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Abstract: The use of the exponential distribution and its multivariate generalizations is extremely popular
in lifetime modeling. Freund’s bivariate exponential model (1961) is based on the idea that the remaining
lifetime of any entity in a bivariate system is shortened when the other entity defaults. Such a model can
be quite useful for studying systemic risk, for instance in �nancial systems. Guzmics and P�ug (2019) revis-
ited Freund’s model, deriving the corresponding bivariate copula and examined some characteristics of it;
furthermore, we opened the door for a multivariate setting. Now we present further investigations in the bi-
variate model: we compute the tail dependence coe�cients, we examine themarginal and joint distributions
of the componentwisemaxima,which leads to an extreme value copula, which – to the best of our knowledge
– has not been investigated in the literature yet. The original bivariate model of Freund has been extended to
more variables by several authors.We also turn to themultivariate setting, and our focus is di�erent from that
of the previous generalizations, and therefore it is novel: examining the distribution of the sum and of the
average of the lifetime variables (provided that the shock parameters are all the same) leads to new families of
univariate distributions, which we call Exponential Gamma Mixture Type I and Type II (EGM) distributions.
We present their basic properties, we provide asymptotics for them, and �nally we also provide the limiting
distribution for the EGM Type II distribution.

Keywords: Lifetime modeling, multivariate distributions, copulas, Freund copula, extreme value copulas,
sums of non-independent random variables, parametric univariate distributions

MSC: 60E05, 60G70, 62H05

1 Introduction
We consider the bivariate lifetimemodel introduced by Freund [4]. The idea is that the lifetimes of two entities
(we also refer to them as "institutions") are originally assumed to be Exp(λi) distributed (i = 1, 2), and when
one of the entities defaults, it modi�es the remaining lifetime of the other entity by increasing the intensity
of its original exponential lifetime. This assumption is a possible way for modelling cascading e�ects when
we examine systemic risk in �nance. The construction in detail looks as follows. (We recall Section 2.1 from
Guzmics and P�ug [6].)

Let Yi ∼ Exp(λi) (i = 1, 2) be independent random variables. They are attributed as auxiliary lifetime
variables (if one wishes as pre-lifetime variables) of the two entities of the system. When in a certain realiza-
tion the �rst entity defaults earlier, i.e., Y1 < Y2 , then the second entity will continue its operation according
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to another exponentially distributed random variable Z2 ∼ Exp(λ2 + a2) , which is independent of Y1 and
Y2 . The parameter a2 ≥ 0 is called the shock parameter, and it expresses the e�ect of the default of the �rst
institution on the second institution. Z1 is de�ned analogously: when Y2 < Y1, then Z1 ∼ Exp(λ1 + a1) ,
where a1 ≥ 0 is a shock parameter.

The actual lifetime variables of the two entities are denoted by X1, X2, and – in the light of the above
construction – can be written as follows.

If Y1 < Y2 , then
{
X1 := Y1 ,
X2 := Y1 + Z2, where Z2 ∼ Exp(λ2 + a2) independent of Y1, Y2 .

(1)

If Y2 < Y1, then
{
X2 := Y2 ,
X1 := Y2 + Z1, where Z1 ∼ Exp(λ1 + a1) independent of Y1, Y2.

The new lifetime variables X1, X2 can be expressed explicitly in terms of Y1, Y2, Z1, Z2 :{
X1 = Y1 · 1{Y1<Y2} + (Y2 + Z1) · 1{Y2<Y1} ,
X2 = Y2 · 1{Y2<Y1} + (Y1 + Z2) · 1{Y1<Y2} .

(2)

The case Y1 = Y2 does not need to be taken into account, since it has probability zero.
The resulting bivariate distributionwas �rst presented in [4], andwas investigated further in [6]. The joint

cumulative distribution function (cdf) of the resulting lifetime variables (X1, X2) (if λ1 = ̸ a2 and λ2 = ̸ a1) is
given by

H(x, y) =



1 + λ1
λ1 − a2

· e−(λ1−a2)x · e−(λ2+a2)y + a1
λ2 − a1

· e−(λ1+λ2)x−

λ2
λ2 − a1

· e−(λ1+a1)x − λ1
λ1 − a2

· e−(λ2+a2)y , if 0 ≤ x ≤ y ,

1 + λ2
λ2 − a1

· e−(λ2−a1)y · e−(λ1+a1)x + a2
λ1 − a2

· e−(λ1+λ2)y−

λ1
λ1 − a2

· e−(λ2+a2)y − λ2
λ2 − a1

· e−(λ1+a1)x , if 0 ≤ y ≤ x .

(3)

The marginal cdf of X1 (if λ2 = ̸ a1) and of X2 (if λ1 = ̸ a2) are given by

F(x) = 1 − λ2
λ2 − a1

· e−(λ1+a1)x + a1
λ2 − a1

· e−(λ1+λ2)x , x ≥ 0 , (4)

G(y) = 1 − λ1
λ1 − a2

· e−(λ2+a2)y + a2
λ1 − a2

· e−(λ1+λ2)y , y ≥ 0 . (5)

For the remaining parameter constellations and for the joint andmarginal densities, we refer again to [4] and
[6]. Here we only highlight the special case λ1 = λ2 = a1 = a2 = 1 , which will become important in some of
the upcoming computations; in this case the marginal cdfs are

F(x) = 1 − (1 + x) · e−2x , x ≥ 0 , G(y) = 1 − (1 + y) · e−2y , y ≥ 0 . (6)

We will also need the copula C(u, v) of the lifetime variables X1 and X2 . It was explained in [6] that
the copula function cannot be expressed explicitly in terms of u and v , because the inverse of the strictly
increasing marginal cdfs F and G given in (4) and (5) cannot be expressed explicitly. So we provide a semi-
explicit form for the parameter setting λ1 = λ2 = 1, a1 = a2 = a < ∞, which will be used in the subsequent
computations.

C(a)(u, v) = H
(
F−1(u), G−1(v)

)
=

=



1 + 1
1 − a · e

−(1−a)F−1(u) · e−(1+a)G−1(v) + a
1 − a · e

−2F−1(u)−

1
1 − a · e

−(1+a)F−1(u) − 1
1 − a · e

−(1+a)G−1(v) , if 0 ≤ F−1(u) ≤ G−1(v) ,

1 + 1
1 − a · e

−(1−a)G−1(v) · e−(1+a)F−1(u) + a
1 − a · e

−2G−1(v)−

1
1 − a · e

−(1+a)G−1(v) − 1
1 − a · e

−(1+a)F−1(u) , if 0 ≤ G−1(v) ≤ F−1(u) .

(7)
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Notice that the four parameters can be written as a matrix

A =

λ1 a1

a2 λ2

 ,

so we will use the notation Freund(A), when we refer to the distribution given in (3). The same notation
Freund(A) and the analogue notation Freund(a, n) will be used in Section 3 for the analogous situations
in the multivariate case (n ≥ 2). The model also allows to set a1 = ∞ or a2 = ∞, which means that the
default of one institution causes the immediate default of the other one. For instance, if a1 = a2 = ∞, then
the underlying lifetimes variables X1 , X2 are completely dependent, and the copula function in (7) reduces
to C(∞)(u, v) = min{u, v} , i.e., the Fréchet upper bound. In some situations we will focus on the special
parameter setting λ1 = λ2 = 1, a1 = a2 = a ≥ 0, which will be denoted by Freund(a, 2) . In accordance with
this, we can speak about the Freund(A) and Freund(a, 2) copulas. This latter one is given in (7).

The paper is organized as follows. In Section 2, we deal with the bivariate model, examine the relation
between componentwise maxima and provide a new extreme value copula. In Section 3, we present the mul-
tivariate setting and investigate the sum and the average of the lifetime variables. This setting leads to two
new, closely related families of univariate distributions, which we call Exponential Gamma Mixture Type I
and Type II distributions. Furthermore, we provide the limiting distribution for the average lifetime of the
entities in the system. In Section 4, we give an outlook on future research.

2 Computations in the bivariate Freund(a, 2)model

2.1 Tail dependence

De�nition 1. The lower and upper tail dependence coe�cients for a bivariate copula are de�ned by

λL = lim
u→0+

C(u, u)
u , λU = lim

u→1−
1 − 2u + C(u, u)

1 − u .

Proposition 1. The lower tail dependence coe�cient for the bivariate Freund(A) copula is

λL =
{

0 for all λ1 > 0, λ2 > 0, a1 ≥ 0, a2 ≥ 0, min{a1, a2} < ∞ ,
1 for all λ1 > 0, λ2 > 0, a1 = a2 = ∞ .

Proof. If min{a1, a2} < ∞, then using the �rst order Taylor expansion of F(x) and G(x) (given in (4) and
(5)) around the basis point x0 = 0 , one can write F(x) = λ1 · x + O(x2) and G(x) = λ2 · x + O(x2) as x →
0+ . Therefore F−1(u) = 1

λ1
· u + O(u2) and G−1(u) = 1

λ2
· u + O(u2) as u → 0+ . Using (3) , we can write

λL = lim
u→0+

C(u,u)
u = lim

u→0+
H(F−1(u),G−1(u))

u = 0 , where the indeterminate form appearing in the limit can be
computed either by the �rst order Taylor expansion of the exponential function or by L’Hospital’s rule. If
a1 = a2 = ∞ , the copula function is C(u, v) = min{u, v}, so λL = lim

u→0+
= C(u,u)

u = 1 . �

Remark 1. The �rst case of the statement (λL = 0) is a direct consequence of amuchmore general but simple
fact. For the details see Appendix D.
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Proposition 2. The upper tail dependence coe�cient for the bivariate Freund(A) copula is given by

λU =



1 − λ1
a2 − λ1

·
(

1 − λ2
a1

) λ1 − a2
λ1 + λ2 ·

(
1 − λ1

a2

) λ2 + a2
λ1 + λ2 , if a1>λ2 , a2>λ1 ,

a1·λ1≥λ2·a2 ,
(i)

1 − λ2
a1 − λ2

·
(

1 − λ1
a2

) λ2 − a1
λ1 + λ2 ·

(
1 − λ2

a1

) λ1 + a1
λ1 + λ2 , if a1>λ2 , a2>λ1 ,

a1·λ1≤λ2·a2 ,
(ii)

0 otherwise (iii)–(viii).

