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NOVEL STATISTICAL MODEL FOR A PIECE-WISE LINEAR RADIOCARBON 
CALIBRATION CURVE

Delil Gómez Portugal Aguilar1,2 • Cliff D Litton3 • Anthony O’Hagan1

ABSTRACT. The process of calibrating radiocarbon determinations onto the calendar scale requires the setting of a specific
statistical model for the calibration curve. This model specification will bear fundamental importance for the resulting infer-
ence regarding the parameter of interest—namely, in general, the calendar age associated to the sample that has been 14C-
dated. 

Traditionally, the 14C calibration curve has been modelled simply as the piece-wise linear curve joining the (internationally
agreed) high-precision calibration data points; or, less frequently, by proposing spline functions in order to obtain a smoother
curve.

We present a model for the 14C calibration curve which, based on specific characteristics of the dating method, yields a piece-
wise linear curve, but one which rather than interpolating the data points, smooths them. We show that with this specific model
if a piece-wise linear curve is desired, an underlying random walk model is implied as covariance structure (and vice versa).
Furthermore, by making use of all the information provided by the calibration data in a comprehensive way, we achieve an
improvement over current models by getting more realistic variance values for the calibration curve.

INTRODUCTION 

It is well known that due to violations in the original assumptions of the 14C dating method, 14C ages
need to be calibrated onto the calendar scale in order to be of any use for archaeologists, climatolo-
gists and other users of the method. Thus, calibration has become a standard procedure, performed
generally by means of one of the many available calibration programs.

A key element in the calibration process is the actual calibration curve, describing the relationship
between 14C ages and calendar ages. Different approaches have been proposed for this matter. A
simple, yet commonly accepted proposal consists of building the 14C calibration curve by joining the
calibration data points with straight-line segments. Commonly accessible computer calibration pro-
grams such as CALIB (Stuiver and Reimer 1993) and that of Pazdur and Michczynska (1989) follow
this proposal. However, although this has been traditionally considered as the calibration curve—in
fact this is the way in which the high-precision calibration data is commonly presented (see Stuiver
and Pearson 1986 and Pearson and Stuiver 1986, and the most recent internationally agreed high-
precision calibration data set INTCAL98, in the time interval involving dendrochronologically
established calendar ages, Stuiver et al. 1998), it has the shortcoming of failing to reflect the fact that
the calibration data are themselves subject to uncertainty. Randomness in the data means that simply
connecting the calibration data points produces a curve that is almost certainly “more wiggly” than
the underlying true calibration curve.

A less frequent approach consists of adjusting a cubic spline to the calibration data. This kind of
curve has the appeal of having continuity in their slope throughout the time scale, and is considered
by some as the best representation of a natural process (McCormac and Baillie 1993). However, the
use of cubic splines requires the additional input of a “smoothing parameter” S. This parameter takes
values greater or equal to zero, and determines the degree of smoothing of the resulting spline. The
majority of authors who suggest the use of a cubic spline for calibration curve set S = 0, leading to
the “natural cubic spline”, which interpolates the data points—i.e. no smoothing (McCormac and
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Baillie 1993; van der Plicht and Mook 1989; van der Plicht 1993). Thus, once more the uncertainty
in the calibration data is not reflected in the curve. In contrast, any value for S greater than zero
implies that the resulting spline smooths rather than interpolates the calibration data; the greater the
value of S, the smoother the resulting spline. Talma and Vogel (1993) utilize the value S = 1, suggest-
ing that this is the ideal value, on considerations of counting statistics (given that deviations of the
data points from the spline with S = 1 closely obey Gaussian statistics). Although not incorporated
into a calibration program as such, Knox and McFadgen (1997) also aim for a curve such that there
is continuity in the derivatives—i.e. a smooth calibration curve. Their approach is based on the use
of Fourier transformations and other filtering techniques, and results in a curve that does not pass
through the calibration data.

Our work constitutes a model-based approach for estimating the 14C calibration curve. We provide
a statistical model for the relationship between calendar ages and ages obtained through 14C dating
which will acknowledge the uncertainty in the data, as well as taking into account the uncertainty in
the calibration curve itself. Throughout this paper, by “model” we mean statistical model, and by
“data” we mean the observations which make part of the high-precision calibration data. We will
work within the Bayesian framework of Statistics, so the results obtained will be a combination of
all the information about the parameters in the statistical model available a priori (i.e., separately
from having access to the calibration data points), and the information provided by the data. The
importance of incorporating archaeological expert knowledge has been stressed in Buck et al.
(1994). Indeed, this is an area where there will often be expert opinion available about the unknown
quantities (or parameters) of the problem. The prior information may assume an infinitely wide
range of forms, according to the specific problem at hand. Some examples of the incorporation of
prior information in archaeological dating problems can be found in Naylor and Smith (1988), Buck
et al. (1991), Christen and Litton (1995), and Zeidler et al. (1998).

