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Abstract 

The removal of two dams on the Elwha River, Washington, exposed over 300 hectares of 

reservoir sediments and created primary successional habitats that posed challenges to 

revegetation efforts. In order to meet Elwha restoration goals, coarse sediment deposits would 

require revegetation methods aimed at quickly restoring native vegetation while deterring exotic 

species invasions. I examined the effect of two restoration treatments—large woody debris 

translocations and native seed enhancements—on plant species composition on novel terraces in 

the former Lake Mills reservoir four years after dam removal. I sampled vegetation in seeded and 

unseeded treatment areas with and without large woody debris. I also examined species 

composition and seed dispersal mechanisms to determine whether distance limited native plant 

recruitment from the nearby forest edge. I used two-way analysis of variance, NMDS 

ordinations, and permutational multivariate analysis of variance to determine whether wood 

placements, seeding treatments, and distance from the forest influenced species composition on 

novel terraces. My results revealed that Shannon-Weiner diversity, species richness, and percent 

exotics increased on plots containing wood, compared with surrounding bare sediments, but 

plant establishment did not substantially increase on wood plots. Plots located in seeded 

treatment areas had higher species richness and plant abundance, with decreased exotic species 

recruitment. As distance from the forest edge increased, Shannon-Weiner diversity, species 

richness, and percent exotics on unseeded plots declined, but plant abundance did not change 

significantly with distance. In addition, a greater proportion of plants were wind-dispersed at 

greater distances, while plants dispersed by gravity and ballistic mechanisms were associated 

with closer distances to the forest edge. This study’s results help fill a knowledge gap regarding 

the efficacy of using translocated large woody debris and direct seeding to restore vegetation in 
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primary successional habitats following dam removal and helps inform best practices regarding 

the use of these restoration methods at future dam removal projects.   
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1.0 Introduction 

1.1 Successional Trajectories of the River Forest Ecosystem  

Primary succession is characterized by natural disturbance events such as volcanic 

activity, large-scale flooding events, and retreating glaciers, which results in exposed substrates 

devoid of soil and biological legacies (Clements 1916; Walker and del Moral 2008). Human-

induced disturbances, such as resource extraction, urbanization, and dam removal, can also 

create large-scale disturbances (Walker and del Moral 2008). Depending on the nature and extent 

of the disturbance, primary successional landscapes can be stressful environments and 

challenging to restore to historic vegetative conditions. These landscapes are often prone to 

intense solar radiation, subject to wind and water erosion, and lack structural complexity (del 

Moral and Bliss 1993). And, depending on the scale of the disturbance, potential sources of 

propagules may be distant, which can limit natural colonization (Del Moral and Wood 1993). 

Furthermore, substrates lack fully-functioning microbial communities, adequate soil nutrients, 

and organic matter, which compromise plant and water relations (Walker and del Moral 2003).  

In addition, climate change adds new uncertainties to historic conditions that might further 

complicate this slow, natural process.    

Large dam removals exemplify a human-induced disturbance that presents challenges for 

land managers and restoration ecologists. Primary successional landscapes in de-watered 

reservoirs are characterized by coarse sediments and unpredictable flooding regimes, which 

result in low plant recruitment and the threat of exotic species invasion (Shafroth et al. 2002; 

Woodward et al. 2011; Chenoweth et al. 2011). This contrasts with natural river disturbances in 

the Pacific Northwest (PNW), where floodplain and riparian forest succession generally follow 

secondary successional pathways that lead to faster plant recovery (Van Pelt et al. 2006). Early 
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plant colonization of herbaceous species quickly succeed to black cottonwood (Populus 

balsamifera), red alder (Alnus rubra), and willow species (Salix). Over time, smaller flooding 

events introduce nutrient-rich sediments that help support the establishment of later-arriving 

species, such as big-leaf maple (Acer macrophyllum) and western red cedar (Thuja plicata).  

However, given the abundance of coarse sediment deposits that have been impounded behind 

dam structures for decades, it remains unclear how successional trajectories typical of PNW 

riparian forests will unfold on novel terraces in recently de-watered reservoirs.  

 

1.2 The Elwha River Dam Removal Project 

The Elwha River dams inundated 3.15 km2 of floodplain habitats and acted as barriers to 

anadromous fish migration for more than a century. In the years following dam construction, 

populations of native fish, including all five species of Pacific salmon, plummeted by 99% (Pess 

et al. 2008). In 1992, the U.S. Congress passed the Elwha River Ecosystem and Fisheries 

Restoration Act (Public Law 102-495), which mandated dam decommissioning and dam removal 

to restore salmon populations and the riparian habitats that support them (DOI 1995). The 

deconstruction of two dams on the Elwha River represents the largest dam removal and 

ecosystem restoration effort to date. Between 2011 and 2014, two hydroelectric dams—the 

Elwha dam (32 meters high) and the Glines Canyon Dam (64 meters high)—were removed to 

restore the Elwha River ecosystem and its’ severely degraded native anadromous fisheries (DOI 

1995, Figure 1). Whereas there is a growing body of scientific research related to the effects of 

dam removal, much of that research has centered on small dams and focused on sediment 

transport (Grant and Lewis 2015, O’Connor et al. 2015). However, large dams (>30 meters high) 
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impound larger reservoirs and store more sediment than small dams, and, therefore, exert greater 

and more prolonged environmental impacts (Doyle et al. 2003; Foley et al. 2017).  

 
Figure 1. Study area within the former Lake Mills reservoir on the Elwha River, WA.  

Image credit: Olympic National Park. 
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1.3 Elwha Restoration 

Over the Elwha dams' lifespan, an estimated 21 million m3 of sediment accumulated 

within the reservoirs, with most sediment (~76%) trapped behind Glines Canyon Dam in the 

former Lake Mills reservoir (hereafter, Mills; Warrick et al. 2015). The Elwha River is expected  

to erode much of the impounded sediment over time; however, an estimated 10-40% of the total 

accumulated sediment will likely persist as permanent, novel landscape features within the two 

former lakebeds (Randle et al. 2015; Warrick et al. 2015). These permanent landscape features, 

the valley walls and terraces (Figure 2), comprise differing sediment types with contrasting plant 

communities. The valley walls are composed of fine, clay and silt-sized soils and sediments and 

are covered by abundant naturally regenerating vegetation via secondary succession. In contrast, 

the terraces model primary succession and are comprised of thick deposits of well-drained, 

coarse sediments that lie atop fine sediment deposits.   

Figure 2. Schematic of landscape features in the former Lake Mills reservoir, Elwha River, WA. 

Image credit: J. Chenoweth, ONP. 
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The overarching goal of the Elwha River Restoration project was to restore historic 

salmon runs. Success requires removing the barriers to fish migration as well as restoring the 

riparian forests critical for salmon habitat within the river and tributaries of the Elwha River 

Valley. If left unaided, natural plant succession will be a slow process and may impede habitat 

recovery required for healthy salmon populations. Therefore, a key component of Elwha River 

recovery will be the acceleration of plant succession in sediments within the former Lake 

Aldwell and Lake Mills reservoirs. Three primary objectives of the revegetation program are to 

(1) stabilize floodplain sediments to reduce sediment erosion and improve water quality, (2) 

encourage the rapid development of native forests for shade and large wood recruitment, and (3) 

minimize the threat of invasive exotic species (Chenoweth et al. 2011). Beginning in 2011, 

restoration biologists with Olympic National Park (ONP) and the Lower Elwha Klallam Tribe 

(LEKT) partnered to meet those goals.  

Vegetation restoration on novel terraces along the Elwha River will be challenging. As is 

common in primary successional habitats, there are few biological features to support plant 

growth, including a lack of seeds and vegetative propagules, micro and macronutrients, 

beneficial soil microbes, and organic matter (Chenoweth et al. 2011; Cortese and Bunn 2017). 

Coarse terrace sediments are also extremely well-drained and are often perched far above the 

water table, resulting in water stress (Chenoweth 2013). Moreover, the entire Mills basin 

frequently experiences strong, anabatic winds and intense sun exposure, contributing to drought 

stress as sediment temperatures and evaporation rates increase (Chenoweth and McHenry 2015). 

Another potential impediment to natural forest succession is whether seed dispersal from the 

forest edge limits plant recruitment along the Elwha. Together, these combined effects are 
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suspected of limiting natural plant recruitment and recovery on novel terraces in Mills 

(Chenoweth 2013).  

Another substantial threat posed to newly formed habitats is the invasion of exotic 

species, which can influence successional pathways by outcompeting native species for light and 

water resources and can significantly alter the chemical and biological conditions of soils (Jean-

Baptiste et al. 2018; Holl 2020). Therefore, restoring the former reservoir to historic forested 

habitats will require active methods that accelerate natural succession by promoting vegetation 

trajectories that lead to native plant communities (Shafroth et al. 2002; Chenoweth et al. 2011). 

