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Abstract 36 

Spinal cord injuries can abolish both motor and sensory function throughout the body. 37 

Spontaneous recovery after injury is limited and can vary substantially between individuals. 38 

Despite an abundance of therapeutic approaches that have shown promise in preclinical models, 39 

there is currently a lack of effective treatment strategies that have been translated to restore 40 

function after SCI in the human population. We hypothesized that sex and genetic background of 41 

injured individuals could impact how they respond to treatment strategies, presenting a barrier to 42 

translating therapies that are not tailored to the individual. One gene of particular interest is 43 

APOE, which has been extensively studied in the brain due to its allele-specific influences on 44 

synaptic plasticity, metabolism, inflammation, and neurodegeneration. Despite its prominence as 45 

a therapeutic target in brain injury and disease, little is known about how it influences neural 46 

plasticity and repair processes in the spinal cord. Utilizing humanized mice, we examined how 47 

the 3 and 4 alleles of APOE influence the efficacy of therapeutic intermittent hypoxia (IH) in 48 

inducing spinally-mediated plasticity after cervical SCI. IH is sufficient to enhance plasticity and 49 

restore motor function after experimental SCI in genetically similar rodent populations, but its 50 

effect in human subjects is more variable (Golder, 2005; Hayes et al., 2014). Our results 51 

demonstrate that both sex and APOE genotype determine the extent of respiratory motor 52 

plasticity that is elicited by IH, highlighting the importance of considering these clinically 53 

relevant variables when translating therapeutic approaches for the SCI community. 54 

  55 
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Significance Statement 56 

There is currently a critical need for therapeutics that restore motor and sensory function 57 

effectively after cervical spinal cord injury. Although many therapeutic approaches, including 58 

intermittent hypoxia, are being investigated for their potential to enhance spinal plasticity and 59 

improve motor outcomes after SCI, it is unknown whether the efficacy of these treatment 60 

strategies is influenced by individuals’ genetic background. Here we show that APOE genotype 61 

and sex both play a role in determining the propensity for motor plasticity in humanized mice 62 

after cervical SCI. These results indicate that sex and genetic background dictate how individuals 63 

respond to therapeutic approaches, thereby emphasizing the importance of developing 64 

personalized medicine for the diverse SCI population. 65 

  66 
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Introduction 67 

Over 17,000 Americans experience a spinal cord injury every year (National Spinal Cord 68 

Injury Statistical Center, 2018). Depending on the level of injury, damage to neural pathways in 69 

the spinal cord can lead to a multitude of sensory deficits and loss of crucial motor functions. 70 

Over the past few decades, many promising therapeutic approaches have been developed to 71 

enhance neuroprotection or induce anatomical and functional plasticity of spinal pathways to 72 

restore function (David D. Fuller et al., 2003; Huie et al., 2017; Satkunendrarajah et al., 2018; 73 

Zholudeva et al., 2018; Jack et al., 2020). Moreover, pivotal studies using nerve grafts, PTEN 74 

deletion, NOGO inhibition, or degradation of the perineuronal net or chondroitin sufate 75 

proteoglycans (CSPGs) have demonstrated that the CNS is capable of overcoming neural 76 

intrinsic and extrinsic barriers to regeneration after injury, leading to meaningful preclinical 77 

recovery (David & Aguayo, 1981; Chen et al., 2000; Park et al., 2008; Alilain et al., 2011; Urban 78 

et al., 2019). However, these therapeutic strategies have met with varied clinical success and 79 

there remains a lack of effective treatment strategies for the human SCI population (reviewed by 80 

Ahuja et al., 2017). 81 

A striking difference between individuals living with SCI and the animals used to model them is 82 

the level of genetic diversity represented in these populations. In contrast to the incredible 83 

diversity of the human population, preclinical studies typically utilize homogenous groups of 84 

animals with the same sex and similar genetic backgrounds. While this does facilitate easier 85 

determination of treatment effects, it also makes it less likely that discoveries in these models 86 

will translate to human patients. Although an increasing number of preclinical investigations are 87 

addressing how sex influences the efficacy of therapeutic strategies, the impact of genetic 88 

variability remains largely unexplored. A recent review by Fouad et al. specifically outlined the 89 
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importance of evaluating the influence of factors such as sex and genotype to address the 90 

neuroanatomical-functional paradox and lack of therapeutic translation in SCI (Fouad et al., 91 