We are aware that the processes underlying the theory behind 14C dating are indeed complex. For
instance, the fact that the calibration of a 14C determination in order to determine the age of the cor-
responding sample depends on elements such as its geographical location, whether it is a marine or
terrestrial sample, etc.

The model we propose relates calendar and 14C ages in a very simple way, and allows for a logical
incorporation of all the information provided by the data—including the uncertainty associated to
each data point. It is based on representing the true calibration curve as a continuously evolving
Gaussian Process, a modeling technique that has been used to represent unknown functions in a
wide variety of statistical problems (e.g., O’Hagan 1992; O’Hagan et al. 1999; Neal 1999). The form
of Gaussian Process that we use is informed by scientific understanding of how the atmospheric 14C
concentration varies over time.

Here we will compare the proposed approach with, on one hand, the approach of Christen (1994),
which constitutes the statistical basis for the recently launched on-line calibration program BCal,
and, on the other, with the much simpler approach taken by at least one of the most commonly used
calibration programs—namely, CALIB—Stuiver and Reimer 1993. (OxCal [Bronk Ramsey 1995]
provides options so that it can also be set to follow the same piece-wise linear approach as CALIB.)

In Section 2 we present the notation and conventions employed throughout the paper, as well as the
format of the data.

Section 3 deals with the modeling of the 14C calibration curve. Here we describe the characteristics
of a Gaussian Process model, and we establish the specific model we propose for the 14C calibration
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curve. Of great importance in the model is the way we handle the uncertainty involved in the pro-
cess. That is, the covariance structure chosen to reflect the influence of any point on the curve on any
other. Hence, we devote attention to deriving a suitable structure and we present it at the end of this
section. (The specific mathematical details are given in the appendix.)

In Section 4 we show that given the covariance structure derived from the properties of the 14C dat-
ing method, and if we are willing to assume a simple random walk model (explained briefly in sub-
section 3.1) for the atmospheric 14C concentration in time (the adequacy of this assumption is briefly
discussed in Section 6), then the resulting calibration curve has the familiar (accepted and com-
monly used) feature of being piece-wise linear. However, and in recognition of the uncertainty
present in the data, the proposed curve it smooths out the data points rather than interpolating them.
Furthermore, by employing the proposed model, we obtain what we consider to be more realistic
variance values than either those obtained by Christen’s methodology (Christen 1994) or those
employed in CALIB (Stuiver and Reimer 1993).

In Section 5 we turn our attention to the calibration of a new 14C determination. We stress the advan-
tage of obtaining not only the posterior moments for its associated calendar year, but the whole pos-
terior distribution. Through an example we illustrate the methodology, showing that by employing
the model based on a Gaussian Process Prior we obtain a more satisfactory result, with more inter-
pretability by eliminating the “wiggles” obtained by Christen’s method and attaining a smoother
posterior distribution for the calendar age associated to the 14C determination calibrated.

Section 6 contains a summary of our results and a discussion of the implications of the model.

Finally, we present a series of appendices with the mathematical details underlying various results
in the paper.

2 NOTATION

Throughout this paper all ages referred to are expressed, as is conventional in the 14C community, in
years before the present (BP), meaning—in practical terms—the number of years before 1950 AD.
This convention prevents dependence of the ages upon the time of the actual dating. Other details of
the notation follow.

Any quantity denoted by a θ will refer to a calendar age, whereas quantities denoted by y’s will refer
to radiocarbon ages. In order to stress whether any particular calendar age actually corresponds to a
datum, a superscript “d” shall indicate, as will be explained in the next subsection, an element of the
high-precision data set. When no superscript is given, it will therefore mean that that particular point
in the calendar scale does not belong to the data set.

The 14C calibration curve r(θ ), represents the true 14C age of the sample, as a function of its true cal-
endar age θ.

2.1 The Data

We have access to a set of data providing information about the relationship between calendar and
14C years. These data are obtained by means of 14C-dating a series of tree-ring samples whose true
calendar age is known exactly. This set is known as the “high-precision calibration data”. Consider-
able effort has been made by the 14C laboratories in order to make their 14C-determined ages as pre-
cise as possible, reporting standard laboratory errors even as small as 10 years, much smaller than
ordinary 14C determinations. (Note that we shall restrict our attention to the calibration data whose
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absolute [i.e. calendar] age is determined by dendrochronology, although the most recent [extended]
14C calibration data set INTCAL98 includes coral results and marine varve chronology as well.)

Denote data sets as . It has the form

(1)

where θ , k = 1, … , n—obtained through dendrochronology, and assumed to be exact for the whole
data set—represents the calendar age of the k-th sample in the high-precision calibration data set. 

