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Abstract

Background Several vaccine and antibody candidates are currently in development for the prevention of lower respiratory
tract infections caused by the respiratory syncytial virus (RSV).

Methods We searched MEDLINE, Embase, and SCOPUS and included model-based evaluations of RSV vaccinations. Two
reviewers performed the selection, data extraction, and quality evaluation with EVIDEM. Cost-effectiveness (CE) estimates
were converted to $US purchasing power parity (PPP), year 2018 values. Potential economic and epidemiological outcomes
were summarised for maternal, infant, children, and elderly vaccinations. The PROSPERO identifier is CRD42019122570.
Results In total, 22 model-based studies were reviewed. On average, a potential 27% reduction in RSV hospitalisations in
infants was projected for maternal vaccination and 50% for direct infant immunisation. The CE of maternal vaccination
was $US1766-5857 PPP 2018/disability-adjusted life-years (DALY's) for Global Alliance for Vaccines and Immunisation
(Gavi)-eligible countries. For England, the maximum cost-effective price of maternal vaccination was estimated at $US81.5
PPP 2018. Infant vaccination was associated with higher CE ratios in low- and high-income settings. Vaccination of neonates
born before the RSV season was the most cost effective in high-income settings. Higher values for vaccine effectiveness,
duration of protection, and vaccine uptake increased the benefits. Due to indirect effects, the vaccination of school-age chil-
dren and a cocooning strategy were effective alternatives to protect infants, and the vaccination of children aged < 5 years
had a beneficial impact on the elderly.

Conclusion RSV vaccines with anticipated characteristics may reduce a sizeable proportion of the RSV burden. The results
are subject to uncertainty because of the limited epidemiological and clinical data. Data on RSV incidence and hospitalisa-
tion risk for granular age strata should be prioritised to facilitate the evaluation of RSV interventions and decision making.

1 Introduction in infants up to 3 months of age [4]. By the end of the second

year of life, most children have had an RSV infection [1]. A
Respiratory Syncytial virus (RSV) is the most common cause recent review of the global RSV burden estimated 1.4 mil-
of acute lower respiratory infection (ALRI), mainly in chil-  lion (uncertainty range [UR] 1.2—1.7) RSV hospitalisations
dren aged < 2 years [1-3]. The incidence of RSV infectionis ~ and 27,300 (UR 20,700-36,200) in-hospital deaths occurred
lower in the first weeks of life, possibly because of protection ~ in infants aged < 6 months in 2015. Hospital admissions in
from transferred maternal antibodies in newborns, and peaks ~ this group constituted 45% of global RSV hospitalisations
in young children (aged 0-4 years), which were estimated
at 3.2 million (UR 2.7-3.8) in 2015. The estimates showed
that the incidence of RSV-ALRI in those aged 0—5 months
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Given the absence of clinical evidence on the efficacy
of the respiratory syncytial virus (RSV) vaccine and
the duration of vaccine-induced immunity, the potential
effects of vaccination are subject to uncertainty.

The current decision-analytic models suggest that mater-
nal, infant, and cocooning vaccinations with anticipated
vaccine candidates may reduce a considerable proportion
of RSV infections and hospitalisations in infants; the
evidence for vaccination of the elderly is scarce.

Further economic evaluation of vaccination strategies is
needed in the elderly and older children using dynamic-
transmission models.

were reported in infants aged < 6 months compared with
other age groups across all geographies [5]. The influential
factors of acquisition of RSV in children include birth before
and shortly after the onset of RSV season and attendance
of childcare facilities [4]. Severe RSV illness and compli-
cations requiring hospitalisation occur mainly in high-risk
children. Premature infants and children with severe res-
piratory disease, congenital heart disease, cancer, cystic
fibrosis, immune deficiency, or Down syndrome have been
reported to be at increased risk for severe RSV infection [6,
7]. Moreover, severe RSV disease during infancy presents a
considerable risk for the development of recurrent wheez-
ing and asthma later in life [8, 9]. Asymptomatic or mild
RSV reinfections are common in adult life [10], with more
severe manifestation in immunocompromised individuals
[11], patients with cardiopulmonary diseases, and the elderly
[12]. The increasing evidence on RSV in the elderly suggests
that the impact of the disease is non-negligible, particularly
in people with underlying comorbidities, and is comparable
to that of non-pandemic influenza [12-14].

Overall, RSV infection has been recognised as a disease
with a considerable impact in the community and on hospital
services that requires prevention in young children and older
adults [14]. Currently, the only preventive strategy is passive
immunisation since active immunisation is not yet available.
Passive immunisation is attained by transferring antibodies
to an unprotected individual [15]. In contrast, active immu-
nisation or vaccination leads the individual’s immune system
to produce antibodies and build up cellular immunity [16].
While vaccination can induce a long-lasting immunity, pas-
sively induced immunity lasts for several weeks or months
[15, 16]. The monoclonal antibody (mAb) palivizumab is
used for RSV prevention but is usually restricted to infants
with an underlying risk of severe RSV infection [1, 17].
No RSV vaccine has yet been licensed, but several vaccine
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candidates and mAbs are currently being tested in clinical
trials [18]. Although vaccine effectiveness (VE) estimates
are not yet available, decision-analytic models exploring
the epidemiological and economic outcomes of potential
RSV vaccination have been emerging. In this study, we
summarised and critically appraised current evidence on
the effectiveness and cost effectiveness of potential active
vaccination strategies against RSV.

2 Methods

We performed a systematic review of decision-analytic mod-
els on active vaccination against RSV. The protocol of the
review is published on PROSPERO (CRD42019122570).

The selection criteria were as follows: (1) model-based
analyses; (2) original research or a systematic review; (3)
focus on RSV vaccination; (4) reported additional costs and/
or additional health effects in terms of life-years gained,
quality-adjusted life-years (QALYs), disability-adjusted life-
years (DALYs), life expectancy, reduction in RSV disease
morbidity, reduction in RSV disease mortality; (5) either
single- or multi-country study; (6) any language; and (7)
publication since 2000.

Studies were excluded if they (1) investigated the epide-
miology, transmission, and natural history of RSV without
modelling the impacts of vaccination; (2) estimated health-
care resource usage and costs of RSV infection only; (3)
examined the effects of immunoprophylaxis (passive immu-
nisation) without consideration of any active immunisation.

We searched MEDLINE, Embase, and SCOPUS from
2000 to the present (date of last search 22 October 2020),
without restrictions. Two reviewers (MT, FPM) indepen-
dently performed screening, selection, data extraction, and
quality evaluation of selected studies. In case of any disa-
greement, the third reviewer (STS) arbitrated to reach a con-
sensus. The search syntax and data extraction are described
in the electronic supplementary material (ESM 1).

All studies included in the analysis underwent a qual-
ity assessment using the ‘Evidence and Value: Impact on
DEcisionMaking’ (EVIDEM) instrument— ‘Assessment
of quality of economic evaluations’ [19]. The EVIDEM
instrument evaluates (1) the quality of reporting in terms
of completeness and consistency with cited sources and (2)
the relevance and validity of evidence for decision making.
We considered the EVIDEM instrument beneficial for the
aims of this review because it provides an adaptable frame-
work and allows a thorough assessment with the scoring of
both the relevance of evidence and the completeness of the
reporting of the model-based evaluations. We adopted the
‘parameters and estimates’ domain of EVIDEM to explore
and evaluate the essential assumptions that directly govern
the outcomes of the modelling of RSV transmission, the
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effects and the costs of the interventions, and that are there-
fore critical for comparing the studies and interpreting the
results. Studies that estimated only epidemiological effects
of RSV vaccination (hereinafter epidemiological evaluation
studies) were also subjected to the quality assessment of
the applied methods. For these studies, we considered the
absence of cost estimates as a limiting factor but not some-
thing that affected their relevance for decision making. Two
evaluators (MT, FPM) independently completed the quality
assessment across the 11 dimensions and assigned a score
for each study, providing a rationale for the given score (1,
2 for low and 3, 4 for high completeness of reporting and
relevance/validity).