 

1.4 Restoration Techniques Employed in the Elwha Lakebeds 

To combat exotic species invasion and accelerate native plant succession, ONP 

restoration crews sowed 2,525 kilograms of native seeds, covering 0.7 km2 of floodplain and 

upland habitats within the former Lake Aldwell and Lake Mills reservoirs (Chenoweth pers. 

comm.). Seed mixtures contained a combination of ten locally harvested and produced grass 

and forb species (Chenoweth et al. 2020). These species included common yarrow (Achillea 

millifolium), spiked bentgrass (Agrostis exarata), Suksdorf’s sagewort (Artemisia suksdorfii), 

Pacific brome (Bromus pacificus), sedge mixtures (Carex pachystachya & Carex deweyana), 

slender hairgrass (Deschampsia elongata), blue wild-rye (Elymus glaucus), Oregon sunshine 

(Eriophyllum lanatum), and riverbank lupine (Lupinus rivularis; Appendix Table A). Direct 

seeding is a standard method for revegetating habitats following disturbance, and often results 

in increased vegetative cover, increased species richness (Barr et al. 2017), and results in plant 

communities that are more resilient to stress (Witko 2006).  
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Large woody debris (LWD) was also utilized as a restoration tool within Mills to create 

safe sites for vegetation, improve growing conditions for plants, increase landscape complexity, 

and slow the erosion of floodplain sediments (Chenoweth and McHenry 2015). Large woody 

debris serves many important ecological functions in riparian and forest ecosystems (Harmon et 

al. 1986; Schreiner et al. 1996) and has been shown to improve seedling survival rates in 

restoration projects (Heinemann and Kitzberger 2006, Campilong 2014). Some of the benefits of 

LWD for improving plant survival are an increase in sediment moisture levels and a decrease in 

wind velocities (Colton 2018). Arrays of LWD placed on perched terraces may act as nucleation 

sites for regenerating plants by attracting seed dispersers and creating safe sites for seedlings 

(Schreiner et al. 1996). Also, when placed in overlapping arrays, LWD may protect vegetation 

by acting as a barrier against browsing deer and elk, which can alter plant growth forms and 

survival rates (Harmon et al. 1986; Chenoweth and McHenry 2015).  

 

1.5 Study Objectives  

Collectively, revegetation methods such as direct seeding and the incorporation of LWD 

may contribute to natural succession by increasing native plant establishment while deterring 

exotic species invasions. However, when large-scale dam removal exposes hundreds of hectares 

of coarse-textured sediments, the efficacy of both direct seeding and translocated LWD to 

promote plant establishment within these newly formed habitats, is poorly understood. This 

study’s objective is to examine the effect of these restoration treatments four years after dam 

removal within the former Lake Mills reservoir. This study also seeks to understand the 

influence of seedling recruitment from intact vegetation at the forest edge.  
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My research questions and hypotheses are as follows: 1) is plant establishment greater at 

sites with LWD? Logs act as an effective seed trap for wind-blown propagules and create 

favorable micro-sites leading to increased plant survival rates; therefore, I hypothesize that plots 

containing LWD will possess higher plant abundance, Shannon-Weiner diversity, and species 

richness than sites without wood. 2) Is direct seeding an effective method for revegetating novel 

terraces, and does seeding influence native pioneer herbaceous and woody species recruitment? 

There are inherently more seeds at seeded sites; therefore, I hypothesize that seeded areas will 

have greater native plant abundance, higher species richness, and fewer exotic species. 3) Does 

distance from the forest edge and mechanisms of seed dispersal limit natural plant recruitment 

and herbaceous and woody species composition following dam removal and reservoir 

drawdown? Mature vegetation at the forest edge provides a seed source for early successional 

habitats. I hypothesize that plant abundance will decline with increasing distance from the forest 

edge and species composition will also differ with distance. The results of this study will help fill 

a knowledge gap regarding the efficacy of using LWD and direct seeding to restore vegetation in 

primary successional habitats after dam removal, and help inform best practices regarding the 

use of these restoration methods at future dam removal projects.  

 

2.0 Methods  

2.1 Study System  

The Elwha River is located west of the city of Port Angeles on the Olympic Peninsula in 

Washington State. Roughly 87% of the Elwha watershed (830 km2) lies protected within the 

boundary of Olympic National Park. The Elwha River flows north for over 80 kilometers from 
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its headwaters in the Olympic Mountains to the Strait of Juan de Fuca. The region has an oceanic 

climate with relatively cool, wet winters and dry summers.  

The Elwha dam, located at river mile 4.9, impounded the former Lake Aldwell (108 ha). 

The Glines Canyon dam, located at river mile 13.4, impounded the former Lake Mills (168 ha). 

The Mills basin covers an area of approximately 2 km2, extending 3.4 km in length and 570 

meters in width. I conducted my research in Mills for several reasons, including its large size and 

great restoration need, abundant deposits of coarse terrace sediments, and an abundance of 

translocated and naturally deposited LWD on terrace surfaces.  

My sampling area was primarily located on novel terraces along the west side of the 

Mills basin (Figure 3). Most of my sampling occurred on a large perched terrace composed of 

coarse sediment deposits. The adjacent valley walls to the west of the terraces are almost 

completely covered in vegetation consisting of dense stands of black cottonwood (Populus 

balsamifera), red alder (Alnus rubra), and willow (Salix spp.), with an understory of common 

rush (Juncus effusus). To the west of the valley walls lay adjacent forests with vegetation that 

includes a mixture of Douglas fir (Pseudotsuga menziesii), western hemlock (Tsuga 

heterophylla), western red cedar (Thuja plicata), and bigleaf maple (Acer macrophyllum), with 

an understory of salal (Gaultheria shallon), Oregon grape (Berberis nervosa), salmonberry 

(Rubus spectabilis), and swordfern (Polystichum minutum). 
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Figure 3. Sampling locations within the former Lake Mills reservoir on the Elwha River, WA. 

Plots were located in seeded and unseeded areas with naturally deposited and translocated LWD. 
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2.2 Restoration Treatments 

ONP restoration biologists applied several revegetation and restoration treatments to 

coarse sediments on the west side of the Mills basin where terraces were expected to remain as 

permanent landscape features. Some of these restoration treatments included direct seeding of 

native grasses and forbs, translocated LWD, and untreated control sites (Chenoweth 2015). From 

2013 to 2015, restoration biologists applied 2,333.1 kilograms of native seeds to coarse 

sediments in Mills. In order to guide where seeds fell in windy habitats, crews applied seeds by 

hand (Chenoweth et al. 2020). A list of seeded species applied by ONP is located in Appendix 

Table A.  

In 2012 and 2014, ONP and LEKT staff translocated 835 logs to novel terraces along the 

west side of the Mills basin (Appendix Table B; Chenoweth and McHenry 2015). Translocated 

LWD consisted of log boles and logs with attached root-wads. Restoration crews arranged logs 

in single or parallel configurations and in overlapping arrays, or “clusters” (Chenoweth 2015). In 

2013, roughly two-thirds of the 2012 LWD translocation area was augmented with native seeds; 

the remaining LWD translocation area was left unseeded. No active planting occurred in the 

2012 translocation area. I established the majority of my plots within and adjacent to the 2012 

LWD translocation area in seeded and unseeded areas. The remaining plots were located in 

seeded and unseeded areas with naturally occurring LWD (Figure 3). 

 

2.3 Variable Selection 

I measured the following response variables: Shannon-Weiner diversity, species richness, 

plant abundance, and percent exotic species. My treatment groups included: (1) LWD plot type, 



12 
 

(2) seeding treatment, and (3) control plots (Table 1). I also examined the effect of distance from 

the forest edge on species composition and seed dispersal mechanisms. 

Table 1. Description of variables and treatment groups. 

Variable Description 

LWD Plot Type           

(1) Non-wood—plot contains no LWD. 

(2) Cluster—2 or more overlapping logs. 

(3) Simple—1 single, or 2-3 parallel logs. 

(4) Root-wad—root structure at the end of a log. 

Seeding Treatment 
(1) Seeded area. 

(2) Unseeded area. 

Control plots Non-wood plots in unseeded areas. 

Distance from Forest The distance (meters) of each plot from the nearest forest edge. 

 

2.4 Sampling Design 

I determined plot location using a stratified random sampling design, with strata defined 

by LWD plot type. I used aerial imagery from Giga-pan (Ritchie 2016) to identify logs and 

adjacent non-wood areas using ArcGIS (Figure 3; Version 10.3; Environmental Systems 

Research Institute, Redlands, CA). Using Universal Transverse Mercator (UTM) coordinates 

determined in ArcGIS, I mapped plots and navigated to them in the field using a hand-held 

global positioning system (GPS) unit. I then determined whether each plot met sampling criteria, 

which included: (1) log diameter had to be ≥ 50 centimeters—consistent with LWD sampling in 

previous Elwha studies; (2) logs had to have ≥ 3 meters of their total length in contact with the 

ground—sampling along logs only occurred where logs were in full contact with the ground to 

ensure trapping effects of LWD; (3) root-wads had to be in reasonable contact with the ground to 

ensure trapping effects of LWD; and (4) non-wood plots had to be ≥ 10 meters from LWD to 

minimize any effects from logs. Previous studies in Mills indicated that plant survival increased 
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within one meter of LWD (Calimpong 2014, Colton 2018); therefore, I used a 1 m2 quadrat to 

sample vegetation. 

 

2.5 Plot Establishment and Vegetation Sampling  

Sampling strategy varied by LWD plot type. Wood plots included LWD cluster, LWD 

simple, and LWD root-wad plots (Table 1). LWD clusters consisted of aggregations of two to 

five overlapping logs (Figure 4, inset A). LWD simple plots consisted of one single or two to 

three logs arranged parallel to each other (Figure 4, inset B). LWD root-wad plots consisted of a 

log bole with an attached root-wad (Figure 4, inset C). For LWD cluster and simple plots, I 

randomly selected and sampled three 1 m2 quadrats from the total log length available on both 

sides of each log for a total of six quadrats per plot (Figure 5, inset A).  

