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ABSTRACT 

 The Dp, Retinoblastoma, E2F, And MuvB (DREAM) complex mediates 

transcriptional repression and is highly conserved throughout a number of 

species, including vertebrates, Drosophila melanogaster, and Caenorhabditis 

elegans. Differing from mammalian DREAM, C.elegans DRM, appears to act 

solely in a repressive role, with the MuvB subcomplex (LIN-9, LIN-37, LIN-52, 

LIN-53, and LIN-54) playing a key role in the repression of genes. In this study, 

we use the auxin-inducible degron (AID) system, an effective, fast-acting, tool 

used in the degradation of degron-tagged proteins to individually deplete two key 

proteins of the MuvB subcomplex, LIN-9 and LIN-54, in C. elegans. The AID 

system relies on the expression of the F-box protein, transport inhibitor response 

1 (TIR1), which in the presence of auxin acts as the substrate recognition 

component for the SKP1-CUL1-F-box (SCF) E3 ubiquitin ligase complex, leading 

to the degradation of tagged proteins. In degron-tagged LIN-54 worms, using a 6-

hour auxin time course, we observed that DREAM target genes become 

significantly upregulated. Expression of DREAM target genes increased with 

longer exposure to auxin, indicating that LIN-54 plays a key role in the regulation 

of DREAM target genes. However, in both a 6-hour and 24-hour auxin time 

course experience, degron-tagged LIN-9 worms showed no uniform nor 

significant upregulation of DREAM target genes compared to ethanol vehicle 

control. These results demonstrate that LIN-54, the sole DNA-binding protein of 

MuvB, plays a more important role in MuvB’s repression of genes than the core 

protein of MuvB, LIN-9. We recommend further study into these two proteins 
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using the AID system to further explore their roles in MuvB and DREAM complex 

function. 
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1.1 INTRODUCTION  

The expanding experimental capability to manipulate protein levels in both 

cells and living organisms proves to be instrumental in our understanding of what 

role these proteins play in biological processes. Traditional methods of protein 

manipulation, such as gene knockout and RNA interference (RNAi), are widely 

used to examine the effects of specific protein loss in an organism or cells. 

However, these techniques are indirect, dependent on protein stability, and not 

easily reversible [1]. One new method to manipulate protein levels in cells and 

organisms, the auxin-inducible degron (AID) system, is effective in its depletion 

of proteins and is conditional, fast-acting, and reversible [1, 2, 3, 4]. This system 

relies on both the presence of auxin and the expression of Arabidopsis thaliana 

F-box protein TIR1, which serves as the substrate recognition component for the 

SCF E3 ubiquitin ligase complex, resulting in the degradation of degron tagged 

proteins by a proteosome [1, 2]. We seek to use this system to study DREAM 

complex function in Caenorhabditis elegans. The DREAM complex is a 

transcriptional repressor that is highly conserved across numerous species, with 

MuvB acting as the mediator of repression in the C. elegans DREAM complex, 

known as DRM [5, 6]. MuvB subunits LIN-54 and LIN-9 were individually tagged 

with the degron tag coupled to green fluorescent protein. We believe that the 

degradation of LIN-54 and/or LIN-9 will result in the activation of DREAM target 

genes that would otherwise be repressed. 
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1.1.2 The Auxin-Inducible Degron (AID) System 

The AID system relies on the use of a small amino acid sequence, also 

called a degron, that acts as a target for the SKP1, CUL1, F-box (SCF) E3 

ubiquitin ligase complex [1, 2]. In the ubiquitin pathway, chains of ubiquitin attach 

to a target substrate, in this case the degron, which allows the modified protein to 

be recognized and degraded by the proteosome [7]. Cul1 acts as the major 

scaffold and brings together Skp1 and RBX1, an E3 ubiquitin ligase RING 

subunit of SCF [1, 8]. Skp1 binds to the F-box protein, while RBX1, recruits the 

E2 ubiquitin-conjugating enzyme, which acts as a ‘ubiquitin carrier’ and is guided 

by the E3 ubiquitin ligase to the target substrate [1, 9]. (Fig. 1). The SCF complex 

is highly conserved among eukaryotes, which allows the transplant of specific F-

box proteins from one organism to another to form a functional SCF complex that 

can direct the degradation of proteins tagged with the target degron [1,3, 4]. In 

the C. elegans AID system, the exogenous F-box protein used is the Arabidopsis 

thaliana transport inhibitor response 1 (TIR1) protein [2]. TIR1 recognizes tagged 

substrates and mark them for degradation only in the presence of the plant 

phytohormone, auxin (indole-3-acetic acid, or IAA) [1, 2, 3, 4]. Therefore, with an 

endogenous degron-tagged target protein and exogenous TIR1 expression, 

addition of auxin triggers rapid and efficient degradation of the targeted protein 

[2, 3, 4].  

The AID system is not only highly effective in degrading target proteins, 

but the system has proven to be specific, quick, and reversible in a multitude of 
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species [2, 3, 4, 10, 11, 12]. The first successful use of the AID system in non-

plant cells was completed by Nishimura et al. using budding yeast and human 

cells. These cells, which contained an auxin degron on a GFP-NLS (SV40 

nuclear localization signal), experienced near complete GFP signal loss within 30 

minutes of exposure to an auxin treatment [10]. In these same cells it was 

observed that after removal from an auxin treatment GFP signal would begin to 

recover [10]. Since Nishimura’s experiment, the system has successfully been 

used in fission yeast, Drosophila melanogaster, Caenorhabditis elegans, 

zebrafish, and mouse oocytes [2, 3, 4, 11, 12]. 