For the assessed economic evaluations, the results
reported were time adjusted to the year 2018 by applying
the country-specific consumer price indices and standardised
to $US, year 2018 values using the purchasing power par-
ity (PPP) index and exchange rates for 2018 obtained from
Organisation for Economic Co-operation and Development
published data.

3 Results

The initial search identified 2491 records after removing
duplicates across the databases. Repeated searches added
514 records. Overall, 72 records were selected for abstract
screening and eligibility assessment for full-text reading.
After the full-text reading of 24 eligible studies, 22 were
included in this review (Fig. 1) and subjected to data extrac-
tion and quality assessment.

3.1 Methodological Characteristics

Table 1 and Fig. 2 provide an overview of the methodologi-
cal characteristics of the reviewed studies.

3.1.1 Settings and Target Population

Most studies considered RSV vaccination in high-income
countries: five in the USA [20-24], three in Spain [25-27],
four in the Netherlands [28-31], two in England [32, 33],
and one each in Australia [34], and Turkey [35]. Four stud-
ies used data from Kenya [3, 36—38]. Two studies explored
RSV interventions in the countries supported by the Global
Alliance for Vaccines and Immunisation (Gavi) [39, 40].
Eleven studies evaluated both economic and epidemiological
impacts [20, 23, 25-30, 32, 35, 40], and 11 studies provided
an evaluation of only epidemiological effects [3, 21, 22, 24,
31, 33, 34, 36-39]. Nineteen studies evaluated interventions
that target the reduction of RSV infections in infants and
children aged < 5 years, and three studies examined vacci-
nation impact on morbidity and mortality in the elderly [20,

24, 29]. The target population groups for vaccination strate-
gies covered in the review included (1) pregnant women,
(2) newborns and infants, (3) young children, and (4) adults
and the elderly.

3.1.2 Structure of Models

3.1.2.1 Dynamic and Static Modelling of Respiratory Syncy-
tial Virus (RSV) Epidemiology Twelve studies used dynamic
models (11 compartment models [21, 24-27, 31, 33, 34, 36—
38] and one individual-based model [3]), the remaining ten
studies used static models. The dynamic models simulated
the natural course of RSV infection, the transmission of the
virus between the population groups, and, in some stud-
ies, healthcare utilisation. The static models concentrated
mainly on the medically attended RSV cases.

3.1.2.2 The Natural History of RSV In the dynamic models,
the natural history of RSV infection was approximated by the
susceptible-infected-recovered-susceptible (SIRS) model,
including the protection of newborns by maternal antibodies
as described by Weber et al. [41]. Extensions of the model
included a latent period (exposed compartment) of infec-
tion [21, 34], subsequent (milder) illness with reduced dura-
tion of infectiousness [24, 36], reduction of susceptibility
[3, 36, 37] and infectivity in previously infected individuals
[36, 37] or children aged > 10 years [34] and adults [24].
Pan-Ngum et al. [37] and Kinyanjui et al. [33] addressed in
detail the uncertainty around the acquisition and duration
of immunity after primary RSV infection and explored the
impact of lifelong and short-term partial immunity after a
primary RSV infection.

Most studies used either infections [3, 21, 24-27, 31] or
hospitalisations [20, 23, 28, 33, 34, 36, 38—40] as epidemio-
logical ends. Eight studies distinguished between an asymp-
tomatic and symptomatic course of infection and modelled
different severity of RSV disease within either a dynamic
[33, 37] or static [22, 29, 30, 32, 35, 39, 40] framework.
Pan-Ngum et al. [37] and Kinyanjui et al. [33] modelled
hospitalised and non-hospitalised upper- and lower respira-
tory tract infections (URTI, LRTI) and severe LRTIs. Seven
studies [22, 29, 30, 32, 35, 39, 40] used healthcare services
to classify RSV infections into cases attended in outpatient
care, hospital care, and emergency departments.

3.1.2.3 RSV Transmission and Seasonality RSV transmis-
sion was simulated only in the dynamic models [3, 21,
24-27, 31, 33, 34, 36-38], which used mixing between indi-
viduals (individual-based model [3]) or age-stratified com-
partments (compartment models) [21, 24-27, 31, 33, 34,
36-38]. The dynamic models applied age-related mixing,
and three studies [3, 36, 38] also simulated household- and
community-related contacts.
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Fig. 1 Flowchart of selection of studies for inclusion in the review. Excluded records are listed in ESM 3

Within the dynamic models, seasonality of RSV epide-
miology was implemented mostly as a cosine function. The
forced seasonal transmission was supplemented by demog-
raphy so that RSV incidence varied over the modelled years.
Several static models [22, 28, 30, 32, 35] included calendar
month-dependent RSV disease risk, and others did not rep-
resent seasonality.

The dynamic models, which included a wide range of
age groups, simulated indirect protection of non-vaccinated
groups provided by the direct vaccination. Static models
either considered a birth cohort or an age-structured section
of the population, e.g. children aged < 5 years and adults
aged > 50 years.
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3.2 Vaccine Effects and Vaccination Strategies
3.2.1 Vaccine Uptake

Data on the interventions and assumptions about the
vaccine effects are presented in Table 2. In 12 studies
that evaluated vaccination of newborns or infants, vac-
cine uptake was assumed to be higher than 60%, with
four assuming more than 90%. Vaccine uptake varied
between 25 and 85%, with base-case values around 50%
for pregnant women, and from 50 to 87% for the elderly.
Meijboom et al. [29] set different values of vaccine cover-
age for the elderly, depending on the age and health risk
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Effects of Active Immunisation against RSV using Decision-Analytic Models

Economic Evaluation-

High Income Setting -

Yes

Vaccination target group -

Dynamic Transmission Model- Yes

Category

Seasonality -
Vaccine Effectiveness-
Vaccine Effectiveness Duration -

<6m

Vaccine Uptake-

0 5

o _ b -

Yes

o _
b _

Women/Infant

100%.

6m-1y

80-100%

20

10
Number of Studies

Fig.2 Overview of selected methodological characteristics of the reviewed studies (n = 22). nr not reported, y year, “Other” group includes:

Women/Infant/Children, Elderly/Children, Women/household

over the studied years in the modelled population. The
approaches to estimating incidence among children were
based on linkage of laboratory data to available admin-
istrative data [31, 32, 34], data from the hospital report-
ing system [3, 27, 33, 36-38], and observational studies
[20, 21, 23, 28-30, 35]. Two studies that evaluated the
intervention in Gavi-eligible countries obtained the data
from a recent review [5], estimated the total burden of
the disease for each of the countries, and used statistical
modelling to address the lack of granularity in the data
[39, 40]. Additionally, the dynamic models used a scaling
factor that translated medically attended RSV infection
identified in the surveillance systems to the infections in
the model.

Table 3 presents the reported RSV incidence estimates
without intervention and the resulting incidence reduction.
The differences in reporting and the modelled age groups
made it challenging to compare the incidence estimates
across the studies. The studies that evaluated the protection
of infants showed that RSV incidence was high in the first 5
months of life and peaked in infants from 1 to 3 months of
age. The studies that included medically attended RSV infec-
tions reported that the proportion of cases treated in out-
patient care was substantial. Three studies that considered
vaccination in the elderly did not represent the age-specific
incidence of RSV sufficiently to provide a summary. Mei-
jboom et al. [29] reported that the hospitalisation numbers
increased with age and health risk and were highest in the
elderly aged > 85 years.