At LWD cluster plots, I randomly selected and sampled just one log in the cluster of logs 

in the same fashion. At LWD simple plots that contained two or more parallel logs, sampling 

occurred along the two outside logs within the log group. On LWD root-wad plots, plant 

sampling occurred within a 1 m2 quadrat at the end and on both sides of the root-wad for a total 

of three quadrat samples per plot (Figure 5, inset B).  
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1 m2

Log

A

B

 

A

B C

Figure 4. Examples of LWD cluster (A), simple (B), and root-wad (C) plots. 

Figure 5. Examples of quadrat samples around logs (A) and logs with attached root-

wads (B). 
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I established non-wood 

plots within seeded and unseeded 

treatment areas by first selecting 

a random starting location at the 

northern end of each of treatment 

area in ArcGIS. I then navigated 

to that location in the field using 

a GPS unit. I randomly selected a compass 

bearing (out of 360°) to determine the 

orientation of each plot’s transect line. I 

then used a three-meter long tape measure to 

represent the transect line and laid it on the 

ground at the selected orientation (Figure 6). 

Plant sampling occurred within three 1 m2 

quadrats along both sides of the transect line 

for a total of six quadrats per non-wood plot 

(Figure 7). I used a random number 

generator to determine the distance and 

direction of travel between adjacent non-

wood plots.  

 

 

 

Figure 6. Example of a non-wood plot with six quadrats 

located along a transect line.  

 

1 m2

Transect 

line

3 meters

 

Figure 7. Example of a non-wood plot with a 

three-meter tape measure representing the 

transect line along which six quadrats were 

placed and plant sampling occurred.  
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2.6 Distance from the Forest Edge 

I used measuring tools in ArcGIS to determine the distance, in meters, of each plot from 

the nearest forest edge. All plots within seeded and unseeded areas ranged between 28 and 248 

meters from intact vegetation at the forest edge (Appendix Table C).  

 

2.7 Field Sampling  

Plant sampling occurred from June-July, 2016, during which time I sampled a total of 

143 plots, consisting of 34 clusters, 35 simple, 35 root-wad, and 39 non-wood plots on novel 

terraces in Mills. Forty-six percent of all plots were located in seeded treatment areas, and 54% 

were located in unseeded areas. I identified plants to species and classified them based on 

primary seed-dispersal mechanism and life form (Burns and Honkala 1990, Pojar and McKinnon 

1994, USDA) using a field guide (Pojar and Mackinnon 1994) and assistance from ONP’s 

restoration botanist (J. Chenoweth pers. comm.). I identified four primary dispersal mechanisms 

from field guides and primary literature. These included seeds with wind, ballistic, gravity, and 

animal dispersal mechanisms. Wind-dispersed plant species consisted of those with physical 

structures adapted for wind dispersal (e.g., winged seeds, pappus, spores, etc.). Gravity dispersed 

species are those lacking known seed dispersers or sophisticated dispersal mechanisms. Species 

exhibiting ballistic dispersal have seed pods that forcibly expel seeds when the seed pod dries. 

And, seeds dispersed by animals are those with seeds contained in fleshy fruits which are directly 

consumed by animals, or when seeds attached externally to animal feathers, fur, etc. Out of all 

species with known dispersal mechanisms, wind-dispersed species were most common (N=33 

species), with fewer species dispersed by gravity (N=18 species), by animals (N=six species), 

and by ballistic mechanisms (N=three species).  
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2.8 Data Analysis 

I conducted all statistical analyses in R (R Core Team; Version 3.2.4 for Windows). I 

assessed plant sampling efficacy using the specpool function to determine whether model 

estimates of species richness across my entire study area were similar to observed plant data. I 

calculated mean Shannon-Weiner (H’) diversity and species richness for wood plot types and 

seeding treatments using the Shannon-Weiner diversity result function in the Biodiversity R 

package.  

To confirm whether my data met assumptions of normality and homogeneity of variance, 

I used a Shapiro-Wilks and Levene’s test. These tests revealed that Shannon-Weiner diversity, 

species richness, plant abundance, and percent exotics had non-normal distributions and violated 

the assumption of equal variance. As a result, I performed a square-root transformation on 

Shannon-Weiner diversity and log-transformed species diversity, plant abundance, and percent 

exotics to meet the assumptions of an Analysis of Variance (ANOVA). I used a two-way 

ANOVA to compare Shannon-Weiner diversity, species richness, plant abundance, and percent 

exotics across wood plot types, seeding treatments (seeded vs. unseeded), and their interaction. I 

used a Tukey’s HSD post-hoc test to determine which levels of categorical variables differed 

significantly with respect to Shannon-Weiner diversity, species richness, plant abundance, and 

percent exotics. A variety of biotic and abiotic factors, including plot location, sediment 

composition, and water availability, contributed to highly variable vegetation within each 

sampling area and at each plot. However, to avoid pseudo-replication and ensure a balanced 

sampling design, I nested quadrats within plots and took the mean of plant abundance at each 

plot (Crawley 2007).  
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To examine the effect of dispersal distance on natural plant recruitment, I examined 

unseeded plots only. All variables failed to meet the assumptions of normality and equal 

variances; therefore, I used non-metric Kendall’s tau correlations to determine whether Shannon-

Weiner diversity, species richness, plant abundance, and percent exotics were significantly 

correlated with distance from the forest edge. 

To determine whether species composition differed significantly due to my variables, I 

conducted a permutational multivariate analysis of variance (PERMANOVA; 9,999 

permutations; Anderson 2001) using the function Adonis, and also preformed post-hoc 

comparisons using pairwise.adonis. I used non-metric multi-dimensional scaling (NMDS) 

ordinations to illustrate patterns in species composition on terrace sediments. I performed NMDS 

ordinations for wood plot type and seeding treatment on a data matrix consisting of species with 

known seed dispersal mechanisms and species that occurred in 5% or more plots (N=28 species, 

143 plots). I removed all other species from community analyses. The NMDS ordination for 

distance from forest consisted of a data matrix of 52 species and 77 plots, with seeded plots 

removed from community analyses. I converted all datasets into distance matrices using Bray-

Curtis dissimilarity distances, and obtained NMDS solutions using 100 permutations and k=2 

dimensions. Stress values provide a measure of support for ordinations. Values <0.05 provide an 

excellent representation, values <0.1 indicate good ordination, values < 0.2 are potentially useful, 

and values >0.3 indicate poor fit (Clarke 1993). Stress values obtained for both of my ordinations 

indicated a potentially useful picture (≈0.16). I conducted all NMDS ordinations using the 

metaMDS function in the Vegan package (Oksanen et al. 2019).  

To identify indicator species of LWD plot types and seeding treatments, I performed 

indicator species analysis using multi-level pattern analysis (De Cáceres et al. 2010), which 

https://www.mendeley.com/authors/6507318524/
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determines indicator species by assessing the relative abundance and frequency of species within 

each group. Indicator species analysis is useful for identifying species that distinguish different 

wood and seeding treatments. Indicator species analysis was conducted using the multipatt 

function in the indicspecies package using 9999 permutations and a significance level of α=0.05. 

To identify where statistically high (hot) and low (cold) values of plant abundance 

clustered spatially, I conducted spatial “hot-spot” analysis in ArcGIS. Hot-spot analysis 

calculates the Getis-Ord Gi* statistic, which produces a Z-score and P-value. A high Z-score 

combined with a small P-value indicates strong spatial clustering. Hot-spot analysis references 

neighboring plots when determining clusters of high or low plant abundance. That is, a 

significant hot-spot will have high plant abundance and will be surrounded by other plots with 

high abundance. The analytical output created in ArcMap bins significant hot and cold spots into 

three high and three low categories, at the 90%, 95%, and 99% confidence level, and a zero bin, 

which indicates a lack of significant clustering (ESRI). Before performing hot-spot analysis, I 

tested spatial autocorrelation in plant abundance on wood and non-wood plots using Global 

Moran’s I in ArcGIS and found a lack of autocorrelation on LWD plots (Moran’s I=0.060, 

Z=1.081, P=0.280) and non-wood plots (Moran’s I=0.021, Z=0.7578, P=0.449). Hot-spot 

analysis was conducted using inverse distance sampling and a Euclidean distance band set to 

40.004 meters. To reduce critical p-values to account for spatial dependence and multiple testing, 

I applied no standardization and a false discovery rate. 

 

 

 

 

 

 

 

https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-statistics-toolbox/hot-spot-analysis.htm
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3.0 Results 

 

3.1 Vegetation  

During this study, I identified 49,345 individual plants, comprising 74 different species, 

on terrace sediments in Mills. I identified 58 of the 74 to either the species or genus level; and 

identified the remainder to family or life-form (Table 2). I confirmed sampling efficacy using 

Bootstrap and first‐ order Jackknife species richness estimators. Both methods indicated that the 

number of species present in the study area was likely greater than 74, with Bootstrap estimating 

84 +/- 4.0 species and Jackknife estimating 98 +/- 7.0 species. 