The values for θ , k = 1, … , n, as mentioned above, are obtained through dendrochronology
(hence the superscript (d) adopted throughout this paper), and assumed to be exact for the whole
dataset. 

The 14C age of each of the samples used to build the dataset is reported as yk ± σk, k = 1, … , n where
yk, k = 1 represents the age of the k-th tree ring as determined by the laboratory through the 14C dating
method, expressed again in years before the present4. Note that—strictly speaking—the calibration
data correspond to dating of samples of a number (usually 10) of consecutive tree rings; the calendar
age is then established as the time-midpoint of the sample. Therefore, each yk represents the average
14C age of the k-th group of tree rings. However, the 14C content of such wood samples is not neces-
sarily a perfect representation of the atmospheric 14C level of the period they span. Factors such as
variations in tree-ring thickness and the non-uniform formation of the wood throughout each year
cause variable annual 14C contributions to the sample average (Stuiver et al. 1998). The proposal of
Knox and McFadgen (1997) is an attempt of dealing with this issue. Finding an acceptable way of
incorporating this further complexity into the model for the 14C calibration curve is a topic for future
research. For the time being, we adhere to the common simplification that each 14C determination
corresponds to a single calendar age, for the sake of comparability with other approaches for the
modeling of the 14C calibration curve. Nevertheless, we are aware that this issue should be addressed
in order to work towards a more comprehensive and realistic model for the calibration curve.

The values σk, k = 1, … , n, denote the experimental error associated to the determination reported
by the laboratory. This quoted error typically represents ± one standard deviation as determined by
the total number of accumulated counts for that sample, and is not necessarily related to the spread
of ages in mixed samples, to contamination or to other sample conditions (see Gillespie 1984). The
use of so called “error multipliers” is a usual way of trying to overcome the fact that this reported
error fails to reflect all the variability to which the 14C measurements (i.e., the 14C determinations)
are really subject, with respect to the true (but unknown) 14C ages of the samples. (Details of the spe-
cific use of “error multipliers” in the INTCAL98 calibration data can be found in Stuiver et al. 1998.
See also Bowman 1990:41 for further details.) We will not deal with this specific problem; the pro-
posed approach assumes reported errors which accurately reflect the variability of each 14C determi-
nation. Ultimately, “only the laboratory itself can give the necessary information on the reliability of
its error estimates and should be requested to do so,” (Bowman and Leese 1995:103).

4It is conventional to write “BP” for denoting radiocarbon years before the present, and “cal BP” to denote calendar years
after calibration (before the present).
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3 THE MODEL

As mentioned in the introduction, by model we mean a statistical model. In this sense, the problem
under study can be explained in the following terms. We have access to a (finite) set of observations
corresponding to a continuous function that relates calendar and 14C ages. This function is the cali-
bration curve, and the observations are the high-precision calibration data. An additional aspect to
consider is that the observations are subject to error—they are not the exact value of the function
(i.e., the 14C age) for the given knots on the calendar scale.

With this information, the aim is to make inference about the whole calibration curve. That is, we
want to make inference about the function given a set of (noisy) observations.

The basic model for the analysis of the relationship between calendar and 14C ages, both in the Clas-
sical and Bayesian frameworks, is based on the assumption that each 14C determination is normally
distributed, having the “true” (but unknown) 14C age associated to the corresponding calendar year
as mean and the reported laboratory error as standard deviation, and independent from the other
determinations. This is, given the 14C determination y ± σ, then 

(2)

where θ is the true calendar age of the object dated (or associated calendar year), and r(θ) is its
“true” 14C age (as a function of θ, the true calendar age). This basic assumption implies—in partic-
ular—that each of the calibration observations in the high-precision calibration data can be trans-
lated into a similar model, so that 

(3)

3.1 Prior Modeling

We now require a link between the 14C determinations and the calendar ages. This link will be given
precisely by the calibration curve, relating each calendar age θ to its corresponding (unknown) true
14C age r(θ). It is this function that we need to establish a model for.

Our model is statistical, representing expectations and uncertainties about the true calibration curve
r(θ) that might reasonably apply before making use of the high-precision calibration data. Expecta-
tions about the curve are described by

(4)

Thus, it would be reasonable to estimate r(θ) in the absence of any of the high-precision data, by
some multiple of θ. A natural assumption would be to set β = 1, but radiocarbon determinations are
based on a conventional half-life value for 14C that is known to be in error by approximately 3%, and
potentially greater systematic deviations may be caused by a drift over time in atmospheric 14C con-
centration. We therefore allow β to be uncertain a priori. β is technically known as a hyperparame-
ter5 of the model, and we will in effect use the data to learn about its value. This is why the expecta-
tion is written as conditional upon β. We suppose, a priori, that the prior expectation of β is 1, but
with a variance of 1/36, expressing reasonable prior uncertainty about the combined effect of the

5Hyperparameters are those parameters (i.e. unknown quantities) that index the family of prior distributions of the parame-
ters about which we directly wish to make inference (O’Hagan [1994]).
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wrong value for the half-life for 14C used for the determination of 14C dates, and the possible viola-
tion of the assumption that the atmospheric 14C concentration has remained constant through time.
The vast amount of calibration data means that the prior settings will have little weight, compared to
the weight given a posteriori to the information provided by the data.