3.4 Economic Evaluation

This review included 11 economic assessments. Six evalu-
ated infant vaccination: (1) three Spanish studies estimated
total costs based on dynamic models [25-27] and (2) three
cost-effectiveness analyses based on static models (two from
the Netherlands [28, 30] and one from the USA [23]).

Three studies (one from England [32], one from Turkey
[35], and one including 72 Gavi-eligible countries), con-
ducted cost-effectiveness analyses of passive immunisation
of infants and pregnant women separately and in combina-
tion, using static models. Two studies provided cost-effec-
tiveness analyses of elderly vaccination based on static
models: one from The Netherlands [29] and one from the
USA [20]. In the majority of studies, the comparator was
no vaccination. Régnier et al. [23], Cromer et al. [32], and
Rainisch et al. [22] also included passive immunisation with
the mAD palivizumab in the analyses. Other studies did not
include current immunoprophylaxis in the analysis, although
four described it as an existing prevention [24, 28, 30, 35].
Six studies used the perspective of a healthcare provider [20,
23, 28, 29, 32, 40], two of which also considered the soci-
etal perspective [23, 28], and two studies [30, 35] reported
only the societal perspective. Three studies did not report
the perspective [25-27].

Three studies evaluated economic outcomes other than
the incremental cost-effectiveness ratio (ICER). Cromer
et al. [32] compared strategies using maximum cost-effective
price per fully protected person, Bos et al. [28] calculated
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break-even costs, and Meijboom et al. [30] reported maxi-
mum total vaccination costs per individual. Li et al. [40]
performed a comprehensive comparative analysis of the
cost effectiveness of maternal and infant interventions for
72 Gavi-eligible countries, defining an optimal strategy for
a range of willingness-to-pay (WTP) values for each country.

Six cost-effectiveness analyses used QALY gained due
to intervention: two in the elderly [20, 29] and four in chil-
dren [23, 29, 32, 35]. In children, Cromer et al. [32] and
Meijboom et al. [30] set QALY loss for an RSV disease
based on healthcare services: general practitioner (GP)-
treated RSV (0.01), hospitalisation (0.04), and admission
to an intensive care unit or chronic respiratory morbidity
(0.08). Meijboom et al. [30] obtained these values from the
study by The Dutch National Institute for Public Health and
the Environment, which assigned QALY decrements of 0.01
to bronchi(oli)tis, 0.04 to pneumonia, and 0.08 to asthma.
Pouwels et al. [35] set the disutility for a GP-treated RSV
infection at 0.16 and for a hospital-treated RSV infection
at 0.43 per day, with an average duration of infection of 14
days. The authors referred to a Canadian study that derived
health states for RSV in children and adults using time trade-
off and best—worst scales [42]. Régnier et al. [23] estimated
a QALY loss per RSV hospitalisation of 0.01 and a QALY
loss of 0.005 and 0.008 for mild and severe cough (duration
10 days), respectively. The authors obtained the values from
a study that estimated health states for pertussis infections
[43]. For the elderly, Gessner [20] and Meijboom et al. [29]
reported utilities that the patients experience during RSV
treated in outpatient care (0.46 per day for 1 week) and inpa-
tient care (0.35 per day for 3 weeks).

3.5 Quality Assessment

Using the EVIDEM score of 3 or 4 as an indicator, we con-
sidered 18 of 22 studies as complete in reporting and 14
studies as relevant for decision making. Four studies [21,
25-27], which were more methodological papers than evalu-
ations, were given a lower score for relevancy for decision
making. Overall, the studies that included a dynamic-trans-
mission model, examined uncertainty surrounding VE, and
evaluated a wide range of vaccination scenarios were scored
more highly. The final EVIDEM forms with comments and
scores are available in ESM 2. Figure 3 presents the studies
evaluated, categorising them by target group, type of analy-
sis, and relevance for decision making.

3.6 Results of the Epidemiological and Economic
Evaluations

Table 3 presents the estimated reduction of RSV burden

and the study conclusions. No clinical evaluation of VE and
duration of vaccine-induced immunity is yet available, so
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all reported estimates of reduction of the RSV disease bur-
den should be considered as potential and theoretical. The
absolute and relative potential reductions in the number of
hospitalisations were the most frequently used epidemio-
logical outcomes reported in the selected studies. Figure 4
illustrates the reported percentage reduction in the outcomes
relative to the ‘no vaccination’ scenario. Table 4 presents the
results of economic analyses. In the following sections, we
summarise the results of the studies with EVIDEM scores
of 3 or 4, indicating higher relevance for decision making.

3.6.1 Vaccination of Pregnant Women (Maternal
Vaccination)

In a high-income country setting (Australia), and using a
dynamic model, Hogan et al. [34] simulated the potential
effects of a wide range of scenarios of maternal vaccina-
tion, varying the VE and duration of vaccine-induced immu-
nity on RSV hospitalisations in infants aged 0-2 and 3-5
months. The percentage reduction in hospitalisations ranged
from 6 to 51% and was higher for infants aged 3—5 months.
The authors reported a 26% reduction in those aged 0-2
months and a 40% reduction in those aged 3—5 months for
the scenario defined by 80% VE, 50% vaccine uptake, and
6-months of vaccine-induced immunity. The scenario with
higher effectiveness (90%) and coverage (70%) resulted in
the most substantial estimated reduction in hospitalisations,
of 51% in children aged < 3 months and 63% in those aged
3-5 months. Lower VE and coverage resulted in 10 and
21% reductions in hospitalisations in these groups, respec-
tively. A reduced duration of vaccine-induced immunity of
3 months did not bring additional beneficial health outcomes
in infants aged > 3 months. Additionally, the authors pointed
out that the impact of maternal vaccination in children aged
> 6 months (given that the maximum duration of vaccine-
induced immunity was 6 months) was negligible, indicating
a small herd effect.

The results of van Boven et al. [31] from The Netherlands
support the inference of Hogan et al. [34] about the negligi-
ble indirect benefits of maternal vaccination in groups other
than infants. The study reported a potential 27% decrease
in the infection attack rate as a result of vaccinating 50% of
pregnant women with a 50% effective vaccine and assumed
duration of protection of 6 months.

In contrast, Brand et al. [38] showed possible indirect pro-
tection of newborns and infants via a cocooning vaccination
strategy, that is via vaccinating pregnant women and their
household members. The study was based on a dynamic-
transmission model that captured the transmission within
households and in the community in a low-income country
setting of Kenya. For 75% household coverage, the authors
reported a potential 50% reduction in RSV hospitalisation in
infants even if the maternal vaccine fully protected newborns
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U50%, VE80%, D6m, in 0-2 mo
U50%, VE80%, D6m, in 3-5 mo
U30%, VE80%, D6m, in 0-2 mo
U30%, VE80%, D6m, in 3-5 mo
U70%, VE80%, D6m, in 0-2 mo
U70%. VE80%, D6m. in 3-5 mo
U50%. VE60%, D6m. in 0-2 mo
U50%. VE60%, D6m. in 3-5 mo
U50%. VE70%, D6m., in 0-2 mo
U50%, VE70%, D6m, in 3-5 mo
U50%. VE90%, D6m., in 0-2 mo
U50%. VE90%, D6m. in 3-5 mo
U50%. VE80%, D3m, in 0-2 mo
U50%, VE80%, D3m, in 3-5 mo
U50:Aa, VEBOZA, D4m, in 0-2 mo
U705, VEGOSE. Dom. In 0-5 mo
U70%. VE90%, D6m. in 3-5 mo
U30%, VE70%, D6m. in 0-2 mo
U30%, VE70%, D6m. in 3-5 mo