Herbaceous species comprised the majority of individual plants identified. Treatments 

notwithstanding, the most abundant plant species were the native annual, small-flowered willow-

herb (Epilobium minutum; 35%), the native seeded grass, blue wild-rye (Elymus glaucus; 23%), 

and the seeded biennial, riverbank lupine (Lupinus rivularis; 15.4%; Table 2). Sampling also 

included a total of 490 woody plant counts comprising 14 different species. Regardless of 

treatment, the two most abundant woody species were black cottonwood (Populus balsamifera) 

and Douglas fir (Pseudotsuga menziesii; Table 2). Two exotic hair grass species (Aira praecox, 

Aira caryophyllea) were present on 92% of all sampled plots. Due to their small size and great 

abundance, they were challenging to count accurately, so they were assessed as either present or 

absent and were not included in analyses.  

I identified seven seeded species applied by ONP restoration crews during vegetation 

sampling (Table 2). The two most abundant seeded species were blue wild-rye and riverbank 

lupine. Seeded species comprised 73% and 27% of total plant abundance in seeded and unseeded 

treatment areas, respectively, and constituted 49% of total plant abundance. 
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Table 2. List of species identified in terrace sediments following dam removal on the Elwha 

River, WA. 2015. Primary seed dispersal mechanism is listed for each species. Percent 

abundance is listed for each plant group and represents the abundance of each species out of all 

(49,345) plants sampled. * Indicates seeded species. 

Botanical name Common name Origin 
Dispersal 

mechanism 

% 

Abundance 

Ferns and allies  % Total =  2.99 

Cryptogramma crispa Parsley fern Native Wind 0.01 

Equisetum arvense Common horsetail Native Wind 2.98 
 Unknown Ferns   0.00 

Forbs   % Total =  66.99 

*Achillea millefolium Common yarrow Native Wind 1.89 

Agoseris spp. Agoseris spp.  Wind 0.16 

*Anaphalis margaritacea Pearly everlasting Native Wind 0.16 

Cardamine pensylvanica Few-seeded bittercress Native Ballistic 0.01 

*Chamerion 

angustifolium 
Fireweed Native Wind 0.16 

Cirsium arvense Canada thistle Exotic Wind 0.10 

Cirsium spp. Cirsium spp.   Wind 0.20 

Claytonia sibirica Siberian spring-beauty Native Gravity 0.00 

Collomia heterophylla Vari-leaved collomia Native Ballistic 0.68 

Crepis capillaris Smooth hawksbeard Exotic Wind 0.02 

Epilobium ciliatum Purple-leaved willow-herb Native Wind 0.70 

Epilobium minutum 
Small flowered willow-

herb 
Native Wind 35.17 

*Eriophyllum lanatum Oregon sunshine Native Wind 4.36 

Galium aparine Cleavers Native Animal 0.00 

Geranium spp. Geranium spp.   0.01 

Gnaphalium palustra Lowland cudweed Native Wind 0.49 

Hypochaeris glabra Smooth cat's ear Exotic Wind 0.32 

Hypochaeris radicata Hairy cat's ear Exotic Wind 2.39 

*Lupinus rivularis Riverbank lupine Native Ballistic 15.38 

Madia spp. Tarweed spp.  Wind 0.04 

Mimulus guttatus Yellow monkey flower Native Gravity 0.01 

Mycelius muralis Wall lettuce Exotic Wind 0.21 

Petasites palmatus Palmate coltsfoot Native Wind 0.04 

Rumex acetosella Sheep sorrel Exotic Gravity 1.73 

Rumex occidentalis Western dock Native Gravity 0.01 

Sedum spp. Sedum spp.   0.01 

Senecio sylvaticus Wood groundsel Exotic Wind 2.40 
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Table 2. (Continued) 

Botanical name Common name Origin 
Dispersal 

mechanism 

% 

Abundance 

Forbs      

Solidago canadensis Canada goldenrod Native Wind 0.02 

Spergularia rubra Red sandspurry Exotic Gravity 0.07 

Stachys cooleyae Cooley's hedge nettle Native Gravity 0.01 

Stellaria crispa Crisp sandwort Native Gravity 0.03 

Tanacetum spp. Tansy spp.   0.00 

Trifolium repens White clover Exotic Gravity 0.03 

Veronica americana American brooklime Native Gravity 0.05 
 Unknown Forbs   0.12 

Graminoids   % Total =  29.02 

Agrostis spp. Agrostis spp.   0.01 

Carex spp. Sedge spp.   0.10 

Dactylis glomerata Orchard grass Exotic Gravity 0.07 

*Deschampsia elongata Tufted hair grass Native Gravity 3.90 

*Elymus glaucus Blue wild-rye Native Gravity 23.26 

Holcus lanatus Common velvetgrass Exotic Gravity 1.44 

Juncus balticus Baltic rush Native Gravity 0.01 

Juncus effusus Common rush Native Gravity 0.00 

Juncus spp. Rush spp.   0.00 
 Unknown Grasses   0.22 

Woody shrubs and trees   % Total =  0.99 

Abies grandis Grand fir Native Wind 0.00 

Acer spp. Maple spp. Native Wind 0.00 

Alnus rubra Red alder Native Wind 0.03 

Alnus sinuata Slide alder Native Wind 0.00 

Holodiscus discolor  Oceanspray Native Wind 0.00 

Ribes sanguineum Red flowered currant Native Animal 0.00 

Rubus leucodermis Blackcap raspberry Native Animal 0.00 

Rubus parviflorus Thimbleberry Native Animal 0.00 

Rubus spp. Rubus spp.  Animal 0.03 

Rubus ursinus Trailing blackberry Native Animal 0.01 

Populus balsamifera Black cottonwood Native Wind 0.61 

Pseudotsuga menziesii Douglas Fir Native Wind 0.19 

Salix spp Salix spp. Native Wind 0.10 

Tseuga heterophylla Western hemlock Native Wind 0.00 
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3.2 Comparison of Restoration Treatments 

 

I compared Shannon-Weiner diversity, species richness, plant abundance, and percent 

exotics across large wood plots, seeding treatments (seeded vs. unseeded), and their interaction 

(Table 3).  

 

Table 3. Comparison of Shannon-Weiner diversity, species richness, plant abundance (number of 

stems), and percent exotics across wood plot types and seeding treatments. Raw values represent 

means and standard errors. Means with common letters do not differ significantly (α = 0.05), 

determined by Tukey’s HSD. Due to the interaction between wood plot types and seeded 

treatments, related to species richness, a post-hoc test was not applied. 

Variable 

Shannon-

Weiner 

diversity  

Species 

Richness 
Abundance % Exotics 

Wood Plot Type         

 Cluster 1.41a +/- 0.07 11.71 +/- 0.67  63.80a +/-8.97 14.04a +/- 3.05 

 Non-wood 0.89b +/- 0.05 6.61 +/- 0.40 62.89a +/- 9.93 4.48b +/- 1.09 

 Root-wad 1.47b +/- 0.05 9.66 +/- 0.45 56.76a +/-6.94 16.07a +/- 2.99 

 Simple 1.43b +/- 0.06 11.89 +/- 0.50 71.19a +/- 9.40 13.20a +/- 2.42 

          

Seeding Treatment         

 Seeded 1.29a +/- 0.05 2.31 +/- 0.04 4.12a +/- 0.10 4.80a +/- 0.73 

  Unseeded 1.28a +/- 0.05 2.13 +/- 0.05 3.55b +/- 0.11 17.66b +/- 2.05 
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Shannon-Weiner diversity varied significantly by wood plot type, with non-wood plots 

having significantly lower Shannon-Weiner diversity (two-way ANOVA, F(3,1)=24.193, 

P<0.001), but did not vary by seeding treatment (two-way ANOVA, F(1,138)=0.128, P=0.721; 

Figure 8), with no interaction.  

 

 

Figure 8. Boxplots illustrating the combined effects of wood plot type and seeding treatment on 

mean Shannon-Weiner diversity in the former Lake Mills reservoir following dam removal on 

the Elwha River, WA. All plots containing wood had significantly higher Shannon-Weiner 

diversity than non-wood plots in both seeded and unseeded treatment areas. Boxplots represent 

median Shannon-Weiner diversity with 95% CI. Medians with common letters do not differ 

significantly (α = 0.05), determined by Tukey’s HSD. N=143.  
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Species richness varied by wood plot type, with highest richness found on cluster and 

simple plots (F(3,1)=36.910, P<0.001; Table 3). Species richness also varied significantly by 

seeding treatment, with lower species richness on unseeded plots (two-way ANOVA, 

F(1,3)=14.455, P<0.001). Finally, the interaction between wood plot type and seeding treatment 

was also significant (F(3,135)=3.877, P=0.011). An interaction plot revealed that this interaction 

was driven by root-wad and simple plots (Appendix Table D). Of all the wood treatments, non-

wood plots were the only plot type showing an increase in species richness in response to 

seeding (Figure 9).  

 

 
Figure 9. Boxplots illustrating the combined effects of wood plot type and seeding treatment on 

mean species richness in the former Lake Mills reservoir following dam removal on the Elwha 

River, WA. Species richness was highest on cluster and simple plots, with non-wood seeded 

plots and seeded and unseeded root-wad plots having median levels of species richness, and 

unseeded non-wood plots having lowest species richness. Boxplots represent median species 

richness with 95% CI. Medians with common letters do not differ significantly (α = 0.05), 

determined by Tukey’s HSD. N=143.  
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Mean plant abundance did not differ significantly by plot type (F(3,1)=0.375, P=0.772), 

but did differ significantly by seeding treatment (F(1,138)=15.291, P<0.001), with seeded root-wad 

and simple plots having significantly more stems, with no interaction (Figure 10).   