In C. elegans, the AID system successfully destroys degron-tagged 

nuclear and cytoplasmic proteins in both somatic and germline tissues across 

developmental stages [2]. Target proteins were depleted within two hours of 

auxin treatment, displaying not only the system’s speed, but it’s ability for 

continued use in C. elegans [2]. Developmental stage affects the rate of 

degradation, as degron-tagged protein degrade faster in young larvae as 

compared to adults [2]. Both degradation rate and recovery rate depended 

largely on the concentration of auxin used, with greater auxin concentrations 

resulting in faster degradation, but slower recovery [2]. In smaller concentrations, 

recovery was detectable by GFP fluorescence within two hours of removal from 

an auxin treatment [2]. After seven hours the fluorescence was observed to 

reach half the level seen in untreated animals [2]. No adverse side effects were 

observed following exposure to auxin or expression of TIR1 [2]. There was no 
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effect on viability, brood size, developmental rate, or morphology [2]. These 

results established that the AID system as a capable and effective method for 

rapid protein degradation in C. elegans. 

1.1.3 DREAM Complex 

The 8-subunit DREAM (dimerization partner, retinoblastoma (Rb)-like, 

E2F, multivulval class B (MuvB)) complex is a transcriptional repressor complex 

(Fig. 2) that is highly conserved across vertebrates, Drosophila, and C. elegans 

[5]. In mammals, the DREAM complex represses cell cycle genes in G0, or cell 

cycle quiescence [5, 13, 14]. However, during late G1 and S phase of the cell 

cycle, MuvB dissociates from DREAM and forms the MMB transcriptional 

activator complex with the BMYB transcription factor [5, 13, 14]. DREAM 

maintains quiescence by repressing G1/S genes through binding E2F or 

E2F/CLE DNA promoter elements and repressing G2/M genes by binding CHR 

or CHR/CDE DNA promoter elements [5, 13, 14]. When the RB-like subunits, 

E2F, and DP are released, the MuvB complex, made up of LIN9, LIN37, LIN52, 

LIN54, and RBBP4 (LIN-53 in C. elegans), begins to coordinate cell cycle gene 

activation by associating with MYB in the late S and early G2 phase [5, 13, 14]. 

Further association with the transcriptional activator FOXM1 in late G2/M phase 

drives maximal expression of G2/M genes [5, 13, 14]. 

In contrast to mammalian DREAM, the homologous DRM complex in C. 

elegans and MuvB in particular, acts solely as a transcriptional repressor 

complex [6]. This is likely because C. elegans LIN-52 does not possess the 
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phosphorylation switch of mammalian LIN52 and to date there has not been a 

BMYB homolog found in C. elegans [6]. In addition, this complex protects 

developing somatic cells by repressing germline genes and plays a role in cell 

fate specification through its antagonization of Ras signaling during the animal’s 

vulval development [15, 16]. The C. elegans DRM complex presents a unique 

opportunity to examine how DREAM represses target genes. As this complex, 

and MuvB, act solely in a repressive fashion, disruption of MuvB only eliminates 

repression in C. elegans [6]. However, in mammals, because MuvB plays a role 

in both the repressive DREAM complex and MMB activator complex, knockout of 

MuvB would not only eliminate gene repression, but activation as well, leading to 

negative effects on cell viability [6, 13, 14, 19]. 

1.1.4 Dysfunction of MuvB and DREAM 

The DREAM complex and its MuvB subcomplex play a key role in the 

maintenance of cell cycle progression and cellular development. Across many 

species, loss of DREAM or MuvB can lead to cancer, abnormal bone growth, 

embryonic lethality, and the misexpression of genes [16, 17, 18, 19, 20, 21]. At 

the least, these consequences negatively affect an organism’s quality of life, and 

at their worst have proven fatal.  

In cancer, DREAM complex-mediated gene repression is often disrupted, 

with MuvB constitutively adopting its activator function [17, 18]. Constitutive 

MuvB activation is often caused by overexpression of the genes BMYB and 

FOXM1 [17, 18]. In an examination of meningiomas, the most common primary 
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tumors of the brain and central nervous system, only aggressive and malignant 

tumors lost DREAM complex function, while the benign and recurrent benign 

tumors still maintained normal DREAM function [17]. The malignant tumors 

overexpressed both FOXM1 and BMYB, which are hypothesized to be forcing 

MuvB into its gene activation functions. Constitutive MuvB-mediated gene 

activation then establishes continued cell proliferation [17]. Further study into 

BMYB found that its overabundance in cancers causes interference with LIN52 

phosphorylation, which leads to an increased stability and abundance of LIN52, 

ultimately resulting in continued proliferation as a result of disrupted DREAM 

assembly [18]. Looking beyond cancer, mice deficient of p130, a retinoblastoma-

like protein, develop defects in endochondral bone formation and while they 

survive to parturition, all die within the first 1.5 days of life [19]. 

Loss of MuvB has been shown to have deleterious effects [20, 21]. In 

mice, after detection in the blastocyte stage, LIN9 deficient embryos die shortly 

after implantation [20]. Prior to death, LIN-9 deficient embryos are considered 

highly abnormal with a distinct lack of development of the three germ layers, the 

amnion, chorion, and allantois [20]. In addition, the LIN9 loss causes a delayed 

entry into mitosis, a significant increase in binuclear cells, micronucleation, nuclei 

with multiple lobes, and doughnut-shaped nuclei [20]. LIN9 is also critical in adult 

mice, in LIN9 conditional knockouts, adults die within seven days of its depletion 

[20]. Conditional loss of LIN9 results in rapid atrophy of the mouse intestinal 

epithelium and a substantial decrease in cell proliferation [20]. Furthermore, LIN9 
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appears to play a critical role in the regulation of embryonic stem cells [21]. 

Embryonic stem cells deficient in LIN9 experience impaired proliferation and 

embryoid body formation, with an increase in polyploid cells and an 

overabundance of cells in the G2 and M phases [21]. 

