
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's Reports

2021

HIGH PERFORMANCE SPECTRAL METHODS FOR GRAPH-BASED HIGH PERFORMANCE SPECTRAL METHODS FOR GRAPH-BASED

MACHINE LEARNING MACHINE LEARNING

Yongyu Wang
Michigan Technological University, yongyuw@mtu.edu

Copyright 2021 Yongyu Wang

Recommended Citation Recommended Citation
Wang, Yongyu, "HIGH PERFORMANCE SPECTRAL METHODS FOR GRAPH-BASED MACHINE LEARNING",
Open Access Dissertation, Michigan Technological University, 2021.
https://doi.org/10.37099/mtu.dc.etdr/1160

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://doi.org/10.37099/mtu.dc.etdr/1160
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F1160&utm_medium=PDF&utm_campaign=PDFCoverPages

HIGH PERFORMANCE SPECTRAL METHODS FOR GRAPH-BASED

MACHINE LEARNING

By

Yongyu Wang

A DISSERTATION

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

In Computer Engineering

MICHIGAN TECHNOLOGICAL UNIVERSITY

2021

© 2021 Yongyu Wang

This dissertation has been approved in partial fulfillment of the requirements for the

Degree of DOCTOR OF PHILOSOPHY in Computer Engineering.

Department of Electrical And Computer Engineering

Dissertation Co-advisor: Dr. Chee-Wooi Ten

Dissertation Co-advisor: Dr. Zhuo Feng

Committee Member: Dr. Zhenlin Wang

Committee Member: Dr. Laura E. Brown

Department Chair: Dr. Glen E. Archer

Contents

List of Figures . ix

List of Tables . xi

Preface . xiii

Abstract . xv

1 Introduction . 1

1.1 Background . 1

1.2 Challenges . 2

1.3 Clustering . 2

1.3.1 k-means . 3

1.3.2 Graph Clustering . 4

1.3.3 Evaluation Metrics . 5

1.3.3.1 Clustering Accuracy (ACC) 6

1.3.3.2 Normalized Mutual Information (NMI) 6

1.4 Contributions . 7

v

2 Related Work . 9

2.1 Graph Construction Methods . 10

2.1.1 k-Nearest Neighbor Graph 10

2.1.2 ε-Neighborhood Graph . 11

2.1.3 Consensus Method . 12

2.1.4 Graph Learning Methods . 12

2.1.5 Summary . 14

2.2 Graph Laplacian Matrix . 14

2.3 Spectral Graph Sparsification . 16

2.4 Spectral Clustering . 17

2.4.1 Background . 17

2.4.2 Approximation Algorithms 20

2.4.3 Observations . 22

3 Towards Scalable and High-Quality Spectral Clustering via

Spectrum-Preserving Sparsification 27

3.1 Motivation . 27

3.2 Methods for Accelerating Spectral Clustering 28

3.2.1 Fast Approximate Spectral Clustering 28

3.2.2 Nyström Method . 29

3.2.3 Landmark-based Spectral Clustering 31

3.3 Spectrum-Preserving Sparsification 31

vi

3.4 A Scheme for Eigenvalue Stability Checking 32

3.5 Algorithm Flow and Complexity Analysis 32

3.6 Experiments . 33

3.6.1 Data Sets . 34

3.6.2 The Effectiveness of Spectrally Critical Off-tree Edges for Spec-

tral Clustering . 34

3.6.3 Spectral Stability Checking Results 36

3.6.4 Clustering Results and Comparison 38

3.7 Summary . 41

4 GRASPEL: Graph Spectral Learning 43

4.1 Background . 44

4.1.1 Multivariate Gaussian Distribution 44

4.1.2 Maximum Likelihood Estimation 46

4.1.3 Graphical Lasso . 47

4.2 Our Method . 50

4.2.1 Spectral Analysis . 50

4.2.2 Clustering-Informative Edge 58

4.2.3 Embedding Distortion . 59

4.2.4 A Distortion-based Edge Sampling Method 60

4.2.5 Edge Weight Calculation . 62

4.2.6 Detailed Steps in GRASPEL 64

vii

4.2.6.1 Initial Graph Construction 64

4.2.6.2 Critical Edge Identification 65

4.2.6.3 Termination Criterion 65

4.2.7 Algorithm Flow and Complexity Analysis 66

4.3 Experiments . 66

4.3.1 Spectral Stability Checking Results 68

4.3.2 Convergence Results . 68

4.3.3 Clustering Results and Comparison 70

4.4 Summary . 78

5 Conclusions And Future Work . 79

5.1 Conclusions . 79

5.2 Future Work . 80

References . 83

viii

List of Figures

1.1 Visualization of clusters in handwritten digits USPS data set. . . . 3

1.2 Graph clustering. 5

2.1 The 2-NN graph . 10

2.2 Clustering result without the constraint on cluster size. 18

2.3 Performance of k-means and spectral clustering 23

(a) k-means of the two moons data set 23

(b) Spectral clustering of the two moons data set 23

(c) k-means of the two circles data set 23

(d) Spectral clustering of the two circles data set 23

3.1 The proposed framework for scalable spectral clustering. 33

3.2 ACC VS off-tree edge budget b. 35

3.3 NMI VS off-tree edge budget b. 35

3.4 Variation ratio of bottom eigenvalues with increasing number of off-tree

edges. 37

3.5 The graph corresponding to the original adjacency matrix 41

3.6 The spanning tree of the original graph 41

ix

3.7 The sparsified graph corresponding to the adjacency matrix with b=0.1

. 42

4.1 One-dimensional Gaussian distribution 44

4.2 Two-dimensional Gaussian distribution 46

4.3 Variation ratio of bottom eigenvalues with increasing number of itera-

tions . 69

4.4 ACC with increasing number of iterations 71

4.5 NMI with increasing number of iterations 72

4.6 Graph complexity with increasing number of iterations 73

4.7 Clustering accuracy comparison . 76

4.8 Clustering time comparison . 77

4.9 Graph learning (construction) time comparison 77

4.10 Graph density comparison . 78

x

List of Tables

3.1 Statistics of data sets. 34

3.2 ACC with increasing off-tree edge budget b 36

3.3 NMI with increasing off-tree edge budget b 36

3.4 Spectral stability checking results 37

3.5 Clustering accuracy (%) . 38

3.6 Clustering time (seconds) . 39

3.7 Graph complexity comparison . 39

4.1 Spectral stability checking results 68

4.2 Convergence results . 69

4.3 Graph complexity results . 70

4.4 Clustering results of the consensus method with different threshold

values . 71

4.5 ACC and NMI results . 72

4.6 Spectral clustering time results (seconds) 73

4.7 Graph density results . 74

4.8 Graph learning (construction) time results 74

xi

Preface

The material described in Chapter 4 has been submitted for review and publication.

xiii

Abstract

Graphs play a critical role in machine learning and data mining fields. The success

of graph-based machine learning algorithms highly depends on the quality of the

underlying graphs. Desired graphs should have two characteristics: 1) they should

be able to well-capture the underlying structures of the data sets. 2) they should

be sparse enough so that the downstream algorithms can be performed efficiently on

them.

This dissertation first studies the application of a two-phase spectrum-preserving

spectral sparsification method that enables to construct very sparse sparsifiers with

guaranteed preservation of original graph spectra for spectral clustering. Experiments

show that the computational challenge due to the eigen-decomposition procedure in

spectral clustering can be fundamentally addressed.

We then propose a highly-scalable spectral graph learning approach GRASPEL (

Graph Spectral Learning at Scale). GRASPEL can learn high-quality graphs from

high dimensional input data. Compared with prior state-of-the-art graph learning

and construction methods [26, 27, 38] , GRASPEL leads to substantially improved

algorithm performance.

xv

Chapter 1

Introduction

1.1 Background

Graph-based methods play an important role in many data mining and machine

learning tasks, such as data representation and analysis, dimensionality reduction,

and clustering. A key step of graph-based methods requires representing relationship

between data points by graphs: it is a common practice to represent each data point as

a node, and use weighted edges to represent relations between nodes. The constructed

graph can be used to represent the underlying structure (manifold) of the data set.

1

1.2 Challenges

The graph is at the heart of graph-based methods. It has significantly effect on the

performance of the methods [25, 32, 34]. However, how to construct a meaningful

graph from the data set remains a challenging problem. Desired graph construction

algorithms should allow good capturing and understanding of the global structure

(manifold) of the data set while producing sufficiently sparse graphs that can be easily

stored and efficiently manipulated in the downstream algorithms. Additionally, the

graph construction process should be efficient.

1.3 Clustering

Clustering is one of the most fundamental tasks in machine learning and data mining

fields. It aims to assign data samples in a data set into different clusters in such a

way that samples in the same cluster are more similar compared to those in different

clusters, as shown in Figure 1.1. It has been widely used in many contexts such

as content analysis, information retrieval, web analytics, image segmentation, and

computational biology [7, 58].

2

-60 -40 -20 0 20 40 60 80

-60

-40

-20

0

20

40

60

1

2

3

4

5

6

7

8

9

10

Figure 1.1: Visualization of clusters in handwritten digits USPS data set.

1.3.1 k-means

k-means is the most widely used clustering method [8]. The goal of k-means is to find

a cluster membership assignment that minimizes the following objective function:

F =
n∑
i=1

k∑
j=1

ηij‖xi − µj‖2, (1.1)

where:

3

ηij =

1 if xi ∈ Cj

0 otherwise ,

(1.2)

and µj is the centroid of the cluster Cj.

The algorithm is shown in Algorithm 1.

Algorithm 1 k-means

Input: Data samples x1, ..., xn ∈ Rd, number of clusters k.
Output: Clusters C1,...,Ck.

1: Randomly choose k samples as the initial centroids ;
2: while convergence criterion not met do
3: Form k clusters by assigning each sample to the nearest centroid;
4: Update centroids by calculating the mean of each cluster ;
5: end while

1.3.2 Graph Clustering

Due to the effectiveness of graph structure for representing and exploiting intrinsic

data characteristics, graph clustering has gained great attention in recent years. It is

a task to discover clusters in a graph, where each cluster is well-connected internally

and with sparse connections between clusters, as shown in Figure 1.2

Graph clustering has superior performance compared to traditional clustering meth-

ods [42]. However, to perform graph clustering on a data set, a graph is required to

be learned (constructed) from the data set.

4

Figure 1.2: Graph clustering.

1.3.3 Evaluation Metrics

We evaluate the clustering quality by comparing the labels of each sample obtained

by performing clustering algorithms with the ground-truth labels provided by the

data set. Two metrics are commonly used: the clustering accuracy (ACC) metric,

and the normalized mutual information (NMI) metric.

5

1.3.3.1 Clustering Accuracy (ACC)

The clustering accuracy (ACC) [9, 10, 31] is defined as follows:

ACC =

n∑
i=1

δ(yi,map(ci))

n
, (1.3)

where n is the number of data samples in the data set, yi is the ground-truth label

provided by the data set, and ci is the label generated by the clustering algorithm.