Of course, we know that the calibration curve is not linear, and that on the contrary it wiggles, some-
times departing from the overall trend by many years. The possible departure of r(θ) from its prior
expectation of βθ is what lends uncertainty to its actual value, and this uncertainty is described by a
variance. Naturally, uncertainty increases with years cal BP, and we represent this by

(5)

Formally, this linear increase of variance with time corresponds to an assumption of an underlying
random walk model, which is developed in the Appendix by drawing on established science con-
cerning the variation of atmospheric 14C concentrations. The constant τ2 in this formula is another
hyperparameter that fixes the overall degree of variation of the curve about its mean. We shall use
the high-precision data to learn about its value, and give it an uninformative prior distribution,
reflecting our prior ignorance about it but give it a prior estimate6 of 25, with considerable initial
uncertainty expressed through Var (τ2) > 1,000,000. The same underlying random walk model that
leads to the variance formula also gives an expression for the prior correlation between the value of
r(θ) at two points on the curve θ1 < θ2, via

(6)

We can see from this that at points close together in time the correlation between the corresponding
values of the calibration curve is high, whereas the correlation is low between distant points. This is
again a natural expression of initial knowledge about the calibration curve prior to seeing any of the
high-precision data. Simply speaking, it says just that we know that r(θ) should be a smoothly vary-
ing (though possibly widely varying if τ2 is large) function over time.

The statistical model is completed by assuming that uncertainty at all points on the curve can be
described by the normal, or Gaussian, distribution. The assumption is made in the same spirit as nor-
mal distributions are commonly assumed in practical statistics. That is, the assumption is convenient
mathematically and will not be implausible in practice. Our analysis will be driven primarily by the
high-precision calibration data, secondarily by the forms of expectation, variance and correlation
that we have presented, and only slightly by the assumption of normality. Technically, assuming nor-
mality at all points of the curve in this way leads to a model known as a Gaussian Process, which has
been employed in a wide variety of other contexts to model unknown functions (see, e.g., O’Hagan
1992; O’Hagan et al. 1999; Neal 1999; Schmidt and O’Hagan 2000). In all such applications, the
key task is to formulate expectations, variances and correlation. Our model in this case is intended
to do so in a way that accurately reflects prior knowledge about the 14C calibration curve.

4 RESULTING RADIOCARBON CALIBRATION CURVE

In this section we present the posterior mean and variance for any point r(θ) on the calibration curve.
We show that there are definite advantages in the methodology we propose, in comparison with both

6These values are chosen arbitrarily; as mentioned above, the vast amount of calibration data means that the prior setting will
have little influence on the posterior results.

( )2 2( ) .Var r θ τ τ θ=

1 2 1 2( ( ), ( )) / .Corr r rθ θ θ θ=
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Christen’s approach (Christen 1994) and with the methodology behind the calibration program
CALIB (Stuiver and Reimer 1993).

In the preceding section we have presented the key features of the prior information, that is, infor-
mation available about the calibration curve r(θ) prior to making use of the high-precision calibra-
tion data. The Bayesian statistical method now combines this prior model with the data to yield a
posterior distribution that synthesizes those two sources of information. Since the whole calibration
curve is an unknown function, this posterior distribution also expresses statistical information jointly
about all points on the curve.

Mathematical details of the derivation of the posterior distribution will be presented in a forthcom-
ing technical paper. However, the most important results are again expectations and variances. In the
next subsection, we describe the posterior mean function which comprises our new estimate of the
14C calibration curve. This new calibration curve is piecewise linear but smooths the high-precision
data points in a new way.

A crucial benefit of a statistical approach to the problem is that we have not just an estimated cali-
bration curve but also a posterior variance to quantify uncertainty about every point r(θ) on the
curve. The nature of our posterior variance function is discussed in subsection 4.2 and compared
with the alternative methodologies of Christen (1994), that is incorporated in the BCal on-line cali-
bration software, and of Stuiver and Reimer (1993), that underlies the CALIB software.

4.1 New Piece-Wise Linear Curve

To describe the new curve, it is convenient to think first about the estimation of the calibration
at the high-precision calibration data points , and then to consider the

estimate of r(θ) between two adjacent data points.