Maternal vaccination

Hogan, 2017, AUS, Hl, 4/4
Hogan, 2017, AUS, Hl, 4/4
Hogan, 2017, AUS, HI, 4/4
Hogan, 2017, AUS, HI, 4/4
Hogan, 2017, AUS, HI, 4/4
Hogan, 2017, AUS, Hl, 4/4
Hogan, 2017, AUS, HI, 4/4
Hogan, 2017, AUS, Hl, 4/4
Hogan, 2017, AUS, Hl, 4/4
Hogan, 2017, AUS, Hl, 4/4
Hogan, 2017, AUS, Hl, 4/4
Hogan, 2017, AUS, Hl, 4/4
Hogan, 2017, AUS, HI, 4/4
Hogan, 2017, AUS, HI, 4/4
Hogan, 2017, AUS, HI, 4/4
Hogan, 2017, AUS, HI, 4/4
Hogan, 2017, AUS, Hl, 4/4
Hogan, 2017, AUS, Hl, 4/4
Hogan, 2017, AUS, Hl, 4/4
Hogan, 2017, AUS, HI, 4/4

U69-100%, VE60%, D5m, in infants [Baral, 2020, Gavi, nHI, 4/3] -

U°, VE70%, D5m, <1yo [Li, 2020, Gavi, nHI, 4/4]** -

U50%, VE100%, D3m, in infants [Pan-Ngum, 2017, KEN, HI, 4/4] -

U100%, VE100%, D8m, in infants [Poletti, 2015, KEN, HI, 4/4] -

U60%, VE100%, D8m, in infants [Poletti, 2015, KEN, HI, 4/4] -

U85%, VEB0%, D, in infants [Pouwels, 2016, TUR, nHI, 4/3]** -

U50%, VES505, D6m, in infants [van Boven, 2020, NED, HI, 4/3] -

Infant vaccination -

U100%, VE70%, D from 3m, in infants [Bos, 2007, NED, nHI, 4/2]** -

U100%, VE90%, D from 3m, in infants [Bos, 2007, NED, nHlI, 4/2]**

U100%, VE70%, D from 1m, in infants [Bos, 2007, NED, nHl, 4/2]**

U100%, VE70%, D from 6m, in infants [Bos, 2007, NED, nHlI, 4/2]**

U100%, VE100%, D from 1m, in infants [Bos, 2007, NED, nHlI, 4/2]**

U100%, VE50%, D from 6m, in infants [Bos, 2007, NED, nHl, 4/2

U100%, VE100%, D5y, in infants [Cromer, 2017, UK, nHI, 4

U70%, VE100%, at 6m, D6m, in infants [Kinyanjui, 2015, KEN,HI, 4/.

U70%, VE100%, at 10m, D6m, in infants [Kinyanjui, 2015, KEN,HI, 4/

U70%, VE100%, at 5m, D6m, in infants [Kinyanjui, 2015, KEN,HI, 4/-

U90%, VE50-70%, at2&4mo, D1y, in <5yo [Kinyanjui, 2020, ENG,HI, 3/:

U°, mAB70%, Dém, <1yo [Li, 2020, Gavi, nHI, 4/4

U96%, VE30%,60%,75%, at 0,1,3mo, D plateau, in infants [Meijpoom(a), 2012, NED,nHI, 4/3
U96%, VE30%,60%,75%, at 0,1,3mo, D linear, in infants [Meijpoom(a), 2012, NED,nHI, 4/3
U96%, VE30%,60%,75%, at 0,1,3mo, D const, in infants [Meijboom(a), 2012, NED,nHI, 4/3
U69%, VE50%, D12m hl, in infants [Régnier, 2013, USA,nHI, 4/2

U90%, VE70%, D1y, in <5yo [Pan-Ngum, 2017, KEN, Hl, 4/4

U100%, VE100%, at 3m, D6m, in infants [Poletti, 2015, KEN, HI, 4/4

U85%, VEB0%, at2&4mo, D2y, in infants [Pouwels, 2016, TUR, nHI, 4/3]*

U71%,80%, mAB80%, D150d, in infants [Rainisch, 2020, USA, nHI, 4/3

U69%, VE50%, D12m hl, in infants [Regnier, 2013, USA, nHI, 4/2

U100%, VE50%, D6mo—-4yo, in infants [van Boven, 2020, NED, Hl, 4/3

U100%, VE50%, D6mo-4yo, in 1-4yo [van Boven, 2020, NED, Hl, 4/3

U100%, VE50%, D6mo-4yo, in 5-9yo [van Boven, 2020, NED, Hl, 4/3

Chlidren vaccination

U100%, VE100%, school, D6m, in infants [Poletti, 2015, KEN, HlI, 4/4

U100%, VE100%, school, D6m, in gen pop [Poletti, 2015, KEN, HI, 4/4

U75%, VE60%, <5yo, D1seas, in <5yo [Yamin, 2016, USA, HI, 4/4

U75%, VE60%, <5yo, D1seas, in >50yo [Yamin, 2016, USA, HI, 4/4

Elderly vaccination -

(b), 2013, NED, nHlI, 3/2]**-

U55-87%, VE40%, >60 yo, at risk D1seas [Meijpboom (b), 2013, NED, nHI, 3/2]** -

(b), 2013, NED, nHI, 3/2]** -

U55-87%, VE100%, >60 yo, at risk D1seas [Meijpboom (b), 2013, NED, nHlI, 3/2]** -
Combined maternal and infant vaccination -

Eff.U 50%+Eff.U75%, D75d, in infants [Brand, 2020, KEN, HI, 4/4] -

Eff.U 100%+Eff.U75%, D75d, in infants [Brand, 2020, KEN, HI, 4/4] -

Eff.U 50%+Eff.U100%, D75d, in infants [Brand, 2020, KEN, HI, 4/4] -

Eff.U 100%+Eff.U100%, D75d, in infants [Brand, 2020, KEN, HI, 4/4] -

Eff.U 100%+Eff.U100%, D90d, in infants [Brand, 2020, KEN, HI, 4/4] -

U85%, VE60%, D8m in infants [Pouwels, 2016, TUR, nHI, 4/3]** -

U56%+U38% VE80%+mAB51%, D90d+D150d in infants [Rainisch, 2020, USA, nHI, 4/3] -

Strategy[Study]

U55-87%, VE40%, >60 yo, D1seas [Meijpoom
U55-87%, VE100%, >60 yo, D1seas [Meijpoom

Fig.4 The estimated relative reduction in respiratory syncytial virus
(RSV) infections and RSV-caused hospitalisations. Each strategy
is defined by vaccine uptake, U vaccine effectiveness, VE vaccine-
induced duration of immunity, D (hl. half-life, seas season), and a
group of the population where the reported effect is observed (e.g.
in infants). The study is denoted by the first author, year, three-letter
country abbreviation, inclusion of herd immunity (HI herd immunity
included, nHI herd immunity not included), and EVIDEM scores
for completeness of reporting and relevance for decision making.
Note: Baral et al. [39] summed the results over 73 Gavi-supported
countries, reported for the year 2035, the vaccine uptake is country
specific, on average 69% but projected to increase to 95%. Bos et al.
[28] varied the month of start of the vaccine-induced immunity.
Brand et al. [38]: the vaccination strategy is to vaccinate the pregnant
women as part of their prenatal contact and the household cohabit-
ants at the birth of a baby. Kinyanjui et al. [36] reported the results
of vaccinating at different ages. Li et al. [40] summed the results over
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72 Gavi-supported countries for the year 2022, U° country-specific
coverage of Bacillus Calmette-Guérin vaccination in 2016. Meij-
boom et al. [30] reported the results of three-dose vaccination policy
with VE given for the first, second, and third dose. The vaccine wan-
ing period was 10 years. Régnier et al. [23] was set in the base-case
vaccine-induced duration with a half-life of 12 months. Poletti et al.
[3] reported the outcomes for annual vaccination over 10 years. Only
results are included that were reported or could be calculated. The
studies by Acedo et al. [25, 26], Jornet-Sanz et al. [27], and Nugraha
et al. [21] could not be included. Not all results that were reported
in the study are presented in the figure. The values that are graphi-
cally presented are not included because of the absence of an actual
number, and this refers to the studies by Cromer et al. [32], Kinyanjui
et al. [36], Pan-Ngum et al. [37], Poletti et al. [3], and Yamin et al.
[24]. “Double asterisk™ calculated in the review. Gavi Global Alli-
ance for Vaccines and Immunisation
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Table 4 Economic estimates reported in the included economic evaluations (in $US PPP 2018) (n = 11)