 

 
Figure 10. Boxplots illustrating the combined effects of wood plot type and seeding treatment on 

mean plant abundance in the former Lake Mills reservoir following dam removal on the Elwha 

River, WA. Mean plant abundance did not differ significantly by plot type, but was significantly 

lower on unseeded plots. Boxplots represent median species richness with 95% CI. Medians with 

common letters do not differ significantly (α = 0.05), determined by Tukey’s HSD. N=143.  
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Percent exotic species differed significantly by wood plot type (F(3,1)= 11.488, P<0.001), 

with wood plots having significantly more exotics than non-wood plots. Exotics also differed by 

seeding treatment (F(1,138)=56.923, P<0.001), with unseeded areas having significantly more 

exotic species than seeded areas, with no interaction. Seeded non-wood plots had significantly 

fewer exotic species compared to all other treatment combinations (Figure 11).   

I also examined total exotic plant abundance at each plot to ensure that patterns in percent 

exotics were not implicitly tied to mean plant abundance at each plot. A two-way ANOVA 

comparing total exotics by wood plot type, seeding treatment, and their interaction, yielded 

statistically similar results as percent exotics, with wood plots (F(3,1)= 7.927, P<0.001) and 

unseeded treatment areas (F(1,138)=17.523, P<0.001) having more exotics compared to non-wood 

plots and seeded treatment areas, respectively, with no interaction. 

 
Figure 11. Boxplots illustrating the combined effects of wood plot type and seeding treatment on 

percent exotic species in the former Lake Mills reservoir following dam removal on the Elwha 

River, WA. Percent exotics were higher in unseeded treatment areas and on plots containing 

wood. Boxplots represent median percent exotics with 95% CI. Medians with common letters do 

not differ significantly (α = 0.05), determined by Tukey’s HSD. N=143.  
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3.3 Community Composition among LWD Treatments 

PERMANOVA results indicate that species composition differed significantly by wood 

plot type (F(3,139)=5.080, P=0.001). A multivariate post-hoc test revealed that all plots containing 

LWD differed significantly from non-wood plots (all P-values<0.05; Table 4). I also conducted 

post-hoc PERMANOVAs and pairwise comparisons to examine the effect of wood plot type on 

species composition within seeded and unseeded areas separately. The results revealed that 

species composition differed significantly with respect to wood plot type in both seeded 

(F(3,62)=3.550, P<0.001) and unseeded areas (F(3,73)=4.775, P<0.001); however, the effect of 

wood on species composition in seeded and unseeded areas was not as clear as the results for all 

plots, regardless of treatment. Appendix Tables G-I provides results of these pairwise 

comparisons and NMDS ordinations.  

 

Table 4. Post-hoc pairwise comparisons of species composition among all plot types in the 

former Lake Mills reservoir following dam removal on the Elwha River, WA. Pairwise 

comparisons reveal that species composition among plots containing wood did not differ, but all 

wood plots differed significantly from non-wood plots, based on adjusted P-values (in bold text). 

Plot Comparisons Df SS F R2 P  

Cluster vs. Non-wood 1 1.021 7.778 0.099 0.006  

Cluster vs. Root-wad 1 0.199 1.215 0.018 1.000  

Cluster vs. Simple 1 0.169 1.236 0.018 1.000  

Non-wood vs. Root-wad 1 0.923 6.190 0.079 0.006  

Non-wood vs. Simple 1 1.647 13.237 0.155 0.006  

Root-wad vs. Simple 1 0.315 2.022 0.029 0.306 
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An NMDS ordination plot provides results that are consistent with post-hoc pairwise 

comparisons for all plots. The ordination shows a high degree of overlap among wood plots, 

which illustrates that species composition among wood plots was similar. Along the NMDS2 

axis, non-wood plots, symbolized by pink plus signs, appear to separate from other wood plot 

types and are more clustered near the bottom of the ordination, illustrating the significant 

difference in species composition among wood and non-wood plots (Figure 12). Species such as 

wall lettuce, thistles, and willowherbs were more abundant on those non-wood plots. 

Interestingly, while these species are all wind-dispersed, non-wood plots did not have an 

associated dispersal mechanism. 

Vectors for each dispersal mechanism are also plotted on the ordination. Each vector’s 

length is directly related to the strength of the association, with longer vectors signifying a 

stronger, more significant relationship. Along the NMDS1 axis, blue vectors for wind, gravity, 

and ballistic seed dispersal mechanisms illustrate the relationship between dispersal mechanism 

and species composition among my plots. For example, on the left-hand side of the ordination, 

long-distance (wind) dispersal was associated with wind-dispersed species such as willows, 

wood groundsel, and hairy cat’s ear. On the right-hand side of the ordination, short-distance 

dispersal (gravity and ballistic) was associated with species such as riverbank lupine and 

common velvetgrass. Animal dispersal modes were not significantly correlated with species 

composition (P>0.05).  
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Figure 12. Nonmetric multidimensional scaling (NMDS) ordination of species composition in 

the former Lake Mills reservoir following dam removal on the Elwha River, WA, with unique 

symbols for each plot type. While symbols show a high degree of overlap for all plot types, post-

hoc test results indicate that species composition on non-wood (NW) plots differed significantly 

from all LWD plots (P=0.006) for all LWD-NW comparisons, Table 5), and all LWD plots were 

similar. Blue vectors illustrate the relative influence of seed dispersal mechanisms on community 

composition. Animal dispersal was not significant (P> 0.05). Vector length indicates strength of 

association. Points represent individual plots (N=143). Stress value=0.16. 

 

Indicator species analysis identified different species associated with the various wood 

plot types (Table 5). On cluster plots, five significant indicator species were identified, with 

common horsetails and small-flowered willowherb having the strongest association with cluster 

plots. Seven species were identified as indicators of simple plots; the exotic hairy cat’s ear had 

the strongest association with simple plots. Other significant indicators of simple plots included 
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two other exotics—wall lettuce and smooth hawksbeard. Thistles (Cirsium spp.) of unknown 

nativity were identified as significant indicators of root-wad plots. The majority of indicator 

species of wood plots were wind-dispersed. No significant indicator species were identified for 

non-wood plots.   

Table 5. List of indicator species and nativity status by wood plot type in residual sediments in 

the former Mills reservoir, Elwha River, WA. 2015. Nativity status: N=native, E=exotic, 

U=unknown. Only significant indicator species are shown. *Indicates species was applied by 

seed in seeded treatment areas.  

Plot Type Indicator species Common name Nativity 
Indicator 

value 
P 

Cluster Equisetum arvense Common horsetail N 0.567 0.001 

 Epilobium ciliatum 
Small-flowered 

willowherb 
N 0.535 0.013 

 Carex spp. Carex spp. U 0.433 0.014 
 Salix spp. Salix spp. N 0.354 0.037 
 Sedum spp. Sedum spp. U 0.286 0.034 

      

Simple Hypochaeris radicata Hairy cat’s ear E 0.783 0.001 
 Chamerion angustifolium Fireweed N 0.505 0.015 
 Mycelius muralis Wall lettuce E 0.469 0.031 
 Unknown grass A  U 0.464 0.002 
 Collomia heterophylla Vari-leaved collomia N 0.444 0.023 
 Crepis capillaris Smooth hawksbeard E 0.307 0.039 
 Unknown grass B  U 0.289 0.036 

      

Root-wad Cirsium spp. Thistle spp. U 0.408 0.027 

      

Non-wood No significant indicator species 

 

 

3.4 Community Composition among Seeding Treatments 

Species composition varied by seeding treatment with distinct plant communities 

represented in seeded and unseeded treatment areas (PERMANOVA, F(1,141)=22.492, P<0.001).  

An NMDS ordination plot (Figure 13) illustrates that the two seeding treatments are separated 

from one other in ordination space, which indicates a strong influence of seeding on species 
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composition. Vectors on the NMDS ordination illustrate the association of individual plots with 

native versus exotic species. Along the NMDS1 axis, species applied as seed, including 

riverbank lupine, Oregon sunshine, and common yarrow, occur on the right-hand side of the 

ordination and are more abundant on seeded plots. On the left-hand side of the ordination, exotic 

species including hairy cat’s ear, smooth cat’s ear, and wood groundsel were more abundant on 

unseeded plots.  

Figure 13. NMDS ordination of species composition in the former Lake Mills reservoir 

following dam removal on the Elwha River, WA. PERMANOVA results indicate that applying 

native seed stock had a significant effect on species composition (F(1,141)=22.492, P<0.001). 

Vectors illustrate the association of individual plots with native versus exotic species (α = 0.05). 

Points represent individual plots (N=143). Stress value=0.16.  
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Indicator species analysis identified several indicators of seeded treatment areas, which 

consisted primarily of species seeded by ONP staff. Riverbank lupine, Oregon sunshine, and 

common yarrow were all strongly associated with seeded areas (Table 5). Common horsetail was 

identified as the only indicator species of unseeded plots, and consistent with results of indicator 

species analysis for plot type were most abundant on unseeded cluster plots. 