Although the data points are described as “high-precision”, there is still appreciable error in calibra-
tion ages yi, as described by σi. The standard approach of joining the points will, because
of random error, tend to produce a curve that “wiggles” more, with sharper turns and more deviation
from a straight line than the underlying true curve. Our Bayesian approach naturally smooths out the
curve somewhat by posterior estimated values

(7)

that differ from the data values yi. The differences recognize the stated errors σi on those data values,
and of course this limits the degree of smoothing in a way which naturally respects the quality of the
data.

Between data points, it is a property of the random walk model for the prior variation and correla-
tions that the estimated curve interpolates the values linearly. That is, the smoothed data points 
are connected by straight line segments.

Figure 1 shows a section of the calibration curve. Our curve follows the major features of the data
over this region but has smoothed out the sharp localized peaks and troughs that it is reasonable to
suppose may be partly the result of random error in the high-precision data.

We suggest that this smoothed piece-wise linear calibration curve is more realistic than the one that
simply interpolates the calibration data, employed by CALIB, and resulting from Christen’s
approach as well. By making use of the information drawn from all the calibration data (including
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the uncertainty associated to each point) through the Gaussian Process model, it is possible to infer
a more reasonable location of the true 14C ages as a function of the calendar ages.

It is arguable that a completely smooth curve might be even more realistic than a piece-wise linear
one, and indeed we are exploring such a curve via an elaboration of our approach. However, we
believe that it is important for the radiocarbon community to see and evaluate separately the conse-
quence of smoothing out the wiggles in the data at the calibration points while retaining the familiar
piece-wise linear form between those points.

4.2 Posterior Variance for the Radiocarbon Calibration Curve

To describe the posterior uncertainty around the new calibration curve, it is again convenient to think
first about uncertainty at the data points and then at how the uncertainty varies between those
points.

Remember that the Bayesian approach is characterized by synthesizing two sources of informa-
tion—the data and the prior information. This typically results in less uncertainty than would result
from using the data alone. We find in this analysis that the posterior variances at the high-precision
data points is less than the reported error variances of the data alone. That is,

(8)

Figure 1 Comparison of posterior 14C calibration curves (fragment). The proposed approach yields a pos-
terior mean (dotted line) which, in contrast to the one used by CALIB and OxCal and also obtained by
Christen (1994) (solid line with marks representing the data points), smooths out the calibration data
points. This results from the incorporation of the uncertainty in the calibration data into the model. (High-
precision calibration data from Stuiver et al. [1998])

( )d
iθ

2( ) .i iVar r y σ<
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We believe that this is a distinct advantage of our method. In contrast, both BCal and CALIB assume
variances at the data points equal to the reported variances of the radiocarbon determinations.
This is because the methods of Christen (1994) and Stuiver and Reimer (1993) estimate ri simply by
yi. Our method produces lower variances because our model allows the estimation of ri to be based
not just on yi but also on neighboring points, and so uses more information.

Now consider the uncertainty about the curve between data points, and suppose that 
The formula for the posterior variance of r(θ) is complex but can be readily understood in terms of
three components of uncertainty in a piece-wise linear estimating function. We will express these in
general terms that allow us to compare the variance produced by our method with those produced
within BCal and CALIB.

1. First, suppose that we believe that the true calibration curve must be a straight line segment
between r(θi) = ri and r(θi+1) = ri+1. We will be uncertain about ri and ri+1, and represent this in
general terms by variances Vi and Vi+1.

2. Even if we believe that the true curve is definitely piece-wise linear, we should also account for
correlation between ri and ri+1, that we represent by a covariance Ci,i+1. This affects the uncer-
tainty at an intermediate point θ because it measures the extent to which we would expect ri and
ri+1 to be either both above their estimated values or both below, rather than one above and one
below.

3. Of course, nobody believes that the true radiocarbon calibration curve happens to be piece-wise
linear with the linear pieces joined at exactly the dates we have high-precision data for! So there
should be additional uncertainty about how far the curve will deviate from linearity between
adjacent data points. We represent this third component of uncertainty by T.

Using these three uncertainty components, it is possible to express the variance of r(θ) under all
three methods in terms of the general variance formula 

(9)

where we additionally define to be the spacing between the two data points (gener-
ally 10 in the high-precision data) and is the relative position of θ between those
points. 

In our method,  is the posterior variance of  is the posterior
covariance between ri and ri+1, and is the posterior expectation of the hyperparameter
τ2. 