Proof. In addition to the indicated cases (i) and (ii), we distinguish the following cases as well.
(iii) a1 < λ2 , a2 < λ1, (iv) a1 > λ2 , a2 < λ1, (v) a1 < λ2 , a2 > λ1,
(vi) a1 = ̸ λ2 , a2 = λ1, (vii) a1 = λ2 , a2 ≠ λ1, (viii) a1 = λ2 and a2 = λ1.
The basic idea in each case is that one of the two exponential terms in formulas (4) and (5) of themarginal

cdfs F(x) and G(x) is negligible if x is large enough. This simpli�cation enables us to give an approximation
for F−1(u) and G−1(u) when u is near to 1. We present the proofs for (i), and (vi). The remaining cases are
similar to these.
To see (i):
Under the above assumptions on parameters λ1, λ2, a1, a2 , the approximation
F(x) = 1 − a1·e−(λ1+λ2)x

a1−λ2
+ O(e−(λ1+a1)x) holds as x →∞ ,

therefore F−1(u) = − 1
λ1+λ2

· log
((

1 − λ2
a1

)
· (1 − u)

)
+ O(log u) as u → 1−.

Similarly, G(x) = 1 − a2·e−(λ1+λ2)x

a2−λ1
+ O(e−(λ2+a2)x) as x →∞ ,

so G−1(u) = − 1
λ1+λ2

· log
((

1 − λ1
a2

)
· (1 − u)

)
+ O(log u) as u → 1−.

Using formulas (3), (4), and (5), we can write λU = lim
u→1−

1−2u+C(u,u)
1−u =

lim
u→1−

1−2u+H(F−1(u),G−1(u))
1−u = 1 − λ1

a2−λ1
·
(

1 − λ2
a1

) λ1−a2
λ1+λ2 ·

(
1 − λ1

a2

) λ2+a2
λ1+λ2 , as it was claimed.

To see (vi):
We can assumewithout loss of generality that a1 > λ2. It is easy to think over that in this case F−1(u) ≤ G−1(u),
if u is close to 1 .
We will compute λU in the following form.

λU = lim
x→∞

1 − 2G(x) − H
(
F−1(G(x)), x

)
1 − G(x) . (8)

Using the negligibility principle explained in the beginning of the proof, we can write
F−1(u) = −1

λ1+λ2
· log

(
a1−λ2
a1

(1 − u)
)

+ O(log u), if u → 1−, and

G(x) = 1 − λ1 · x · e−(λ1+λ2)x + O(e−(λ1+λ2)x) as x →∞ (see also formulas (8) and (9) in [6]),
so F−1 (G(x)

)
= x − 1

λ1+λ2
· log

(
a1−λ2
a1

· λ1 · x
)

+ O(x · e−(λ1+λ2)x) as x →∞.
Substituting this into (8), and performing elementary limit computations, λU = 0 follows.�

2.2 The componentwise maxima of the lifetime variable X ∼ Freund(a, 2)

When one comes across a bivariate distribution and the corresponding bivariate copula, it is a natural ques-
tionwhether the distribution or the copula possesses some remarkable properties, for instance, whether they
are max-stable or not. In order to investigate this, we introduce the componentwise maximum across N inde-
pendent copies

(
X(i)

1 , X(i)
2

)
∼ Freund(a, 2), (i = 1, . . . , N), which will be denoted by

M(j)
N := max

1≤i≤N
{X(i)

j } for j = 1, 2. (9)

Since the law of M(1)
N coincides with that of M(2)

N , we will omit the upper index from the notation, unless
both quantities appear in the same context (e.g., in Subsection 2.3 and 2.4). In accordance with this, we will
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use the notation X(i) as well. In this subsection, we investigate the fundamental characteristics (the expec-
tation E and the variance V) of Mn, and we provide a non-trivial limiting distribution for it after suitable
normalization. In Subsection 2.3, we examine the joint behavior ofM(1)

N andM(2)
N , including their copula C(a)

N .
In Subsection 2.4, we derive the limiting case of C(a)

N as N →∞, which, to the best of our knowledge, is a new
extreme value copula. As a consequence, we will see that the Freund copula itself is not max-stable, except
when a = ∞ .

2.2.1 Expectation and variance for N = 2 and for large N

The cdf of MN is given by
F*N(x) := P(MN ≤ x) =

(
F(x)

)N , x ≥ 0,
where F is given by setting λ1 = λ2 = 1 and a1 = a in (4). In principle, it is easy to compute E(MN), E(M2

N)
and D(MN), i.e., the mean, the second moment and the standard deviation, because all appearing integrals
only consist of products of polynomials and exponential functions, where the degree of polynomials is zero,
one, or two. However, in practice this task is much harder.

We performed these computations for N = 2 and for comparison, we recall also the case N = 1. For
�xed N > 2, we provide E(MN) only in the extreme cases a = 0 and a = ∞. For large N we refer to the
asymptotics that will be presented in Corollary 1 after Proposition 3 (see (18) and also Table 1). For N = 1, we
have E(M1) = E(X1) = 1

2 ·
a+2
a+1 trivially, as it was shown in [6], Section 3.1., p.34. Notice that E(M1) = 1 for

a = 0 and E(M1) = 1
2 for a = ∞. For N = 2, one gets by a cumbersome computation that

E(M2) = 1
4 ·

3a2 + 14a + 18
(a + 1)(a + 3) , (10)

E
(
M2

2

)
= 7a4 + 62a3 + 207a2 + 344a + 252

8(a + 1)2(a + 3)2 , (11)

V (M2) = 5a4 + 40a3 + 110a2 + 184a + 180
16(a + 1)2(a + 3)2 . (12)

Notice that for a = 0, formulas (10)–(12) yield E(M2) = 3
2 , E(M2

2) = 7
2 and V(M2) = 5

4 , while for a = ∞, one
gets E(M2) = 3

4 , E(M2
2) = 7

8 and V(M2) = 5
16 .

For a general �xed N, we restrict our investigation to the extreme cases.
If a = 0, then X(i)s are i.i.d. Exp(1) distributed, so one gets that the expectation of the variable MN =
max(X(1), . . . , X(N)) is

E(MN) =
∞∫

0

(
1 −
(

1 − e−x
)N) dx =

1∫
0

1 − uN
1 − u du =

1∫
0

N−1∑
k=0

ukdu =
N∑
k=1

1
k . (13)

If a = ∞, then X(i)s are i.i.d. Exp(2) distributed, so, taking also into account the extreme case a = 0 and its
result in (13), one gets that the expectation of the variable MN = max(X(1), . . . , X(N)) is

E(MN) = 1
2

N∑
k=1

1
k . (14)

An alternative way for deriving (13) and (14) can be found in Spivey [18].

2.2.2 Limiting distribution

Proposition 3. Themarginal cdfs F andG of the Freund(a, 2)distribution belong to the domain of attraction
of the standard Gumbel distribution. Namely,

lim
N→∞

P
(
MN − bN
aN

≤ x
)

= e−e
−x
,
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where the normalizing constants are

aN = 1
1 + a , bN = 1

1 + a · log
(

N
1 − a

)
, if 0 ≤ a < 1, (15)

aN = 1
2 , bN = 1

2 · log
(
a · N
a − 1

)
, if a > 1. (16)

aN = 1
2 , bN = 1

2 · logN , if a = 1. (17)

Proof.Wewill use the su�cient condition on a cdf F for belonging to the domain of attraction of the Gumbel
distribution stated for instance in Exercise 3.2 in R. Sun [19], and based on the classical works Leadbetter et
al. [9] and Resnick [16].

For a ≠ 1, we introduce the function h(x) = − log
(

1
1−a · e

−(1+a)·x − a
1−a · e

−2x
)
. The marginal distribution

function F(x) can be written as F(x) = 1 − e−h(x). It is easy to see that h′(x) is a slowly varying function. This
means that condition (i) in Exercise 3.2 in [19] holds, therefore F(x) belongs to the domain of attraction of the
Gumbel distribution.

For a = 1, we introduce the function h(x) = − log(1 + x) + 2x. The marginal distribution function F(x) can
be written as F(x) = 1 − e−h(x) (see (6)). It is easy to see that h(x) is of the form h(x) = x · L(x), where L(x) is a
slowly varying function; therefore, condition (ii) in Exercise 3.2 in [19] holds, and we obtain that F(x) belongs
to the domain of attraction of the Gumbel distribution in this case as well.

The normalizing constants aN , bN for a = ̸ 1 can be computed analogously to Example 3.3 in [19], and by
elementary considerations for a = 1 . �

Remark 2. The general theoretical background of the normalizing constants can be found for instance in
Resnick [16].

Corollary 1. The expectation of MN is essentially proportional to log(N) for large N . The precise statement
can be formulated as

lim
N→∞

(
E(MN) − 1

1 + a · log
(

N
1 − a

))
= γ

1 + a , if 0 ≤ a < 1,

lim
N→∞

(
E(MN) − 1

2 · log (N)
)

= 1
2 · γ if a = 1,

lim
N→∞

(
E(MN) − 1

2 · log
(
a · N
a − 1

))
= 1

2 · γ if a > 1 ,


(18)

where γ ≈ 0.5772 is the Euler-Mascheroni constant.

De�nition 2. The normalized componentwise maximum is de�ned as M̃N = MN−bN
aN , where aN and bN are

given in (15)–(17). (See also Figure 1.)

Notice in Figure 1 that the convergence of M̃N to its limiting distribution is very fast. The histograms for
N = 10, 100, 1000 are visually hardly distinguishable.

2.3 Joint distribution and correlation between the componentwise maxima

In the following, wewill examine the relation between the componentwisemaximaM(1)
N andM(2)

N . Their joint
cdf can be easily determined:

H*(x, y) := P(M(1)
N ≤ x,M(2)

N ≤ y) =
(
H(x, y)

)N , x, y ≥ 0,
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Table 1: Expectation of the componentwise maximum in N independent copies of Freund(a, 2).