2020). Indeed, we hypothesize that genetic factors could play a considerable role in determining 92 

how individuals respond to treatment strategies. 93 

Apolipoprotein E (ApoE) is a highly expressed lipid carrier in the CNS (Boyles et al., 1985). It is 94 

encoded by the APOE gene, which exists in three common alleles designated 2, 3, and 4. The 95 

4 allele, which is carried by nearly 1 in 5 individuals, has been associated with a number of 96 

detrimental outcomes, including a weakening of synaptic plasticity in the brain (Zhao et al., 97 

2018). However, despite a robust body of literature in neurodegenerative diseases and traumatic 98 

brain injury (Zhou et al., 2008; Mahley, 2016; Main et al., 2018), the impact of 4 on plasticity in 99 

the spinal cord remains underexplored. We hypothesized that spinally-mediated plasticity is 100 

constrained in apoE4 animals, thereby demonstrating the importance of considering the diversity 101 

of the human population when developing therapeutic approaches for people with SCI. 102 

To test this hypothesis, we utilize a model of cervical injury to examine how APOE genotype 103 

alters the response to intermittent hypoxia (IH). Most SCIs occur at these high levels and can 104 

disrupt the neural circuitry that mediates breathing, leading to respiratory insufficiency and 105 

potentiating the need for mechanical ventilation (Bergofsky, 1964; Alp & Voss, 2006; National 106 

Spinal Cord Injury Statistical Center, 2018). Mechanical ventilation increases the risk of 107 

respiratory infection, a leading cause of rehospitalization and death following cervical spinal 108 

cord injury (cSCI) (DeVivo & Ivie, 1995). 109 

In recent years, there has been a growing appreciation for the potential of intermittent hypoxia 110 

(IH) as a treatment strategy for a host of conditions including SCI (Navarrete-Opazo & Mitchell, 111 
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2014). In clinical trials, therapeutic IH has been utilized to increase limb function and to 112 

facilitate ventilation in persons with SCI by enhancing plasticity in the spinal cord (Tester et al., 113 

2014; Lynch et al., 2017; Trumbower et al., 2017). Neural pathways in the cervical region which 114 

mediate breathing are critical therapeutic targets of IH, including spared pathways which might 115 

remain after injury. However, the influence of human genetic variability on IH-induced recovery 116 

is unknown. Therefore, we utilized this model of spinally-mediated plasticity to examine how 117 

expression of different human APOE alleles alter the efficacy of therapeutic strategies, such as 118 

IH, that are being developed to enhance plasticity following SCI. Our results provide evidence 119 

that both sex and APOE genotype determine the propensity for plasticity in humanized mice that 120 

are exposed to therapeutic IH.  121 

Materials and Methods 122 

C2 Hemisections 123 

All experiments were approved by the Institutional Animal Care and Use Committee at 124 

the University of Kentucky. Mice expressing human APOE isoforms under control of the mouse 125 

APOE promotor (targeted replacement mice) were backcrossed for at least 10 generations to the 126 

C57BL/6 background (Sullivan et al., 1997; Sullivan et al., 1998; Knouff et al., 1999). Mice 127 

were group-housed on a twelve-hour light/dark cycle and fed normal chow diet ad libitum. All 128 

mice were 92-105 days old at the time of injury. Female (20-24g) and male (22-30g) mice were 129 

anesthetized with isoflurane. Animals were then prepped for surgery by shaving the surgical area 130 

followed by disinfecting with alternating betadine and 70% ethanol swabs. Puralube ophthalmic 131 

ointment was applied to the eyes to prevent drying during surgery. A midline incision was made 132 

through the skin just caudal to the ears to between the scapulae. Marcaine/bupivacaine was 133 

instilled along the incision site. The acromiotrapezius, semispinalis capitus, and rectus capitus 134 
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posterior muscles were cut along their midline, bluntly dissected, and retracted. Paravertebral 135 

muscles were cut away from the C2 vertebra using ToughCut Spring Scissors (Fine Science 136 