δ(x, y) is a delta function defined as: δ(x, y)=1 for x = y, and δ(x, y)=0, otherwise.

map(•) is a permutation function that maps each cluster index ci to a ground truth

label, which can be realized using the Hungarian algorithm [37]. A higher value of

ACC indicates a better clustering accuracy.

1.3.3.2 Normalized Mutual Information (NMI)

For two random variables P and Q, normalized mutual information is defined as [49]:

NMI =
I(P,Q)√
H(P)H(Q)

, (1.4)

where I(P,Q) denotes the mutual information between P and Q, while H(P) and

H(Q) are entropies of P and Q. In practice, the NMI metric can be calculated as

6

follows [49]:

NMI =

k∑
i=1

k∑
j=1

ni,j log(
n·ni,j

ni·nj
)√

(
k∑
i=1

nilog ni

n
)(

k∑
j=1

njlog
nj

n
)

, (1.5)

where n is the number of data samples in the data set, k is the number of clusters, ni is

the number of data samples in cluster Ci according to the clustering result generated

by the algorithm, nj is the number of data samples in cluster Cj according to the

ground-truth labels provided by the data set, and ni,j is the number of data samples

in cluster Ci according to the clustering result as well as in class Cj according to the

ground-truth labels. The NMI value is in the range of [0, 1], while a higher NMI

value indicates a better matching between the algorithm generated result and the

ground-truth result.

1.4 Contributions

The first contribution of this dissertation is a study of the use of a spectrum-

preserving spectral graph sparsification method [16] for spectral graph clustering.

We use it for sparsifying large nearest neighbor graphs that reduce the cost of eigen-

decomposition of the Laplacian matrices. The experiments conducted in this work

demonstrate the effectiveness of the spectrally-critical off-tree edges used in spectral

7

sparsification tool on spectral clustering, as they can improve the clustering perfor-

mance. A new scheme for spectral stability checking is proposed. It can be used as

the termination criterion in spectral graph sparsification and spectral graph learning

methods.

The second contribution of this dissertation is GRASPEL (Graph Spectral

Learning at Scale), a spectral method for graph learning from data. We show the clear

connection between our method and the GSP-based Laplacian estimation methods.

The proposed method includes a novel critical edge identification method and a new

edge sampling method based on spectral embedding distortion. We show through

extensive experiments that our approach can learn high-quality graphs without sac-

rificing the sparsity: the learned graphs can be immediately leveraged to significantly

improve the efficiency and accuracy of spectral clustering tasks.

8

Chapter 2

Related Work

In this chapter, we review existing graph construction (learning) methods, basic spec-

tral graph theory concepts, and spectral clustering algorithms. In section 2.1, we re-

view the traditional and state-of-the-art graph construction methods. In section 2.2,

we review the graph Laplacian matrix. In section 2.3, we review the graph sparsifi-

cation technique. Then, we review the derivation of spectral clustering and provide

some observations in section 2.4.

9

2.1 Graph Construction Methods

Graph construction is an important step in graph clustering and many other machine

learning tasks such as graph-based semi-supervised learning. In this section, a brief

review of several popular graph construction methods is provided.

2.1.1 k-Nearest Neighbor Graph

Figure 2.1: The 2-NN graph

The k-nearest neighbor (k-NN) graph is commonly used in practice. As shown in

Figure 2.1, each node is connected to its k nearest neighbors. The algorithm is shown

in Algorithm 2.

The k-NN graph can capture the local manifold structure. It also has good robustness

10

Algorithm 2 k-NN graph construction

Input: Data samples x1, ..., xn ∈ Rd, neighborhood size k.
Output: Graph G.

1: for each data sample xi do
2: Compute distances between xi and all the other data samples;
3: Sort the computed distances;
4: Connect xi with its k nearest data samples;
5: end for

to outliers [39]. However, the k-NN graph has the following drawbacks: 1) The

optimal k value is usually problem-dependent and can be very difficult to find. 2)

A k-NN graph has the tendency to include noisy edges [57], which are the edges

representing false neighborhood relationships . 3) The fixed-size neighborhood limits

the capability of the k-NN graph in representing the manifold structure [38].

2.1.2 ε-Neighborhood Graph

In ε-neighborhood graph, each node is connected to all the neighbors within a range of

distance ε. But the proper ε value can be very difficult to find or does not exist when

different clusters have different radii. Compared to the k-NN graph, ε-neighborhood

graph is much less often used.

11

2.1.3 Consensus Method

The consensus of a pair of node is measured by the times that they appear together

in other nodes’ neighborhoods. The consensus method aims to construct the graph

via the “true” neighborhood [38]. The consensus information is extracted from a

provided k-NN graph for pruning noisy edges and the edges with a consensus value

less than a threshold are dropped. However, it relies on the consensus information

only. Some useful structural information can be discarded. The algorithm is shown

in Algorithm 3.

Algorithm 3 Consensus Method

Input: Data samples x1, ..., xn ∈ Rd, neighborhood size k, threshold τ .
Output: Graph G.

1: Construct a k-NN graph;
2: Extract the consensus matrix C from the k-NN graph;
3: for Each edge(p, q) in the k-NN graph do
4: if C(p,q)<τ then
5: Remove edge(p, q) from the graph
6: end if
7: end for

2.1.4 Graph Learning Methods

Several recent graph learning methods leverage emerging graph signal processing

(GSP) techniques for estimating sparse graph Laplacians, which show very promising

results [13, 14, 15, 26]. For example, [15] addresses the graph learning problem by

12

restricting the precision matrix to be a graph Laplacian and maximizing a posterior

estimation of Gaussian Markov Random Field (GMRF), while an l1-regularization

term is used to promote graph sparsity; [40] provides error analysis for inferring sparse

graphs from smooth signals; [27] leverages an approximate nearest-neighbor (ANN)

technique to reduce the number of variables for optimization. However, the standard

Laplacian estimation methods for graph learning require at least O(n2) time in each

iteration, restricting their application to large-scale data sets.

The GSP-based methods infer the graph by adopting the criterion of signal smooth-

ness [13]. Recent methods enforce the sparsity and smoothness of signals by formu-

lating the task as the following optimization problem :

min
W∈W

: Tr(WZ) + f(W), (2.1)

where W denotes the set of valid adjacency matrices and Z denotes the pairwise

distance matrix. It is obvious that the first term enforces the smoothness of the

observed signals on the learned graph, while the second term is for imposing sparsity

of the learned graph. In recent years, different forms of f(W) have been proposed.

For example, the following form has been introduced in [26]:

13

f(W) = −α1T log(W1) +
1

2
β‖W‖2

F , (2.2)

where the first term is used to prevent the corresponding adjacency matrix W from

obtaining the trivial solution W = 0, and the second term is for controlling the

sparsity of the learned graph.

2.1.5 Summary

Typically graph construction is based on either neighborhood connection, or on graph

learning through solving optimization problems [13, 26]. A few representative meth-

ods for graph construction is reviewed in this section.

2.2 Graph Laplacian Matrix

Consider a graph G = (V,E,w), where V and E denote the vertex set and edge set,

respectively, while w denotes the weight (similarity) function that assigns positive

weights to all edges.

The adjacency matrix of graph G is defined as:

14

AG(p, q) =

w(p, q) if (p, q) ∈ E

0 otherwise .

(2.3)

The degree of a vertex i in graph G is defined as:

deg(i) =
∑

(j 6=i)∈V

w(i, j). (2.4)

The degree matrix of graph G is defined as:

DG(p, q) =

deg(p) if (p = q)

0 otherwise .

(2.5)

The unnormalized Laplacian matrix of graph G is defined as:

LG = DG − AG. (2.6)

The elements of LG are given by:

15

LG(p, q) =

−w(p, q) if (p, q) ∈ E

∑
(p,t)∈E

w(p, t) if (p = q)

0 otherwise .

(2.7)

The graph Laplacian matrix plays a central role in spectral graph theory. The eigen-

values and eigenvectors of the matrix are useful for studying the properties and struc-

ture of a graph [12].

2.3 Spectral Graph Sparsification

A σ-spectrally similar sparisifer P of the original graph G should be able to hold the

following condition for all real vectors x ∈ RV by using the the same set of vertices

of G, but much fewer edges:

x>LPx

σ
≤ x>LGx ≤ σx>LPx. (2.8)

The relative condition number is defined as:

16

κ(LG,LP) =
λmax(L

+
PLG)

λmin(L+
PLG)

, (2.9)

where L+
P denotes the Moore-Penrose pseudoinverse of LP .

It can be shown that κ(LG,LP) = σ2 [16]. The goal of spectral graph sparsification

is to find a sparsifier P that leads to a small relative condition number.

2.4 Spectral Clustering

Spectral clustering uses the spectrum of the graph Laplacian matrix to perform spec-

tral embedding and divide data samples into different clusters. The methods proposed

in this dissertation can significantly improve the performance of spectral clustering.

2.4.1 Background

Consider a problem of partitioning the nodes of graph G into two disjoint sets, C1,

C2. The cut of the partition is defined as:

Cut(C1, C2) =
∑

p∈C1,q∈C2

w(p, q). (2.10)

17

If the goal of clustering is set to find a partition that minimizes the cut, it has the

tendency of cutting small sets of isolated nodes in the graph, as shown in Figure 2.2.

Figure 2.2: Clustering result without the constraint on cluster size.

To avoid this problem, sizes of clusters should be “reasonably large” [52]. To this

end, RatioCut [23] and normalized cut Ncut [43] have been proposed.

Consider a more general problem of partitioning the nodes of graph G into k clusters

C1, C2,...,Ck, the RatioCut is defined as:

RatioCut(C1, ..., Ck) =
k∑
i=1

cut(Ci, Ci)

|Ci|
, (2.11)

where |Ci| denotes the number of samples in cluster Ci.

And the normalized cut Ncut is defined as:

18

Ncut(C1, ..., Ck) =
k∑
i=1

cut(Ci, Ci)

vol(Ci)
, (2.12)

where

vol(Ci) =
∑

p∈Ci,q∈V

w(p, q). (2.13)

Then, the objective of graph clustering can be set to find a cluster membership that

minimizes the RatioCut or the Ncut:

min
C1,...,Ck

RatioCut(C1, ..., Ck)

s.t.

C1 ∪ ... ∪ Ck = V ;

C1 ∩ ... ∩ Ck =∅.

(2.14)

min
C1,...,Ck

Ncut(C1, ..., Ck)

s.t.

C1 ∪ ... ∪ Ck = V ;

C1 ∩ ... ∩ Ck =∅.

(2.15)

However, both optimization problems are NP-complete[53].

19

2.4.2 Approximation Algorithms

By taking advantage of the spectral graph theory, approximate solutions of (2.14)

and (2.15) can be found.

Consider a graph G = (V,E,w), where |V | = n. The number of clusters is k. A

matrix M ∈ Rn×k is defined as:

M(i, j) =

1√
|Cj|

if V (i) ∈ Cj

0 otherwise .