N E(MN) E(MN) for a = 0 E(MN) for a = ∞

1 1
2 ·

a+2
a+1 1 1

2

2 1
4 ·

3a2+14a+18
(a+1)(a+3)

3
2

3
4

general N a rational function of a
N∑
k=1

1
k

1
2 ·

N∑
k=1

1
k

N � 1 see (18) for the order of E(MN)
N∑
k=1

1
k ≈ γ + logN 1

2 ·
N∑
k=1

1
k ≈

1
2 · (γ + logN)

Figure 1: The limiting distribution of the suitably normalized componentwise maximum is the standard Gumbel distribution.
The �gure illustrates the convergence by samples of size 10000.

where H(x, y) is the cumulative distribution function of the Freund(a, 2) distribution. Therefore
corr(M(1)

N ,M(2)
N ) can be also determined, since all the computations consist of integrals of functions com-

prising a polynomial times exponential, where the polynomial has degree zero, one, or two. We performed
the computation for N = 2.

For the cross-product we have found that

E
(
M(1)

2 ·M(2)
2

)
= 7a4 + 62a3 + 199a2 + 290a + 162

8(a + 1)2(a + 3)2 ,
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and using formulas (10)–(12), one gets

corr(M(1)
2 ,M(2)

2 ) = 5a4 + 40a3 + 94a2 + 76a
5a4 + 40a3 + 110a2 + 184a + 180 . (19)

From (19), we immediately see that corr(M(1)
2 ,M(2)

2 ) is increasing in a. The two extreme cases are
corr(M(1)

2 ,M(2)
2 ) = 0 for a = 0 and corr(M(1)

2 ,M(2)
2 ) = 1 for a = ∞. It also means that M(1)

2 and M(2)
2 are

not independent if a > 0 . Figure 2b shows a sample for a = 2; the theoretical correlation is corr(M(1)
2 ,M(2)

2 ) =
232
347 ' 0.6686 .

2.4 The limiting case of the copula of the componentwise maxima:
a new extreme-value copula

It is worth examining how the dependence betweenM(1)
N andM(2)

N changes as N varies. (See also Figure 2 and
Figure 3.) Although the scatterplots of the copula ofM(1)

N andM(2)
N for a = 2 do not seem to signi�cantly di�er

from the copula of (X1, X2), wewill see that the distribution of (X1, X2) is notmax-stable provided that a < ∞.
In Proposition 4, we will derive an analytic formula for the extreme-value copula which stems from (X1, X2).
Two cases need to be distinguished: 0 ≤ a ≤ 1, and a > 1. The latter case, we get an extreme value copula
which, to the best of our knowledge, has not been discussed in the literature yet, so in fact we have found a
new copula (what is more, an extreme value copula) that can be given explicitly.

Before presenting this computation, we numerically quantify the phenomenon pictured in Figure 2,
which visually suggests that the copulas of (M(1)

N ,M(2)
N ) are “similar" to each other practically for all values

of N. We want to express more exactly whether these copulas are indeed close to each other. The second
and fourth columns of Table 2 show the sup-distance and the mean-absolute-distance between the copula
of (X1, X2) (denoted by C1 in Table 2) and the copula of (M(1)

N ,M(2)
N ) (denoted by CN in Table 2). The third

and �fth columns of the table use the notation CNi−1 and CNi , referring to the N values which appear in the
(i − 1)-th and i-th row of the table, i.e., always in the current and in the previous row.

Table 2: Distances of copulas with all copulas stemming from the Freund(2, 2) model.

N sup distance
of C1 and CN

sup distance
of CNi−1 and CNi

mean abs distance
of C1 and CN

mean abs distance
of CNi−1 and CNi

2 0.031 (0.031) 0.00579 (0.00579)

5 0.0039 0.018 0.00774 0.00370

10 0.039 0.019 0.00841 0.00437

100 0.033 0.024 0.00711 0.00500

1000 0.030 0.021 0.00662 0.00350

10000 0.029 0.024 0.00536 0.00480

The computations in Table 2 are based on samples of size 1000 for (X1, X2) and (M(1)
N ,M(2)

N ). The copula
function values are approximated by the empirical copula function values. The empirical copulas (based on
the abovementioned samples) were evaluated at the points (i/100, j/100), i, j = 1, . . . , 100. A larger sample
size and a �ner grid might lead to slightly di�erent numerical values.
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(a) corr(X1 , X2) = a·(a+2)
(a+1)2+3 = 2

3 (0.6710 in the sample). (b) corr(M(1)
2 ,M(2)

2 ) ' 0.7163 in the current sample.
s

(c) corr(M(1)
10 ,M

(2)
10 ) ' 0.6311 in the current sample. some

things
(d) corr(M(1)

10000 ,M
(2)
10000) ' 0.6731 in the current sample.

Figure 2: Scatterplots of componentwise maxima for a = 2.

Proposition 4. Let C(a)
N denote the copula of M(1)

N and M(2)
N taken from the underlying model Freund(a, 2).

(i) If 0 ≤ a ≤ 1, then

C̃(a)(u, v) := lim
N→∞

C(a)
N (u, v) = Π(u, v) = u · v for 0 ≤ u, v ≤ 1 . (20)

(ii) If a > 1, then

C̃(a)(u, v) = lim
N→∞

C(a)
N (u, v) =


u · e−

1
a ·
(

(− log u)
1−a

2 ·(− log v)
1+a

2
)

if 0 < u ≤ v ≤ 1,

v · e−
1
a ·
(

(− log u)
1+a

2 ·(− log v)
1−a

2
)

if 0 < v ≤ u ≤ 1,
0 if u = 0 or v = 0 .

(21)

Proof. It is well-known, and one can also verify by trivial considerations, that between a bivariate copula
C(u, v) and the corresponding copula CN(u, v) of the componentwise maxima, the following relation holds:

CN(u, v) = C(u1/N , v1/N)N .
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Our aim is to compute
C̃(u, v) := lim

N→∞
CN(u, v).

for the above de�ned C(a)
N .

We will use a characterization which can be found (among others) in Gudendorf and Segers [5] and in
Drees and Huang [3], by which the relation between C and C̃ can be written in terms of the the tail depen-
dence function ` as follows:

`(x, y) = − log C̃
(
e−x , e−y

)
= lim
t→0+

1 − C(1 − t · x, 1 − t · y)
t . (22)

Applying this to the Freund(a, 2) model and also using the semi-explicit expression (7), one can write

`(x, y) = lim
t→0+

1 − H
(
F−1(1 − tx), G−1(1 − ty)

)
t . (23)

In the remaining part of the proof, we resort to approximating themarginal cdfs and the inversemarginal
cdfs in order to compute the limit in (23). The validity of these approximations canbe veri�ed in an elementary
way.

To show (i) for 0 ≤ a < 1 , we need the following considerations.
When x →∞ , then according to (4), the marginal cdf F can be approximated as

F(x) = 1 − 1
1 − a · e

−(1+a)x + O
(
e−2x

)
. (24)

Therefore, F−1(u) can be approximated as

F−1(u) = − 1
1 + a · log

(
(1 − a)(1 − u)

)
+ O(log u), as u → 1 − . (25)

As a consequence, the approximation

F−1(1 − tx) = −
log
(

(1 − a)tx
)

1 + a + O
(

log(1 − tx)
)

= −
log
(

(1 − a)tx
)

1 + a + o(1) as t → 0+ (26)

can be used when we compute the limit in (23). Analogously, the approximation

G−1(1 − ty) = −
log
(

(1 − a)ty
)

1 + a + o(1) as t → 0+ (27)

holds for the marginal cdf G.
Substituting (26) and (27) into (23) and also using (3), one gets after taking the limit

`(x, y) = x + y ,

which yields
C̃(a)(u, v) = e−`(− log u,− log v) = u · v ,

as it was claimed.
The proof of (i) for a = 1 is similar to the case 0 ≤ a < 1 . The only di�erence is that one has to use the

following approximations based on (6):

F(x) = 1 − xe−2x + O
(
e−2x

)
as x →∞ ,

G(y) = 1 − ye−2y + O
(
e−2y

)
as y →∞ ,

and therefore
F−1(u) = −1

2 · log(1 − u) + O(log u) as u → 1− ,

G−1(v) = −1
2 · log(1 − v) + O(log v) as v → 1 − .
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To show (ii), �rst we assume that 0 < u ≤ v .
When x → ∞ , y → ∞ , then (according to (4) and (5)) F(x) = 1 − a

a−1 · e
−2x + O

(
e−(1+a)x

)
and G(y) =

1 − a
a−1 · e

−2y + O
(
e−(1+a)y

)
, and therefore

F−1(u) = −1
2 · log

( a−1
a · (1 − u)

)
+ O(log u), as u → 1− , and

F−1(1 − t · x) = −1
2 log

( a−1
a · t · x

)
+ O

(
log(1 − tx)

)
= −1

2 log
( a−1

a · t · x
)

+ o (1) as t → 0 + . (28)

Similarly, G−1(v) = −1
2 · log

( a−1
a · (1 − v)

)
+ O(log v), as v → 1− , and

G−1(1 − t · y) = −1
2 log

( a−1
a · t · y

)
+ O

(
log(1 − ty)

)
= −1

2 log
( a−1

a · t · y
)

+ o (1) as t → 0 + . (29)

Substituting (28) and (29) into (23) and also using (3), one gets after taking the limit

`(x, y) = x + 1
a · x

1−a
2 · y

1+a
2 , which yields

C̃(a)(u, v) = e−`(− log u,− log v) = u · e−
1
a ·
(

(− log u)
1−a

2 ·(− log v)
1+a

2
)
, as it was claimed.

Showing (ii) for the case 0 < v ≤ u is similar and for the case u = 0 or v = 0 is trivial.�

Figure 3 illustrates Proposition 4 (i) for a = 0.99. One can immediately see that the convergence to the
independence copula Π is relatively slow; however this e�ect is hard to observe visually based on the scatter-
plots. (It is also obvious that smaller values of awould lead to faster convergence, since the original variables
(X1, X2) are more independent and in case a = 0 actually independent.)

Remark 3. The copula C̃(a)(u, v) is continuous in the parameter a . This is trivial for all a = ̸ 1 and can be
veri�ed for a = 1 by evaluating (21) for a = 1.

Corollary 2. The result clearly shows that the Freund copula C(a)(u, v) for 0 ≤ a < ∞ is notmax-stable, since
for the max-stability C(a)(u, v) = C̃(a)(u, v) should hold, which is not the case.