In C. elegans, disruption of DRM components leads to larval arrest and 

gene misexpression [6, 16, 22]. Loss of LIN-35, LIN-9, LIN-37, and LIN-54 

causes a strong high temperature larval arrest phenotype, where at 26 C the 

worms do not develop past their first larval (L1) stage [16]. In these mutants, 

ectopic P-granule expression in the intestines was found to be correlated with 

their high temperature arrest phenotype [16]. In addition, at 26 C, deficiency in 

LIN-54 and LIN-35 results in significant delays in chromatin compaction, which 

may allow for abnormal expression of germline genes in somatic cells [22]. In a 

LIN-35 null mutant, loss of the pocket protein impairs, but does not eliminate, 

chromatin association for the E2F-DP and MuvB subcomplexes [6]. Loss of LIN-

35 does cause the upregulation of many DREAM target genes; however, 

additional upregulation of DREAM target genes was observed when the LIN-35 

null was coupled with depletion of MuvB [6]. In LIN-35 nulls with depletion of 

E2F-DP upregulation did not change, giving support to the belief that MuvB 

mediates the repression of DRM target genes [6]. As C. elegans MuvB has been 

shown to take on a purely repressive form, as opposed to dual-acting 

mammalian MuvB, it displays great promise as a model system for 
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understanding how the DREAM complex mediates repression of DREAM target 

genes [5, 6]. 

1.1.5 STUDY HYPOTHESIS 

 In this project, we sought to assess how MuvB functions as a 

transcriptional repressor in C. elegans DRM. As outlined above, MuvB adopts a 

dual role in mammalian cells, repressing or activating target genes depending on 

the context of its protein associations [5]. The complexities of MuvB’s role during 

the mammalian cell cycle, mean that loss-of-function analysis cannot ascertain 

how the complex functions as a repressor. In contrast, in C. elegans, MuvB 

appears to function solely as a repressor [6]. Therefore, targeted disruption of 

MuvB via degradation of two of its key subunits, LIN-9, the core protein of MuvB, 

and LIN-54, the sole DNA binding protein of MuvB, would cause significant 

upregulation of DRM target genes [14, 23]. This would further cement MuvB as 

the key transcriptional repressor in C. elegans DRM and also suggest that 

individually LIN-9 and LIN-54 play a critical role in the repression of DREAM 

target genes. 

 To test our hypothesis, we utilized the AID protein degradation system that 

is not only effective, but highly specific, fast acting, and reversible [1, 2, 3, 4]. By 

overexpressing a TIR1 transgene in worm strains with GFP-degron-tagged LIN-

54 or LIN-9, we rapidly depleted the MuvB subunits after a simple addition of 

auxin. With the AID system, we performed one 6-hour and one 24-hour auxin 

treatment time courses. We observed the consequence of MuvB subunit 
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depletion on DRM target gene transcripts using quantitative PCR (qPCR). Using 

qPCR, we examined the relative quantity of three house-keeping genes, act-1, 

act-2, and tba-1, and three known DRM targets, air-1, cdk-1, and set-21. We 

expected that house-keeping genes would be unaffected following MuvB subunit 

degradation and DRM targets would be activated following MuvB subunit 

degradation. After auxin treatment, we observed that LIN-54 depletion caused 

DRM target activation but not LIN-9 depletion, suggesting that at least LIN-54 

function is required for MuvB to mediate gene target repression. This study will 

further the understanding of the importance of individual proteins of the MuvB 

complex, and DRM as a whole, in transcriptional repression. 
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Figure 1 The auxin inducible degron (AID) system. 

The AID system relies on the use of amino acide sequences called degrons 

fused to a target protein and the expression of the plant F-box protein TIR1. In 

the presence of auxin, TIR1, part of the SCF E3 ubiquitin ligase complex, will 

recognize the degron-tagged protein and mark it for degradation. 
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Figure 2 C. elegans DRM Complex 

The DRM complex in C. elegans is a transcriptional repressor, consisting of eight 

proteins, split into three subunits, E2F-DP (DPL-1 and EFL-1), the pocket protein 

(LIN-35), and MuvB (LIN-9, LIN-37, LIN-52, LIN-53, LIN-54). Our project focuses 

on the effect on DRM target gene expression following degradation of LIN-54 and 

LIN-9 in C. elegans L1s over time. 
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1.2 MATERIALS AND METHODS 

1.2.1 Worm Strains 

SS1369: lin-9(bn162(GFP::degron::3xflag::lin-9) III ; ieSi57(eft-

3p::TIR1::mRuby::unc-54 3’ UTR + Cbr-unc-119(+) II 

SS1371: lin-54(bn166(lin-54::GFP::degron::3xflag) IV ; ieSi57(eft-

3p::TIR1::mRuby::unc-54 3’ UTR + Cbr-unc-119(+) II 

1.2.2 Liquid Worm Growth 

Rapid expansion of worms was done using a liquid growth protocol. This 

was done using S-medium, which consisted of 500ml of 1x S-Basal, 5 ml of 1 M 

potassium citrate pH 6, 5 ml of 100x trace metals, 1.5 ml of 1 M MgSO4, 1.5 ml of 

1 M CaCl2, and 500 μl of 5 mg/ml cholesterol. To the S-medium, 10 ml of HB101 

was added to serve as the worms’ food source. Six starved plates of L1 worms 

were added to the solution by rinsing the plates with 1x S-Basal. These worms 

were then allowed to grow to gravid adults over a two- to three-day time period in 

an incubator set to 20 C shaking at 200 RPM. 