(2.16)

It has been shown that [52]:

RatioCut(C1, ..., Ck) = Tr(M>LGM). (2.17)

Thus we can solve (2.14) by solving the trace-minimization problem. By relaxing

the entries of the matrix M to take arbitrary real values, the Rayleigh-Ritz theorem

shows that the optimal solution is given by choosing M as the matrix which contains

the eigenvectors corresponding to the k smallest eigenvalues of LG as columns.

20

Due to the relaxation, each row in the matrix M no longer has only one non-zero

entry, so we cannot obtain cluster membership of each node from M directly. To solve

this problem, k-means algorithm is used to partition the n rows of M into k clusters.

The cluster membership of the i-th row is assigned to the i-th node. This derivation

leads to the unnormalized spectral clustering algorithm (as shown in Algorithm 4).

Algorithm 4 Unnormalized Spectral Clustering

Input: Data samples x1, ..., xn ∈ Rd, number of clusters k.
Output: Clusters C1,...,Ck.

1: Construct a graph G from the input data;
2: Compute the adjacency matrix AG and diagonal matrix DG of graph G ;
3: Obtain the unnormalized Laplacian matrix LG=DG-AG;
4: Compute the eigenvectors u1,...,uk that correspond to the bottom k nonzero eigenvalues

of LG;
5: Construct U ∈ Rn×k, with the k eigenvectors stored as column vectors;
6: Perform k-means algorithm to partition the rows of U into k clusters and return the

result.

Similarly, based on the normalized cut Ncut, a normalized spectral clustering can be

derived (as shown in Algorithm 5).

Algorithm 5 Normalized Spectral Clustering (Ncut)

Input: Data samples x1, ..., xn ∈ Rd, number of clusters k.
Output: Clusters C1,...,Ck.

1: Construct a graph G from the input data;
2: Compute the adjacency matrix AG and diagonal matrix DG of graph G ;
3: Obtain the unnormalized Laplacian matrix LG=DG-AG;
4: Compute the normalized Laplacian matrix LGrw = D−1

G LG;
5: Compute the eigenvectors u1,...,uk that correspond to the bottom k nonzero eigenvalues

of LGrw;
6: Construct U ∈ Rn×k, with the k eigenvectors stored as column vectors;
7: Perform k-means algorithm to partition the rows of U into k clusters and return the

result.

The Laplacian matrix used in Algorithm 5 is denoted as LGrw because it has close

21

relation to random walk.

Using the eigenvectors in a slight different way, another normalized spectral clustering

algorithm has been proposed [35]. It is shown in Algorithm 6.

Algorithm 6 Normalized Spectral Clustering Proposed by Ng, Jordan, and Weiss

Input: Data samples x1, ..., xn ∈ Rd, number of clusters k.
Output: Clusters C1,...,Ck.

1: Construct a graph G from the input data;
2: Compute the adjacency matrix AG and diagonal matrix DG of graph G ;
3: Obtain the unnormalized Laplacian matrix LG=DG-AG;

4: Compute the normalized Laplacian matrix LGsym = D
−1/2
G LGD

−1/2
G ;

5: Compute the eigenvectors u1,...,uk that correspond to the bottom k nonzero eigenvalues
of LGsym;

6: Construct U ∈ Rn×k, with the k eigenvectors stored as column vectors;
7: Normalize the rows in U to norm 1
8: Perform k-means algorithm to partition the rows of U into k clusters and return the

result.

The Laplacian matrix used in Algorithm 6 is denoted as LGsym because it is a sym-

metric matrix.

2.4.3 Observations

Spectral clustering has a strong ability in detecting non-convex and linearly non-

separable patterns [35]. It is often more effective than traditional clustering algo-

rithms such as k-means. This section aims to illustrate the important role that the

spectrum plays in helping spectral clustering algorithm achieve its goal of detecting

clusters from the data set. We also illustrate the computational complexity of the

22

spectral clustering approaches.

k-means often fails to handle complicated geometric shapes, especially the non-convex

shapes. For example, the two moons and two circles are well-known synthetic data

sets. In the two moons data set, there are two slightly entangled non-convex shapes,

where each cluster corresponds to a moon. In the two circles data set, the samples

are arranged in two concentric circles, where each cluster corresponds to a circle.

k-means gives incorrect clustering results for both data sets while spectral clustering

performs an ideal clustering, as shown in Figure 2.3.

-60 -40 -20 0 20 40 60 80 100 120

-30

-20

-10

0

10

20

30

40

50

60

1

2

(a) k-means of the two moons data set

-60 -40 -20 0 20 40 60 80 100 120

-30

-20

-10

0

10

20

30

40

50

60

1

2

(b) Spectral clustering of the two moons
data set

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

1

2

(c) k-means of the two circles data set

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

1

2

(d) Spectral clustering of the two circles
data set

Figure 2.3: Performance of k-means and spectral clustering

k-means provides incorrect clustering results because it only cares about the distance.

23

It aims to minimize the total distances between each data point and its corresponding

cluster centroid. In contrast, spectral clustering cares about the connectivity. Eigen-

values of graph Laplacian are referred to as the “algebraic connectivity” of the graph

[12]. The connectivity information is embedded in the spectrum of the graph Lapla-

cian matrix. Therefore, when manipulating the graph used in the spectral clustering

algorithm, it is critical to preserve its spectrum.

Although spectral methods have many advantages, such as easy implementation,

good clustering quality and rigorous theoretical foundations [28, 30], the high com-

putational cost due to the involved eigen-decomposition procedure can immediately

hinder their applications in emerging big data (graph) analytics tasks [9]. The eigen-

decomposition procedure has a time complexity of O(n3), where n is the number of

data points.

In recent years, the software package ARPACK is widely used for solving large-

scale problems [9]. The overall runtime cost of ARPACK solver is proportional to

O(z3) + (O(nz) +O(nw))×O(z− k), and the memory cost is O(nw) +O(nz), where

n is the number of data points, z is the arnoldi length, w is the number of nearest

neighbors, and k is the number of desired eigenvalues. A sparse graph can dramati-

cally reduce the time and memory cost due to the small w. In chapter 3, we reduce

the compuational cost by reducing the number of edges in a given graph while in

chapter 4, we achieve the goal by proposing a new, bottom-up graph construction

24

method.

25

Chapter 3

Towards Scalable and High-Quality

Spectral Clustering via

Spectrum-Preserving Sparsification

3.1 Motivation

In recent years, to address the computational bottleneck of spectral clustering, sub-

stantial effort has been devoted. Recent research efforts aim to reduce the computa-

tional cost through various kinds of approximation methods. However, none of these

approximations can reliably preserve the spectrum of the original graph Laplacian

27

matrix, and thus may lead to degraded spectral clustering performance. For exam-

ple, spectral clustering of the large data set Covtype that has 581, 012 instances

using the existing approximation methods lead to dramatically degraded clustering

quality [10].

In this chapter, section 3.2 reviews several representative methods designed for accel-

erating spectral clustering method. Section 3.3 reviews a spectrum-preserving spar-

sification method. In section 3.4, we propose a novel termination criterion based

on spectral stability checking [55] for applying the sparsification tool [16] into spec-

tral clustering. In section 3.6, we experimentally demonstrate the effectiveness of

the spectrally critical off-tree edges for spectral clustering. Then, we present more

experimental results based on the complete framework.

3.2 Methods for Accelerating Spectral Clustering

3.2.1 Fast Approximate Spectral Clustering

A general framework for fast approximate spectral clustering has been proposed [56].

It firstly performs k-means to get a small number of clustering centroids. Then, the

28

standard spectral clustering algorithm is performed on the reduced data set composed

of the centroids. The data point in the original data set is assigned to the cluster as

its nearest centroid. It is shown in Algorithm 7.

Algorithm 7 k-means based fast spectral clustering (KASP)

Input: A data set D with n data points x1, ..., xn ∈ Rd, number of clusters k, number of
centroids r.
Output: Clusters C1,...,Ck.

1: Perform k-means to partition D into r clusters ;
2: Calculate the cluster means c1, ..., cr as the r centroids;
3: Perform standard spectral clustering on the r representative points to partition them

into k clusters;
4: Recover the cluster membership of each xi by assigning it to the cluster as its nearest

centroid.

3.2.2 Nyström Method

A Nyström method for accelerating the eigen-decomposition procedure has been pro-

posed [18]. In a data set consisting of n samples, it randomly chooses p samples

(p � n). It then calculates the adjacency matrix of the p samples, W1 and the

affinities between the chosen p samples and the remaining (n-p) samples, W2.

The adjacency matrix of the remaining (n-p) samples can be approximated as

W T
2 W

−1
1 W2. The adjacency matrix of the original data set can be approximated

as:

29

W̃ =

 W1 W2

W T
2 W T

2 W
−1
1 W2

 (3.1)

The approximation of the diagonal matrix D̃ can be obtained accordingly.

Define:

W 1 = D̃
−1/2
1:p,1:pW1D̃

−1/2
1:p,1:p, W 2 = D̃

−1/2
1:p,1:pW2D̃

−1/2
p+1:n,p+1:n

(3.2)

Perform the following eigen-decomposition:

W 1 = UW 1
ΛW 1

UT
W 1

(3.3)

The bottom k eigenvalues and the corresponding eigenvectors of the normalized Lapla-

cian matrix L̃sym = I − D̃−1/2W̃ D̃−1/2 can be approximated as:

ΛL̃sym
= (n/p)(ΛW 1):,1:k

, UL̃sym
=
√
p/n

 W 1

W
T

2

(UW 1
):,1:k(Λ

−1

W 1
)1:k,1:k (3.4)

30

It then performs k-means to partition the approximated eigenvectors into k clusters.

3.2.3 Landmark-based Spectral Clustering

A landmark method based on the progress of sparse coding [29] has been proposed

[10]. It represents the original data set by sampling a few landmark points. It then

performs spectral embedding on the landmark-based representation.

3.3 Spectrum-Preserving Sparsification

A spectrum-preserving sparsification method has been proposed [16]. It involves two

main steps: 1) Extract a low stretch spanning tree (LSST) from the original graph.

It uses the LSST as the backbone for the sparsifier 2) To further improve the spectral

similarity, it recovers a small amount of “spectral critical” off-tree edges to the LSST.

The off-tree edge budget b measures the amount of off-tree edges added to the LSST,

which is defined as:

b =
|EP | − |V |+ 1

|V |
. (3.5)

31

3.4 A Scheme for Eigenvalue Stability Checking

We propose a novel method for checking the stability of bottom eigenvalues of the

graph Laplacian as follows: 1) in each iteration of adding “spectral critical” off-

tree edges to the sparsifier, we compute and record the bottom eigenvalues of the

graph Laplacian; 2) we determine whether more off-tree edges should be recovered by

comparing with the eigenvalues computed in the previous iteration: if the variation

ratio is large, more off-tree edges should be added. We store the bottom eigenvalues

computed in the previous and current iterations into vectors vp and vp+1, respectively.

