SAS MACRO for Generation of Partial Tetra-allele Cross Design using MOLS

Developed By
Mohd Harun ${ }^{1}$, Cini Varghese ${ }^{1}$, Seema Jaggi ${ }^{1}$ and Eldho Varghese ${ }^{2}$
${ }^{1}$ Division of Design of Experiments, CAR-Indian Agricultural Statistics Research Institute
${ }^{2}$ Fisheries Resources Assessment Division, ICAR-Central Marine Fisheries Research Institute
Email ID: harun.agribhu@gmail.com; cini.varghese@icar.gov.in; seema.jaggi@icar.gov.in and eldho.varghese@icar.gov.in

Tetra-allele cross often referred as four-way cross or double cross or four-line cross are those type of mating designs in which every cross is obtained by mating amongst four inbred lines. A tetra-allele cross can be obtained by crossing the resultant of two unrelated diallel crosses. A common triallel cross involving four inbred lines A, B, C and D can be symbolically represented as $(A \times B) \times(C \times D)$ or $(A, B$, C, D) or (A B C D) etc. Tetra-allele cross can be broadly categorized as Complete Tetra-allele Cross (CTaC) and Partial Tetra-allele Crosses (PTaC).

Rawlings and Cockerham (1962) firstly introduced and gave the method of analysis for tetra-allele cross hybrids using the analysis method of single cross hybrids under the assumption of no linkage.

The set of all possible four-way mating between several genotypes (individuals, clones, homozygous lines, etc.) leads to a CTaC. If there are N number of inbred lines involved in a CTaC, the the total number of crosses, $T=\frac{N(N-1)(N-2)(N-3)}{8}$. Here is an example of complete tetra-allele cross consisting of 15 crosses that can be made for 5 lines ($1,2,3,4$ and 5).

$(1 \times 2) \times(3 \times 4)$	$(1 \times 3) \times(4 \times 5)$	$(1 \times 4) \times(2 \times 5)$	$(1 \times 5) \times(3 \times 4)$	$(2 \times 5) \times(3 \times 4)$
$(1 \times 2) \times(3 \times 5)$	$(1 \times 3) \times(2 \times 5)$	$(1 \times 4) \times(3 \times 5)$	$(1 \times 5) \times(2 \times 3)$	$(4 \times 5) \times(2 \times 3)$
$(1 \times 2) \times(4 \times 5)$	$(1 \times 3) \times(2 \times 4)$	$(1 \times 4) \times(2 \times 3)$	$(1 \times 5) \times(2 \times 4)$	$(2 \times 4) \times(3 \times 5)$

When more number of lines are to be considered, the total number of crosses in $\mathrm{CT}_{\mathrm{a}} \mathrm{C}$ also increases. Thus, it is almost impossible for the investigator to carry out the experimentation with limited available resource material. This situation lies in taking a fraction of $\mathrm{CT}_{\mathrm{a}} \mathrm{C}$ with certain underlying properties, known as $\mathrm{PT}_{\mathrm{a}} \mathrm{C}$. Here, a SAS macro has been developed to generate a series of universally optimal family of designs using MOLS. The method starts with selecting any of the $\frac{(N-1)}{2}$ MOLS of a given order N (the number of lines) and retaining the first four rows and making crosses with the lines
occurring in each column. The parameters of the developed class of design is $T=\frac{N(N-1)}{2}, b=\frac{(N-1)}{2}$, $r, k=N$ and $f=\frac{4}{(N-2)(N-3)}$.

Example: For $N=7$, considering 3 MOLS of order 7 chosen at random out of the total 6 possible MOLS of order 7, and retaining only first 4 rows of each, based on the symbols $1,2,3,4,5,6$ and 7 as given below.

$\left.$| MOLS I | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 2 | 3 | 4 | 5 | 6 | 7 | 1 |
| 3 | 4 | 5 | 6 | 7 | 1 | 2 |
| 4 | 5 | 6 | 7 | 1 | 2 | 3 |\quad| MOLS II | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 3 | 4 | 5 | 6 | 7 | 1 | 2 |
| 5 | 6 | 7 | 1 | 2 | 3 | 4 |
| 7 | 1 | 2 | 3 | 4 | 5 | 6 |$\quad \right\rvert\,$| MOLS III | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 4 | 5 | 6 | 7 | 1 | 2 | 3 |
| 7 | 1 | 2 | 3 | 4 | 5 | 6 |
| 3 | 4 | 5 | 6 | 7 | 1 | 2 |

Now, considering the seven symbols as lines, from each LS a tetra-allele crosses can be made by taking the four lines of each column. The crosses made from each LS will be constituting a block.

The layout of the design can be obtained as generated using the developed SAS macro by just entering the number of lines.