Study, country, year Evaluation Economic outcome $US PPP 2018
Acedo et al. [25, 26], Spain, 2010 Vaccination of newborns with two  Cost saved 3,816,392.93
booster doses
Acedo et al. [25, 26], Spain, 2010  Vaccination of newborns with two  Cost saved 3,816,392.93
booster doses
Bos et al. [28], The Netherlands, Vaccination of infants born in Cost per hospitalisation averted 5353.15
2007 January; VE 70%, protection
from 3 mo onwards
Vaccination of infants born in Break-even costs 45.66
January; VE 70%, protection
from 3 mo onwards
Cromer et al. [32], England (UK), Infant (base case without seasonal ~Maximum cost-effective price per  289.65
2017 restrictions) fully protected person
Newborn (base case without sea- 122.20
sonal restrictions)
Maternal (base case without sea- 81.46
sonal restrictions)
Combined a newborn and infant 371.11
programme
Protect only neonates born in 331.89
November (the most cost-effec-
tive strategy)
Gessner [20], USA, 2000 Elderly > 65 y; without a 10% VE  Cost per death prevented 207,270.95
against COPD
Elderly > 65 y; without a 10% VE  Cost per year of life gained 11,726.49
against COPD
Elderly > 65 y; without a 10% VE = Cost per QALY gained 8592.99
against COPD
Elderly > 65 y; with a 10% VE Cost per death prevented 136,440.70
against COPD
Elderly > 65 y; with a 10% VE Cost per year of life gained 7841.79
against COPD
Elderly > 65 y; with a 10% VE Cost per QALY gained 6886.30
against COPD
Jornet-Sanz et al. [27], Spain, 2017 Vaccination of 80% newborns, VE = Cost saved (calculated by 18,076,645.59
100% reviewer)
Vaccination of 20% newborns, VE 7,952,622.57

Li et al. [40], 72 Gavi-eligible
countries, 2020

Meijboom et al. [30], The Nether-
lands, 2012

100%

Maternal vaccination: VE 70%,
duration 5 mo

Infant immunisation with mAb:
effectiveness 70%, duration 6 mo

Infant vaccination: 3 doses, 0, 1,
3 m., no waning VE

Infant vaccination: 3 doses, 0, 1,
3 mo, plateau waning VE

Infant vaccination: 3 doses, 0, 1,
3 mo, linear waning VE

Infant vaccination: 3 doses, 0, 2,
4 mo, no waning VE

Infant vaccination: 3 doses, 0, 2,
4 mo, plateau waning VE

Infant vaccination: 3 doses, 0, 2,
4 mo, linear waning VE

Average cost per DALY averted
Average cost per DALY averted
Cost per QALY gained
Cost per QALY gained
Cost per QALY gained
Cost per QALY gained
Cost per QALY gained

Cost per QALY gained

1766 (Angola) — 5857 (Vietnam)
3260 (Angola) — 8198 (Vietnam)
48,566.79
55,131.41
73,407.08
58,178.30
62,469.84

83,357.13

A\ Adis



M. Treskova et al.

Table 4 (continued)

Study, country, year Evaluation Economic outcome $US PPP 2018
Meijboom et al. [29], The Nether- ~ Vaccination of elderly > 60 y Cost per QALY gained 189,282.90
lands, 2013 cohort; VE 40%
Vaccination of elderly > 60 y Cost per QALY gained 72,700.12
cohort; VE 100%
Vaccination of elderly > 60 y Maximum total vaccination costs  20.68
cohort; VE of 40%; vs. WTP of per individual
€50,000/QALY
Vaccination of elderly > 60 y 52.25
cohort; VE 100%; vs. WTP of
€50,000/QALY
Pouwels et al. [35], Turkey, 2016 ~ 2+4 mo infant vaccination Cost per QALY gained 49,018.00
Maternal vaccination Cost per QALY gained 57,194.74
Combined 2+4 mo infant and Cost per QALY gained 58,152.10
maternal programme
Régnier et al. [23], USA, 2013 Vaccination of one cohort (4.2 Cost per hospitalisation averted 21,551.54
million live births)/healthcare
system perspective
Vaccination of one cohort (4.2 Cost per year of life gained 242,943.86
million live births)/healthcare
system perspective
Vaccination of one cohort (4.2 Cost per QALY gained 104,993.52
million live births)/healthcare
system perspective
Vaccination of one cohort (4.2 Cost per QALY gained 73,196.79

million live births)/societal
perspective

The outcomes are vs. no intervention

COPD chronic obstructive pulmonary disease, DALY disability-adjusted life-year, Gavi Global Alliance for Vaccines and Immunisation, mAb
monoclonal antibody, mo month old, PPP purchasing power parity, QALY quality-adjusted life-year, VE vaccine effectiveness, WTP willingness-

to-pay, y year

for a short period of 3 months. Increasing the household
coverage up to 100% would induce an additional reduction
of 5% in RSV hospitalisations.

Among the other two studies based on the data from
Kenya, Pan-Ngum et al. [37] showed that the majority of
modelled vaccination profiles with a maximum duration
of protection of 6 months resulted in a 7-15% reduction in
hospitalisations in children aged < 5 years. Poletti et al. [3]
modelled the effect of maternal vaccination as an increase
of duration of natural immunity in newborns derived from
maternal antibodies. Vaccination was assumed to prolong
the 4 months of natural maternal protection up to 5, 6, and
8 months. Assuming 8 months of immunity in 100% of pro-
tected newborns in the modelled cohort, the authors pre-
dicted a 31.5% potential reduction in RSV infant infections.

Using a static model without herd effects in the USA, Rai-
nisch et al. [22] evaluated the introduction of maternal vacci-
nation in addition to within-season passive immunisation of
high-risk infants with palivizumab as one of three strategies.
The base-case scenario was defined as 80% VE, 56% vac-
cine uptake, and 90 days of vaccine-induced immunity for
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maternal vaccination and 51% effectiveness, 38% coverage,
and 150 days of protection for palivizumab. Compared with
no intervention, this scenario resulted in a 14% reduction
in RSV-associated LRTIs attended in outpatient clinics, a
13% reduction in emergency department visits, and a 25%
reduction in hospital admissions.