Remark 4. According toMathieu andMohammed [13] and de Haan and Resnick [1] (bivariate) extreme value
copulas can be also characterized by an exponent function V such that

C̃(u, v) = e−V
(
− 1

log u ,−
1

log v

)
,

where V is a homogeneous function of order −1. Looking at (21), it is easy to see that the exponent function
V corresponding to the Freund(a, 2) model (for x ≤ y ) is given by

V(x, y) = 1
x + 1

a ·
(
x−

1−a
2 · y−

1+a
2
)
.

Proposition 5. Let c̃(a) denote the copula density belonging to the extreme value copula C̃(a) given in (20)
and (21), i.e.,

c̃(a)(u, v) = ∂2C̃(a)(u, v)
∂u∂v .

(i) If 0 ≤ a ≤ 1, then
c̃(a)(u, v) = 1 for 0 ≤ u, v ≤ 1 . (30)

(ii) If a > 1, then
c̃(a)(u, v) =
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(a) corr(X1 , X2) = a·(a+2)
(a+1)2+3 ' 0.4253 (0.4627 in the sample). (b) corr(M(1)

2 ,M(2)
2 ) ' 0.4471.

s

(c) corr(M(1)
10 ,M

(2)
10 ) ' 0.3761. some things (d) corr(M(1)

10000 ,M
(2)
10000) ' 0.1689.

Figure 3: Scatterplots of componentwise maxima for a = 0.99 .

=



[
(− log u) 1−a

2 + a−1
2 · (− log u)− a+1

2 − a−1
2a · (− log u)−a · (− log v) 1+a

2

]
·

a+1
2a ·

(− log v) a−1
2

v · e−
1
a ·
(

(− log u)
1−a

2 ·(− log v)
1+a

2
)

if 0 < u ≤ v < 1,[
(− log v) 1−a

2 + a−1
2 · (− log v)− a+1

2 − a−1
2a · (− log v)−a · (− log u) 1+a

2

]
·

a+1
2a ·

(− log u) a−1
2

u · e−
1
a ·
(

(− log v)
1−a

2 ·(− log u)
1+a

2
)

if 0 < v ≤ u < 1.

(31)

Proof. By simple di�erentiation.

Remark 5. For a > 1, the copula density c̃(a) is unbounded at (0, 0) and at (1, 1). One can see this by com-
puting the suitable limits. The copula density is pictured in Figure 4 for a = 2 .
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Figure 4

2.5 Sampling from the new extreme value copula

We present twomethods for sampling from the new extreme value copula (21). According to our experiences,
numerically none of them is signi�cantly overperforming the other one. Figure 5 illustrates two samples ob-
tained by these methods.

2.5.1 Sampling by acceptance-rejection

The idea of the acceptance-rejectionmethod(s) (to the best of our knowledge) appeared �rst in von Neumann
[21] and it also can be found in Chaper II.3 in Devroye [2], as a classical reference.

In order to �nd a suitable dominating density, one has to assure that both peaks of c(a)(u, v) (i.e., at
around (0, 0) and (1, 1)) are dominated. To this end, we will use the bivariate Clayton copula, a well-know
copula family in the class of Archimedean copulas:

Cϑ(u, v) =
[

max
{
u−ϑ + v−ϑ − 1 ; 0

}]−1/ϑ
, ϑ ∈ [−1,∞) \ {0} .

The �ipped Clayton copula can be found in many sources as well. As Hochrainer-Stigler et al. [7] mentions
expressively: a (bivariate) �ipped copula means that the copula is rotated by 180 degrees, and they also refer
to Jongman et al. [8], where the formula of the �ipped Clayton copula is given by

Ĉϑ(u, v) = u + v − 1 +
[

(1 − u)−ϑ + (1 − v)−ϑ − 1
]−1/ϑ

, ϑ ∈ [−1,∞) \ {0} .

Let us de�ne the bivariate random vector B = (B1, B2) as

B :=


C1 with probability w ,
C2 with probability w ,
ε with probability 1 − 2w ,

where C1 ∼ Clayton(ϑ), C2 ∼ �ipped_Clayton(ϑ), ε ∼ Π are independent of each other and the mixing
parameter w is between 0 and 0.5. (Π denotes the product copula, see for instance Proposition 4.) It is clear
that the components B1 and B2 are Uni[0, 1] distributed, and therefore the joint density of the random vector
B is a copula density, which is denoted by cB.

For the applicability of the acceptance-rejection method, we have to �nd a K such that

K ≥ max
0<u,v<1

c̃(a)(u, v)
cB(u, v) , (32)
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where c̃(a)(u, v) is given in (31). Then one can draw a sample from the distribution of the random vector
B, for instance by the well-known algorithm of Marshall and Olkin [12]. Finally, according to the classical
acceptance-rejection method mentioned above, we gain a sample for the copula density c̃(a)(u, v). Figure 5a
shows such a sample, where the underlying distribution is a Freund(2, 2) distribution (i.e., a = 2), the pa-
rameters are set to ϑ = 60 and w = 0.45. We have found that the numerical solution of the maximization
problem on the right-hand-side of (32) is about 18.18 , and for the actual sampling we have chosen K = 25 .

2.5.2 Sampling by numerically computing the quantiles of the conditional copula function

The inverse conditional distributionmethod is well know (see for instance Nelsen [14], Section 2.9, or Mai and
Scherer [10], Section 1.1.3). Suppose that the copula density is c(u, v), which does not vanish in [0, 1]2, and
let

Cv(u) := P(U ≤ u |V = v) =
u∫

0

c(w, v) dw = ∂C(u, v)
∂v .

Then the algorithm using Newton’s method is as follows. Sample V ∼ Uni[0, 1] and independently Z ∼
Uni[0, 1]. Set u0 = 0.5 and consider the iteration

un+1 := un + Z − CV (un)
c(un , V) .

Set U = lim
n→∞

un. The pair (U, V) has the required copula density c(u, v) . For the practical implementation we
used the stopping criterion |un − un−1| < 10−3 .

(a) (b)

Figure 5: Two samples of size 1000 drawn from C̃(a)(u, v) by two di�erent methods.

2.6 Correlation coe�cients (measures of concordance), Pickands dependence
function and tail dependence coe�cients of the new extreme value copula

In this subsection, we investigate some charateristics of the newly explored extreme value copula. First we
recall the de�nition of three usual correlation coe�cients (measures of concordance), then we picture their
values for C̃(a)(u, v) as functions of a. Second, we compute and picture Pickands dependence function, which
is another usual way to characterize bivariate extreme value copulas. Third, we provide the tail dependence
coe�cients in Proposition 8.
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De�nition 3. sg For a bivariate copula C(u, v)
(i) Spearman’s ρ is given by

ρ = 12 ·
1 1∫∫

0 0

uv dC(u, v) − 3 ,

(ii) Kendall’s τ is given by

τ = 4 ·
1 1∫∫

0 0

C(u, v) dC(u, v) − 1 ,

(iii) Blomqvist’s β is given by
β = 4 · C

(1
2 ,

1
2
)
− 1 . (33)

Notice that in the trivial case 0 ≤ a ≤ 1, all the three correlation coe�cients are zero for C̃(a)(u, v).

Proposition 6. Let a ≥ 1. Blomqvist’s β for the extreme value copula C̃(a)(u, v) is given by

β = 2
a−1
a − 1 .

Proof. Straightforward evaluation of (33) using (21). �

Whenwe aim to determine Spearman’s ρ and Kendall’s τ for the extreme value copula C̃(a)(u, v), we can-
not hope for analytic expressions. We performed these computations by numerical integration; the results,
along with Blomqvist’s β, are shown in Figure 6.

Figure 6

De�nition 4. For a bivariate extreme value copula C̃(u, v), Pickands dependence function is given by

A(t) =
log C̃

(
y1−t , yt

)
log y for all t ∈ [0, 1] and for any y ∈ (0, 1). (34)

Proposition 7. Pickands dependence function for the extreme value copula C̃(a) from (21) is given by

A(t) =

1 − t + 1
a · (1 − t) 1−a

2 · t 1+a
2 if 0 ≤ t ≤ 1

2 ,

t + 1
a · t

1−a
2 · (1 − t) 1+a

2 if 1
2 ≤ t ≤ 1 ,

whereas for the extreme value copula C̃(a) from (20), is simply A(t) = 1 for t ∈ [0, 1] .
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Proof. One has to apply formula (34) for the extreme value copulas (20) and (21). �

Figure 7 depicts Pickands dependence function for some values of a for the extreme value copulas C̃(a)

from Proposition 4. Pickands depenence function also allows an alternative way to quantify the distance
between Π and C̃(a) (see also Trutschnig et al [20]). Namely,

distC̃(a) ,Π := 1 − 2 ·
1/2∫
0

A(t) dt .

Note that this de�nition amounts to 0.25 as the largest possible distance between an extreme value copula
and the independence copula. The distance between the corresponding C(a) and Π is also shown in Figure 7.

Figure 7

distC̃(1) ,Π = 0,
distC̃(2) ,Π = 0.16095,
distC̃(5) ,Π = 0.23178,
distC̃(100) ,Π = 0.24995.

Proposition 8. Let a ≥ 1. For the new extreme-value copula (21), the lower and upper tail dependence coef-
�cients are

λL = 0 and λU = a − 1
a .

Proof. Elementary computation, using De�nition 1 and formula (21). �

3 Computations in the multivariate Freund(a, n)model
We draw the reader’s attention that several approaches and models can be found in the literature, which
generalize Freund’s bivariatemodel, orwhere Freund’s bivariatemodel appears as a special case.Wemention
Shaked et al. [17] and Norros [15] as two examples. On the other hand, our focus is di�erent from that of the
authors who have already contributed to this issue, so in this sense we believe that the multivariate setting
that we propose is novel.