The variation ratio of bottom eigenvalues is calculated by:

ratiovar =
‖(vp − vp+1)‖
‖(vp)‖

. (3.6)

3.5 Algorithm Flow and Complexity Analysis

The complete scalable spectral clustering framework with the eigenvalue stability

checking scheme is shown in Fig. 3.1.

We summarize the key components of the proposed framework as well as their time

32

44

k-Nearest-Neighbor

(kNN) Graph

Low-stretch spanning

tree (LSST)

Stable?

Ultra-Sparse Nearest

Neighbor Graph

Stability checking of

bottom k eigenvalues

Sparsified NN Graph

(w/ SGD scaling)

Yes

Spectral ranking

of off-tree edges

Scalable Spectral

Clustering

a
d

d
 o

ff
-t

re
e
 e

d
g

e
s

No

Figure 3.1: The proposed framework for scalable spectral clustering.

complexities: 1)Identify the edges to be kept in the sparsifer and check the eigen-

stability in O(m log n) time, where m is the number of edges in the original graph

and n is the number of nodes in the graph ; 2)Calculate the bottom k eigenvalue

and corresponding eigenvectors. For ultra-sparse Laplacian matrices, the ARPACK

solver is very efficient; 3)Run the k-means algorithm on approximate eigenvectors in

O(knd) time [1], where k is the number of clusters, and d is the dimension of the

feature vectors of data points.

3.6 Experiments

All experiments for spectral clustering have been performed using MATLAB R2020b

running on a Laptop with a 10th Intel(R) Core(TM) i5 CPU and 8GB RAM. The

33

Table 3.1
Statistics of data sets.

Data set Size Dimensions
PenDigits 7,494 16

USPS 9,298 256
MNIST 70,000 784
Covtype 581,012 54

spectral graph sparsification method has been implemented in C++. The reported

numbers in our results have been averaged over 20 runs. Unnormalized spectral

clustering is used.

3.6.1 Data Sets

We have conducted experiments on four real-world data sets. The statistics of these

data sets are shown in Table 3.1.

3.6.2 The Effectiveness of Spectrally Critical Off-tree Edges

for Spectral Clustering

Fig. 3.2 shows the impact of adding off-tree edges to the accuracy of spectral clus-

tering. Fig. 3.3 shows the impact of adding off-tree edges to the NMI. The numerical

results of ACC and NMI are reported in Table 3.2 and Table 3.3, respectively.

34

0 0.05 0.1 0.15 0.2 0.25 0.3

off-tree edge budget b

40

45

50

55

60

65

70

75

80

A
c
c
u
ra

c
y
(%

)

Pendigits

USPS

MNIST

Figure 3.2: ACC VS off-tree edge budget b.

0 0.05 0.1 0.15 0.2 0.25 0.3

off-tree edge budget b

0.5

0.55

0.6

0.65

0.7

0.75

0.8

N
M

I

Pendigits

USPS

MNIST

Figure 3.3: NMI VS off-tree edge budget b.

The experimental results show that 1) spectral clustering method can achieve better

clustering results as the number of spectrally-critical off-tree edges increases. 2)

it is necessary to prevent our method from adding redundant off-tree edges, which

35

Table 3.2
ACC with increasing off-tree edge budget b

Data Set b=0.01 b=0.05 b=0.1 b=0.15 b=0.2 b=0.25 b=0.3
PenDigits 66.10 67.83 74.72 73.79 74.40 76.75 76.36

USPS 59.56 54.88 65.09 65.59 60.34 62.65 61.31
MNIST 44.99 57.94 57.80 62.40 59.50 61.86 64.19

Table 3.3
NMI with increasing off-tree edge budget b

Data Set b=0.01 b=0.05 b=0.1 b=0.15 b=0.2 b=0.25 b=0.3
PenDigits 0.72 0.71 0.79 0.78 0.79 0.80 0.79

USPS 0.63 0.63 0.70 0.71 0.74 0.74 0.75
MNIST 0.51 0.67 0.67 0.70 0.70 0.71 0.72

would otherwise degrade the efficiency and the quality of spectral clustering algorithm.

Therefore, using the proposed spectral stability checking method as the termination

criterion is important for the proposed scalable spectral clustering framework.

3.6.3 Spectral Stability Checking Results

Fig. 3.4 shows the impact of adding off-tree edges to the spectral stability. The

numerical results are reported in Table 3.4.

Note that the first result of b = 0.1 is calculated by:

ratio(b=0.1) =
‖(v(b=0.05) − v(b=0.1))‖

‖(v(b=0.05))‖
. (3.7)

36

0.1 0.15 0.2 0.25 0.3

off-tree edge budget b

0

0.2

0.4

0.6

0.8

1

1.2

b
o

tt
o

m
 e

ig
e

n
v
a

lu
e

 v
a

ri
a

ti
o
n

 r
a

ti
o

Pendigits

USPS

MNIST

Figure 3.4: Variation ratio of bottom eigenvalues with increasing number
of off-tree edges.

Table 3.4
Spectral stability checking results

variation ratio of the bottom k eigenvalues
Data Set b = 0.1 b = 0.15 b = 0.2 b = 0.25 b = 0.3
Pendigits 0.6188 0.2630 0.1857 0.1054 0.1077

USPS 1.0734 0.3985 0.3275 0.3002 0.0661
MNIST 1.1086 0.4346 0.2309 0.2054 0.1091

As shown in Fig. 3.4 and Table 3.4, adding a small portion of off-tree edges will

immediately stabilize the bottom eigenvalues of the graph Laplacian.

37

3.6.4 Clustering Results and Comparison

We compare our method against the following state-of-the-art algorithms: (1) the

Original SC algorithm [9], (2) the Nyström method [18], (3) the landmark-

based SC (LSC) method that uses random sampling for landmark selection [10],

and (4) the KASP SC algorithm using k-means for centroids selection [56].

For fair comparison, we use the same parameter setting in [10] for compared al-

gorithms: the number of sampled points in Nyström method (or the number of

landmarks in LSC, or the number of centroids in KASP) is set to 500. Other pa-

rameters in LSC are set by default. We use MATLAB inbuilt k-means function with

its default settings for all the methods. For the value of k in the k-NN graph, we use

the setting in [51]: it is set to 10 for all the data sets.

Table 3.5 shows the ACC results. Table 3.6 shows the clustering runtime results. The

graph complexities have also been provided in Table 3.7.

Table 3.5
Clustering accuracy (%)

Data Set Orig Nyström KASP LSC Ours
PenDigits 74.36 71.99 71.56 74.25 76.75

USPS 64.31 69.31 70.62 66.28 65.59
MNIST 64.20 55.86 71.23 58.94 64.19
Covtype 48.81 33.24 27.56 22.60 48.79

38

Table 3.6
Clustering time (seconds)

Data Set Orig Nyström KASP (centroid selection) LSC Ours
PenDigits 0.18 0.19 0.13 (0.49) 0.10 0.11

USPS 0.72 0.29 0.16 (3.35) 0.22 0.33
MNIST 252.59 0.95 0.18 (354.78) 0.49 3.62
Covtype 128.70 5.48 0.70 (1151.24) 3.77 5.80

Table 3.7
Graph complexity comparison

Data Set |EG| |ES|
PenDigits 50,608 9,199

USPS 68,381 10,692
MNIST 521,709 89,054
Covtype 3,312,029 610,041

The clustering time reported in Table 3.6 includes the runtime of eigen-decomposition

and k-means steps in spectral clustering algorithm. For the KASP method, we also

report the centroids selection time. It is a very time consuming step because it requires

performing k-means on the whole data set in the original high-dimensional space. The

other methods also use k-means, but they use it after the spectral embedding step,

so their time costs of k-means are dramatically reduced in the low-dimensional space.

For large data sets such as MNIST and Covtype, our method achieved 70X and

22X times speedup, respectively. For the Covtype data set, our method achieves a

significantly better clustering result than all the compared methods. Such a good

clustering performance is mainly due to the superior capability of our method in

39

preserving the spectrum of the original graph Laplacian. On the other hand, without

a good preservation of the spectrum of the original graph Laplacian, the quality of

spectral clustering can be degraded dramatically. For example, the simple sampling

methods such as k-means and random sampling used in the KASP and the LSC

algorithms lead to substantial loss of critical structural information of the large data

sets, and thus degraded the performance of spectral clustering; the clustering quality

of the Nyström method strongly depends on the encoding power of the sample points

chosen in its pre-processing steps [11], but it is very hard to use a small amount

of chosen data points to truthfully encode the structure of the large data sets. The

experimental results also show that the clustering results obtained by using spectrally

sparsified graphs are even better than the results obtained by using the original graphs

for some data sets, indicating that the proposed method can also help to improve the

graph structure by removing redundant edges.

In the last, we show the original graph, the spanning tree, and the spectral sparsi-

fier with b=0.1 corresponding to their adjacency matrices for the USPS data set in

Fig. 3.5, Fig. 3.6, and Fig. 3.7. The initial spanning tree is a very poor approximation

of the original graph while adding a small amount of spectrally critical off-tree edges

leads to a good approximation.

40

Figure 3.5: The graph corresponding to the original adjacency matrix

Figure 3.6: The spanning tree of the original graph

3.7 Summary

To fundamentally solve the computational challenge due to the eigen-decomposition

step in spectral clustering, this work uses a spectrum-preserving spectral sparsification

tool that enables to construct a very sparse sparsifier with guaranteed preservation

of the original graph spectra. We propose a novel method for checking the stability

41

Figure 3.7: The sparsified graph corresponding to the adjacency matrix
with b=0.1

of bottom eigenvalues of the graph Laplacian matrix. We experimentally demon-

strate the effectiveness of the framework for spectral clustering. Experimental results

on a variety of data sets show dramatically improved clustering performance when

compared with state-of-the-art methods.

42

Chapter 4

GRASPEL: Graph Spectral

Learning

In this chapter, we propose a highly-scalable graph learning (construction) method

(GRASPEL). Our method aims to efficiently learn sparse undirected graphs from

data.

43

4.1 Background

4.1.1 Multivariate Gaussian Distribution

A random variable X is said to be a Gaussian variable if its probability density

function is given by:

fX(x) =
1√

2πσ2
exp

(
− 1

2σ2
(x− µ)2

)
, (4.1)

where µ is the expectation of X, i.e. E(X), and σ2 is the variance of X, i.e. V ar(X),

as shown in Fig. 4.1.

-5 -4 -3 -2 -1 0 1 2 3 4 5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 4.1: One-dimensional Gaussian distribution

44

Consider two random variables X and Y . The covariance between them is defined

as:

Cov(X, Y) = E[(X − EX)(Y − EY)]. (4.2)

If X and Y are independent, then Cov(X, Y) = 0.

Consider X = [X1, ..., Xn]T , where X1,...,Xn are n random variables, the covariance

matrix of X is defined as:

Cov(X) =

V ar(X1) Cov(X1, X2) · · · Cov(X1, Xn)

Cov(X2, X1) V ar(X2) · · · Cov(X2, Xn)

...
...

. . .
...