1.2.3 Obtaining L1s 

After growing to adulthood, worms were transferred into a 50 ml tube from 

the liquid growth solution. To concentrate the worms to a single tube, the 200 mL 

culture was centrifuged 50 mL at a time at 1500 RPM for two minutes at 4C to 

form a pellet and excess liquid was drawn off. Once concentrated, the pellet was 

washed 2 – 3 times in deionized water, being centrifuged at 1500 RPM for two 
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minutes at 4C with the liquid drawn off for each wash. After the deionized water 

washes, the pellet was washed once with 1x S-Basal and centrifuged at 1500 

RPM for two minutes at 4C with the excess liquid removed. To obtain the 

embryos from the adult worms, a 50 ml bleach solution of 0.7g KOH, 10 ml 

bleach, and brought to 50 ml with deionized water was created. 25 ml of the 

bleach solution was added to every tube of adult worms. These tubes were then 

manually shaken for four minutes, with the degradation of the adult worms 

checked at four minutes. Degradation was monitored in two-minute intervals 

following the four minute check, once adults had fully disintegrated leaving only 

their embryos behind, the embryos were centrifuged at 1500 RPM for two 

minutes at 4C, with the bleach solution being removed. The embryos were then 

washed twice with deionized water and once with 1x S-Basal, following the same 

centrifuging protocol, with the liquid removed from the pellet after each wash. 

Following the washes, the pellet of embryos was resuspended in 50 ml of S-

medium. The embryos were incubated overnight at 20C, shaking at 200 RPM. 

We obtained these embryos to synchronize the life stage of our experimental 

worms. We chose the first larval stage (L1) for our experiment as these worms 

can survive for an extended time without a food source and will not further their 

development until they receive adequate nutrition. 

1.2.4 Auxin Treatment Time Course 

The auxin treatment time courses to obtain RNA for qPCR were 

performed in triplicate for each timepoint. To start, 3.5 ml of L1 worms in S-
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medium were treated with 35 μl of 400 mM Auxin, with the same concentrations 

being using for our vehicle control but substituting the 400 mM Auxin treatment 

with an ethanol treatment. Two different time courses were performed, the first 

24 hour timecourse with 0, 1, 3, 6, and 24 hour timepoints for the auxin treatment 

and controls, and the second 6 hour timecourse with 0, 1, 3, and 6 hour 

timepoints for the auxin treatment and only one 6 hour ethanol vehicle treatment 

control. At each timepoint, 1ml of worms, which varied from 40,000 worms/ml to 

50,000 worms/ml, were harvested and centrifuged for two minutes at 12,000 

RPM. Once centrifuged the liquid was drawn off and 500 μl of TRIzol was added. 

The samples were then stored at -70 C until RNA isolation. 

1.2.5 RNA Isolation 

 Once we were ready to perform the RNA extraction the tubes were 

thawed completely at room temperature. Once thawed, 100 μl chloroform was 

added to the tubes, mixed, and incubated at room temperature for 10 minutes. 

After the incubation, the solution was centrifuged at 4 C for 15 minutes at 12,000 

RPM. The top aqueous layer was transferred to an RNase free tube. To these 

tubes, a 1:1 ratio of isopropanol was added, mixed, and incubated for five 

minutes at room temperature. Following, samples were centrifuged for eight 

minutes at 4 C at 12,000 RPM. The liquid was removed, and 75% 

ethanol/nuclease-free water was added to wash. The tubes were then 

centrifuged for five minutes at 12,000 RPM. Following the spin, the liquid was 

removed, and the tubes were again centrifuged for one minute at 12,000 RPM. 
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After, any remaining liquid was drawn off and the tubes were left open to air dry 

for no more than four minutes. After air drying for five minutes, nuclease-free 

water was added, and the samples were stored at -70 C until reverse 

transcription was performed. 

1.2.6 Reverse Transcription 

Concentrations for RNA per sample were determined using a Nanodrop. 

For each sample, 500 ng of RNA was reverse transcribed to complementary 

DNA (cDNA) using the High-Capacity cDNA Reverse Transcription Kit 

(ThermoFisher Scientific).  All samples but the second run of LIN-54 underwent 

reverse transcription to cDNA. Following cDNA conversion or thawing on ice, 

tubes were then incubated at 65 C for 10 minutes and transferred to an ice bath. 

An RT-PCR master mix was created and to each tube 2 μl of 10x RT buffer, 0.8 

μl of 25x dNTP mix (100 mM), 2 μl of random primers, 1 μl of MultiScribe RTase 

and 3.2 μl of nuclease-free water were added. The samples were mixed for short 

time using a tabletop centrifuge and run on an ABI simpliAmp cycler. Once the 

run was complete the samples were moved into fresh tubes, diluted with 80 μl 

ddH2O per sample, and refrigerated until quantitative PCR (qPCR) analysis.  

1.2.7 Quantitative PCR 

 Dilutions for each primer set were made according to their reported 

concentrations with ddH2O prior to creating our qPCR plates. Our primer sets 

were act-1, act-2, tba-1, air-1, cdk-1, and set-21. Table 1 lists these primers and 
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their corresponding DNA sequences. Using the dilutions, a master mix was 

created for each primer set. Each master mix contained 160 μl of SYBR Green, 

16 μl of the forward primer, 16 μl of the reverse primer and 96 μl of ddH2O. To 

each 2 μl sample, 18 μl of the master mix was added. Once the plate was 

completed it was centrifuged at 1500 RPM for two minutes and run using ABI 

QuantStudio 3. Relative gene quantities were obtained by finding CT of the 

genes, which we found by comparing all other tested genes to the house-keeping 

gene act-2, from the same timepoint and sample. Given CT, we obtained 

relative quantity of the gene by finding 2-CT. The relative quantity from each 

sample per timepoint was averaged to give us the average relative quantity used 

in our figures.  
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Primer Sequence 

act-1 F ACGACGAGTCCGGCCCATCC 

act-1 R GAAAGCTGGTGGTGACGATGGTT 

act-2 F CGTCATCAAGGAGTCATGGTC 

act-2 R CATGTCGTCCCAGTTGGTAA 

tba-1 F TCAACACTGCCATCGCCGCC 

tba-1 R TCCAAGCGAGACCAGGCTTCAG 

air-1 F ACGCCATACATTGTGCGGTA 

air-1 R CCAGTTTGATTGGCGAACGG 

cdk-1 F TTCAGAGTTCTCGGCACACC 

cdk-1 R TTCGCGTTGAGACGAAGTGA 

set-21 F AAATGTTGCGCGAACTGTCG 

set-21 R GTCCGTGTACGTCTTTCCGT 

 