 

Table 6. List of indicator species and nativity status by treatment type in residual sediments in 

the former Mills reservoir, Elwha River, WA. 2015. Nativity status: N=native, E=exotic, 

U=unknown. Only significant indicator species are shown. *Indicates species was applied by 

seed in seeded treatment areas.  

Seeding 

Treatment 
Indicator species Common name Nativity 

Indicator 

value 
P 

Seeded *Lupinus rivularis Riverbank lupine N 0.842 0.000 

 *Eriophyllum lanatum Oregon sunshine N 0.794 0.000 

 *Achillea millifolium Common yarrow N 0.751 0.000 

 Carex spp. Sedge spp. U 0.376 0.028 

      

Unseeded Equisetum arvense Common horsetail N 0.457 0.030 

 

 

 

3.5 Distance from the Forest Edge 

A PERMANOVA was used to test whether distance from seed sources influenced species 

composition on unseeded plots. Results indicate that distance had a significant effect on species 

composition (F(1,75)=3.176, P=0.001). Results of Kendall’s tau correlations revealed that 

Shannon-Weiner diversity (τ = -0.262, P<0.001), species richness (τ = -0.200, P=0.013), and 

percent exotics (τ = -0.346, P<0.001) were significantly negatively correlated with distance; all 

three variables declined as distance from the forest increased (Figure 14). Total plant abundance 

was not significantly correlated with distance (P-value >0.05).  
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Figure 14. Kendall’s tau correlations between distance from the forest edge and mean Shannon-

Weiner diversity, species richness, plant abundance, and percent exotics on unseeded plots 

(N=77) in the former Lake Mills reservoir following dam removal on the Elwha River, WA. 

Shannon-Weiner diversity, species richness, and percent exotics were significantly negatively 

correlated with distance, while plant abundance was not correlated with distance (α = 0.05).  

 

An NMDS ordination plot illustrates patterns in species composition and dispersal 

mechanism related to distance on unseeded plots (Figure 15). The NMDS2 axis illustrates the 

influence of distance from the forest edge on species composition. For example, species located 

near the bottom right of the ordination, including oceanspray, western hemlock, and riverbank 

lupine, were more abundant closer to the forest edge. Conversely, species located near the top 

left of the ordination, including Siberian spring beauty, common horsetail, and orchard grass, 

were more abundant at greater distances. The NMDS ordination also illustrates the relationship 
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between distance and seed dispersal mechanism. For example, short-distance dispersal modes 

(ballistic and gravity) were associated with closer distances to the forest edge and long-distance 

dispersal (wind) was associated with greater distances. Vectors were omitted from the ordination 

to improve readability; the red star near the center of the ordination plot represents the origin of 

vectors for seed dispersal. Animal dispersal was not significantly correlated with distance (P> 

0.05).  

Figure 15. NMDS ordination of species composition on unseeded plots in the former Lake Mills 

reservoir following dam removal on the Elwha River, WA. PERMANOVA results indicate that 

distance (m) from the forest edge significantly influenced species composition in unseeded areas 

(F(1,75)=3.478, P<0.001). Blue labels for each dispersal type illustrate the relative influence of 

each significant dispersal mechanism on species composition (α = 0.05). All vector lines 

originated at the red star near the center of the ordination but were removed to improve 

readability. Wind dispersal was associated with greater distance from the forest edge, while 

gravity and ballistic dispersal modes were associated with closer distances. Animal dispersal was 

not significant. Stress value=0.16. 
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3.6 Spatial Analysis 

A spatial analysis conducted on all plots identified five significant hot-spots; four LWD 

plots and one non-wood plot. Three of the LWD hot-spots were located within the large, seeded 

treatment area, and the fourth was located within an unseeded area on a low terrace on the river 

floodplain (Figure 16). The remaining non-wood hot-spot was also situated on the low floodplain 

terrace. No significant cold-spots occurred in the study area, which indicates that there were few 

areas where low plant abundance clustered spatially. Abundance on all other plots lacked 

significant high or low spatial clustering. 
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Figure 16. Hot-spot analysis generated in ArcGIS for plant abundance on LWD (N=104) and 

non-wood plots (N=39) located in seeded and unseeded treatment areas in the former Lake Mills 

reservoir, Elwha River, WA. 2015. Four significant hot-spots were identified on wood plots, 

three in seeded areas on the perched terrace, and one in an unseeded area on a lower terrace. 

Only one non-wood plot was identified as a hot-spot, which also occurred in the unseeded area 

on the lower terrace (all significant Z-scores >2.80, all P-values <0.004). 
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4.0 Discussion  

The purpose of this study was to examine the effects of translocated LWD and direct 

seeding and limitations imposed by distance on species composition during the initial years of 

plant succession within the former Lake Mills reservoir. My findings as they relate to my 

research questions are as follows: 1) there was no difference in plant abundance in sites that had 

LWD compared to non-wood plots; however, Shannon-Weiner diversity, species richness, and 

exotic species were greater on plots that contained wood. 2) Seeded plots had an increase in 

species richness and plant abundance, and a decrease in exotic species; however, seeding did not 

influence Shannon-Weiner diversity. 3) Distance from the forest edge did not limit plant 

abundance; however, I noted a decrease in Shannon-Weiner diversity, species richness, and 

percent exotic species in response to distance from the forest edge. Using NMDS ordinations, 

indicator species analysis, spatial analysis, and knowledge of seed dispersal mechanisms, I 

illustrated that species composition differed with respect to LWD, seeding treatments, and 

distance from the forest.  

 

4.1 LWD Treatments 

The presence of LWD on novel terraces influenced species composition; plots containing 

LWD had higher Shannon-Weiner diversity and species richness. However, contrary to my 

prediction, plant establishment did not increase around LWD, as measured by stem counts; mean 

plant abundance was similar on plots with and without LWD. These results are consistent with 

those found following the eruption of Mount St. Helens, where logs and boulders had negligible 

effects on plant establishment in seral post-volcanic habitats (Halpern and Harmon 1983, 

Halpern et al. 1990). In contrast, other studies in primary successional habitats found an increase 
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in seedling abundance near surface topography, such as cracks, rills, rocks, mounds, and 

depressions, compared to surrounding flat areas (del Moral and Wood 1993, Jumpponen et al. 

1999, Titus and Tsuyuzaki 2003, Chad and del Moral 2005). Since plant abundance did not differ 

significantly among wood and non-wood plots, it may indicate that seeds, albeit from fewer 

species, are dispersing to and germinating in open, coarse sediments with and without wood. 

Coarse sediments that comprise terrace surfaces range from sand-sized particles to cobbles 

(Chenoweth 2013). Studies in post-glacial habitats found that coarse surface sediments, similar 

to those that occur in Mills, created favorable micro-sites for plant germination and 

establishment to occur (Jumpponen et al. 1999; Niederfriniger Schlag and Erschbamer 2000). 

Perhaps the interstitial spaces between coarse sediments create small micro-sites that trap seeds 

and retain moisture (del Moral and Wood 1993, Niederfriniger Schlag and Erschbamer 2000), 

allowing some species to germinate and establish on coarse terraces in Mills.   

Whereas logs and root-wads did not have higher plant abundance than open sites, all 

plots containing wood had higher Shannon-Weiner diversity and species richness compared to 

open areas without wood. Increased Shannon-Weiner diversity and species richness around 

LWD are likely attributed to the structure that wood provides; when habitat structure is more 

diverse, species assemblages tend to follow that pattern of complexity (Brown and Naeth 2014). 

Using larger irregular surface topography such as cracks, rills, rocks, mounds, and depressions as 

imperfect analogs for LWD, studies have shown that these structures trap wind-blown seeds in 

early successional habitats, leading to increased seed deposition (Wood and del Moral 1988; 

Dale et al. 2005; Tsuyuzaki et al. 1997; Titus and Tsuyuzaki 2003; Jones et al. 2005; Walker et 

al. 2006).  
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4.2 LWD Treatments—Species Composition and Restoration Implications 

A diverse array of wind-dispersed native and exotic forbs and grasses, as well as wind 

and bird-dispersed woody shrubs and trees, contributed to increased Shannon-Weiner diversity 

and species richness on plots containing wood. While bird-dispersed plant abundance was very 

low in this study (N=21), all woody plants dispersed by birds were found on plots containing 

wood, with the majority (60%) around elevated root-wads. Elevated wood structures likely 

promote species richness by attracting avian species that deposit seed-rich scat at LWD perch 

sites. In my study, the addition of logs to terrace surfaces along the Elwha created complex 

structures, contributing to increased Shannon-Weiner diversity and species richness of seeds 

trapped by LWD.  