Cov(Xn, X1) Cov(Xn, X2) · · · V ar(Xn)

Multivariate Gaussian distribution is a multivariate generalization of the one-

dimensional Gaussian distribution, as shown in Fig. 4.2. X = [X1, ..., Xn]T is said to

have a multivariate Gaussian distribution if its probability density function is given

by:

45

fX(x1, ..., xn) =
1√

(2π)n|Σ|
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
, (4.3)

where x = [x1, ..., xn]T , µ = [E(X1), ..., E(Xn)]T , Σ is the covariance matrix of X.

We write it as X ∼ N(µ,Σ).

Figure 4.2: Two-dimensional Gaussian distribution

4.1.2 Maximum Likelihood Estimation

Maximum likelihood estimation is one of the most popular methods for estimating

the parameters of a probability distribution. Consider that the probability density

function f of a random variable X contains a parameter θ. Suppose that X(1), ..., X(n)

are i.i.d. observations from the distribution, the likelihood function is:

46

L(θ) =
n∏
i=1

f(X(i)) (4.4)

The goal of maximum likelihood estimation is to find the value of θ that maximizes

the likelihood function:

θML = arg max
θ

L(θ). (4.5)

4.1.3 Graphical Lasso

Based on the maximum likelihood estimation, a graphical lasso method has been

proposed for estimating the precision (inverse covariance) matrix, or alternatively the

underlying structure of multivariate Gaussian data [4, 6, 19].

Consider a random variable X = [X1, ..., Xp]
T has a zero-mean multivariate Gaussian

distribution, i.e. X ∼ N(0,Σ). Suppose that X(1), ...,X(n) are i.i.d. observations of

X. The sample covariance matrix is:

S =
1

n

n∑
i=1

(X(i) − µ)(X(i) − µ)T , (4.6)

47

where

µ =
1

n

n∑
i=1

X(i). (4.7)

Let Θ = Σ−1 denotes the precision matrix, then the graphical Lasso method targets

the following convex optimization task:

max
Θ

: log det(Θ)− Tr(SΘ)− β‖Θ‖1, (4.8)

over all non-negative definite precision matrices Θ. The precision matrix is restricted

to be a graph Laplacian matrix in [45].

Under the zero-mean assumption [14], the sample covariance matrix becomes:

S =
1

n

n∑
i=1

X(i)(X(i))T . (4.9)

Suppose that a vector Xo contains all the observations: Xo = [X(1), ...,X(n)], then

(4.9) becomes:

S =
1

n
XoX

T
o . (4.10)

48

Substituting (4.10) into (4.8) leads to:

max
Θ

: log det(Θ)− Tr(1

n
XoX

T
o Θ)− β‖Θ‖1, (4.11)

where ‖ · ‖1 denotes the entry-wise l1 norm: ‖Θ‖1 =
∑
i,j

|Θi,j| .

In [14], the precision matrix is set to:

Θ = L+
I

σ2
, (4.12)

where I denotes the identity matrix and σ is a regularization parameter. The opti-

mization model (4.11) aims to achieve the following desired characteristics:

The smoothness of graph signals. The graph signals corresponding to the real-

world data should be sufficiently smooth on the learned graph structure: the signal

values change gradually across connected neighboring nodes. The smoothness of a

set of signals Xo over the graph G can be measured with the following matrix trace

[26]:

Q(Xo, L) = Tr(XoLXo
T). (4.13)

49

When Θ = L+ I
σ2 , the term Tr(1

n
XoX

T
o Θ) in (4.11) includes Tr(XoLXT

o). To maxi-

mize (4.11), Tr(XoLXT
o) tends to have a small value.

The sparsity of the estimated graph (Laplacian). (4.11) has been proposed to

learn the structure in an undirected Gaussian graphical model using l1 regularization

to control the sparsity of the precision matrix. β‖Θ‖1 is used as a regularization term

to enforce sparsity.

However, the high complexities of solving the log-determinant models hinder their

applications in large-scale problems. Besides, tuning the parameters to control the

graph sparsity is a nontrivial task.

4.2 Our Method

4.2.1 Spectral Analysis

The first term in (4.11) can be expressed as:

log det(Θ) = log det(L+ I
σ2) = log

∏n
i=1(1

σ2 + λi)

=
n∑
i=1

log(1
σ2 + λi).

(4.14)

50

[33] has shown that:

L =
∑

(u,v)∈E

wuveuve
T
uv, (4.15)

where eu ∈ RN denotes the standard basis vector with all zero entries except for the

u-th entry being 1, and euv = eu − ev.

By substituting (4.15) into the precision matrix Θ = L+ I
σ2 , the precision matrix can

be expressed as:

Θ =
I

σ2
+
∑

(u,v)∈E

wuveuve
T
uv. (4.16)

Then the second term in (4.11) can be expressed as :

Tr(1
n
XoX

T
o Θ) = 1

n
Tr(XoX

T
o (I

σ2 +
∑

(u,v)∈E
wuveuve

T
uv))

= 1
n
Tr(XoX

T
o

σ2 + XoX
T
o

∑
(u,v)∈E

wuveuve
T
uv)

= 1
n
Tr(XoX

T
o

σ2) + 1
n
Tr(XoX

T
o

∑
(u,v)∈E

wuveuve
T
uv)

= 1
n
Tr(XoX

T
o

σ2) + 1
n
Tr(

∑
(u,v)∈E

wuvX
T
o euve

T
uvXo).

(4.17)

The trace has the property: Tr(vvt) = ‖v‖2
2, where v is a column vector. So, if we

51

take XT
o euv as a column vector, we have:

Tr(XT
o euve

T
uvXo) = Tr((XT

o euv)(X
T
o euv)

T)

= ‖XT
o euv‖2

2.

(4.18)

Then the following expansion can be obtained:

Tr(
∑

(u,v)∈E
wuvX

T
o euve

T
uvXo) =

∑
(u,v)∈E

wuv‖XT
o euv‖2

2. (4.19)

Substituting (4.19) into (4.17), we have:

Tr(1
n
XoX

T
o Θ) = 1

n
Tr(XoX

T
o

σ2) + 1
n

∑
(u,v)∈E

wuv‖XT
o euv‖2

2. (4.20)

The third term in (4.11) can be expressed as:

β‖Θ‖1 = β‖L+ I
σ2‖1

= β
∑
i,j

|(L+ I
σ2)i,j|

= β
∑
i,j

|Li,j|+ β
σ2

∑
i,j

|Ii,j|.

(4.21)

52

∑
i,j

|Li,j| is proportional to
∑

(u,v)∈E
wuv.

β
σ2

∑
i,j

|Ii,j| is a constant number and it is pro-

portional to the number of vertices in the graph. Then (4.21) can be expressed as:

β‖Θ‖1 = β
∑

(u,v)∈E
wuv + α, (4.22)

where α denotes a constant number.

Substituting (4.14), (4.20), and (4.22) into (4.11), the objective function becomes:

F =
n∑
i=1

log(1
σ2 + λi)− 1

n
Tr(XoX

T
o)

σ2 − 1
n

∑
(u,v)∈E

wuv‖XT
o euv‖2

2

−β
∑

(u,v)∈E
wuv − α.

(4.23)

We propose a novel way to analyze the impact of adding an edge into the graph to

the objective function: adding an edge into the graph is equal to increasing its weight

from 0 to its edge weight. For a candidate edge, we calculate the partial derivative

with respect to its weight to evaluate the impact of adding it into the graph to the

objective function.

For a candidate edge(s, t), the partial derivative with respect to its weight wst is:

∂F

∂wst
=

n∑
i=1

1
1
σ2 + λi

∂λi
∂wst

− 1

n
‖XT

o est‖2
2 − β. (4.24)

53

We propose the following spectral analysis to solve (4.24):

Let LP denotes the Laplacian matrix of an undirected graph P , and ui denote the

eigenvector of LP corresponding to the i-th eigenvalue λi that satisfies:

Lpui = λiui, (4.25)

then we have the following eigenvalue perturbation analysis:

(LP + δLP) (ui + δui) = (λi + δλi) (ui + δui) , (4.26)

where a perturbation δLP that includes a new edge is applied to LP , resulting in

perturbed eigenvalues and eigenvectors (λi + δλi) and (ui + δui) for i = 1, ..., n,

respectively.

Keeping only the first-order terms leads to:

LP δui + δLPui = λiδui + δλiui. (4.27)

Write δui in terms of the original eigenvectors uj for j = 1, ..., n:

δui =
n∑
j=1

αjuj. (4.28)

54

Substituting (4.28) into (4.27) leads to:

LP

n∑
j=1

αjuj + δLPui = λi

n∑
j=1

αjuj + δλiui. (4.29)

Multiplying both sides of (4.29) by uTi leads to:

uTi LP

n∑
j=1

αjuj + uTi δLPui = λiu
T
i

n∑
j=1

αjuj + δλiu
T
i ui. (4.30)

Since ui for i = 1, ..., n are unit-length, mutually-orthogonal eigenvectors, we have:

uTi LP

n∑
j=1

αjuj = αiu
T
i LPui, λiu

T
i

n∑
j=1

αjuj = αiu
T
i λiui. (4.31)

Multiplying both sides of (4.25) by αiu
T
i leads to:

αiu
T
i LPui = αiu

T
i λiui. (4.32)

Substituting (4.32) into (4.31) leads to:

55

uTi LP

n∑
j=1

αjuj = λiu
T
i

n∑
j=1

αjuj. (4.33)

Substituting (4.33) into (4.30) leads to:

uTi δLPui = δλiu
T
i ui = δλi. (4.34)

[33] has shown that an edge(s, t) leads to the following perturbation:

δLP = wsteste
T
st. (4.35)

Substituting (4.35) into (4.34), we have:

uTi wsteste
T
stui = wst(u

T
i est)

2 = δλi. (4.36)

Because adding a new edge into the graph is equal to changing its weight from 0 to

its edge weight, we have wst = δwst. Substituting it into (4.36), we have:

δλi
δwst

= (uTi est)
2, (4.37)

56

Substituting (4.37) into (4.24), we have:

∂F

∂wst
=

n∑
i=1

(uTi est)
2

1
σ2 + λi

− 1

n
‖XT

o est‖2
2 − β. (4.38)

According to (4.38), to precisely evaluate the impact of adding an edge into the graph

to the objective function, all the Laplacian eigenvectors are required to be used. To

reduce the computational cost, we approximate the calculation by using only the first

r eigenvectors. Then, (4.38) can be expressed as:

∂F

∂wst
=

r∑
i=2

(uTi est)
2

1
σ2 + λi

− 1

n
‖XT

o est‖2
2 − β. (4.39)

Construct a subspace matrix U for spectral graph embedding using the first r − 1

nontrivial eigenvectors:

U =

 u2√
1
σ2 + λ2

, ...,
ur√

1
σ2 + λr

 , (4.40)

then (4.39) can be rewritten as:

57

∂F

∂wst
= ‖UTest‖2

2 −
1

n
‖XT

o est‖2
2 − β. (4.41)

Define:

ηst =
‖UTest‖2

2
1
n
‖XT

o est‖2
2

, (4.42)

then (4.41) can be rewritten as:

∂F

∂wst
= (1− 1

ηst
)‖UTest‖2

2 − β, (4.43)

implying that as long as ηst > 1 holds for edge(s, t) and β is properly selected, the

greater ηst and ‖UTest‖2
2 values can lead to more significant improvement (increase)

of the objective function.