Two further studies [32, 35] estimated the epidemio-
logical and economic outcomes of maternal vaccination
using static models. In the study by Pouwels et al. [35]
in Turkey, a 17% reduction in infant hospitalisations was
estimated due to maternal vaccination assuming 60% VE,
85% vaccine coverage, and 8 months of protection. The
estimated cost effectiveness of this strategy was $US57,195
PPP 2018 per QALY gained. Cromer et al. [32] estimated
an 80% potential reduction in outpatient-attended RSV
infections in England, averting around 1.5 RSV-attributable
hospital admissions per 100 births and implying a 43%
QALY gain. They showed that maternal vaccination with
70% eftectiveness and 3 months of protection could be cost
effective if the price of the vaccine was set at $US81.5 PPP
2018 or lower.
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Two static-model-based evaluations explored the effects
of maternal vaccination in Gavi-eligible countries. The
structure of the models, underlying incidence data, and
assumed vaccine-related parameters were similar between
the studies. Li et al. [40] reported the results for 2022 for
72 countries and projected the potential prevention of 1.2
million RSV cases, 104,000 RSV hospitalisations, 3000
deaths, and 98,000 DALY (3% discounted) for maternal
vaccination (VE of 70% and 5 months of protection). Fur-
ther, between 2023 and 2035, Baral et al. [39] projected a
potential reduction of, on average, 11.3 million cases, more
than 3.4 million RSV hospitalisations, 150,000 deaths, and
10.3 DALYs (not discounted) reached through maternal
vaccination (VE of 60% and 5 months of protection) with
increased coverage in 73 Gavi-supported countries. The eco-
nomic evaluation by Li et al. [40] provided an estimation
of cost-effectiveness ratios (SUS/DALY averted) compared
with no intervention for each country. For a vaccine price
of $US3.10 PPP 2018, the reported estimates vary from
$US1766 PPP 2018 per DALY for Angola to $US5857
PPP 2018 per DALY for Vietnam. The study shows that, if
the WTP value is more than $US1000 per DALY averted,
a change from the current situation to the introduction of
maternal vaccination could be optimal.

3.6.2 Infant Vaccination

Most of the studies included in this review evaluated active
vaccination of children aged < 1 year. Ten studies [3, 22,
30-33, 35-37, 40] were considered relevant for decision
making (see Table 3 and Fig. 3) and are presented in this
section. Three [3, 36, 37] of them conducted dynamic mod-
elling of routine infant immunisation based on Kenyan hos-
pital data and, as such, incorporated herd immunity. Poletti
et al. [3] estimated that routine vaccination of all infants
aged 3 months with a vaccine providing full protection over
6 months led to a 41.5% decrease in RSV primary infec-
tions in infants (see Fig. 4). Pan-Ngum et al. [37] reported
a median reduction of > 50% RSV-associated hospitalisa-
tions within a year if 90% of infants were vaccinated at 2
and 4 months of age. Kinyanjui et al. [36] investigated the
optimal age to vaccinate children aged < 1 year, aiming to
increase reductions in RSV hospitalisations. Over 60% of
hospitalisations were averted with 70% vaccination coverage
at 6 months of age. The most considerable reduction (80%)
was achieved when infants were vaccinated at 10 months,
and the smallest effect (40% reduction) was obtained with a
vaccine administered at 5 months.

Poletti et al. [3] noticed that infant vaccination had little
impact on infections in other age groups. However, Pan-
Ngum et al. [37], who considered a more extensive array of
vaccine characteristics, proposed that a substantial reduc-
tion of hospitalisations was due to the vaccine-induced

shortening of the duration of infection and decreasing infec-
tiousness. They pointed out the importance of herd protec-
tion with the decrease of RSV transmission in the age group
at risk. Kinyanjui et al. [36] confirmed the essential benefits
of the indirect effects of vaccination and proposed that thor-
ough consideration of vaccine-induced herd immunisation
influenced the optimal allocation of the vaccine.

Kinyanjui et al. [33] applied two dynamic models
described in Pan-Ngum et al. [37] in England and Wales.
They explored the effects on RSV hospitalisations of chil-
dren aged < 1 and < 5 years associated with vaccinating
infants at different ages and using different dose regimens.
The authors projected a potential rapid reduction (within
a year) and further stabilisation of incidence at 50% of the
pre-vaccination level. The projected estimates were similar
to those reported by Pan-Ngum et al. [37] for Kenya.

Van Boven et al. [31] evaluated the vaccination of infants
in The Netherlands, but, in contrast, applied lower VE with
a more extended period of protection (up to the age of 4
years). The study showed a potential 30% reduction of
the infection attack rate in infants. It also projected a 28%
decrease in infections in those aged 1-4 years and an 8%
reduction in those aged 5-9 years. These potential effects
in older children could stem from the assumption of a long-
lasting vaccine-induced immunity coupled with the indirect
effects of the vaccination. The authors did not further inves-
tigate possible changes in the potential effects under varying
assumptions for the vaccine-related parameters.

Rainisch et al. [22] compared the currently licensed mAb
(palivizumab) with a hypothetical and more effective anti-
body for passive immunisation of infants in the USA. Using
a static model, the authors assessed the effects of passive
immunisation, applying different effectiveness and uptake
parameters. Targeting all infants with an antibody candi-
date that was 80% effective against LRTIs and provided 150
days of induced immunity led to reductions of cases attend-
ing outpatient clinics by 48%, hospitalisations by 55%, and
emergency care by 51%.

Similarly, using a cohort model, Li et al. [40] evaluated
the immunisation of infants with a mAb candidate in 72
Gavi-supported countries and compared it with the maternal
strategy. For 70% effective mAb with 6 months of induced
immunity, they showed an average of a 23% reduction in
RSV hospitalisations in those countries, though the esti-
mates of the averted burden of the disease varied consider-
ably between the countries. The results indicated that the
assumed additional month of mAb-induced protection led
to prevention of more cases, hospitalisation, and deaths than
the maternal vaccine. The economic evaluation resulted in
potential cost-effectiveness ratios ranging from $US3260
(for Angola) to $US8198 (for Vietnam) PPP 2018 per DALY
averted compared with no intervention. Passive immunisa-
tion ($US6.2 PPP 2018/dose) will potentially be an optimal
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strategy if the WTP value is higher than $US6000 ($US6205
PPP 2018) per DALY. The price difference between the
maternal vaccine and the mAb influences the choice of
optimal intervention. The study indicated that, if an addi-
tional month of protection were worth more than $US1, the
potential optimal strategy would be passive immunisation
for all countries.

Three other studies [30, 32, 35] reported health economic
estimates of infant vaccination strategies (see Table 4). The
cost per QALY gained ranged from $US48,566 to 83,357
PPP 2018, and the maximum cost-effective price per fully
protected person was estimated as $US290 PPP 2018 (rela-
tive to the UK National Institute for Care and Excellence
cost-effectiveness threshold). These studies reported health
economic estimates of a large set of infant strategies, varying
age at vaccination, efficacy, and uptake parameters.

The lowest cost per QALY gained was estimated by Meij-
boom et al. [30] for vaccinating infants at 0, 1, and 3 months
of age with a vaccine with long-lasting protection (10 years).
The authors assumed increasing VE for each subsequent
dose, i.e. 30%, 60%, and 75%, respectively. A 66.5% reduc-
tion in hospitalisations was estimated for this scenario. The
study showed that vaccination at the earliest possible age
brought more health benefits. Delay in the administration
of succeeding doses increased the ICER. Waning vaccine-
induced immunity decreased health outcomes and increased
the cost-effectiveness estimates.

Pouwels et al. [35] considered vaccination at ages 2 and
4 months assuming increased effectiveness of the second
dose (60 and 75%, respectively). A strategy with 85% cover-
age and an 8-month duration of vaccine-induced immunity
resulted in a 42% reduction in hospitalisations and a gain
of 2172 discounted QALY for a cost of $US49,018 PPP
2018/QALY.

Cromer et al. [32] reported that infant vaccination at 3
months of age resulted in 62% averted hospitalisations and
95% prevented outpatient visits. Most of the 73% QALY gain
associated with this strategy was achieved via the reduction
of cases in primary care. The assumptions included 70%
(50-100%) VE and immunity lasting for 5 years. Seasonal
immunisation strategies to protect newborns and infants
were shown to be potentially cost effective. In particular,
restricting passive prophylaxis to infants born before the
peak of the RSV season (in November in England) was the
most cost-effective strategy.