3.1 The n-variate one-step model with uniform cascading parameter

We consider our model with n institutions facing a one-step cascade, where the lifetime variables are gov-
erned by amatrix A according to the following. The diagonal elements λ1, . . . , λn ∈ R+ are the initial lifetime
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intensities of the institutions, i.e., Yj ∼ Exp(λj), (j = 1, . . . , n) are independent of each other. Each non-
diagonal element ai,j (i = ̸ j, i, j = 1, . . . , n) expresses the e�ect of the default of institution i on institution j,
by adding the value ai,j ≥ 0 to the original lifetime parameter λj. It can be formulated as

Xj,n =
{

min {Y1, . . . , Yn}, if min {Y1, . . . , Yn} = Yj ,
min {Y1, . . . , Yn} + Zj , where Zj ∼ Exp(λj + ai,j), if min {Y1, . . . , Yn} = Yi = ̸ Yj ,

(35)

for j = 1, . . . , n, where Zjs are independent of each other and of all Yi (i = 1, . . . , n). The notation emphasizes
that the distribution of the variables depends on n . The above mechanism de�nes an exchangable multi-
variate distribution, in notation Xn := (X1,n , . . . Xi,n , . . . , Xn,n) ∼ Freund(A). We set λ1 = . . . = λn = 1 and
ai,j = a ≥ 0 in the entire Section 3, and we will use the notation Xn ∼ Freund(a, n). (For the generalization
of Proposition 9 see Appendix A.) The model also allows for the case a = ∞ . In this case, X1,n = . . . = Xn,n
with probability one. In the following, we present the joint density function, the marginal densities, and the
marginal cdfs of the Freund(a, n) distribution.

Proposition 9. Let Xn be Freund(a, n) distributed, where a ∈ [0,∞) .

(i) The joint pdf of Xn = (X1,n , . . . Xi,n , . . . , Xn,n) is given by

fXn (x1, . . . , xn) = (1 + a)n−1 · exp
{
−

n∑
i=1

xi − a ·
n∑
i=1

(
xi − min

k=1,...,n
xk
)}

, x1, . . . , xn ≥ 0. (36)

(ii) If n ≠ a + 1 , then any one-dimensional marginal density, i.e., the pdf of each Xi,n , is given by

fXi,n (x) = − na
n − a − 1 · e

−nx + (1 + a)(n − 1)
n − a − 1 · e−(1+a)x , x ≥ 0. (37)

(iii) If n = ̸ a + 1 , then any one-dimensional marginal cdf, i.e., the cdf of each Xi,n , is given by

FXi,n (x) = 1 + a
n − a − 1 · e

−nx − n − 1
n − a − 1 · e

−(1+a)x , x ≥ 0. (38)

Proof. To see (i), one has to compute

lim
∆x1 ,...,∆xn→0

P
(
X1,n ∈ [x1, x1 + ∆x1], . . . , Xn,n ∈ [xn , xn + ∆xn]

)
∆x1 · . . . · ∆xn

.

This can be done in an elementary way and results in (36). Assertion (ii) can be veri�ed similarly; (iii) follows
from (ii) by integration. �

Remark 6. s

(i) For a = 0, themarginal density reduces to fXi,n (x) = e−x and the joint density reduces to fXn (x1, . . . , xn) =

− exp
{ n∑
i=1
xi
}

, which is obvious, since in this case, the marginals are independent and Exp(1) dis-

tributed.
(ii) For a = ∞ , the marginal density is given by fXi,n (x) = ne−nx. This is obvious, since in this case X1,n =

. . . = Xn,n ∼ Exp(n) . This formula can be also attained by taking the limit a → ∞ in (37). The joint
distribution of (X1,n , . . . , Xn,n) is degenerate and concentrated on a one-dimensional subset in Rn,
namely on x1 = . . . = xn .

(iii) For n → ∞ , the marginal density reduces to fXi,∞ (x) = (1 + a)e−(1+a)x , which can be understood as
follows. In case n � 1 , the lifetime variables are nearly independent of each other: one institute receives
the shock, and the others (i.e., all except the one who received the shock) essentially do not depend on
each other any more.

(iv) Based on the marginal density (37), for a > 0, the distribution of Xi,n can be seen as a generalized
mixture (see De�nition 5)

Xi,n = S(w0, w1;G0, G1) ,
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where G0 ∼ Exp(n), G1 ∼ Exp(1 + a), w0 = −a
n − a − 1 , w1 = n − 1

n − a − 1 , so w0 + w1 = 1, and either w0 or
w1 is non-positive.

(v) If n = a + 1, then the one-dimensional marginal densities and cdfs can be computed similarly as in the
proof of Proposition 9, and they are given by
fXi,n (x) =

(
1 + n(n − 1)x

)
· e−nx · 1{x≥0} , and FXi,n (x) =

[
1 −
(

1 + (n − 1)x
)
· e−nx

]
· 1{x≥0} .

De�nition 5. We say that a random variable Z is a generalized mixture of the random variables Z1, . . . , Zn,
if for their pdfs fZ , fZ1 , . . . , fZn the relation

fZ =
n∑
i=1

wi · fZi (39)

holds, where
n∑
i=1
wi = 1. Notice that this de�nition allows that some of the weights are negative. We use the

notation
Z = S(w1, . . . , wn; Z1, . . . , Zn). (40)

Remark 7. Notice that (40) only gives a representation of the pdf of the random variable Z in terms of the
pdfs of Z1, . . . , Zn, but it does not provide a probabilistic model. In other words, having the random variables
Z1, . . . , Zn given by their pdfs fZ1 , . . . , fZn , we are not aware of any straightforward manner in general for
constructing a random variable Z whose pdf is fZ . Hence (40) is only a reformulation of the relation (39)
among the density functions.

3.1.1 Expectation and variance of the marginal distributions

Some standard characteristics of the one-dimensional marginal distributions, for instance the expectation,
the second moment, and the variance are easy to determine by using (37) and computing the suitable inte-
grals. They will be derived again in Subsusbsection 3.2.2 more elegantly and more generally. For all 1 ≤ i ≤ n,
we have

E(Xi,n) = n + a
(a + 1)n , (41)

E
(
X2
i,n

)
= −2a
n2(n − a − 1) + 2(n − 1)

(1 + a)2(n − a − 1) = 2
(a + 1)2 + 2a(a + n + 1)

(a + 1)2n2 , (42)

V(Xi,n) = −2a
n2(n − a − 1) + 2(n − 1)

(1 + a)2(n − a − 1) −
(n + a)2

(1 + a)2n2 = 1
(a + 1)2 + a(a + 2)

(a + 1)2n2 . (43)

One immediately sees that for any �xed 0 ≤ a < ∞,

E(Xi,n) = 1
1 + a + O(1/n) and V(Xi,n) = 1

(1 + a)2 + O(1/n2) as n →∞ .

Notice that for a = 0, the above characteristics do not depend on n : in particular, E(Xi,n) = 1 , E
(
X2
i,n
)

= 2 ,
and V(Xi,n) = 1 for all n (cf. Remark 6 (i)).

3.1.2 The k-dimensional marginal distributions

It is trivial due to exchangeability that the lawof (Xi1 ,n , . . . , Xik ,n)doesnot dependon the choice of the indices,
so when we aim to determine its distribution, then we can assume without loss of generality that ij = j for
j = 1, . . . , k, (1 ≤ k ≤ n).
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Proposition 10. For 0 ≤ a < ∞, if n = ̸ k(1 + a), then the k-dimensional marginal density, i.e., the pdf of
(X1,n , . . . , Xk,n), is given by

fk,n(x1, . . . , xk) = (1 + a)k−1 · exp
{
−n ·min

1≤i≤k
xi − (1 + a)

( k∑
i=1

xi − k ·min
1≤i≤k

xi

)}
+

+ (1 + a)k · (n − k)
n − k(1 + a) · exp

{
−(1 + a) ·

k∑
i=1

xi

}
·
(

1 − exp
{
−(n − k(1 + a)) ·min

1≤i≤k
xi
})

.

(44)

Proof. In order to derive (44), we did not integrate the joint density (36) n − k times, which
would also be possible. We applied model-based considerations, i.e., we elaborated the probability
P
(
X1,n ∈ [x1, x1 + ∆x1], . . . , Xk,n ∈ [xk , xk + ∆xk]

)
in an elementary way, similar to the proof of Proposition

9 . �

3.1.3 Correlation between the components

We provide the special case of formula (44) for k = 2 . Then we will use it to compute the covariance and
correlation of Xi,n and Xj,n. It is given by

f2,n(x, y) = (1 + a) · exp
{
−(a + 1) ·max{x, y} − (n − a − 1) ·min{x, y}

}
+

+ (1 + a)2 · (n − 2)
n − 2 − 2a · exp{−(1 + a)(x + y)} ·

(
1 − exp{−(n − 2 − 2a) ·min{x, y}}

)
.

(45)

From (45), it follows by integration that

E(Xi,n · Xj,n) = 1
(n − 2a − 2) ·

(
2a(a + 1)(3n − 2a − 2)

n2(n − a − 1)2 + n − 2
(1 + a)2 −

2an
(n − a − 1)2(a + 1)

)
. (46)

From (41), (43), and (46), the correlation can be computed:

corr(Xi,n , Xj,n) = P(a, n)
Q(a, n) ,

where P(a, n) and Q(a, n) are polynomials of a and n with deg P = degQ = 5, namely

P(a, n) = 2a(a + 1)
[

(a + 1)2(3n − 2a − 2) + n3
]

+ (n − a − 1)2
[

3a2n + 4an + 2a3 + 2a2
]
,

Q(a, n) = (n − 2a − 2)(n − a − 1)
[
−2a(a + 1)2 + 2(n − 1)n2 − (n + a)2(n − a − 1)

]
.

It is easy to see that for 0 ≤ a < ∞ , corr(Xi,n , Xj,n) −→
n→∞

0, and the rate of convergence is 1/n2 , i.e.,
lim
n→∞

n2 · corr(Xi,n , Xj,n) = l, with 0 < l < ∞ .
Observe that for a = 0 , the correlation is zero for all n (cf. Remark 6 (i)).