SAS OUTPUT

The SAS System

Partial Tetra-allelle Cross Design using MOLS

PTaC_Design		
Block1	Block2	Block3
$(1 \times 2) \times(3 \times 4)$	$(1 \times 3) \times(5 \times 7)$	$(1 \times 4) \times(7 \times 3)$
$(2 \times 3) \times(4 \times 5)$	$(3 \times 5) \times(7 \times 2)$	$(4 \times 7) \times(3 \times 6)$
$(3 \times 4) \times(5 \times 6)$	$(5 \times 7) \times(2 \times 4)$	$(7 \times 3) \times(6 \times 2)$
$(4 \times 5) \times(6 \times 7)$	$(7 \times 2) \times(4 \times 6)$	$(3 \times 6) \times(2 \times 5)$
$(5 \times 6) \times(7 \times 1)$	$(5 \times 6) \times(7 \times 1)$	$(5 \times 6) \times(7 \times 1)$
$(6 \times 7) \times(1 \times 2)$	$(6 \times 7) \times(1 \times 2)$	$(6 \times 7) \times(1 \times 2)$
$(7 \times 1) \times(2 \times 3)$	$(7 \times 1) \times(2 \times 3)$	$(7 \times 1) \times(2 \times 3)$

Parameters of the design are

N	T	\mathbf{b}	k	\mathbf{f}
7	21	3	7	0.2

References

Parsad, R., Gupta, V.K. and Gupta, S.C. (2005). Optimal designs for experiments on two-line and fourline crosses. Utilitas Mathematica, 68, 11-32.
Rawlings, J.O. and Cockerham, C.C. (1962 b). Analysis of double cross hybrid populations, Biometrika, 18, 229-244.
/*Developed by- Mohd. Harun, Cini Varghese, Seema Jaggi and Eldho Varghese*/
/*Date: 10-01-2020
VERSION 1.0: 10-01-2020*/
/*Features: */
/*It provides generation of Partial Tetra Allelle Cross design using MOLS */
$/ * /$
ods html;
\%let $\mathrm{n}=7$; /*Enter the number of lines (n must be prime number)*/
proc iml;
pp1=1;
do $\mathrm{i}=2$ to $\& \mathrm{n}-1$;
$\mathrm{pp}=\bmod (\& \mathrm{n}, \mathrm{i})$;
if $\mathrm{pp}=0$ then $\mathrm{pp} 1=0$;
end;
if $\mathrm{pp} 1=0$ then do;
print 'Entered number is not a prime number';
end;
if $\mathrm{pp} 1^{\wedge}=0$ then do;
Square=j(4,\&n,0);
do $\mathrm{i}=1$ to 4 ;
do $\mathrm{j}=1$ to \&n;
Square $[i, j]=\bmod ((i-1)+(j-1), \& n)+1$;
end;
end;
*print square;
do $\mathrm{k}=1$ to $(\& \mathrm{n}-1) / 2$;
if $\mathrm{k}=1$ then do;
NBD1=Square;
end;

else do;

do $\mathrm{i}=1$ to 4 ;
do $\mathrm{j}=1$ to ncol(square);
NBD1[i,j]=mod(Square $[i, j]+(j-1)+(i-1), \& n)$;
if NBD1 $[i, j]=0$ then NBD1 $[\mathrm{i}, \mathrm{j}]=\& n$;
end;
end;
end;
Square=t(NBD1);
*print Square;
ww1=char(Square[,1],4,0);
ww2=char(Square[,2],4,0);
ww3=char(Square[,3],4,0);
ww4=char(Square[,4],4,0);
*print ww1 ww2 ww3 ww4;
www $1=j($ nrow(ww1),ncol(ww1),'(');
www2=j(nrow(ww1),ncol(ww1),')');
www3=j(nrow(ww1),ncol(ww1),'x');
*print www1 www2 www3;

Block=www1+ww1+www3+ww2+www2+www3+www1+ww3+www3+ww4+www2;
PTaC_Design=PTaC_Design||Block;
end;
$\mathrm{T}=\left(\& \mathrm{n}^{*}(\& \mathrm{n}-1)\right) / 2$;
$\mathrm{b}=(\& \mathrm{n}-1) / 2$;
$\mathrm{k}=\& \mathrm{n}$;
$\mathrm{N}=\& \mathrm{n}$;
$\mathrm{f}=4 /((\& \mathrm{n}-2) *(\& n-3))$;
varNames = "Block1":"Block\&n"; /*since n is the maximum which is greater than $\mathrm{k} * /$
print "Partial Tetra-allelle Cross Design using MOLS";
print PTaC_Design [colname= varNames];
print "Parameters of the design are" ;
print N Tbkf;
end;
run;
ods html close;
quit;