Table 1 Primers and their corresponding DNA sequences 
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1.3 RESULTS 

1.3.1 Auxin-induced degradation of LIN-54 does not affect expression of 

house-keeping genes 

 As a control to compare to our DREAM target genes and to ensure that 

auxin treatment does not cause off target effects, we performed qPCR testing the 

transcript levels of the house-keeping genes act-1, act-2, and tba-1. Only data 

from the 6 hour time course was obtained for LIN-54. We chose act-2 as our 

reference gene to determine relative quantity of our experimental genes act-1 

and tba-1. In our first run of act-1 and both runs of tba-1, we observed no 

significant difference in the relative quantity of our house-keeping genes (Fig. 3, 

Fig. 4, Fig. 8). However, in our second run of act-1, some statistical significance 

was observed. In this run, act-1 was significantly higher in our 6-hour vehicle 

when compared to our 0-hour auxin control and 1-hour auxin timepoint. Our 3-

hour and 6-hour auxin treatment also showed significantly higher expression of 

act-1 in comparison to our 0-hour and 1-hour auxin treatment. The increase in 

act-1 over time in our second run suggest that these L1s may be experiencing a 

great deal of stress (Fig. 9). 

1.3.2 Auxin-induced degradation of LIN-54 results in activation of DREAM 

target genes 

 We next tested transcript levels known DREAM target genes, air-1, cdk-1, 

and set-21, in degron-tagged LIN-54 L1 larvae in response to auxin treatment. 
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We initially observed that air-1 (Fig. 10) and cdk-1 (Fig. 11) showed a steady, but 

insignificant, increase in the expression when compared to our 0-hour auxin and 

6-hour vehicle controls. Therefore, we repeated the experiment and observed a 

statistically significance increase in expression of all 3 DREAM target genes 

when compared to our 0-hour auxin and 6-hour vehicle controls (Fig. 10, Fig. 11, 

Fig. 12). In general our 6-hour vehicle experienced higher expression of all 

DREAM target genes than our 0-hour auxin control, at times even significantly 

higher. This suggests that the worms undergoing a 6-hour time course are under 

more stress than those that only experience a shorter time course. However, 

while expression in the 6-hour vehicle was higher than our 0-hour auxin control, it 

was across the board significantly less than our 6-hour auxin treatment in our 

second run. 

1.3.3 Auxin-induced degradation of LIN-9 does not affect expression of 

house-keeping genes 

 In LIN-9 we tested the transcript levels of the three house-keeping genes, 

act-1, act-2, and tba-1. We performed one 6-hour and one 24-hour auxin time 

course on degron-tagged LIN-9 L1 larvae, with gene transcript levels measured 

and treatment occurring at 0-hour, 1-hour, 3-hour, 6-hour, and 24-hour, for both 

auxin and the ethanol vehicle. We chose to only show results for the 24-hr 

ethanol vehicle. In both the 6-hour and 24-hour time courses, we chose act-2 as 

our standard comparison gene to calculate relative quantity of our experimental 

genes. As expected in both time course experiments, we observed that 
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expression of tba-1 and act-1 was not consistently affected by auxin treatment 

(Fig. 13, Fig. 14, Fig. 18, Fig. 19). However, we observed that several time points 

showed significant changes in gene expression, when compared to 0-hour auxin 

or ethanol controls, but the change in expression levels was not reproducible 

between experiments. Therefore, we concluded that these significant changes 

were not a result of auxin treatment. In our 24-hour run of act-1 we noticed that 

our 24-hour ethanol vehicle had significantly higher expression of act-1 than our 

0-hour control. This suggests that treating L1s for such an extended time period 

may lead to great stress and it may be best to avoid long time courses in L1s. 

1.3.4 Auxin-induced degradation does not cause a significant effect on the 

expression of DREAM target genes 

 Using act-2 transcript levels as a control, we measured the relative 

quantity transcript levels of the known DREAM target genes, air-1, cdk-1, and 

set-21. The degradation of LIN-9 following auxin treatment had no measurable 

effect on the expression of DREAM target genes. In contrast to our degron-

tagged LIN-54 results above, auxin treatment of degron-tagged LIN-9 did not 

cause an increase in DREAM target gene expression over time (Fig. 15, Fig. 16, 

Fig. 17, Fig. 20, Fig. 21, Fig. 22). As shown by our figures for air-1, cdk-1, and 

set-21 for both our 6-hour and 24-hour time course, we did not observe any 

uniform increase in the expression of these genes over time. From this we 

conclude that LIN-9 may not play a large role in the repression of DREAM target 

genes.  
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Figure 3 Average relative quantity (Rq) of tba-1 compared to act-2 over a 6-

hour auxin time course in LIN-54 degron-tagged L1 larvae. 

Expression values from 3 biological replicates were averaged and are presented 

as the relative quantity (Rq) compared to act-2. Synchronized L1 larvae were 

treated with 35 μl of auxin for 0, 1, 3, and 6 hours, with a 6-hour ethanol 

treatment used as a vehicle control. Error bars indicate standard error of the 

mean. Significance was calculated using a student’s T test (* p<0.05 ** p<0.01 

experimental samples compared to 0-hour auxin treatment, # p<0.05 ## p<0.01 

experimental samples compared to 6-hour ethanol vehicle treatment).  
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Figure 4 Average relative quantity (Rq) of act-1 compared to act-2 over a 6-

hour auxin time course in LIN-54 degron-tagged L1 larvae. 