3.7 Vaccination of Young Children

Vaccination of children aged < 5 years [24] and vaccination
of school-aged children [3] are proposed alternatives to pro-
tect younger age groups. Yamin et al. [24] characterised the
vaccination of children aged 6 months to 5 years as highly
effective. For VE of 80% with a duration of protection over
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one season, they predicted the reduction of 0.1-0.5 RSV
cases per dose in children and 0.1-0.4 cases per dose in
adults aged > 50 years. Poletti et al. [3] found that, over 10
years, vaccination at school enrolment could reduce RSV
incidence by 35.6% in infants and, additionally, by 40% in
the general population because of herd effects. Under the
assumption of 6-month vaccine-induced immunity, repeated
vaccination of students was shown to be an effective alterna-
tive, although it would require a larger number of vaccine
doses. There was no economic evaluation of vaccination of
children in this review.

3.8 Vaccination of the Elderly

Yamin et al. [24] evaluated the epidemiological impact of
targeting adults aged > 50 years. One dose of RSV vac-
cine with VE of 80% given to adults aged > 50 years was
predicted to prevent 0.0036—0.0086 cases in the elderly and
0.0001-0.0014 cases in children aged < 5 years. The study
showed that the direct effects of elderly vaccination were
lower than the indirect effects of vaccinating children, even
when VE was assumed to be the same in all age groups. Two
economic evaluations [20, 29] suggested that vaccination
in the elderly could be potentially cost effective depending
on the vaccine characteristics and target population (ICER
range $US6886.30-189,282.90 PPP 2018/QALY gained).
However, the quality assessment demonstrated methodologi-
cal limitations in these studies.

3.9 Combined Vaccination Strategies

Cromer et al. [32] estimated that a combination of active
infant vaccination at 3 months of age and passive newborn
immunisation prevented around eight RSV cases per 100
births with the maximum cost-effective price of $US371
PPP 2018. Pouwels at el. [35] showed that vaccinating
infants at 2 and 4 months of age as well as pregnant women
prevented 54.2% of hospitalisations in infants and estimated
an ICER of $US58,152 PPP 2018. Both studies indicated
that the combination of maternal and infant strategies had
a higher potential impact on RSV incidence in infants and
children aged < 5 years but was less attractive from the cost-
effectiveness point of view.

4 Discussion

This systematic review summarises the current research
activity in the assessment of the effectiveness and cost
effectiveness of RSV vaccination strategies in the absence
of clinical evidence. Although all studies demonstrated a
considerable impact from vaccinating different sections
of the population, the estimates varied considerably. The
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review shows that the potential epidemiological impact
largely depends on the modelling approaches, assump-
tions surrounding the epidemiology of RSV, and definition
of vaccination scenarios. The economic outcomes were
additionally driven by the economic inputs (e.g. assumed
vaccine price, costs per RSV case, QALY decrements) and
the choice of epidemiological endpoints. For example, the
economic evaluations showed the importance of including
outpatient care into the analysis. Careful consideration of
adopted approaches to represent RSV epidemiology, health-
care utilisation, and vaccination impact at the population
level is critical for the facilitation of decision making.

4.1 Model Structures and RSV Epidemiology

The static models can be a helpful initial estimation of the
direct impact of vaccination on epidemiological outcomes
for economic evaluations. This is particularly the case
for maternal vaccination, which produces passive protec-
tion of newborns. However, they do not include potential
protective effects in the unvaccinated groups of the popu-
lation. The dynamic models in this review differed in the
assumptions surrounding the natural history of disease and
vaccine effects, which influenced the epidemiological out-
comes. All of them assumed the SIRS structure but varied
in the description of immunity due to maternal antibodies,
the transmission of RSV by asymptomatic and reinfected
groups, and the acquisition and duration of natural immu-
nity. These differences show the remaining gaps in knowl-
edge surrounding the age-dependent risk of RSV infection
and its epidemiology in different population groups, which
limits the modelling efforts.

In both high- and low-middle—income settings, the studies
illustrate a critical lack of data on RSV incidence in chil-
dren. For Gavi-eligible countries, Li et al. [40] and Baral
et al. [39] highlighted the essential gaps in data on RSV-
attributable hospitalisation and mortality rates and called for
better evidence on RSV incidence and on the disease bur-
den for fine age strata. Other modelling studies that explore
interventions in low-income settings used only the data from
surveillance of children admitted to the Kilifi district hospi-
tal. In high-income settings, the researchers addressed the
lack of data either by obtaining the data from observational
studies or inferring the incidence and hospitalisation rates
using data from different sources, such as administrative
and laboratory data. It is important to note that only three
studies in our review, all conducted in high-income settings,
considered targeting the elderly for vaccination. Given the
changing demographic structure in high-income countries
and increasing evidence of the substantial impact of RSV
in the elderly, further projections of the potential direct and
indirect effects of prevention strategies are necessary. To
facilitate model-based evaluations of prevention strategies,

further estimates of the disease burden in the elderly, includ-
ing quality-of-life impairment, are needed, especially across
health risk groups and in both nursing homes and the com-
munity. Overall, there is a need for epidemiological research
on RSV transmission, especially within households, age- and
period-stratified RSV incidence, hospitalisation rates, in-
hospital mortality, and reinfection rates in different settings.
With regard to the latter, the dynamic-transmission models
assume decreasing susceptibility with increasing age and
levels of exposure. However, the current state of knowledge
does not allow separation of the two effects within a model,
and further epidemiological evidence is needed.

Additionally, the clinical context was not fully repre-
sented in the models, which reported mostly hospitalisations
and infections. Clinical stages determined costs and health
outcomes and constituted crucial inputs into the economic
evaluations. Cromer et al. [32], for example, showed a non-
negligible contribution of primary care into resource utilisa-
tion attributable to RSV.

Further, only one study [23] in our selection considered
asthma as a long-term complication of a severe RSV infec-
tion in infancy. Diez-Domingo et al. [44] presented evidence
on the frequent occurrence of RSV-associated respiratory
(and other) complications, such as asthma and COPD, later
in life. Inclusion of the respective quality-of-life impairment
and costs into models and evaluations of preventive strate-
gies will be informative.

4.2 RSV Vaccination

Estimation of vaccination impact strongly depended on the
age at administration (and the health risk group), and the
assumptions about VE, duration of vaccine-induced immu-
nity, and vaccine uptake. Although most of the studies pre-
sented the results across a wide range of VE parameters, the
duration of vaccine-induced immunity varied between vac-
cine types. The most commonly used assumption was that
immunity lasted over one season or for the same period as
natural immunity. Other assumptions included long-lasting
immunity with or without waning. These assumptions influ-
ence the effects of maternal vaccination and the optimal age
of infant vaccination. The optimal age of vaccination could
not be determined in this review. Most studies evaluated
vaccination of infants aged 0—4 months, probably targeting
the group with the highest numbers of RSV (severe) disease.

As most studies considered medically attended RSV
infections as epidemiological outcomes, they applied VE as
areduction in primary infections and healthcare utilisation.
However, because clinical evidence is currently not avail-
able, studying different vaccine characteristics can decrease
uncertainty and provide better evidence for decision making.
Pan-Ngum et al. [37], for example, showed that considera-
tion of VE against infectiousness and duration of infection
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affected the clinical endpoints. The dynamic models also
showed that assumptions about effective age-dependent
contact rates influenced the magnitude of the vaccination
effects, and the inclusion of households and schools into the
models could facilitate a more targeted approach to develop-
ing vaccination strategies.

The vaccine uptake parameter influenced the effective-
ness and cost-effectiveness estimates. Some studies might
have overestimated vaccine uptake, reaching over 90%,
which contributed to the high impact of the vaccination.
The values of vaccine uptake based on the observed rates
for similar vaccinations were lower. Additionally, the num-
ber of vaccine doses influenced the cost of vaccination pro-
grammes and was important for the economic evaluations.