4.2.2 Clustering-Informative Edge

Graph clustering is an unsupervised task. It relies on the graph structure only to

assign data points to clusters.

58

Based on (4.36), we propose the following theorem:

Theorem 1 The criticality cst of a candidate edge(s, t) on the Laplacian eigenvalue

λi can be estimated by cst = wst
(
uTi est

)2
.

Theorem 1 is very useful due to the special significance of the Fiedler eigenvalue and

the corresponding Fiedler vector in graph clustering and partitioning. [12, 46] have

shown that Fiedler eigenvalue and Fiedler vector can provide a good approximation

to the optimal cut. So the impact of an edge to the clustering structure can be

approximately measured by estimating its criticality on the Fiedler eigenvalue. We

define an edge to be a clustering-informative edge if it has significant impact on the

Fiedler eigenvalue. Constructing a high-quality sparse graph for the clustering task

implies that sufficient clustering information must be provided with a limited amount

of edges. Therefore, clustering-informative edges should be identified and added to

the graph.

4.2.3 Embedding Distortion

Consider a data matrix Fea ∈ Rn×m. It has n data points, each data point is

represented by a R1×m feature vector. The euclidean distance between the s-th data

point and the t-th data point is:

59

dist(s, t) = ‖Fea(s)− Fea(t)‖ = ‖FeaTest‖ (4.44)

So, in (4.42), ‖XT
o est‖2

2 is the squared euclidean distance between the s-th data point

and the t-th data point in the original data vector space Xo. ‖UTest‖2
2 is the squared

euclidean distance between the two data points in the spectral embedding vector

space U.

Therefore, (4.42) is the embedding distortion of edge(s, t). The edges with large

distortion should be added to the graph.

In practice, instead of using the whole embedding space U defined in (4.40), we only

use the first non-trivial eigenvector to reduce the computational cost. When the

cluster number is very large, more eigenvectors can be considered to be included in

the embedding space.

4.2.4 A Distortion-based Edge Sampling Method

Evaluating all the potential connections in the graph can be a very time-consuming

procedure. To further reduce the computational cost, we propose a novel distortion-

based edge sampling method.

60

We propose to find a small amount of “promising” candidate edges and we only

examine these “promising” candidate edges. By embedding the latest graph G using

its Fiedler vector, each node is embedded to one element in the Fiedler vector. Thus

the original data vector space is embedded into a 1D array. The distance between two

nodes in this embedding space is simply the difference of their corresponding values

in the Fiedler vector. Therefore, we sort the Fiedler vector, and subsequently find

the connections between the top and bottom few nodes in the 1D sorted node array.

These edges have large distances in the embedding space.

As illustrated in Section 4.2.3, the distortion of an edge (s, t) between original data

vector space and the embedding space is defined as:

distortion(s, t) =
distemb(s, t)

2

distdata(s, t)2
, (4.45)

so an edge(s, t) with large distemb(s, t) has a high probability to have large distor-

tion. Only a small portion of edges with large distances in the embedding space are

chosen as the “promising” candidate edges. We only calculate their distortions. The

candidate edges with top embedding distortions will be added to the latest graph.

61

4.2.5 Edge Weight Calculation

To measure the similarity between two data points, many sophisticated similarity

functions have been proposed. The Gaussian kernel is most commonly used for spec-

tral clustering. Based on Gaussian kernel, the edge weight (similarity) between two

data points xi and xj is calculated as:

wi,j = exp

(
− 1

2σ2
‖xi − xj‖2

)
(4.46)

However, the proper σ value is usually problem-dependent and can be very difficult

to find. The performance of spectral clustering can be very unstable under different

choices of the σ value [52, 59]. σ is a human-specified parameter and it is commonly

selected manually[59] . [35] proposed a systematic way for determining the σ value by

performing clustering algorithms on many different σ values in a manually-selected

range to find the one with the tightest clusters. However, in many cases, a single

σ value cannot well capture the different local statistical patterns in the graph. It

has been shown that even the optimal σ value can lead to unsatisfactory clustering

results when multiple scales appear in the data [59].

To address these issues, a self-tuning technique has been proposed [59]. Instead of

62

using a single σ value for all the data points, each data point xi has its own scaling

parameter σi. The distance between two data points xi and xj is different from the

view of xi and xj. For xi, the distance is 1
σi
‖xi − xj‖, while for xj, the distance is

1
σj
‖xi − xj‖. The edge weight (similarity) between xi and xj is calculated as:

wi,j = exp

(
− 1

2σiσj
‖xi − xj‖2

)
(4.47)

The scaling parameter σi for the data point xi is defined as the distance between xi

and its t-th nearest neighbor. In spectral clustering tasks, it can also be defined as the

average of its distances to the k nearest neighbors [9]. Thus, to determine the scaling

parameter for a data point, all the edges connected to it have to be determined first.

That is, the graph has to be constructed.

However, in the GRASPEL, edges are added to the graph iteratively. Thus, the self-

tuning technique is not suitable for GRASPEL. Consider the following case: when

we add an edge to the graph, the scaling parameters of its two nodes will be changed

because the edge changes the neighborhood patterns of the two nodes. As a result,

the weights of all the edges connected to the two nodes needed to be updated based

on their new scaling parameters. More importantly, different edge evaluation orders

lead to different graphs.

63

To resolve it, we simply use the reciprocal of the distance between two data points

as their similarity. By doing so, the impact of the scaling parameter for edge weight

calculation can be excluded, so the graph quality improvement of our method due to

solely the identified critical edge connections.

4.2.6 Detailed Steps in GRASPEL

GRASPEL takes advantages of both the nearest neighbor connection strategy and

the optimization problem-solving strategy to learn the graph from data.

4.2.6.1 Initial Graph Construction

In order to perform spectral analysis, an initial graph is required to be given. Intu-

itively, k-NN graph can be used as the initial graph because it is able to approximate

the local manifold of the data set [41]. However, it has several drawbacks as afore-

mentioned.

To preserve its capability of representing the most essential local manifold while

solving its drawbacks, GRASPEL starts with constructing a k-NN graph using a very

small k value (e.g. k=2), and strive to iteratively improve the graph quality by adding

a small portion of critical edges through using a novel way to solve the optimization

64

problem (4.11).

In addition to the consideration of graph sparsity, noisy edge pruning is also an

important factor when considering the use of 2-NN graph. Spectral clustering is

well known for its vulnerability to noise: even very few noisy bridges between two

internally well-connected clusters can mislead the algorithm to report the two clusters

as a single cluster [24].

4.2.6.2 Critical Edge Identification

Once the eigenvectors of the latest graph Laplacian are available, we sample a small

portion of “promising” candidate edges by using the distortion-based edge sampling

method proposed in Section 4.2.4. We then calculate the distortions of the sampled

“promising” candidate edges. The edges with top embedding distortions are identified

as the critical edges and added to the graph.

4.2.6.3 Termination Criterion

Our method employs an iterative procedure to repeatedly add a few critical edges

into the graph and thereby improving the graph quality. The natural termination

criterion is when the objective function can no longer be increased. The convergence

65

of our method can also be determined based on the spectral stability: that is when

the bottom eigenvalues become stable. Thus, we use the eigenvalue stability checking

scheme proposed in Section 3.6.3 as the termination criterion. In practice, we found

that the algorithm converges rapidly within very few iterations.

4.2.7 Algorithm Flow and Complexity Analysis

The GRASPEL algorithm is shown in Algorithm 8. Theoretically, the latest effi-

cient Laplacian eigensolver has potential to compute the spectral embedding space in

nearly-linear time. The embedding distortion of each candidate edge can be calculated

in constant time. Thus, by limiting the searching scope within only a small number

of top and bottom nodes in the sorted 1D array, critical edges can be identified very

efficiently.

4.3 Experiments

The performance of spectral clustering highly depends on the quality of the underlying

graph[2, 21, 34, 36]. Classical graph construction methods are often not suitable for

complex real-world data sets, causing degraded spectral clustering performance[36].

Thus, there is a pressing need to develop an effective graph construction method

66

Algorithm 8 Fiedler based GRASPEL

Input: A data set with n data points x1, ..., xn ∈ Rd, sample ratio ε, edge selection
ratio ζ. Output: The learned graph.

1: Construct a 2-NN graph G as the initial graph.
2: while Termination criterion not met do
3: Embed the latest graph G using its Fiedler vector and sort the nodes into a 1D

array Inode
4: Obtain node set Ntop (Nbottom) by including the top (bottom) εN

2
nodes in Inode

5: Evaluate the embedding distortions of all the edges with one node in Ntop and
another node in Nbottom ;

6: Select top ζN edges based on the evaluation results and add them to the graph
G;

7: Check the termination criterion.
8: end while

for spectral clustering. In this section, we apply GRASPEL to learn the underlying

graph from data sets. Experimental results show that the learned graph can result in

drastically improved efficiency and accuracy in spectral clustering tasks.

The following experiments are performed using MATLAB R2020b running on a Lap-

top with 10th Intel(R) Core(TM) i5 CPU and 8GB RAM. Spectral clustering algo-

rithm has intrinsic randomness and the clustering result of each run is different. So the

reported numbers in our experiments have been averaged over 20 runs. Unnormalized

spectral clustering is used.

67

4.3.1 Spectral Stability Checking Results

To determine the number of iterations needed for the GRASPEL, we perform spectral

stability checking and report the results in Table 4.1 and Fig. 4.3.

Table 4.1
Spectral stability checking results

variation ratio of the bottom 50 eigenvalues
Data Set 1st iter 2nd iter 3rd iter
COIL20 0.1483 0.2038 0.0908

Pendigits 5.0048 0.2609 0.2065
USPS 0.5869 0.0902 0.0246

MNIST 0.9544 0.0171 0.0131

Experimental results show that the variation ratio becomes very small after three

iterations and thus justifies another iteration for adding more critical edges into the

graph is not necessary.

4.3.2 Convergence Results

To show the convergence property of the proposed method, we report the changes of

ACC and NMI with increasing number of iterations in Table 4.2. Graph complexity

changing results are also provided in Table 4.3.

68

1 2 3

iteration

0

2

4

6

b
o
tt
o

m
 e

ig
e
n
v
a
lu

e
 v

a
ri
a
ti
o
n
 r

a
ti
o

COIL20

Pendigits

USPS

MNIST

Figure 4.3: Variation ratio of bottom eigenvalues with increasing number
of iterations

Table 4.2
Convergence results

ACC(%)/ NMI
Data Set 2-NN 1st iter 2nd iter 3rd iter
COIL20 74.75/0.90 76.23/0.91 84.07/0.94 86.46/0.94

Pendigits 10.94/0.05 21.07/0.29 59.07/0.71 82.40/0.79
USPS 16.92/0.03 83.56/0.83 84.10/0.83 87.62/0.83

MNIST 11.29/0.01 71.83/0.78 72.78/0.78 74.63/0.78

69

Table 4.3
Graph complexity results

|E|
Data Set 2-NN 1st iter 2nd iter 3rd iter
COIL20 1561 1705 1849 1993

Pendigits 10932 14679 18426 22173
USPS 14427 14891 15355 15819

MNIST 110061 113561 117061 120561

Fig. 4.4 and Fig. 4.5 show that GRASPEL has a very good convergence property.