Expression values from 3 biological replicates were averaged and are presented 

as the relative quantity (Rq) compared to act-2. Synchronized L1 larvae were 

treated with 35 μl of auxin for 0, 1, 3, and 6 hours, with a 6-hour ethanol 

treatment used as a vehicle control. Error bars indicate standard error of the 

mean. Significance was calculated using a student’s T test (* p<0.05 ** p<0.01 

experimental samples compared to 0-hour auxin treatment, # p<0.05 ## p<0.01 

experimental samples compared to 6-hour ethanol vehicle treatment).  
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Figure 5 Average relative quantity (Rq) of air-1 compared to act-2 over a 6-

hour auxin time course in LIN-54 degron-tagged L1 larvae. 

Expression values from 3 biological replicates were averaged and are presented 

as the relative quantity (Rq) compared to act-2. Synchronized L1 larvae were 

treated with 35 μl of auxin for 0, 1, 3, and 6 hours, with a 6-hour ethanol 

treatment used as a vehicle control. Error bars indicate standard error of the 

mean. Significance was calculated using a student’s T test (* p<0.05 ** p<0.01 

experimental samples compared to 0-hour auxin treatment, # p<0.05 ## p<0.01 

experimental samples compared to 6-hour ethanol vehicle treatment).  
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Figure 6 Average relative quantity (Rq) of cdk-1 compared to act-2 over a 6-

hour auxin time course in LIN-54 degron-tagged L1 larvae. 

Expression values from 3 biological replicates were averaged and are presented 

as the relative quantity (Rq) compared to act-2. Synchronized L1 larvae were 

treated with 35 μl of auxin for 0, 1, 3, and 6 hours, with a 6-hour ethanol 

treatment used as a vehicle control. Error bars indicate standard error of the 

mean. Significance was calculated using a student’s T test (* p<0.05 ** p<0.01 

experimental samples compared to 0-hour auxin treatment, # p<0.05 ## p<0.01 

experimental samples compared to 6-hour ethanol vehicle treatment).  
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Figure 7 Average relative quantity (Rq) of set-21 compared to act-2 over a 6-

hour auxin time course in LIN-54 degron-tagged L1 larvae. 

Expression values from 3 biological replicates were averaged and are presented 

as the relative quantity (Rq) compared to act-2. Synchronized L1 larvae were 

treated with 35 μl of auxin for 0, 1, 3, and 6 hours, with a 6-hour ethanol 

treatment used as a vehicle control. Error bars indicate standard error of the 

mean. Significance was calculated using a student’s T test (* p<0.05 ** p<0.01 

experimental samples compared to 0-hour auxin treatment, # p<0.05 ## p<0.01 

experimental samples compared to 6-hour ethanol vehicle treatment).  
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Figure 8 Average relative quantity (Rq) of tba-1 compared to act-2 over a 6-

hour auxin time course in LIN-54 degron-tagged L1 larvae. 

Expression values from 3 biological replicates were averaged and are presented 

as the relative quantity (Rq) compared to act-2. Synchronized L1 larvae were 

treated with 35 μl of auxin for 0, 1, 3, and 6 hours, with a 6-hour ethanol 

treatment used as a vehicle control. Error bars indicate standard error of the 

mean. Significance was calculated using a student’s T test (* p<0.05 ** p<0.01 

experimental samples compared to 0-hour auxin treatment, # p<0.05 ## p<0.01 

experimental samples compared to 6-hour ethanol vehicle treatment).  
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Figure 9 Average relative quantity (Rq) of act-1 compared to act-2 over a 6-

hour auxin time course in LIN-54 degron-tagged L1 larvae. 

Expression values from 3 biological replicates were averaged and are presented 

as the relative quantity (Rq) compared to act-2. Synchronized L1 larvae were 

treated with 35 μl of auxin for 0, 1, 3, and 6 hours, with a 6-hour ethanol 

treatment used as a vehicle control. Error bars indicate standard error of the 

mean. Significance was calculated using a student’s T test (* p<0.05 ** p<0.01 

experimental samples compared to 0-hour auxin treatment, # p<0.05 ## p<0.01 

experimental samples compared to 6-hour ethanol vehicle treatment).  
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Figure 10 Average relative quantity (Rq) of air-1 compared to act-2 over a 6-

hour auxin time course in LIN-54 degron-tagged L1 larvae. 

Expression values from 3 biological replicates were averaged and are presented 

as the relative quantity (Rq) compared to act-2. Synchronized L1 larvae were 

treated with 35 μl of auxin for 0, 1, 3, and 6 hours, with a 6-hour ethanol 

treatment used as a vehicle control. Error bars indicate standard error of the 

mean. Significance was calculated using a student’s T test (* p<0.05 ** p<0.01 

experimental samples compared to 0-hour auxin treatment, # p<0.05 ## p<0.01 

experimental samples compared to 6-hour ethanol vehicle treatment).  
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Figure 11 Average relative quantity (Rq) of cdk-1 compared to act-2 over a 6-

hour auxin time course in LIN-54 degron-tagged L1 larvae. 

Expression values from 3 biological replicates were averaged and are presented 

as the relative quantity (Rq) compared to act-2. Synchronized L1 larvae were 

treated with 35 μl of auxin for 0, 1, 3, and 6 hours, with a 6-hour ethanol 

treatment used as a vehicle control. Error bars indicate standard error of the 

mean. Significance was calculated using a student’s T test (* p<0.05 ** p<0.01 

experimental samples compared to 0-hour auxin treatment, # p<0.05 ## p<0.01 

experimental samples compared to 6-hour ethanol vehicle treatment).  
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Figure 12 Average relative quantity (Rq) of set-21 compared to act-2 over a 6-

hour auxin time course in LIN-54 degron-tagged L1 larvae. 