Tools). The lamina of the C2 vertebra was then removed using Spring Scissors. Under a 137 

dissecting microscope (Meiji EMZ), a left lateral C2 hemisection (C2Hx) was performed by 138 

inserting a 27-gauge needle into the midline of the spinal cord at the C2 level and dragging the 139 

needle to the left lateral edge of the cord. This was then repeated once to ensure a complete 140 

injury. Musculature was sutured (6-0 absorbable suture) and skin was closed with Vetbond 141 

Tissue Adhesive (3M). Animals received subcutaneous buprenorphine (0.75mg/kg)  and 142 

carprofen (10mg/kg) immediately after surgery. Male mice were housed individually following 143 

surgery to prevent fighting amongst cagemates. 144 

Intermittent Hypoxia and Diaphragmatic Electromyography (EMG) 145 

Three weeks after hemisection, animals were anesthetized with isoflurane using the 146 

SomnoSuite Anesthesia System (Kent Scientific). A laparotomy was performed by cutting 147 

through the rectus abdominis, external oblique, and internal oblique muscles. Bipolar electrodes, 148 

connected to an amplifier and data acquisition system (CWE BMA-400 Four-channel 149 

Bioamplifier, CED 1401 with Spike2 Data Analysis Computer Interface), were inserted into the 150 

dorsal region of the left hemidiaphragm, where they were secured using Vetbond. Bilateral 151 

recordings were not performed due to the increased attrition rate we observed after performing 152 

bilateral electrode insertion. The laparotomy was also closed using Vetbond. Ten minutes of 153 

baseline breathing activity was recorded. The air input to the Somnosuite was then changed from 154 

room air (normoxia) to a tank of 11% oxygen, 89% nitrogen gas (hypoxia) for 5 min, at which 155 

point it was switched back to room air for 5 minutes. This was repeated for 3 bouts of hypoxia 156 

separated by 5 minutes of normoxia. Diaphragmatic activity was recorded for 1 hour after the 157 
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final hypoxic bout (Fig. 1 A). Although core temperature was not monitored during recordings, 158 

animals were kept on heating pads throughout all recording procedures to maintain body 159 

temperature. 160 

Sectioning and Staining  161 

To harvest tissue for immunohistochemistry, mice were perfused with 4% paraformaldehyde 162 

(PFA) following the diaphragmatic EMG recording. The spinal column was isolated and placed 163 

in 4% PFA at 4C. After two days, tissue was removed from PFA and placed in a 30% sucrose 164 

solution at 4C for cryoprotection until sectioning. 165 

Tissue was mounted and frozen in Tissue Plus O.C.T. Compount (Fisher Healthcare) and 166 

cut at a thickness of 20m on a cryostat (Leica). Serial sections from the injury site (C1-C2) 167 

were placed on one set of slides while serial sections from the level of the PMN (C3-C6) were 168 

placed on another set. Injured tissue slides were dehydrated in ethanol and stained with 0.1% 169 

Cresyl violet solution (Sigma Cat #C5042).  Slides were then mounted using permount (Electron 170 

Microscopy Sciences Cat #17986-01). For 5-HT staining, frozen section were thawed to room 171 

temperature, rinsed with 1x PBS, and blocked in a solution of 5% normal goat serum, 0.1% 172 

bovine serum albumin, and 0.1% TritonX-100 dissolved in PBS. Slides were incubated in 5-HT 173 

primary antibody diluted 1:10,000 (rabbit, ImmunoStar Cat #20080) then goat anti-rabbit 174 

AlexaFluor488 secondary antibody (1:500, Life Technologies Cat #A11034). Stained slides were 175 

mounted with ProLong Gold mountant with DAPI (Invitrogen Cat #P36931). For WFA 176 

(Wisteria Floribunda Lectin) staining, frozen sections were thawed to room temperature, washed 177 

with 1xPBS, then blocked in 3% NGS diluted in PBS. Slides were then incubated in WFA 178 
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primary antibody conjugated to Fluorescein at a dilution of 1:400 (Vector Labs Cat #FL-1351). 179 