Christen’s method, incorporated in BCal, has , and as already mentioned this means that our
method produces lower variances at the data points. Because Christen estimates each ri on the basis
only of its associated yi, and because the yis are independent, his variance formula correctly corre-
sponds to (9) with Ci,i+1 = 0. Finally, Christen sets T = λ2, where λ is a parameter that accounts for
short-term variability in the atmospheric 14C concentration. Christen directly estimates λ ≈ 19.
Since in our analysis and Ci,i+1 is never larger than 250, it is readily seen that
Christen’s method produces very much larger variances than ours.

Stuiver and Reimer (1993) follow the approach presented earlier in Stuiver and Pearson (1986) of
interpolating standard deviations linearly. This leads to a version of (9) in which ,

 and T = 0. The value for Ci,i+1 corresponds to assuming perfect correlation between ri

and ri+1, which conflicts markedly with Christen’s apparently indisputable analysis that these should
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be independent if ri is estimated solely from yi. Furthermore, assuming T = 0 implies the equally
indefensible belief that the true curve is piece-wise linear. We therefore believe that the variance for-
mula adopted by Stuiver and Reimer, and used in CALIB, has no statistical justification.

Summary of the Variance Calibration

Figure 2 clearly shows the much higher variances given by Christen’s method. We believe that these
are seriously over-pessimistic. Stuiver and Reimer, on the other hand, employ a formula that is
unsupported statistically and fails to recognize interpolation uncertainty properly. We argue that our
approach gives more realistic variances that either of these other methods. 

5 CALIBRATION OF A NEW RADIOCARBON DETERMINATION

The previously described modeling of the calibration curve itself enables us to perform the calibra-
tion of a new radiocarbon determination. (See Naylor and Smith 1988; Buck et al. 1996.) 

Consider the case when we learn the value of a new 14C determination y0 ± σ0. The interest lies in
making inference about the calendar age θ0 associated to the object that is being 14C-dated. It is well
recognized (Bowman 1990) that due to the nature of the calibration curve, the posterior distribution
for the calendar year associated to any particular 14C age y0 ± σ0 is not normal or any other standard
probability distribution, and indeed its form depends on the corresponding section of the calibration
curve (as well as on the reported precision of the new 14C determination). Therefore, simple summa-

Figure 2 Comparison of posterior standard deviations for the 14C calibration curve (fragment). Notice that the standard
deviation resulting from our model (continuous line) is always more moderate than that from Christen’s model (dashed
line). On the other hand, the comparison with the values employed by CALIB and OxCal (dotted line) depends on the
proximity of the point on the calendar scale to any calendar age included in the high-precision calibration data. (High-
precision calibration data from Stuiver et al. 1998.)



Novel Statistical Model 205

ries such as the mean and variance of the posterior distribution for θ0, the associated calendar age,
would fail to convey all the relevant information about its true value, in light of the high-precision
calibration data.

Since we are working within the Bayesian framework, we need to involve all the prior information
that the archaeologist has about the true calendar year in which the organism from which the sample
under analysis is taken, may have died. We believe that in this way the Bayesian approach provides
archaeologists the opportunity to take advantage of all the knowledge they may have about specific
events of interest—in this case, the calendar age of a specific sample. The process of elicitation of
the archaeologists’ information and knowledge concerning the parameter of interest into an appro-
priate statistical prior distribution constitutes itself a whole subject for study and discussion. (See
Buck et al. [1996:359–60] for general comments on prior elicitation.) For the purposes of these
examples, however, we use flat priors for θ0, representing very weak prior information, to facilitate
comparison between our method and others.

The distribution for is required to perform the calibration of the new 14C determina-
tion, and obtaining it involves the use of numerical techniques. A more technical paper (in prepara-
tion) will discuss this issue in greater depth.

5.1 Examples

As a final illustration of the proposed methodology, we present the calibration of two 14C determi-
nations obtained from the same archaeological site. As in Section 4, we will compare our results to
those arising from Christen’s approach, and to the results obtained when using the model employed
by the calibration program CALIB.

The 14C determinations correspond to samples of bone retrieved from the archaeological site known
as the Buttermarket Cemetery in Eastern England (Scull and Bayliss 1999).

Example 1. The first 14C determination corresponds to the sample identified as UB 4074. For this
sample, the 14C-determined age is given as 1419 ± 23.

Figure 3 shows the posterior distribution for the calendar age associated to 14C determination
1419 ± 23, together with that obtained when using Christen’s approach and the model from CALIB.

Although not yielding a radically different result, we notice that with the new approach, the rather
undesirable “wiggles” in the posterior density for the associated calendar year which are particularly
pronounced for Christen’s approach are smoothed out. This can be explained by looking back at Fig-
ure 1, the corresponding section of the (posterior) calibration curve. By making use of the whole set
of data points through the Gaussian Process model to make inference about the 14C calibration
curve, the curve’s posterior variance is smaller than when using the data pairwise. This yields a
smoother posterior distribution for the calendar year associated to a particular 14C determination to
be calibrated.