3.2 Distributions of sums of components in the n-variate one-step model –
Exponential Gamma Mixture Type I distribution

Our aim in the following is to investigate the average lifetime of the entities in the system for �xed n and for
n →∞. Let us introduce the following notation:

Sn := X1,n + . . . + Xn,n (47)

Sk,n := X1,n + . . . + Xk,n for k = 1, . . . , n ,

i.e., Sn = Sn,n. We provide an explicit form and an integral form for the pdf of Sk,n . (Due to exchangeability,
Sk,n could also be de�ned by Xi1 ,n + . . . + Xik ,n with any k-element subset of {1, . . . , n}.)
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3.2.1 Straightforward derivation and the explicit form of the pdf of Sk,n

Proposition 11. For any �xed n and for all k = 1, . . . , n , if n = ̸ k · (1 + a), then the probability density
function of Sk,n is given by

gSk,n (s) = c(a, n, k) · e−
ns
k + e−(1+a)s · polk−1(s), for s ≥ 0 , (48)

where

polk−1(s) =
k−1∑
j=0

cj(a, k, n) · sj

with
c(a, n, k) = (−1)kkk−1na(a + 1)k−1(

n − k(1 + a)
)k ,

cj(a, n, k) = (−1)k−j−1 · kk−j−1

j! · na(1 + a)k−1(
n − k(1 + a)

)k−j for j = 0, . . . , k − 2 ,

ck−1(a, n, k) = 1
(k − 1)! ·

(n − k)(1 + a)k
n − k(1 + a) .


(49)

In particular, when k = n , if a ≠ 0 , then

gSn,n (s) =
(

1 + 1
a
)n−1 ·

e−s −
n−2∑

j=0

1
j!a

jsj
 · e−(1+a)s

 , s ≥ 0 . (50)

Proof. The proof is a straightforward, but sometimes extremely cumbersome computation. It is clear that

gSk,n (s) =
∫
Hk

fk,n(s1, . . . , sk) ds1 . . . dsk−1 , (51)

where Hk =
{

(s1, . . . , sk) : s1 + . . . + sk = s
}
. From (44), it is clear that fk,n is a linear combination of

exponential functions, where the exponents are linear combinations of the (integration) variables s1, . . . , sk.
Furthermore, the integration region Hk translates to linear expressions concerning the integration bounds if
the (k −1)-dimensional integral in (51) is written out as k −1 (successive) one-dimensional integral. It means
that in the j-th integration step (j = 1, . . . , k−1), the current integrand consists of a pure exponential termand
an exponential multiplied by a polynomial of degree j − 1. Due to the above-mentioned facts (regarding fk,n
and the linear expressions in the integration bounds) the result of the j-th integration step (j = 1, . . . , k − 1)
is a function consisting of a pure exponential term and an exponential multiplied by a polynomial of degree
j. This argumentation already explains the structure given in (48). We show the computation in reasonable
details for k = 2 in Appendix C, and we will also indicate how the proof can be carried out for k > 2.�

Remark 8. According to (49), the value of c(0, n, n) , c0(0, n, n) and cn−1(0, n, n) might be ambiguous.
By evaluating in the correct order, namely starting with a = 0 followed by k = n , one gets c(0, n, n) =
c0(0, n, n) = 0 and cn−1(0, n, n) = 1

(n−1)! . This little technicality will become important in Subsection 3.3.

Remark 9. Observe the following.

(i) If a = ∞ for any �xed k and n , then

gSk,n(s) = n
k · e

− nsk , Exp(n/k) distribution .

(ii) If n →∞ for any �xed a and k , then

lim
n→∞

gSk,n(s) = 1
(k−1)! · e

−(1+a)s · (1 + a)k · sk−1, Gamma(k, a + 1) distribution,
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where we use the following parametrization of the gamma distirbution:
gamma_pdfα,β(s) = βα

Γ(α) s
α−1e−βs for s ≥ 0 .

So Sk,n is, roughly speaking, the sum of k almost independent Exp(1 + a) variables for large n, i.e.,
when n � k ; and it can be seen as the sum of k , indeed independent Exp(1 + a) variables for the
limiting case n →∞ (cf. Remark 6 (iii)).

(iii) If a = 0 for any �xed k and n , then

gSk,n(s) = 1
(k−1)! · e

−s · sk−1, Gamma(k, 1) distribution .

Remark 10. Based on Proposition 11, for 1 ≤ k < n, the variable Sk,n can be seen as a generalized mixture of
an exponential distribution and k gamma distributions, one of which is in fact an exponential distribution.
The case k = n is slightly di�erent: Sn,n is a generalized mixture of an exponential and n − 1 gamma
distributions, one of which is in fact an exponential distribution. We formulate this assertion in the next
statement.

Proposition 12. Let the random variable G0 be Exp(n/k) distributed and the random variables Gj be
Gamma(j, 1 + a) distributed (j = 1, . . . , k). Assume that n ≠ k(1 + a) .
Then Sk,n can be written as

Sk,n = S(w0, . . . , wk;G0, . . . Gk) , (52)

where the mixing weights wj are

w0 = (−1)k · kka(1 + a)k−1

(n − k(1 + a))k
,

wj = (−1)k−j · kk−jna(1 + a)k−j−1

(n − k(1 + a))k−j+1 j = 1, . . . , k − 1 , (53)

wk = n − k
n − k(1 + a) .

Proof.The assertion follows fromProposition 11 by identifying thepdfs of the Exp(n/k) and Gamma(j, 1+a)

distributions.
k∑
j=0
wj = 1 can be seen by a cumbersome, but elementary computation. Notice that the mixture

is indeed a generalized mixture: wj < 0 if k − j is odd and n − k(1 + a) > 0; and wj < 0 for all j = 1, . . . , k if
n − k(1 + a) < 0. �

3.2.2 Model based derivation and the integral form of the pdf of Sk,n

Due to the de�nition of the multivariate model given in (35), Sk,n can be rewritten as

Sk,n = Ek,n +
(
Z(k−1)

)I
·
(
Z(k)
)1−I

, (54)

where Ek,n := k ·min {Y1, . . . , Yn} is Exp(n/k) distributed (or equivalently, Gamma(1, n/k) distributed),

and Z(m) :=
m∑
j=1
Zj, where Zjs are i.i.d. Exp(1 + a), therefore Z(m) (m = k − 1, k) follows a Gamma(m, a + 1)

distribution, I is the indicator of the event thatmin {Y1, . . . , Yn} is attained onone of Y1, . . . , Yk, furthermore
Ek,n and Z(m) are independent of each other. With the use of (54), in order to derive the pdf of Sk,n, one only
needs to compute the convolutions of the densities of a Gamma(1, n/k) and a Gamma(m, 1 + a) distribution
(m = k − 1, k), and weighting them with P(I = 1) = k

n and P(I = 0) = n−k
n , which proves Proposition 13. In

particular, if k = n, then P(I = 1) = 1, which means that

Sn,n = En,n + Z(n−1) , (55)

where En,n ∼ Exp(1) and Z(n−1) ∼ Gamma(n − 1, a + 1) are independent of each other.
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Proposition 13. The integral form of the pdf of Sk,n for k = 1, . . . , n is given by

gSk,n (s) = e−
ns
k · (1 + a)k−1

k! ·
s∫

0

e−(1+a)x ·
(
k(k − 1)xk−2 + (1 + a)(n − k)xk−1

)
dx , (56)

In particular,

gSn,n (s) = e−s · (1 + a)n−1

(n − 2)! ·
s∫

0

e−(1+a)x · xn−2 dx . (57)

Remark 11. Notice that (54) can be rewritten equivalently as

Sk,n = Ek,n + Gk−1 + Z*k , (58)

where the summands are independent, Ek,n ∼ Exp(n/k), Gk−1 ∼ Gamma(k − 1, a + 1), and

Z*k =
{

0 with probability k
n ,

Zk ∼ Exp(a + 1) with probability n−k
n .

Using (58), we can derive elegantly the expectation and variance of Sk,n. We have

E(Sk,n) = E(Ek,n) + E(Gk−1) + E(Z*k) = k
n + k − 1

a + 1 + n − k
n · 1

a + 1 = k · (a + n)
n · (a + 1) , (59)

V(Sk,n) = V(Ek,n) + V(Gk−1) + V(Z*k) = k2

n2 + k − 1
(a + 1)2 + n2 − k2

n2(1 + a)2 = k
(a + 1)2 + k2

n2 ·
a(a + 2)
(a + 1)2 . (60)

De�nition 6. The Exponential GammaMixture Type I (in notation EGM(n, k, a) or EGM Type I) distribution
is de�ned by its probability density function via the formulas (48)–(49), or alternatively by formula (56).

The �rst approach (formulas (48)–(49)) gives an algebraic way for de�ning the EGM(n, k, a) distribution, as
it was pointed out in Proposition 12, while the second approach (decomposition (58)) gives a probabilistic
way. The pdf of the EGM(n, k, a) distribution for some n, k, a values is plotted in Figure 8.

Figure 8

Remark 12. For �xed k and for n →∞ , the weights wj ( j = 0, . . . , k − 1 ) in (53) vanish, while wk → 1 , so
the generalizedmixture in (52) reduces to a Gamma(k, a+ 1) distribution, as it was already stated in Remark
9 (ii), i.e., the EGM(∞, k, a) distribution is identical to the Gamma(k, a + 1) distribution.
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3.2.3 Asymptotics for Sn,n: gamma approximation

Since no simple,well tractable formula for the pdf of Sn,n is available (see (50) and (57)), we aim to understand
the asymptotical behaviour of Sn,n by suitably approximating its pdf.We provide an asymptotics which arises
from modifying a lower bound for the density gSn,n .
Setting k = n in (59) and (60) yields

E(Sn,n) = n + a
1 + a , (61)

V(Sn,n) = n
(1 + a)2 + a(a + 2)

(a + 1)2 . (62)

Proposition 14. For all s ≥ 0 and for all n ∈ N , it holds that

e−(1+a)s(a + 1)n−1sn−1

(n − 1)! ≤ gSn,n (s) ≤ e
−s(a + 1)n−1sn−1

(n − 1)! . (63)

Proof. The Taylor polynomial of degree n − 2 of the function ex centered at the origin is Tn−2(x) =
n−2∑
j=0

1
j! x

j .

The function value eas can be approximated by eas ≈
n−2∑
j=0

1
j!a

jsj , and the Lagrange remainder term is

eξ
(n−1)! (as)n−1 for some ξ ∈ [0, as] . Therefore the error committed by the approximation can be lower and
upper bounded by

(as)n−1

(n − 1)! = min
ξ∈[0,as]

eξ (as)n−1

(n − 1)! ≤ e
ξ (as)n−1

(n − 1)! ≤ max
ξ∈[0,as]

eξ (as)n−1

(n − 1)! = eas(as)n−1

(n − 1)! .