The peak performance is achieved within very few iterations. This good convergence

property also enables to generate a very sparse graph, as shown in Fig. 4.6

4.3.3 Clustering Results and Comparison

For the compared standard k-NN method, we follow the experimental settings in

[9]: first generate a distance matrix. Then convert the distance matrix to a sparse

similarity matrix by using the self-tuning technique. For the value of k in k-NN graph,

we use the setting in [51]: it is set to 10 for all the data sets.

For the compared consensus method, for fair comparison with the standard k-NN

method, we use the same 10-NN graph used in the standard k-NN method as its

70

0 1 2 3

iteration

0

20

40

60

80

100

c
lu

s
te

ri
n
g
 a

c
c
u

ra
c
y
 (

%
)

COIL20

Pendigits

USPS

MNIST

Figure 4.4: ACC with increasing number of iterations

input graph. [38] doesn’t indicate how to set the threshold, which is a critical param-

eter for edge pruning. We search a set of different threshold values and report the

corresponding clustering results in Table 4.4. The best clustering result for each data

set is used to compare with other methods.

Table 4.4
Clustering results of the consensus method with different

threshold values

ACC(%)/ NMI
Data Set τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6
COIL-20 76.25/0.86 77.09/0.86 77.60/0.87 80.80/0.88 81.60/0.90 58.99/0.80
Pendigits 71.08/0.79 63.77/0.76 36.69/0.56 25.99/0.41 18.37/0.26 10.73/0.03

USPS 67.56/0.81 68.54/0.81 31.67/0.43 16.82/0.02 16.80/0.02 16.71/0.02

71

0 1 2 3

iteration

0

0.2

0.4

0.6

0.8

1
N

M
I

COIL20

Pendigits

USPS

MNIST

Figure 4.5: NMI with increasing number of iterations

We show the spectral clustering performance of the four methods in Table 4.5 and

Table 4.6.

Table 4.5
ACC and NMI results

ACC(%)/ NMI
Data Set Standard k-NN Consensus LGSS Our method
COIL20 75.72/0.86 81.60/0.90 85.49/0.95 86.46/0.94

PenDigits 74.36/0.79 71.08/0.79 74.53/0.77 82.40/0.79
USPS 64.31/0.79 68.54/0.81 81.50/0.84 87.62/0.83

MNIST 64.20/0.74 - - 74.63/0.78

The time reported in Table 4.6 includes the time costs of the eigen-decomposition

72

0 1 2 3

iteration

0

5

10

15

|E
|

10
4

COIL20

Pendigits

USPS

MNIST

Figure 4.6: Graph complexity with increasing number of iterations

Table 4.6
Spectral clustering time results (seconds)

Data Set Standard k-NN Consensus LGSS Our method
COIL20 0.03 0.03 0.08 0.02

PenDigits 0.18 0.16 4.42 0.17
USPS 0.72 0.56 7.05 0.28

MNIST 252.59 - - 3.06

and k-means steps in spectral clustering algorithm.

The graph density results are shown in Table 4.7.

73

Table 4.7
Graph density results

|E|
|V |

Data Set Standard k-NN Consensus LGSS Our method
COIL20 6.12 5.06 11.99 1.39

PenDigits 6.76 6.70 186.52 2.96
USPS 7.30 6.58 29.97 1.70

MNIST 7.46 - - 1.72

Table 4.8
Graph learning (construction) time results

runtime (seconds)
Data Set Consensus LGSS Our method
COIL20 2.43 13.56 0.29

PenDigits 172.51 1085.43 2.04
USPS 574.28 2074.78 3.37

MNIST - - 208.89

In Table 4.8, the run time of the consensus method is the time cost of consensus

information calculation and edge pruning. The run time of our method is the time

cost of edge densification. The run time of the LGSS method is the time cost of

running the gsp learn graph log degrees function.

The experimental results show that the consensus method can improve the graph

quality for the COIL20 and the USPS data sets. But for the Pendigits data set,

it leads to an obvious clustering performance degradation. This is due to the fact

that it relies on the consensus information only to prune out edges. Some useful

74

structural information is discarded. Even for the COIL20 and the USPS data sets,

the improvement is only around 5% because it is hard to extract much useful consensus

information. Therefore, the capability of using consensus information from a given

k-NN graph in improving graph quality is very limited. Besides, it is very hard

to find a proper threshold value for edge pruning. As shown in Table 4.4, for the

COIL20 data set, the clustering performance keeps improving with the increase of

the threshold value and achieves the peak performance when τ = 5. However, the

clustering accuracy drops more than 20% when τ increases to 6. For the USPS and

the Pendigits data sets, the clustering performance drops sharply when τ increases

to 3, implying that the graph is very easy to become disconnected under this graph

construction strategy.

In the LGSS method, for the Pendigits data set, the unnormalized spectral clustering

provides poor clustering accuracy, but the normalized spectral clustering according

to [35] works well. Thus we report the clustering result based on normalized spectral

clustering for Pendigits in the LGSS’s results.

[27] uses a method to automatically select the parameters of the model introduced in

[26] to reduce the cost of parameter tuning. For fair comparison with the standard

k-NN method, in the method of [27], we set the desired edges per node on average to

10. For the COIL20 data set, the clustering accuracy is 81.16% and the NMI score

is 0.93, which are not as good as the results generated by the method of [26]. So we

75

use the method of [26] in Table 4.5.

In our method, for the USPS data set, the mode of accuracy results is 92.27%. For

the Pendigits data set, the mode of accuracy results is 84.39%. A few poor random

initializations in several runs lead to a drop of the average score.

We show the effectiveness and benefits of our method in Fig. 4.7, Fig. 4.8, and Fig.

4.9.

COIL20 Pendigits USPS MNIST

65

70

75

80

85

c
lu

s
te

ri
n
g
 a

c
c
u
ra

c
y
 (

%
)

standard k-NN

consensus method

LGSS

GRASPEL

Figure 4.7: Clustering accuracy comparison

76

COIL20 Pendigits USPS MNIST
10

-2

10
0

10
2

c
lu

s
te

ri
n
g
 t

im
e
 (

s
)

standard k-NN

consensus method

LGSS

GRASPEL

Figure 4.8: Clustering time comparison

COIL20 Pendigits USPS
10

-1

10
0

10
1

10
2

10
3

10
4

g
ra

p
h
 l
e
a
rn

in
g
 (

c
o
n
s
tr

u
c
ti
o
n
)

ti
m

e
 (

s
) consensus method

LGSS

GRASPEL

Figure 4.9: Graph learning (construction) time comparison

77

COIL20 Pendigits USPS MNIST
10

0

10
1

10
2

g
ra

p
h
 d

e
n
s
it
y
 (

|E
|/
|V

|)
standard k-NN

consensus method

LGSS

GRASPEL

Figure 4.10: Graph density comparison

4.4 Summary

This work proposes a novel spectral graph learning approach (GRASPEL). Our

method is based on iteratively identifying critical edges that have large embedding

distortions to significantly improve the graph quality. The relation between the pro-

posed method to the graphical lasso model is provided. Experiments show that the

proposed method is very efficient and leads to significant improvement of spectral

clustering performance.

78

Chapter 5

Conclusions And Future Work

5.1 Conclusions

This dissertation first provides a detailed study of the application of the spectrum-

preserving spectral graph sparisification method on spectral clustering. It demon-

strates the usefulness of the spectral-critical edges in improving the performance of

spectral clustering. We propose a novel spectral-stability checking method that can

be used as the termination criterion for both the scalable spectral clustering frame-

work and the spectral graph learning method. We perform extensive experiments

to demonstrate that the proposed framework can dramatically accelerate the com-

putational bottleneck of spectral clustering. Among a set of state-of-the-art spectral

79

clustering acceleration methods, our method is the only one that can accelerate the

clustering of the extremely large Covtype data set with 581, 012 instances without

losing clustering accuracy.

This dissertation proposes a highly-scalable spectral graph learning method

(GRASPEL). Our method aims to learn sparse undirected graphs from potentially

high-dimensional input data. Sparse yet high quality graphs can be learned by iden-

tifying and including the edges with large spectral embedding distortion into the

graph. Spectral analysis of the graphical lasso model is provided in this dissertation.

By limiting the precision matrix to be a graph-Laplacian-like matrix in the graphi-

cal Lasso-based graph learning model, we show the connection between the proposed

method and the log-likelihood Gaussian graphical model. Experimental results show

that compared with the standard and state-of-the-art graph learning and construction

methods, GRASPEL is more scalable and allows significantly improving computing

efficiency and algorithm performance.

5.2 Future Work

It has been shown that the global geometric approach for manifold learning and

dimension reduction provides a better representation of the data’s global structure

[44]. For the graph-based nonlinear dimension reduction methods such as Isomap,

80

there is great potential for improving their performances by using a high-quality

graph.

GRASPEL also has potential to be applied in circuit design and simulation. Circuit

partitioning is a fundamental problem in circuit layout [20]. GRASPEL has potential

use for understanding the structure of circuits, which enables to achieve a higher

quality of the layout.

81

References

[1] E. Agustsson, R. Timofte, and L. V. Gool. k2-means for fast and accurate large

scale clustering. arXiv preprint arXiv:1605.09299, 2016.

[2] C. Aksoylar, J. Qian, and V. Saligrama. Clustering and community detection

with imbalanced clusters. IEEE Transactions on Signal and Information Pro-

cessing over Networks, 3(1):61–76, 2017.

[3] C. J. Alpert and S.-Z. Yao. Spectral partitioning: the more eigenvectors, the

better. In Proceedings of the 32nd annual ACM/IEEE Design Automation Con-

ference, pages 195–200, 1995.

[4] O. Banerjee, L. E. Ghaoui, and A. d’Aspremont. Model selection through sparse

maximum likelihood estimation for multivariate gaussian or binary data. Journal

of Machine learning research, 9(Mar):485–516, 2008.

[5] J. Batson, D. A. Spielman, N. Srivastava, and S.-H. Teng. Spectral sparsification

83

of graphs: theory and algorithms. Communications of the ACM, 56(8):87–94,

2013.

[6] J. Bien and R. J. Tibshirani. Sparse estimation of a covariance matrix.

Biometrika, 98(4):807–820, 2011.

[7] T. A. Bjørklund, M. Götz, J. Gehrke, and N. Grimsmo. Workload-aware indexing

for keyword search in social networks. In Proceedings of the 20th ACM inter-

national conference on Information and knowledge management, pages 535–544,

2011.