Exotic species also contributed to increased Shannon-Weiner diversity and species 

richness on plots containing wood. Because LWD creates favorable micro-sites and acts as an 

effective trap for wind-blown seeds, and because many of the exotics identified during this study 

were dispersed by wind, it led to an increase in exotics on wood plots, particularly when wood 

plots were unseeded. Indicator species analysis revealed that several exotic forbs were indicators 

of LWD simple plots. Other studies (Chenoweth 2015, Morgan 2018) found that small weedy 

annuals, such as Aira species and Senecio sylvaticus, were also indicators of coarse sediments in 

Mills; however, those studies also included planted sites. Many exotic species are excellent 

colonizers of degraded habitats and are adapted for growth in stressful environments (Walker et 

al. 2006). They complete their life cycles in a matter of weeks, germinating, flowering, and 

producing seeds before the onset of seasonal droughts (Grime 1979, Sakai et al. 2001). While 

exotic species were more abundant on plots containing wood, exotics represented a small portion 

of total plant abundance in my study area. These results are consistent with other Mills’ studies 



41 
 

(Chenoweth 2013, Schuster 2015, Morgan 2018), which found that exotics were present, but not 

dominant. And, similar to results from Chenoweth (2013), I found no evidence of highly 

invasive species on novel terraces in Mills. However, other exotics, including Canada thistle, 

common velvetgrass, and hairgrass (Aira praecox and A. caryophyllea) were present. Other 

studies (Chenoweth et al. 2020; Kardouni 2020) have noted that these exotics increased in 

abundance on plots with sparse seeding. Because they are early and successful pioneers, exotic 

species can influence successional pathways by outcompeting native species, changing the 

chemical and biological conditions of soils, and negatively affecting the ability of surrounding 

vegetation to access water and nutrients (Jean-Baptiste et al. 2018, Holl 2020). Therefore, 

continual management of these terraces will be required to assure natural plant succession and 

native plant recovery over time (Shafroth et al. 2002; Chenoweth et al. 2020).  

 

4.3 Seeding Treatments 

On plots where native seed stock was sowed, plant abundance increased and exotic 

species declined. The prevention of exotic species invasions was one of the primary objectives of 

the Elwha revegetation plan (Chenoweth et al. 2011). Therefore, my results suggest that direct 

seeding on coarse sediments helps meet this objective. The ability of seeded species to promote 

native plant establishment while suppressing exotic invasions in Mills is consistent with other 

studies (Carter et al. 2012; Nemec et al. 2013; Chenoweth et al. 2020), which found that applying 

native seed stock to Elwha sediments led to higher vegetative cover, increased species richness, 

and reduced exotic species recruitment. Between 2013 and 2015, ONP restoration crews applied 

roughly 1,800 kilograms of native seed, most of which was applied to terrace sediments in Mills, 

with an average seeding rate of 323 seeds per square meter (Chenoweth et al. 2020). My study 
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shows that this application rate effectively reduced exotic species' recruitment in recently 

dewatered habitats susceptible to exotic invasion.  

 

4.4 Seeding Treatments—Species Composition and Restoration Implications 

Several seeded species, including riverbank lupine, Oregon sunshine, yarrow, and 

unknown sedges, were identified as indicator species of seeded plots. ONP restoration biologists 

selected native seeded species to apply to reservoir sediments based on their ability to tolerate 

xeric habitats lacking organic matter and nutrients (Chenoweth 2013). As early colonizers, 

seeded species contribute vital organic matter and nutrients to terrace sediments through the 

annual decomposition of herbaceous stems, leaves, and roots, improving growing conditions for 

later successional species. For example, seeded cover crops, such as riverbank lupine, fix 

atmospheric nitrogen and modify soil nutrients. Kardouni (2020) found that riverbank lupine 

provided a cover crop that decreased the invasion of exotic grasses while increasing growth rates 

and foliar nitrogen levels of planted conifers in Mills. Several other studies have shown the 

benefits of seeded lupines in seral habitats, which include trapping seeds and leaf litter 

(Urbanska 1997; Dale et al. 2005), creating safe-sites (Urbanska 1997, Niederfriniger Schlag and 

Erschbamer 2000), reducing wind and water erosion (Niederfriniger Schlag and Erschbamer 

2000), and increasing the establishment (Kardouni 2020) and survival rates of later successional 

woody species (Niederfriniger Schlag and Erschbamer 2000; Chenoweth et al. 2020). And as 

stated above, augmenting with native seeds increases the potential for seeded species to 

germinate and establish. Once established, seeded species can outcompete exotics for resources 

such as space and water, reducing the potential for invading exotics to establish.  
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Indicator species analysis identified common horsetail (Equisetum arvense) as the sole 

indicator species of unseeded plots. Two other studies (Chenoweth 2013, Whisman 2013) also 

noted horsetails to be early and abundant colonizers in moist sediments following reservoir 

drawdown in Mills. The widespread distribution of horsetails is likely due to wind and water-

borne spores, stems, and roots being transported and deposited onto novel terraces during 

reservoir drawdown. Horsetails are indicative of moist riparian habitats, and their relative 

abundance on novel terraces in Mills is likely attributed to saturated sediments during reservoir 

drawdown. Horsetails have extensive rhizomes that can reach depths of four meters and extend 

laterally for tens of square meters, allowing them to access water in otherwise xeric surface 

conditions (Husby 2013). And, because their rhizomes are tolerant of deep burial, horsetails are 

often early colonizers of disturbed habitats where burial occurs (Husby 2013). For example, 

immediately following the 1912 and 1980 eruptions of Katmai volcano and Mount St. Helens, 

respectively, horsetails were abundant in deep tephra deposits (Bilderback 1987, Siegel and 

Siegel 1982, Rothwell 1996). Common horsetails are perennials but possess aerial stems that die 

back annually. In shrub wetland systems in Alaska, the deep and extensive rhizomes of horsetails 

allowed them to access soil nutrients such as calcium, phosphorus, and potassium in lower soil 

horizons (Marsh et al. 2000). Elevated levels of these vital nutrients were found in horsetail litter, 

which became available to surrounding vegetation and increased primary productivity in the 

wetland (Marsh et al. 2000). It is likely that horsetail are beneficial to surrounding vegetation by 

providing a source of these limited nutrients through the annual decomposition of their stems. 

Whether horsetails will persist on novel terraces over time will likely depend on their ability to 

continue to extract available moisture and nutrients from deep sediment deposits.  
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 4.5 Distance from Forest and Seed Dispersal Mechanisms 

 Distance from seed sources at the forest edge influenced species composition on 

unseeded plots (seeded plots were excluded from distance analyses). Shannon-Weiner diversity, 

species richness, and percent exotics declined as distance from the forest increased. This result is 

similar to the results of a study on Mount St. Helens, which found that species richness decreased 

with distance (>500 meters) from established vegetation (del Moral and Wood 1993). In my 

study area, seed dispersal limitations likely prevented some species from colonizing distant 

unseeded areas, leading to lower Shannon-Weiner diversity and species richness at greater 

distances from the forest edge. However, plant abundance did not change significantly with 

distance, illustrating that some species are not limited by dispersal. The most abundant species 

(based on rank abundances at distances over 100 meters from the forest edge) were small 

flowered willowherb, blue wild-rye, tufted hair grass, common horsetail, and wood groundsel, in 

descending order of abundance. The consistency in stem counts in unseeded areas indicates that 

plants (albeit from fewer species as distance increased) colonize the terraces in relatively equal 

amounts, regardless of distance. This result contrasts with other studies that found declines in 

plant abundance as distance increased (del Moral and Wood 1993, Fuller and del Moral 2003, 

Dale et al. 2005, Halpern and Harmon 1983); however, distances in those studies were somewhat 

greater than my study area and ranged from hundreds of meters to several kilometers, while my 

sampling area ranged from 28-248 meters from established vegetation.  

Regardless of distance, plants dispersed by wind were dominant in my study area, 

followed by gravity, ballistic, and animal dispersed plants. Wind-dispersed plant abundance was 

more closely associated with farther distances, while gravity and ballistic mechanisms were 

associated with closer distances. Lightweight, wind-dispersed species are often the earliest 
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colonizers of disturbed habitats due to their excellent dispersal capabilities (del Moral and Wood 

1993, Dale et al. 2005). Diaspores adapted for wind dispersal have significantly greater dispersal 

distances than gravity and ballistic dispersers (del Moral and Wood, 1993), and can travel up to 4 

kilometers from their origin (Wilson 1993). Unseeded plots in my study area were well within 

the maximum dispersal capabilities of wind-dispersed species; however, seed sources at the 

forest edge are not the only source of plant propagules on terrace sediments. The narrow Elwha 

River valley funnels wind from the Strait of Juan de Fuca in the north to mountainous regions in 

the south. Winds that occur within the river corridor shift throughout the day as air masses warm 

and cool, resulting in strong winds that funnel up and down the river. While the forest edge, 

which lies to the east and west of our sampling area, provides the closest source of wind-

dispersed propagules, plants dispersed by wind also originate from more distant seed sources to 

the north and south, in-line with dominant wind patterns (Woodward et al. 2011).  

While herbaceous species comprised the vast majority of plants observed, several woody 

species were already established on novel terraces when this study was conducted, including 

black cottonwood, willows, and Douglas fir. Black cottonwood seedlings were particularly 

abundant in my study area (Figure 17). The early abundance of black cottonwood on novel 

terraces in Mills can be attributed to reservoir drawdown timing. Between October 2011 and  
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October 2012, there were numerous planned reservoir drawdown and hold periods during the 

deconstruction of Glines Canyon dam. The most prolonged hold period occurred for ten weeks in 

the spring of 2012, which coincided with the height of seed production for black cottonwood and 

willow (Bountry et al. 2015, Chenoweth 2015). A study in the Horsetooth reservoir found that 

reservoir drawdown that coincided with cottonwood seed dispersal led to increased cover of the 

species (Auble et al. 2007). Black cottonwood germination and seedling survival are dependent 

on sediment moisture levels during the first month (USDA 2002). Terrace sediments were 

completely saturated during these hold periods. As reservoir drawdown resumed, cottonwoods 

 

Figure 17. Black cottonwood (Populus balsamifera) seedlings growing on the large 

western terrace in the former Lake Mills reservoir. Elwha River, WA. Summer, 2015.  
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adapted to the lowering water table by growing deep tap roots to reach groundwater levels 6-18 

meters below the perched terraces (Naiman et al. 2005, Chenoweth 2015). The rapid 

establishment of woody species, including black cottonwood, on novel terraces is fortunate. 