Expression values from 3 biological replicates were averaged and are presented 

as the relative quantity (Rq) compared to act-2. Synchronized L1 larvae were 

treated with 35 μl of auxin for 0, 1, 3, and 6 hours, with a 6-hour ethanol 

treatment used as a vehicle control. Error bars indicate standard error of the 

mean. Significance was calculated using a student’s T test (* p<0.05 ** p<0.01 

experimental samples compared to 0-hour auxin treatment, # p<0.05 ## p<0.01 

experimental samples compared to 6-hour ethanol vehicle treatment).  
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Figure 13 Average relative quantity (Rq) of tba-1 compared to act-2 over a 6-

hour auxin time course in LIN-9 degron-tagged L1 larvae. 

Expression values from 3 biological replicates were averaged and are presented 

as the relative quantity (Rq) compared to act-2. Synchronized L1 larvae were 

treated with 35 μl of auxin for 0, 1, 3, and 6 hours, with a 6-hour ethanol 

treatment used as a vehicle control. Error bars indicate standard error of the 

mean. Significance was calculated using a student’s T test (* p<0.05 ** p<0.01 

experimental samples compared to 0-hour auxin treatment, # p<0.05 ## p<0.01 

experimental samples compared to 6-hour ethanol vehicle treatment).  
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Figure 14 Average relative quantity (Rq) of act-1 compared to act-2 over a 6-

hour auxin time course in LIN-9 degron-tagged L1 larvae. 

Expression values from 3 biological replicates were averaged and are presented 

as the relative quantity (Rq) compared to act-2. Synchronized L1 larvae were 

treated with 35 μl of auxin for 0, 1, 3, and 6 hours, with a 6-hour ethanol 

treatment used as a vehicle control. Error bars indicate standard error of the 

mean. Significance was calculated using a student’s T test (* p<0.05 ** p<0.01 

experimental samples compared to 0-hour auxin treatment, # p<0.05 ## p<0.01 

experimental samples compared to 6-hour ethanol vehicle treatment).  
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Figure 15 Average relative quantity (Rq) of air-1 compared to act-2 over a 6-

hour auxin time course in LIN-9 degron-tagged L1 larvae. 

Expression values from 3 biological replicates were averaged and are presented 

as the relative quantity (Rq) compared to act-2. Synchronized L1 larvae were 

treated with 35 μl of auxin for 0, 1, 3, and 6 hours, with a 6-hour ethanol 

treatment used as a vehicle control. Error bars indicate standard error of the 

mean. Significance was calculated using a student’s T test (* p<0.05 ** p<0.01 

experimental samples compared to 0-hour auxin treatment, # p<0.05 ## p<0.01 

experimental samples compared to 6-hour ethanol vehicle treatment).  
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Figure 16 Average relative quantity (Rq) of cdk-1 compared to act-2 over a 6-

hour auxin time course in LIN-9 degron-tagged L1 larvae. 

Expression values from 3 biological replicates were averaged and are presented 

as the relative quantity (Rq) compared to act-2. Synchronized L1 larvae were 

treated with 35 μl of auxin for 0, 1, 3, and 6 hours, with a 6-hour ethanol 

treatment used as a vehicle control. Error bars indicate standard error of the 

mean. Significance was calculated using a student’s T test (* p<0.05 ** p<0.01 

experimental samples compared to 0-hour auxin treatment, # p<0.05 ## p<0.01 

experimental samples compared to 6-hour ethanol vehicle treatment).  
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Figure 17 Average relative quantity (Rq) of set-21 compared to act-2 over a 6-

hour auxin time course in LIN-9 degron-tagged L1 larvae. 

Expression values from 3 biological replicates were averaged and are presented 

as the relative quantity (Rq) compared to act-2. Synchronized L1 larvae were 

treated with 35 μl of auxin for 0, 1, 3, and 6 hours, with a 6-hour ethanol 

treatment used as a vehicle control. Error bars indicate standard error of the 

mean. Significance was calculated using a student’s T test (* p<0.05 ** p<0.01 

experimental samples compared to 0-hour auxin treatment, # p<0.05 ## p<0.01 

experimental samples compared to 6-hour ethanol vehicle treatment).  
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Figure 18 Average relative quantity (Rq) of tba-1 compared to act-2 over a 

24-hour auxin time course in LIN-9 degron-tagged L1 larvae. 

Expression values from 3 biological replicates were averaged and are presented 

as the relative quantity (Rq) compared to act-2. Synchronized L1 larvae were 

treated with 35 μl of auxin for 0, 1, 3, and 6 hours, with a 6-hour ethanol 

treatment used as a vehicle control. Error bars indicate standard error of the 

mean. Significance was calculated using a student’s T test (* p<0.05 ** p<0.01 

experimental samples compared to 0-hour auxin treatment, # p<0.05 ## p<0.01 

experimental samples compared to 6-hour ethanol vehicle treatment).  
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Figure 19 Average relative quantity (Rq) of act-1 compared to act-2 over a 24-

hour auxin time course in LIN-9 degron-tagged L1 larvae. 

Expression values from 3 biological replicates were averaged and are presented 

as the relative quantity (Rq) compared to act-2. Synchronized L1 larvae were 

treated with 35 μl of auxin for 0, 1, 3, and 6 hours, with a 6-hour ethanol 

treatment used as a vehicle control. Error bars indicate standard error of the 

mean. Significance was calculated using a student’s T test (* p<0.05 ** p<0.01 

experimental samples compared to 0-hour auxin treatment, # p<0.05 ## p<0.01 

experimental samples compared to 6-hour ethanol vehicle treatment).  
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Figure 20 Average relative quantity (Rq) of air-1 compared to act-2 over a 24-

hour auxin time course in LIN-9 degron-tagged L1 larvae. 

