme affinity upon binding [163].
The non-peptide inhibitor can still be divided into natural and syn-
thetic compounds. Natural compound is a unique structure due to
the presence of chiral carbon which could make the ligand—protein
binding more specific. A class of biflavonoid showed the in vitro com-
petitive inhibition in low micromolar activities towards the protease
which agreed with the docking explanation. Amentoflavone is the
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early biflavonoid found active against 3CLpro of SARS-Coronavirus
underlining the potency of such compounds to be this protease inhibi-
tor. It was postulated that the presence of benzene ring moiety is at
position C-3' of flavones, as biflavone affected 3CLpro inhibitory activ-
ity. The synthetic (semi-synthetic) biflavonoids are the further strategy
to get the product being more feasible to be developed as a protease
inhibitor. Compounds bearing more carbonyl groups seem promising
to be the protease inhibitor as it is designed to favor a higher nucle-
ophilic attack by serine and cysteine proteases using molecular dock-
ing. The complex of 5,6,7-trihydroxy-2-phenyl-4H-chromen-4-one
with SARS-Coronavirus-2 3CLpro (PDB ID 6M2N) is one of the proofs
that flavonoid is such an important feature for 3CLpro pharmacophore
and so does the biflavonoid which could cover more space to interact
with the 3CLpro.

3CLpro is still the most recommended protein target in the discov-
ery of anti-SARS coronaviral agents. The availability of crystal struc-
ture and its high conserved binding site make the structure-based
drug design becomes applicable [164,165]. The structure-based drug
design can also be combined with ligand-based drug design since the
structure information of the compounds either in peptide or non-
peptide has been reported as the protease inhibitors. The non-
peptide compound such as biflavonoid provides more promising candi-
date to enter either pre- or clinical stage due to its more stable physic-
chemical properties during preparation as well as pharmacokinetics.

8. Conclusion

In conclusion, our review strongly recommends that biflavonoid,
either from the natural product or its synthetic is very potential to
be used as of SARS-Coronavirus-2 3CLpro inhibitor. Its dimer and
big structure are more suitable for a 3CLpro binding site composing
two beta barrels than the corresponding flavones. To the best of our
knowledge, this is the first review to describe the potential inhibitory
effects of biflavonoid against SARS-Coronavirus-2 3CLpro. Thus, we
believe that this compound may be a good candidate for development
as a natural therapeutic drug against SARS-Coronavirus-2 infection.
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