The “wiggles” in the posterior distribution obtained through Christen’s method (less markedly
resulting from performing the calibration with the methodology from CALIB) may contain an
important part of the posterior probability. To illustrate this, we present in Table 1 the highest poste-
rior density intervals resulting from the three approaches.

2
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Figure 3 Posterior distribution for the calendar year θ0 associated to the 14C determination UB 4074, 1419 ± 23
(example 1). The top plot corresponds to the proposed approach; the middle one results from Christen’s methodol-
ogy, and the bottom one corresponds to the results from CALIB.

Table 1 Highest-posterior-density intervals for the calendar year associated to the determination 
UB 4074

Posterior 
probability

New approach

99% 95% 90%

HPD interval 
(cal BP)

(1280–1372) (1289–1347) (1292–1342)

Length 93 yr 59 yr 51 yr

Posterior 
probability

Christen’s approach

99% 95% 90%

HPD interval 
(cal BP)

(1268–1273) ∪  (1277–1354) ∪
(1356–1393) ∪  (1398–1403) ∪

(1279–1282) ∪  (1286–1353) ∪
(1358–1363) ∪  (1367–1373) ∪
(1377–1383) ∪  (1388–1389) ∪

(1287–1352) ∪
(1368–1371) ∪

(1380–1381)

Length 128 yr 94 yr 72 yr

Posterior 
probability

CALIB

99% 95% 90%

HPD interval 
(cal BP)

(1283–1354) ∪  (1360–1387) (1289–1348) (1293–1345)

Length 100 yr 60 yr 53 yr
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The “wiggles” in the posterior distribution, thus, make inference about the calendar age associated
to the new 14C determination difficult, due to the resulting disjoint intervals containing the desired
posterior probability.

Example 2. The second example, taken from the same archaeological site, allows for similar conclu-
sions. In fact, in this case the resulting HPD’s for both Christen’s approach and that from CALIB are
made up of even a greater number of disjoint subintervals. 

The sample in this case is identified as UB 4077, and the 14C determination to be calibrated is given
by 1476 ± 24.

Notice that although both 14C determinations had a very similar reported standard error, in this sec-
ond case the associated calendar age has a larger posterior variance. Indeed, the posterior distribu-
tion for the calendar age associated to 14C determination 1476 ± 24 is more spread out, as is shown
in Figure 4. This is due to the section of the calibration curve corresponding to each of these 14C
determinations; the section which includes the first determination is more steep than the section cor-
responding to the second determination shown here. Thus, the calibration onto the calendar scale is
more spread out for this second example.

Again, we present the resulting highest posterior density intervals resulting from the three
approaches (Table 2).

Figure 4 Posterior distribution for the calendar year θ0 associated to the 14C determination UB 4077, 1476 ± 24
(example 2). The top plot corresponds to the proposed approach; the middle one results from Christen’s method-
ology, and the bottom one corresponds to the results from CALIB.
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6 DISCUSSION

We propose the use of a Gaussian Process model for the 14C calibration curve that takes into account
all the information provided by the data while at the same time acknowledging the uncertainty
present in the calibration data. This produces posterior results that seem more realistic than those
resulting from the approaches considered here (corresponding to Christen’s methodology and to that
used by the computer calibration program CALIB). Firstly, because the resulting posterior mean cal-
ibration curve smooths the data points rather than interpolating them; and secondly because the pos-
terior variances for each point on the 14C calibration curve seem more realistic by incorporating
information from all the data points. The considerable reduction in variance values for points on the
calibration curve (compared to those from Christen’s method) is the result of the comprehensive use
of the data implied by the proposed model. The way in which the variance values grow as we move
away from the calendar ages included in the calibration data set is due to the specific correlation
structure presented in Section 3, which determines a piece-wise linear mean for the calibration
curve; this is a characteristic missing from the variance estimates from CALIB.

As a consequence of this, the related problem of calibrating a new 14C determination has also a more
satisfactory solution, as the resulting posterior distributions for the calendar (i.e., calibrated) age
associated to the new 14C determination appear easier to interpret without the “wiggles” that com-
monly arise from Christen’s approach and, to a lesser extent, from the model used by CALIB, as in
the examples presented here.