Inserting these bounds into (50), the statement follows. �

Remark 13. Formulas (61) and (62) show that the distribution of Sn,n is degenerate in the sense that
E(Sn,n) → ∞ and V(Sn,n) → ∞ as n → ∞ , but it is still worth examining its distribution as we will see
in the following. The upper bound in (63) (or alternatively the integral form (57)) shows that lim

n→∞
gSn,n (s) = 0

for all s ≥ 0 . When the lower bound is multiplied by (a + 1) , it turns into the pdf of a Gamma(n, a + 1)
distribution, which can be used to approximate the density gSn,n after appropriate scaling and shifting. This
assertion is formulated precisely in the next statement and illustrated in Figure 9. (For n = 100 the di�erence
between the curves is hardly any visible.)

Proposition 15. Let us de�ne the random variables Ỹn = βn · Yn + αn , where
Yn ∼ Gamma(n, a + 1) , βn =

√
n+a(a+2)

n , αn = 1
1+a
(
n · (1 − βn) + a

)
. Let us denote the probability density

function of Ỹn by g̃n . Then

lim
n→∞

∞∫
−∞

∣∣gSn,n (s) − g̃n(s)
∣∣ ds = 0 .

Wecall Ỹn the gammaapproximation of Sn,n, although Ỹn (due to the αn term) is not gamma-distributed, but
follows a shifted gamma distribution, which justi�es the terminology. The proof can be found in Appendix B.
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Figure 9: Probability density functions of the sum of the components and their gamma approximations for n = 30, 50, 100 .
The L1-distances are ‖gS30 − g̃30‖ u 0.0254, ‖gS50 − g̃50‖ u 0.0141, ‖gS100 − g̃100‖ u 0.0059. The mode of Ỹn is n+a−βn

a+1 =
n+a−1
a+1 + O(1/n), so the same asymptotics holds for the mode of Sn,n .

Remark 14. It is easy to verify that the L1-distance of pdf functions is invariant undermonotone transforma-
tions of the underlying random variables. So Proposition 15 means that lim

n→∞
‖gT(Sn,n) − gT(Ỹn)‖L1 = 0, where

T is an arbitrary monote transformation, and gT(Sn,n) and gT(Ỹn) are the corresponding density functions.

3.3 Distribution of Xn, asymptotics and limiting distribution – Exponential Gamma
Mixture Type II distribution

Let us introduce the notation
X̄n := X1,n + . . . + Xn,n

n . (64)

In order to obtain a non-trivial limiting distribution for X̄n, we need to compute E
(
X̄n
)

and D
(
X̄n
)
.

Using (41) (or equivalently (61)) and (62), we get trivially that

E
(
X̄n
)

= n + a
(a + 1)n , (65)

V
(
X̄n
)

= 1
n2 V (Sn,n) = 1

n(1 + a)2 + a(a + 2)
n2(a + 1)2 . (66)

Remark 15. sg
(i) If a = 0 , then V

(
X̄n
)

= 1
n for all n .

(ii) sg

sgFor any �xed 0 ≤ a < ∞ , V
(
X̄n
)

= 1
n(1 + a)2 + o(1/n) as n →∞ . (67)

(iii) For all �xed n , V
(
X̄n
)
−→
a→∞

1
n2 (cf. X̄n = min

1≤i≤n

{
Xi,n

}
∼ Exp(n) for a = ∞ ) .

Formulas (65) and (67) provide the suitable normalizing terms for deriving a limiting distribution for X̄n . The
rescaled variable has mean zero and variance one:

X̄0
n :=

X̄n − E
(
X̄n
)

D
(
X̄n
) .
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3.3.1 The distribution of X0
n and its limiting distribution

The probabilty density function of X̄0
n can be derived using the probability density function gSn,n (s) given in

(50).
gX̄0

n
(s) = n ·D

(
X̄n
)
· gSn,n

(
n ·D

(
X̄n
)
· s + n · E

(
X̄n
))

for all s ≥ −E(X̄n)
D(X̄n) .

Due to (50), (65) and (67), the following asymptotics holds for gX̄0
n
(s).

Proposition 16. For all s ∈ R , we have

lim
n→∞

gX̄0
n
(s) −

√
n

1+a
(

1 + 1
a
)n−1 ·

e−√
ns+n+a
a+1 −

n−2∑
j=0

1
j!
( a
a+1 (
√
ns + n + a)

)j · e−(
√
ns+n+a)

 = 0 . (68)

It is remarkable that the approximating expression in (68) de�nes a two-parametric family of probability
density functions with asymptotically the same support as that of gX̄0

n
(s) . We call this family Exponential

Gamma Mixture Type II distribution, and to the best of our knowledge, it has not been mentioned in the
literature yet.

De�nition 7. Let a > 0. The Exponential GammaMixture (EGM) Type II (in notation EGM(n, a)) distribution
is de�ned by its probability density. For s ≥ −

√
n − a√

n ,

gEGM(n,a)(s) :=
√
n

1+a
(

1 + 1
a
)n−1 ·

e−√
ns+n+a
a+1 −

n−2∑
j=0

1
j!
( a
a+1 (
√
ns + n + a)

)j · e−(
√
ns+n+a)

 . (69)

The pdf of the EGM(n, a) distribution is pictured in Figure 10 for some values of a and n.

Figure 10: The convergence to the N(0, 1) limiting distribution is faster when a is smaller.

Proposition 17. Let Z be EGM(n, a) distributed.
Then Z is a generalized mixture of a shifted exponential distribution and n − 1 shifted gamma distribu-

tions, with
Z = S

(
wE , w0, . . . wn−2; E, G̃0, . . . G̃n−2

)
, (70)
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where E ∼ Exp(
√
n/(a + 1)) − n+a√

n and G̃j ∼ Gamma
(
j + 1,

√
n
)
− n+a√

n , j = 0, . . . n − 2 , and the mixing
weights are

wE =
(
a + 1
a

)n−1
, wj = − 1

1 + a

(
a + 1
a

)n−j−1
, j = 0, . . . , n − 2 .

Proof. One has to identify the suitable pdfs in (68) and has to verify that the weights indeed sum up to one.
�

Remark 16. Themixture in (70) is indeed a generalizedmixture: theweights satisfywj < 0 for j = 0, . . . , n−2
and they are unbounded as n →∞.

Finally, we state the limiting distribution of the EGM(n, a) distribution. The core idea is the following: al-
though the variables X1,n , . . . , Xn,n are not independent, the dependence among them vanishes as n → ∞
(cf. Remark 6). The statement is illustrated in Figure 10.

Proposition 18. Assume that a > 0 and let Zn ∼ EGM(n, a). Then

lim
n→∞

P (Zn ≤ x) = Φ(x) ,

where Φ is the cdf of the standard normal distribution.

Proof.Wewill show that X̄0
n is asymptotically N(0, 1) distributed, which proves the statement in the light of

Proposition 16. Let us consider decomposition (55) again:

Sn,n = En,n +
n−1∑
j=1

Zj ,

where En,n ∼ Exp(n), Zj ∼ Exp(1 + a) (j = 1, . . . , n − 1) are independent. This decomposition enables us to

provide a relation between X̄0
n and Z̄0

n−1 := Z̄n−1−E(Z̄n−1)
D(Z̄n−1 )

, where Z̄n−1 = 1
n−1

n∑
j=1
Zj . Namely,

X̄0
n = X̄n − E(X̄n)

D(X̄n)
= a+1√

n+a(a+2)
· E0

n,n +
√

n−1
n+a(a+2) · Z̄

0
n−1 , (71)

where E0
n,n = En,n−E(En,n)

D(En,n) . The variable a+1√
n+a(a+2)

· E0
n,n has zero mean and its variance converges to zero as

n →∞. The coe�cient of Z̄0
n−1 in (71) converges to one, and the limiting distribution of Z̄0

n−1 is N(0, 1) by the
central limit theorem, hence the same holds true for X̄0

n. �

Proposition 19. Let
≈
Yn = 1+a√

n · Yn −
√
n , where Yn ∼ Gamma(n, a + 1), and let g ≈

Yn
its pdf. Then lim

n→∞
‖gX̄0

n
−

g ≈
Yn
‖L1 = 0 .

Proof. X̄0
n can be written as as X̄0

n = T(Sn,n), and
≈
Yn can be written as

≈
Yn = T(Ỹn), where T(x) = 1+a√

n+a(a+2)
· x−

n+a√
n+a(a+2)

is amonotone increasing transformation. Hence, in the light of Remark 14, according to Proposition
15 the statement holds. �

Remark 17. With the help of the variable
≈
Yn = 1+a√

n · Yn −
√
n , where Yn ∼ Gamma(n, a + 1), one can derive

another proof for the fact that X̄0
n is asymptotically N(0, 1) distributed. We will show that for all s ∈ R,

lim
n→∞

g ≈
Yn

(s) = 1√
2π e

−s2/2 .

Notice that g ≈
Yn

(s) =
√
n

1+a · gamma_pdfn,a+1
(√

ns+n
1+a

)
=

√
n

(n−1)! · e
−(
√
ns+n) ·

(√
ns + n

)n−1 . Using Stirling’s
formula for (n − 1)!, we get

lim
n→∞

g ≈
Yn

(s) = lim
n→∞

1√
2π
· e−(

√
ns+1) ·

(√
ns + n
n − 1

)n−1
. (72)



356 | Sándor Guzmics and Georg Ch. Pflug

Using the second order Taylor expansion of log(1 + x), one can write

log
(√

ns+n
n−1

)n−1
= (n − 1) · log

(
1 +

√
ns+1
n−1

)
= (n − 1) ·

(√
ns+1
n−1 − 1

2

(√
ns+1
n−1

)2
+ O(n−3/2)

)
=

=
√
ns + 1 − 1

2 s
2 + O(n−1/2) . Inserting this into the right-hand-side of (72), the statement follows.

4 Outlook
We have seen that the model introduced by Freund [4], and elaborated further by Guzmics and P�ug [6] still
contains many interesting and as yet unexplored details, concerning extreme value questions and multivari-
ate generalizations. In a future work, we plan to obtain results for the componentwise minimum, analogous
to those we presented for the maximum in this current work. We also guess that the analysis presented in
Section 2 and Section 3 can be also performed in the general Freund(A) model, though it would be even
more technical, see Appendix A. Neveretheless, that would highly increase the applicability of the model for
real-life situations, as well as a detailed elaboration of a multi-step cascade. Furthermore, we would like to
extend our examinations that we performed so far to stochastic order relations, too.