Expression values from 3 biological replicates were averaged and are presented 

as the relative quantity (Rq) compared to act-2. Synchronized L1 larvae were 

treated with 35 μl of auxin for 0, 1, 3, and 6 hours, with a 6-hour ethanol 

treatment used as a vehicle control. Error bars indicate standard error of the 

mean. Significance was calculated using a student’s T test (* p<0.05 ** p<0.01 

experimental samples compared to 0-hour auxin treatment, # p<0.05 ## p<0.01 

experimental samples compared to 6-hour ethanol vehicle treatment).  
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Figure 21 Average relative quantity (Rq) of cdk-1 compared to act-2 over a 

24-hour auxin time course in LIN-9 degron-tagged L1 larvae. 

Expression values from 3 biological replicates were averaged and are presented 

as the relative quantity (Rq) compared to act-2. Synchronized L1 larvae were 

treated with 35 μl of auxin for 0, 1, 3, and 6 hours, with a 6-hour ethanol 

treatment used as a vehicle control. Error bars indicate standard error of the 

mean. Significance was calculated using a student’s T test (* p<0.05 ** p<0.01 

experimental samples compared to 0-hour auxin treatment, # p<0.05 ## p<0.01 

experimental samples compared to 6-hour ethanol vehicle treatment).  
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Figure 22 Average relative quantity (Rq) of set-21 compared to act-2 over a 

24-hour auxin time course in LIN-9 degron-tagged L1 larvae. 

Expression values from 3 biological replicates were averaged and are presented 

as the relative quantity (Rq) compared to act-2. Synchronized L1 larvae were 

treated with 35 μl of auxin for 0, 1, 3, and 6 hours, with a 6-hour ethanol 

treatment used as a vehicle control. Error bars indicate standard error of the 

mean. Significance was calculated using a student’s T test (* p<0.05 ** p<0.01 

experimental samples compared to 0-hour auxin treatment, # p<0.05 ## p<0.01 

experimental samples compared to 6-hour ethanol vehicle treatment).  
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1.4 DISCUSSION 

 Proper function of the DREAM, or DRM, transcriptional repressor complex 

is essential to maintain developmental control of the cell cycle. Removal of DREAM 

complex proteins causes a number of abnormal effects in C. elegans, including 

high temperature larval arrest and gene misexpression [6, 16, 22]. Mammalian 

MuvB, one of the three main components of DREAM, functions as both a 

transcriptional repressor and as an activator [5]. In C. elegans, MuvB thus far is 

only known to act as a transcriptional repressor [6]. It is currently unclear how 

MuvB mediates repression of DREAM target genes, thus an understanding of its 

individual proteins and their potential repressive roles is crucial to distinguishing 

MuvB’s role in transcriptional repression. 

 The primary aim of this project was to establish how degradation of two 

MuvB proteins, LIN-9, the core protein of MuvB, and LIN-54, the sole DNA-binding 

protein of MuvB, would affect DREAM target gene expression [14, 23]. To 

accomplish this we used the AID system, a fasting-acting, efficient protein 

degradation system with minimal off-target effects [1, 2]. We assessed three 

known DREAM target genes, air-1, cdk-1, and set-21 following depletion of 

degron-tagged LIN-9 or LIN-54 in a 6-hour or 24-hour time course, with timepoints 

at 0-hour, 1-hour, 3-hour, 6-hour, and 24-hour. The establishment of a time course 

allowed us to infer when protein knockdown occurred and showed how expression 

levels rose with longer treatments. Following depletion of LIN-54, all our tested 

DREAM target genes became quickly upregulated as compared to our 0-hour 
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auxin treatment control and 6-hour ethanol vehicle control. In contrast, depletion 

of LIN-9 had no effect on DREAM target gene expression. 

 We initially expected that both LIN-54 and LIN-9 degradation would result 

in the upregulation of DREAM target genes. LIN-9 is expected to be a core protein 

in the 5-subunit MuvB subcomplex, and as such we expected its degradation 

would result in significant disruption in MuvB activity [14]. In contrast, LIN-54 is the 

sole DNA-binding protein in MuvB. and as such we expected its degradation would 

result in MuvB from localizing to its gene targets and thus also impairing MuvB 

activity [23]. Our results suggest that MuvB DNA localization is critical to its 

function and that LIN-9 may not be fully required for the 5-subunit MuvB 

subcomplex to form. 

 Given our results, further study into the depletion of LIN-9 is a necessity. 

We would like to test how long and to what extent the LIN-9 protein depletion 

occurs. We would similarly test LIN-54 as well. It remains a possibility that LIN-9 

knock-out is incomplete using the AID system as compared to LIN-54, which 

results in the observed discrepancy in our time course experiment. We strongly 

suggest further experimentation into the degradation of LIN-54 and especially LIN-

9 to determine their true importance to C. elegans MuvB and the DRM complex. 

 There were a few instances where the relative quantity of our 6-hour 

vehicle, that was treated with only ethanol, was higher than either one or both of 

our 0-hour auxin treatment and our 1-hour auxin treatment. We believe this 

discrepancy may be attributed to stress more than ethanol having an effect on 
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DREAM target gene expression. The source of this stress is more likely associated 

from the lack of nutrition and starvation the L1s underwent than the ethanol 

treatment. 

 Our results show that LIN-54, MuvB’s sole DNA-binding protein is more 

important to the repression of DREAM target genes than LIN-9, the core protein of 

MuvB. Taking this a step further suggests that LIN-54 may be a critical component 

in DREAM complex-mediated transcriptional repression. To continue advancing 

our understanding of the DREAM complex and how its protein components 

function in transcriptional repression, additional experimentation should examine 

the effect auxin-induced degradation has on other components of the C. elegans 

DRM complex. 
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