Where restoration goals include the rapid return of riparian forests to dewatered reservoirs, 

managers should consider timing reservoir drawdown and hold periods to coincide with 

cottonwood and willow seed dispersal to increase the potential for woody species to establish.  

 

4.6 Spatial Analysis 

Hot-spot analysis identified a few key areas where high plant abundance clustered 

spatially. These areas occurred on the western-most seeded treatment area and on the lower 

unseeded floodplain terrace (Figure 16). One low terrace was associated with the river 

floodplain, making it a unique example where floodplain dynamics are likely influencing species 

composition (Naiman et al. 2000); all plots sampled on that terrace were positioned greater than 

200 meters from the forest edge. Higher levels of disturbance and moisture associated with this 

floodplain terrace may select species that are either more tolerant of flooding disturbance or are 

pioneering species after a flooding event. Species associated with the floodplain terrace included 

native and exotic grasses and native Cooley’s hedge nettle, common horsetail, black cottonwood, 

and Sitka willow. Douglas fir was also detected on the distant terrace. In Elwha floodplain 

sediments, Douglas firs are considered a mid-seral species (Whisman 2013); seed rain from 

Douglas firs beyond 150 meters from the forest edge is considered unlikely (Chenoweth pers. 

comm.). It is more likely that Douglas firs on the distant floodplain terrace resulted from fir 

cones being transported by the river from upstream sources. 
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Spatial hot-spot analysis provides further support for seeded treatment areas having 

higher plant abundance. Of the few hot-spots identified, the majority occurred in seeded areas. 

However, hot-spot analysis reveals a lack of strong spatial patterns overall. In primary 

successional habitats following large-scale disturbance, vegetation spatial patterns can be highly 

variable, unpredictable, and slow to develop (del Moral et al. 2010). Low recruitment and 

survivorship due to environmental stress can further obscure plant spatial patterns (Robbins and 

Matthews, 2009). Given the early stage of plant succession on novel terraces along the Elwha, it 

is not surprising that few areas with particularly high or low plant abundance were identified 

during this study. As succession proceeds on novel terraces, it remains unclear whether plant 

abundance patterns will begin to reflect how LWD, seeding treatments, and distance from the 

forest will shape plant communities in these habitats. 

 

4.7 Conclusions  

This study examined plant establishment in a primary successional habitat during one 

growing season, four years after dam removal was initiated. Over this period, I characterized the 

early stages of plant community development on novel terraces. The influence of seeding was 

immediately apparent; native seed enhancements helped meet some of the primary goals of the 

Elwha revegetation plan by increasing plant abundance and deterring exotic species. Direct 

seeding also led to higher species richness, but richness increased most when paired with LWD 

treatments. Where restoration projects begin with primary succession, methods that promote 

rapid revegetation will ultimately accelerate soil development by adding organic matter, 

promoting nutrient cycling, and encouraging microbial activity.  
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The beneficial effects of LWD were less apparent. The addition of LWD led to increased 

Shannon-Weiner diversity and species richness, compared with surrounding bare sediments; 

however, LWD placements did not result in greater plant establishment, contrary to my 

prediction. In addition, wood plots had higher proportions of exotic species compared to bare 

sediments. I acknowledge that the benefits of LWD, including deterring ungulate herbivory, 

accumulating organic matter and nutrients, and serving as a substrate for vegetation as logs begin 

to decay, will take years to decades to detect. Therefore, future studies examining these vital 

resources and their impacts on plant communities surrounding LWD is recommended.  

As distance from the forest edge increased, Shannon-Weiner diversity, species richness, 

and percent exotics on unseeded plots declined. However, plant abundance did not change 

significantly with distance, which indicates that some species' dispersal capabilities are not 

limited by distance in the Mills basin. In addition, floodplain dynamics are likely influencing 

seed dispersal modes and species composition at greater distances. Furthermore, understanding 

the timing of reservoir drawdown to compliment wind-dispersed species can be an important 

management technique that can accelerate the succession of native plant species required for the 

holistic recovery of forest habitats along river systems in the Pacific Northwest.      
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Appendix  

 

Table A. List of plant species applied by hand to coarse terrace sediments in Mills within the 

2012 southern log translocation area during spring of 2012 and 2013 (Chenoweth et al. 2020). 

Scientific Name Common Name 

Achillea millifolium Common yarrow 

Agrostis exarata Spiked bentgrass 

Artemisia suksdorfii Suksdorf’s sagewort 

Bromus pacificus Pacific brome 

Carex mix (C. pachystachya & C. deweyana) Sedge species 

Deschampsia elongata Slender hairgrass 

Elymus glaucus Blue wild-rye 

Eriophyllum lanatum Oregon sunshine 

Lupinus rivularis Riverbank lupine 

Total amount applied to coarse sediments  

in Mills between 2012-2015 
709.6 kg 
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Table B. Map of 2012 and 2014 LWD translocation areas on the west side on the Mills basin. 

Image courtesy ONP restoration manager, J. Chenoweth, and A. Ritchie (U.S.G.S.). 
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Table C. Ranges of values for distance from the forest edge (m). Distances were measured at the 

plot level and obtained using map tools in ArcGIS.  

Variable Mean Min Max Std. Dev. 

Distance to forest (m) 89.0 28.0 248.0 43.6 

 

 

Table D. Interaction plot of log-transformed species richness by plot type and treatment type. 

Mean species richness was higher on seeded cluster and non-wood plots, but slightly lower on 

and seeded root-wad and simple plots.
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Table E. Kendall’s tau correlations between distance from forest and Shannon-Weiner diversity, 

species richness, plant abundance, and percent exotic species. Shannon-Weiner diversity, species 

richness, and percent exotics were all significantly negatively correlated with distance, while 

plant abundance was not correlated, based on p-values (α=0.05). 

Response Variable Kendall's tau P-value 

Shannon-Weiner diversity  -0.240 0.002 

Species richness -0.165 0.041 

Plant abundance 0.026 0.738 

Percent exotics -0.276 <0.001 
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Table F. Nonmetric multidimensional scaling (NMDS) ordination of species composition on 

unseeded plots in the former Lake Mills reservoir following dam removal on the Elwha River, 

WA, with unique symbols for each wood plot type. Blue vectors illustrate the relative influence 

of seed dispersal mechanisms on community composition. Animal dispersal was not significant 

(P> 0.05). Vector length indicates strength of association. Points represent individual plots 

(N=77). Stress value=0.16. 

 

Table G. Post-hoc pairwise comparisons of species composition among wood plot types in 

unseeded treatment areas the former Lake Mills reservoir following dam removal on the Elwha 

River, WA. Pairwise comparisons reveal that species composition among cluster, simple, and 

non-wood plots did not differ, but cluster, simple, and non-wood plots differed significantly from 

root-wad plots, based on adjusted P-values (in bold text). 

Plot Comparisons Df SS F R2 P 

Cluster vs. Non-wood 1 0.581 2.481 0.063 0.138 

Cluster vs. Root-wad 1 1.078 4.455 0.113 0.006 

Cluster vs. Simple 1 0.495 1.867 0.051 0.336 

Non-wood vs. Root-wad 1 1.685 7.754 0.169 0.006 

Non-wood vs. Simple 1 0.594 2.486 0.061 0.090 

Root-wad vs. Simple 1 0.846 3.429 0.087 0.018 
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Table H. Nonmetric multidimensional scaling (NMDS) ordination of species composition on 

seeded plots in the former Lake Mills reservoir following dam removal on the Elwha River, WA, 

with unique symbols for each wood plot type. Blue vectors illustrate the relative influence of 

seed dispersal mechanisms on community composition. Animal dispersal was not significant (P> 

0.05). Vector length indicates strength of association. Points represent individual plots (N=66). 

Stress value=0.16. 

  

Table I. Post-hoc pairwise comparisons of species composition among wood plot types in seeded 

treatment areas the former Lake Mills reservoir following dam removal on the Elwha River, WA. 

Pairwise comparisons reveal that species composition among cluster and root-wad plots, cluster 

and simple plots, and non-wood and simple plots did not differ, but all other plot combinations 

differed significantly in composition, based on adjusted P-values (in bold text). 

Plot Comparisons Df SS F R2 P 

Cluster vs. Non-wood 1 0.779 3.556 0.100 0.012 

Cluster vs. Root-wad 1 0.262 1.477 0.047 1.000 

Cluster vs. Simple 1 0.208 0.886 0.029 1.000 

Non-wood vs. Root-wad 1 1.565 7.841 0.197 0.006 

Non-wood vs. Simple 1 0.519 2.052 0.060 0.474 

Root-wad vs. Simple 1 0.769 3.603 0.107 0.030 
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