Appendix A
In Subsection 3.1, we dealt with a cascadingmatrix, where all cascading parameters ai,j (i ≠ j) were the same.
Let us now consider the general case, i.e., when A =

{
ai,j
}n
i,j=1, where ai,j ≥ 0 for i = ̸ j, and the diagonal

elements are the initial lifetime intensities λi (i = 1, . . . , n).
The joint probability density function of the corresponding lifetime variables (X1,1, . . . , X1,n) is given by

fA(x1, . . . , xn) = λi ·

 n∏
j=1
j≠i

(λj + ai,j)

 · exp
{
−λ>x − e>i A (x − xi1)

}
for x1,...,xn≥0,
xi=min

1≤k≤n
xk,

(73)

where λ> = (λ1, . . . , λn), x> = (x1, . . . , xn), 1> = (1, . . . , 1), and e>i = (0, . . . 0, 1
i-th
entry

, 0, . . . , 0).

To derive (73), one has to elaborate P
(
X1,n ∈ [x1, x1 + ∆x1], . . . , Xn,n ∈ [xn , xn + ∆xn]

)
under the as-

sumption that xi = min
1≤k≤n

xk. It can be done in an elementary way. By setting λ = 1 and ai,j = a ≥ 0 for
i ≠ j, one obtains (36), which was presented in Subsection 3.1.

Appendix B
Proof of Proposition 15.

(I) The support of g̃n(s) is (αn ,∞) and the support of gSn,n (s) is (0,∞). Note that αn ↓ −a2

2(1+a) < 0 for a > 0.
Therefore �rst we split the integral into two parts.

0∫
αn

∣∣gSn,n (s) − g̃n(s)
∣∣ ds = P

(
Ỹn < 0

)
= P

(
Yn <

−αn
βn

)
=

− αnβn∫
0

(a + 1)nsn−1e−(a+1)s

(n − 1)! ds ≤

≤

a2
2(1+a)∫
0

(a + 1)nsn−1e−(a+1)s

(n − 1)! ds ≤ e−
a2
2

(
a2

2

)n
· 1

(n − 1)! −→ 0 as n →∞ .
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(II) The integral
∞∫

0

∣∣gSn,n (s) − g̃n(s)
∣∣ ds will be devided again into two parts.

(II A) Introducing the notation mn := E(Sn,n) = n+a
1+a and σn :=

√
n

1+a ≈ D(Sn,n) (see (61) and (62)), we have
that

∞∫
σn ·

√
n+mn

∣∣gSn,n (s) − g̃n(s)
∣∣ ds ≤ ∞∫

σn ·
√
n+mn

gSn,n (s) ds +
∞∫

σn ·
√
n+mn

g̃n(s) ds (*)=

= P(Sn,n ≥ σn ·
√
n + mn) + P( Ỹn ≥ σn ·

√
n + mn) ≤ P

(
|Sn,n − mn| ≥ σn ·

√
n
)

+

+P
(
|Ỹn − m̃n| ≥ σ̃n ·

(√
n + O(1/

√
n)
) )
≤ 1
n + 1

n = 2
n −→ 0 as n →∞ .

At (*) we took it into account that m̃n := E(Ỹn) = mn and σ̃n := D(Ỹn) = σn + O(1/
√
n) , and then we used

Chebyshev’s inequality.
(II B) It remains to show that

lim
n→∞

σn ·
√
n+mn∫

0

∣∣gSn,n (s) − g̃n(s)
∣∣ ds = lim

n→∞

2n+a
1+a∫

0

∣∣gSn,n (s) − g̃n(s)
∣∣ ds = 0 . (74)

It happens through the following steps.
Step 1: One can verify that

g̃n(s) = a + 1
βn

 s∫
0

(
g̃n−1(x) − g̃n(x)

)
dx

 + Rn , (75)

where Rn =
(
a+1
βn

)n
· 1

(n−1)! e
−(a+1) αnβn + a+1

βn

(
0∫

αn−1

g̃n−1(x)dx −
0∫
αn
g̃n(x)dx

)
can be handled with the same tech-

nique that was used in (I). Note that Rn = o(1/n), which is important because the length of the integration
interval in (74) is 2n+a

1+a .
Step 2: Using (57) and (75), we can write

g̃n(s) − gSn,n (s) =
s∫

0

(
a+1
βn

)n
· 1

(n−2)! (x − αn)n−2 · e−(a+1) x−αnβn ·
[

1 − 1
βn ·

a+1
n−1 · (x − αn)

]
dx

− e−s · (1+a)n−1

(n−2)!

s∫
0

e−(1+a)xxn−2dx + Rn .

Step 3: By substituting y = x−αn
βn in the �rst integral, and simply replacing x with y in the second one, we

obtain

g̃n(s) − gSn,n (s) =
(s−αn)/βn∫
−αn/βn

(a + 1)n
βn

· 1
(n − 2)! y

n−2 · e−(a+1)y ·
[
1 − a+1

n−1 · y
]
dy

− e−s · (1 + a)n−1

(n − 2)!

s∫
0

e−(1+a)yyn−2dy + Rn .

Note that the intersection of the two integration intervals is [−αn/βn , s] if n is large enough. The non-
overlapping parts have to be handled separately (see Step 4(a) and Step 4(b)).

Step 4(a):
2n+a
1+a∫

0

e−s · (1+a)n−1

(n−2)!

−αn/βn∫
0

e−(1+a)yyn−2 dy ds ≤

2n+a
1+a∫

0

e−s · (1+a)
(n−2)! e

−(n−2) (n − 2)n−2 −αn
βn ds ≤ O

(
1/
√
n
)
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where in the �rst step we used that the maximum of e−(1+a)yyn−2 is attained at n−2
a+1 , and in the second step we

performed the integral and applied Stirling’s formula for the factorial.

Step 4(b):

2n+a
1+a∫

0

(s−αn)/βn∫
s

(a + 1)n
βn

· 1
(n − 2)! y

n−2 · e−(a+1)y ·
[
1 − a+1

n−1 · y
]
dy ds ≤ O

((2
e
)n · 1

n3/2

)

can be seen similarly as Step 4(a). Here it has to be taken into account that the maximum of yn−2 · e−(a+1)y on
interval [s, (s − αn)/βn] is attained at the right endpoint of the interval.

Step 4(c): Now we focus on that part of (74), which was not considered yet.

In :=

2n+a
1+a∫

0

∣∣∣∣∣∣∣
s∫

−αn/βn

(a + 1)n−1

(n − 2)! yn−2 · e−(a+1)y ·
[

1
βn

(
1 − a+1

n−1
)
· y − e−s

]
dy

∣∣∣∣∣∣∣ ds ≤

≤

2n+a
1+a∫

0

1
(n − 2)!

∣∣∣∣∣∣∣
(a+1)s∫

0

e−z ·
(
cn · z − e−s

)
· zn−2 dz

∣∣∣∣∣∣∣︸ ︷︷ ︸
g(s) :=

ds =: Bn ,

where the upper bound Bn was obtained by increasing the integration interval, and substituting
z = (a + 1)y, and where cn = 1

βn

( 1
a+1 −

1
n−1
)
→ 1

1+a as n → ∞ . Performing the inner integral one sees

that g(s) = O
(
e−s(a+1)sn−1(a + 1)n−1

)
.

Since the primitive function of e−s(a+1)sn−1(a + 1)n−1 is also of the same type, namely e−s(a+1) · poln−1(s) ·
(a + 1)n−2, where poln−1(s) is a polynomial of degree n − 1, we can write that

Bn ≤ const ·
[

1
(n − 2)! e

−s(a+1)sn−1(a + 1)n−2
] 2n+a

1+a

0
.

Substituting the bounds, and applying Stirling’s formula yields

In ≤ Bn ≤ O
(√

n
(

2
e

)n)
,

which �nally proves the statment. �

Appendix C
We provide the proof of Proposition 11 for k = 2 and the sketch of the proof for k > 2 . The density gS2,n (s)
can be written as

gS2,n (s) =
s∫

0

f2,n(t, s − t) dt (*)=
s/2∫
0

f2,n(t, s − t) dt +
s∫

s/2

f2,n(t, s − t) dt = 2 ·
s/2∫
0

f2,n(t, s − t) dt =

= 2 ·
s/2∫
0

(1 + a)e−(a+1)s−(n−2a−2)t + (1+a)2(n−2)
n−2−2a · e−(1+a)s ·

(
1 − e−(n−2−2a)t

)
dt =

= 2na(a + 1)
(n − 2 − 2a)2 · e

− ns2 + e−(1+a)s ·
(
−2na(1 + a)
(n − 2 − 2a)2 + (n − 2)(1 + a)2

n − 2 − 2a · s
)
, as it was claimed .
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At (*) we split the integral into two parts according to (44), i.e., we take it into account that the minimum is
attained in which variable. Then we use the symmetry with respect to the variables.

For k ≥ 3 one canwork in a similarway (integration by parts).Meanwhile one can observe and conjecture
the sample in the sequence of coe�cients (across the terms for a �xed k, and also across the terms for di�erent
k values), and �nally the formulas given in (49) can be veri�ed. �

Appendix D
As it was mentioned in Remark 1, due to the courtesy of an anonymous referee, Proposition 1 is a direct con-
sequence of a much more general but simple fact: Suppose that C is an absolutely continuous copula whose
density c is square integrable on [0, δ]2 for some δ ∈ (0, 1). Then the lower tail dependence coe�cient of C
is 0.

Proof: Considering u ∈ (0, δ) and applying Cauchy-Bunyakovsky-Schwarz inequality yields

C(u, u)
u = 1

u

∫
[0,u]2

c(x, y) dx dy ≤ 1
u u‖c‖2,[0,u]2 = ‖c‖2,[0,u]2 ,

where ‖c‖2,[0,u]2 denotes the L2-norm of c on [0, u]2 . Considering that lim
u→0+

‖c‖2,[0,u]2 = 0 (by dominated
convergence) the result follows.�

It was discussed in [6], Section 2.3, that the copula density stemming from (7) is bounded around (0, 0),
therefore also square integrable on [0, δ]2. So the above result applies to our case and provides an alternative
proof for Proposition 1.

sg
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