[8] M. E. Celebi and H. A. Kingravi. Deterministic initialization of the k-means algo-

rithm using hierarchical clustering. International Journal of Pattern Recognition

and Artificial Intelligence, 26(07):1250018, 2012.

[9] W.-Y. Chen, Y. Song, H. Bai, C.-J. Lin, and E. Y. Chang. Parallel spectral

clustering in distributed systems. IEEE transactions on pattern analysis and

machine intelligence, 33(3):568–586, 2011.

[10] X. Chen and D. Cai. Large scale spectral clustering with landmark-based rep-

resentation. In Twenty-fifth AAAI conference on artificial intelligence. Citeseer,

2011.

[11] A. Choromanska, T. Jebara, H. Kim, M. Mohan, and C. Monteleoni. Fast spec-

tral clustering via the nyström method. In International Conference on Algo-

rithmic Learning Theory, pages 367–381. Springer, 2013.

84

[12] F. R. Chung and F. C. Graham. Spectral graph theory. Number 92. American

Mathematical Soc., 1997.

[13] X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst. Laplacian matrix

learning for smooth graph signal representation. In 2015 IEEE international

conference on Acoustics, Speech and Signal Processing (ICASSP), pages 3736–

3740. IEEE, 2015.

[14] X. Dong, D. Thanou, M. Rabbat, and P. Frossard. Learning graphs from data: A

signal representation perspective. IEEE Signal Processing Magazine, 36(3):44–

63, 2019.

[15] H. E. Egilmez, E. Pavez, and A. Ortega. Graph learning from data under lapla-

cian and structural constraints. IEEE Journal of Selected Topics in Signal Pro-

cessing, 11(6):825–841, 2017.

[16] Z. Feng. Spectral graph sparsification in nearly-linear time leveraging efficient

spectral perturbation analysis. In Proceedings of the 53rd Annual Design Au-

tomation Conference, page 57. ACM, 2016.

[17] M. Fiedler. Laplacian of graphs and algebraic connectivity. Banach Center

Publications, 25(1):57–70, 1989.

[18] C. Fowlkes, S. Belongie, F. Chung, and J. Malik. Spectral grouping using the nys-

trom method. IEEE transactions on pattern analysis and machine intelligence,

26(2):214–225, 2004.

85

[19] J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation

with the graphical lasso. Biostatistics, 9(3):432–441, 2008.

[20] J. Garbers, H. J. Promel, and A. Steger. Finding clusters in vlsi circuits. In

1990 IEEE International Conference on Computer-Aided Design, pages 520–521.

IEEE Computer Society, 1990.

[21] X. Guo. Robust subspace segmentation by simultaneously learning data repre-

sentations and their affinity matrix. In IJCAI, pages 3547–3553, 2015.

[22] I. Guyon, S. Gunn, A. Ben-Hur, and G. Dror. Result analysis of the nips 2003

feature selection challenge. In Advances in neural information processing systems,

pages 545–552, 2005.

[23] L. Hagen and A. B. Kahng. New spectral methods for ratio cut partitioning and

clustering. IEEE transactions on computer-aided design of integrated circuits

and systems, 11(9):1074–1085, 1992.

[24] S. Hess, W. Duivesteijn, P. Honysz, and K. Morik. The spectacl of nonconvex

clustering: a spectral approach to density-based clustering. In Proceedings of the

AAAI Conference on Artificial Intelligence, volume 33, pages 3788–3795, 2019.

[25] T. Jebara, J. Wang, and S.-F. Chang. Graph construction and b-matching for

semi-supervised learning. In Proceedings of the 26th annual international con-

ference on machine learning, pages 441–448. ACM, 2009.

86

[26] V. Kalofolias. How to learn a graph from smooth signals. In Artificial Intelligence

and Statistics, pages 920–929, 2016.

[27] V. Kalofolias and N. Perraudin. Large scale graph learning from smooth signals.

In International Conference on Learning Representations, 2019.

[28] P. Kolev and K. Mehlhorn. A note on spectral clustering. arXiv preprint

arXiv:1509.09188, 2015.

[29] H. Lee, A. Battle, R. Raina, and A. Y. Ng. Efficient sparse coding algorithms.

In Advances in neural information processing systems, pages 801–808, 2007.

[30] J. R. Lee, S. O. Gharan, and L. Trevisan. Multiway spectral partitioning and

higher-order cheeger inequalities. Journal of the ACM (JACM), 61(6):37, 2014.

[31] J. Liu, C. Wang, M. Danilevsky, and J. Han. Large-scale spectral clustering on

graphs. In Proceedings of the Twenty-Third international joint conference on

Artificial Intelligence, pages 1486–1492. AAAI Press, 2013.

[32] Y. Liu, Q. Gao, Z. Yang, and S. Wang. Learning with adaptive neighbors for

image clustering. In IJCAI, pages 2483–2489, 2018.

[33] M. W. Mahoney. Lecture notes on spectral graph methods. arXiv preprint

arXiv:1608.04845, 2016.

87

[34] M. Maier, U. V. Luxburg, and M. Hein. Influence of graph construction on

graph-based clustering measures. In Advances in neural information processing

systems, pages 1025–1032, 2009.

[35] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an

algorithm. In Advances in neural information processing systems, pages 849–856,

2002.

[36] F. Nie, D. Xu, I. W. Tsang, and C. Zhang. Spectral embedded clustering. In

IJCAI, pages 1181–1186, 2009.

[37] C. H. Papadimitriou and K. Steiglitz. Combinatorial optimization: algorithms

and complexity. Courier Corporation, 1982.

[38] V. Premachandran and R. Kakarala. Consensus of k-nns for robust neighborhood

selection on graph-based manifolds. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 1594–1601, 2013.

[39] J. Qian, V. Saligrama, and M. Zhao. Graph-based learning with unbalanced

clusters. arXiv preprint arXiv:1205.1496, 2012.

[40] M. G. Rabbat. Inferring sparse graphs from smooth signals with theoretical

guarantees. In 2017 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 6533–6537. IEEE, 2017.

88

[41] S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear

embedding. science, 290(5500):2323–2326, 2000.

[42] S. E. Schaeffer. Graph clustering. Computer science review, 1(1):27–64, 2007.

[43] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transac-

tions on pattern analysis and machine intelligence, 22(8):888–905, 2000.

[44] V. D. Silva and J. B. Tenenbaum. Global versus local methods in nonlinear

dimensionality reduction. In Advances in neural information processing systems,

pages 721–728, 2003.

[45] M. Slawski and M. Hein. Estimation of positive definite m-matrices and structure

learning for attractive gaussian markov random fields. Linear Algebra and its

Applications, 473:145–179, 2015.

[46] D. Spielman and S. Teng. Spectral partitioning works: Planar graphs and finite

element meshes. In Foundations of Computer Science (FOCS), 1996. Proceed-

ings., 37th Annual Symposium on, pages 96–105. IEEE, 1996.

[47] D. A. Spielman. Algorithms, graph theory, and linear equations in laplacian ma-

trices. In Proceedings of the International Congress of Mathematicians, volume 4,

pages 2698–2722, 2010.

[48] D. A. Spielman and N. Srivastava. Graph sparsification by effective resistances.

SIAM Journal on Computing, 40(6):1913–1926, 2011.

89

[49] A. Strehl and J. Ghosh. Cluster ensembles—a knowledge reuse framework for

combining multiple partitions. Journal of machine learning research, 3(Dec):583–

617, 2002.

[50] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of initial-

ization and momentum in deep learning. In International conference on machine

learning, pages 1139–1147, 2013.

[51] A. Szlam and X. Bresson. A total variation-based graph clustering algorithm for

cheeger ratio cuts. UCLA Cam Report, pages 09–68, 2009.

[52] U. Von Luxburg. A tutorial on spectral clustering. Statistics and computing,

17(4):395–416, 2007.

[53] D. Wagner and F. Wagner. Between min cut and graph bisection. In International

Symposium on Mathematical Foundations of Computer Science, pages 744–750.

Springer, 1993.

[54] J. Wang, Z. Zhang, and H. Zha. Adaptive manifold learning. In Advances in

neural information processing systems, pages 1473–1480, 2005.

[55] Y. Wang and Z. Feng. Towards scalable spectral clustering via spectrum-

preserving sparsification. arXiv preprint arXiv:1710.04584, 2017.

[56] D. Yan, L. Huang, and M. I. Jordan. Fast approximate spectral clustering. In

90

Proceedings of the 15th ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 907–916. ACM, 2009.

[57] X. Yang, L. Prasad, and L. J. Latecki. Affinity learning with diffusion on tensor

product graph. IEEE transactions on pattern analysis and machine intelligence,

35(1):28–38, 2012.

[58] J. Yin and J. Wang. A dirichlet multinomial mixture model-based approach for

short text clustering. In Proceedings of the 20th ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 233–242, 2014.

[59] L. Zelnik-Manor and P. Perona. Self-tuning spectral clustering. In Advances in

neural information processing systems, pages 1601–1608, 2005.

91

	HIGH PERFORMANCE SPECTRAL METHODS FOR GRAPH-BASED MACHINE LEARNING
	Recommended Citation

	Contents
	List of Figures
	List of Tables
	Preface
	Abstract
	Introduction
	Background
	Challenges
	Clustering
	k-means
	Graph Clustering
	Evaluation Metrics
	Clustering Accuracy (ACC)
	Normalized Mutual Information (NMI)

	Contributions

	Related Work
	Graph Construction Methods
	k-Nearest Neighbor Graph
	-Neighborhood Graph
	Consensus Method
	Graph Learning Methods
	Summary

	Graph Laplacian Matrix
	Spectral Graph Sparsification
	Spectral Clustering
	Background
	Approximation Algorithms
	Observations

	Towards Scalable and High-Quality Spectral Clustering via Spectrum-Preserving Sparsification
	Motivation
	Methods for Accelerating Spectral Clustering
	Fast Approximate Spectral Clustering
	Nyström Method
	Landmark-based Spectral Clustering

	Spectrum-Preserving Sparsification
	A Scheme for Eigenvalue Stability Checking
	Algorithm Flow and Complexity Analysis
	Experiments
	Data Sets
	The Effectiveness of Spectrally Critical Off-tree Edges for Spectral Clustering
	Spectral Stability Checking Results
	Clustering Results and Comparison

	Summary

	GRASPEL: Graph Spectral Learning
	Background
	Multivariate Gaussian Distribution
	Maximum Likelihood Estimation
	Graphical Lasso

	Our Method
	Spectral Analysis
	Clustering-Informative Edge
	Embedding Distortion
	A Distortion-based Edge Sampling Method
	Edge Weight Calculation
	Detailed Steps in GRASPEL
	Initial Graph Construction
	Critical Edge Identification
	Termination Criterion

	Algorithm Flow and Complexity Analysis

	Experiments
	Spectral Stability Checking Results
	Convergence Results
	Clustering Results and Comparison

	Summary

	Conclusions And Future Work
	Conclusions
	Future Work

	References