4.3 Epidemiological Outcomes

Most studies focused on the protection of newborns, neo-
nates, infants, and young children. Vaccination of the elderly
is currently not well-examined as a strategy in models,
although RSV impact in the elderly has been well-docu-
mented. The studies reviewed here predicted a considerable
potential direct impact on RSV disease in infants associated
with maternal vaccination and high-coverage active and pas-
sive immunisation of infants aged < 6 months in both high-
and low-middle—income settings. Compared with maternal
vaccination, infant strategies were considered more effec-
tive possibly because of the assumption of a longer-lasting
immunity.

The dynamic models suggested beneficial indirect effects
of vaccination of young children and school-aged children
on RSV infections in infants and the elderly, but the indirect
effects of maternal vaccination in children aged > 6 months
might be small. Yamin et al. [24] showed that infected chil-
dren aged < 5 years transmitted the infection to more than
one individual. Infected older individuals, on the other hand,
were less responsible for transmission than any other age
group. Therefore, the models that applied restricted age
structures likely underestimated the potential vaccination
impact at the population level. In contrast, given the sug-
gested small herd effect of maternal vaccination, the applica-
tion of a limited age structure in modelling this intervention
could be sufficient to estimate the vaccination impact. A
more detailed social structure allowed modelling of more
targeted vaccination scenarios. In Kenya, Poletti et al. [3]
found that infant infections were caused by transmission
within a household when infants cohabitated with one or
more older siblings aged < 13 years. In these households,
the school-age children were mainly responsible for intro-
ducing the infection and causing about half of the household
outbreaks. Overall, vaccination of school-aged children and
maternal vaccination, which can induce passive protection
for 8 months, represented effective strategies when direct
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vaccination of newborns and infants was not achievable.
Compared with the maternal vaccination in Poletti et al.
[3] and using the data from the same source, Brand et al.
[38] illustrated that additional reductions in hospitalisation
of infants could be potentially achieved through a cocoon-
ing strategy, i.e. vaccinating pregnant women and the mem-
bers of their households. None of the studies in our review
explored RSV transmission within households in high-
income settings.

Combining vaccination groups can increase the potential
benefits, but it may be less cost effective. Current evidence
on possible combinations of vaccination programmes is
scarce. The combination of maternal vaccination and pas-
sive immunisation of infants can be considered as an alterna-
tive to direct vaccination of infants. Three studies [22, 32,
40] evaluated the potential impact of passive immunisation
with novel mAbs, indicating a further need in assessing the
antibody candidates currently under development.

Further, the results suggest that consideration of RSV
seasonality is important for the development of a vaccina-
tion policy. The dynamic models incorporated increased
transmission during the RSV season. Therefore, restricting
vaccination to children born before the beginning and peak
of the RSV season can be more effective. The seasonal peaks
differed between the studies, supporting the statement that
RSV seasonality is related to climate. Therefore, the devel-
opment of an optimal vaccination strategy needs careful con-
sideration of country-specific RSV epidemiology.

4.4 Economic Outcomes

Half of the reviewed studies analysed the economic out-
comes of RSV vaccination. Most studies used static mod-
els to investigate cost effectiveness. The reported estimates
included cost per gained health outcome such as QALY and
cost per averted healthcare service. Other estimates, such as
the maximum cost-effective price per fully protected person
and the break-even costs calculated for a wide range of vac-
cination scenarios, can guide decision making and vaccine
development. Overall, the results indicate that RSV vaccina-
tion of different groups would be cost effective; however, the
epidemiological analyses suggest that infant and childhood
vaccinations contribute more health benefits than maternal
vaccination in protecting children. That might be because of
the assumption of longer-lasting vaccine-induced immunity
in infants.

For high-, middle-, and low-income countries, the cost
effectiveness of maternal vaccination depends on WTP.
In Gavi-supported countries, when WTP is lower than
$US1000/DALY, no intervention is optimal. For WTP
above $US1000, maternal vaccination becomes cost effec-
tive, and passive infant immunisation is cost effective only
when WTP is above $US3500. Although WTP values differ
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considerably between high- and low-income countries, a
similar pattern can be seen in the results by Cromer et al.
[32] for England. The study reported a lower maximum cost-
effective price for maternal vaccination than for passive or
active infant immunisation. These evaluations pointed out
that maternal and infant strategies should be competitively
priced to be considered good value for money. Cocooning
strategies have not been economically evaluated and need to
be looked at in further research.

The effectiveness and cost effectiveness of potential
elderly vaccination need further exploration, preferably
using dynamic-transmission models in the settings of child-
hood immunisation. The indirect protection of the elderly
might reduce the economic suitability of vaccination in the
elderly. Additionally, the review shows a need for further
measurement and analysis of health-related quality of life
of patients with RSV across the age and disease severity
groups. Also, the possible impact of vaccination on RSV-
induced long-term conditions, such as asthma, requires
further investigation and inclusion in economic evalua-
tions. Further, the chosen comparator in most of the studies
reviewed was no vaccination, whereas if passive immunisa-
tion with palivizumab were in place, it would reduce the
RSV incidence and hence the beneficial impact of vaccina-
tion [32] in infants. Therefore, the consideration and inclu-
sion of current practice in economic analysis is necessary.

Lastly, a thorough examination of uncertainty is benefi-
cial for decision making. Current studies demonstrate the
influence of the following inputs on the performance of vac-
cination: RSV incidence and distribution of RSV burden
over the age groups, vaccine characteristics, vaccine uptake
and vaccination age, duration of natural maternally derived
protection and natural immunity, cost-related parameters
(including vaccine price), and QALY losses. These elements
require careful analysis to interpret the findings of economic
evaluations.

4.5 Limitations of This Review

The review was restricted to peer-reviewed publications
exploring active immunisation against RSV. Therefore, it
does not provide any new evidence on the evaluation of pas-
sive immunisation of infants with palivizumab, which might
have been published after publication of the review on its
cost effectiveness [17]. Regarding the quality assessment,
the appraisal was performed using the EVIDEM instru-
ment, which was not initially intended for the evaluation
of methods used for the simulation of infectious diseases.
Nonetheless, EVIDEM enabled a transparent and thorough
appraisal of the methodological approaches and assump-
tions, which was performed by two reviewers independently
and described in the EVIDEM forms available in ESM 2.
Overall, the synthesis of evidence presented in this review

posed more difficulties than usually expected in this type
of study because of the vast range of studied vaccination
strategies and considerable methodological differences in
modelling RSV epidemiology and vaccine effects.

5 Conclusion

This review indicates that, if clinical estimates of effective-
ness and vaccine-induced protection, as well as actual vac-
cination uptake rates, are close to the values assumed in the
modelling studies, maternal and infant RSV interventions
will prevent a sizeable number of RSV-related severe and
non-severe LRTIs in children. Maternal vaccination can be
considered a feasible and less expensive strategy to protect
infants in the first months of life. If the vaccine-induced
immunity is short lasting, infant immunisation or a combina-
tion of infant and maternal vaccination might be examined
for implementation. In the case of infant vaccination, in
countries where surges in RSV cases follow seasonal pat-
terns, immunisation before and during an RSV season might
be preferred. Further modelling-based evaluations of a wider
range of scenarios, including maternal, seasonal, cocoon-
ing, and elderly strategies for varying coverage rates will be
beneficial for decision making.

Currently, studies investigating the epidemiological and
economic impacts of vaccinating different population groups
against RSV based on a dynamic-transmission model are
lacking. The availability of age-specific epidemiological,
clinical, and health economic data restricts the development
of the mathematical models and limits model-based health
economic analyses. To reduce decision uncertainty and facil-
itate more conclusive evaluations, epidemiological research
and the estimation of RSV cases and hospitalisations for
fine age strata is required. Additionally, natural immunity,
reinfections, and household contacts in the transmission of
RSV infections needs further investigation.
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