It is clear that the covariance function plays a fundamental role in the model, and it determines fea-
tures of the resulting posterior calibration curve such as smoothness and differentiability. The par-
ticular choice of covariance structure presented here is derived from a Random Walk model for the
auxiliary process given by the atmospheric 14C concentration in time. We are fully aware that in real-
ity such process has a much more complex structure. Nevertheless, our choice, on the one hand, con-
stitutes the simplest possible model accounting for the non-stationarity of the 14C concentration in
time. On the other hand, it determines the piece-wise linear nature of the resulting posterior calibra-

Table 2 HPD intervals for the calendar year associated to the determination UB 4077
Posterior 
probability

New approach

99% 95% 90%

HPD interval 
(cal BP)

(1304–1412) (1313–1405) (1315–1398)

Length 109 yr 93 yr 84 yr

Posterior 
probability

Christen’s approach

99% 95% 90%

HPD interval 
(cal BP)

(1291–1294) ∪  (1296–1421) ∪  (1430–1432) ∪
(1437–1442) ∪  (1448–1452) ∪  (1457–1462) ∪
(1467–1474) ∪  (1476–1483) ∪  (1488–1491) ∪

(1498–1503) ∪  (1507–1512)

(1299–1304) ∪
(1306–1413)

(1312–1394) ∪
(1396–1408)

Length 182 yr 114 yr 98 yr

Posterior 
probability

CALIB

99% 95% 90%

HPD interval 
(cal BP)

(1301–1414) (1311–1394) ∪
(1396–1407)

(1312–1323) ∪
(1327–1393) ∪

(1399–1406)

Length 114 yr 96 yr 87 yr
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tion curve, which makes it straightforward to perform comparisons between the proposed approach
and those corresponding to the currently most commonly used calibration programs. Thus, we have
illustrated—through a simple structure—the advantages of adopting the proposed modeling
approach for the 14C calibration curve. Ongoing research will examine the sensitivity and conse-
quences of alternative choices for the covariance structure.
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APPENDIX

The treatment we propose for the variability of the calibration curve (expressed as the covariance
function v(θ, θ*)) involves the modeling of an auxiliary process. In order to produce the covariance
structure required in the model, we notice (Christen 1994) that there exists a strong relationship
between the calibration curve and an auxiliary process given by the atmospheric 14C concentration
through time. Therefore a model for the atmospheric 14C concentration will provide us with a useful
structure to incorporate as covariance structure in the original model for the calibration curve. Our
proposal for the covariance structure arises from assuming that the process ∆(θ)7, which describes
the variations in the atmospheric 14C concentration, behaves as a Random Walk. That is, we assume
that the variation from one period to the next (e.g. from year to year) in the level of ∆(θ) is purely
random (or “white noise”). We are aware that many elements affect the behavior of this ∆14C pro-
cess, such as geomagnetism and the 11-year sunspot cycle. However, our position here is to keep the
model as simple as possible in order to facilitate the analysis. On the other hand, the idea of consid-
ering the variations in the atmospheric 14C concentration as a purely random element might not be
unreasonable to such extent as to dismiss this initial structure. Furthermore, the consequences of this
choice of covariance structure (namely, the piece-wise linearity of the resulting calibration curve)
can contribute to its appeal.

From the law of exponential decay, we know that 

(1)

where ξ is the mean-life value for 14C,8 M(θ) represents the atmospheric 14C/12C ratio at time θ cal
BP, and M0 is the value of the modern standard for this ratio. A common way of expressing M(θ) is
through the auxiliary process ∆14C, which we denote ∆(θ) for (mathematical) formality, defined as 

. (2)

Therefore, 

(3)

7This process is known in the 14C community as ∆14C; here, we are only making explicit the time dependence of this process.
8For Libby’s value of for the half-life of 14C, the corresponding mean-life is ξ = 8033.
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Given that the values for 10−3∆(θ) “small” (Christen 1994), the Taylor series approximation
log [10−3∆(θ) + 1] ≈ [10−3∆(θ)] can be used. So,

(4)

This auxiliary process ∆(θ) represents the variation of the atmospheric 14C concentration at moment
θ BP with respect to the modern level (M0). It is clear from the expression above that it constitutes a
strong influence for the relationship between calendar ages (θ) and 14C ages (r(θ)).

The simplest model for incorporating a non-constant behavior assumes that the variations in the
level (magnitude) of the variable occurring from year to year can be considered as pure random fluc-
tuations. This assumption defines a Random Walk Process model for ∆(θ).

∆(θ) = ∆(θ−1) + εθ; (5)

where {εt} represents the random error process such that each εt follows a Normal distribution with
mean zero and variance . Hence,

(6)

where represents the first difference operator .

Now we incorporate this information into the expression for the first difference of r(θ):

(7)

Therefore 

, (8)

and so, assuming the existence of a starting point r(0) in the series, we can write 

(9)

where now . We know that r(0) = 0; therefore 
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where is in fact the variance of the white noise process defined as the first difference of the series
∆(θ). So, the proposal for the covariance function υ(θ,θ*) arises from this time series analysis, and
is given by . Notice that , the variance of the process

, is formally unknown. In section 3.1, we have denoted the whole factor by the
unknown parameter . Thus,

(11)
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