Stained slides were mounted in ProLong Gold with DAPI.  180 

Trace Analysis 181 

After recording, raw diaphragmatic EMG was rectified and integrated using Spike2 182 

software. Analysis was performed at twelve time points: twice during baseline recording, once 183 

during each hypoxic and normoxic bout, and at 10, 20, 30, and 40 minutes after the final hypoxic 184 

period (Figure 1 A). For each time point, peak amplitude was averaged over a 30 second period. 185 

Amplitude of diaphragmatic bursts at each time point were normalized to that animal’s pre-186 

hypoxia baseline amplitude. Frequency of diaphragmatic bursts, indicative of breaths, was also 187 

quantified over a 30 second period at each time point. 188 

Imaging and image quantification 189 

Staining for cresyl violet and WFA was imaged on a Keyence BZ-X810 fluorescence 190 

microscope for quantification. Cresyl violet stained sections were imaged using brightfield 191 

illumination at 2x. Sections stained for WFA were imaged at 10x using the monochromatic 192 

camera with high resolution (0.75488m/pixel) for quantification. Additional images for 193 

publication were acquired on a Nikon Eclipse Ti series inverted confocal at 40x, focused on the 194 

ventral horn in the region of the putative PMN. Sections stained for 5-HT were imaged on the 195 

Nikon at 20x. Images of 5-HT staining for publication were taken at 40x in the region of the 196 

PMN. All imaging and quantification was performed on the ventral horn of the left side of the 197 

cord, ipsilateral to the injury. 198 

WFA labeling was quantified using the HALO image analysis platform (Indica Labs). 199 

We developed and optimized an algorithm on the Area Quantification v1.0 to capture positive 200 
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staining for WFA while omitting any nonspecific fluorescence. A region of interest (ROI) was 201 

drawn around the left ventral horn of sections at the level of C4. The quantification algorithm 202 

was applied to the ROI of each section. The area of staining was then normalized to the total area 203 

of the ROI. Three tissue sections at level C4 were analyzed for each animal. 5-HT labeling was 204 

also quantified with HALO. A region of interest was drawn around the left ventral horn. 205 

Serotonergic fibers within the ROI were traced using the embedded annotation tool. The total 206 

length of fibers was then normalized to the area of the ROA.  207 

Experimental Design and Statistical Analyses 208 

Sample sizes for mice receiving diaphragmatic EMG recordings were calculated based on 209 

preliminary data from 10 hemisected mice representing all three genotypes using Cohen’s D to 210 

measure effect size. Group sizes for each sex and genotype are found in Table 1. Tissue from a 211 

subset of animals was perfused with PFA and spinal cord tissue was harvested from these 212 

animals for IHC and quantification of WFA and serotonergic sprouting (apoE3 n=4, apoE4 n=5) 213 

For statistical analysis of EMG traces, repeated measures (RM)-ANOVA was used to account for 214 

within-subject correlation given repeated measurements over time. Stratified RMANOVA 215 

analyses were performed on male and female traces. Results were considered statistically 216 

significant if t1.96. Student’s t-test was used to analyze 5-HT fiber staining on spinal cord 217 

tissue. Welch’s t-test for unequal variances was used to analyze staining of WFA. Results were 218 

considered statistically significant if p < 0.05. Investigators were blinded until all diaphragmatic 219 

EMG and histology analyses were complete. The mean difference (MD) and 95% confidence 220 

interval (CI) were calculated to provide an estimate of the range of possible differences between 221 

groups. 222 
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Data Structure Type of Test 95% confidence interval 

a. Repeated measurements, 

normal distribution 

RMANOVA 
-0.2202 to 0.3063 

b. Normal distribution with 

within-subject correlation 

Paired t-test -0.1570 to 0.2160 

c. Normal distribution with 

within-subject correlation 

Paired t-test 
-0.2907 to 0.1235 

d. Repeated measurements, 

normal distribution 

RMANOVA -0.2958 to 0.35575 

e. Repeated measurements, 

normal distribution 

RMANOVA -1.17798 to 0.07798 

f. Repeated measurements, 

normal distribution 

RMANOVA -1.53798 to -0.2820 

g. Repeated measurements, 

normal distribution 

RMANOVA -0.9958 to -0.3442 

h. Repeated measurements, 

normal distribution 

RMANOVA -0.75238 to 0.11238 

i. Repeated measurements, 

normal distribution 

RMANOVA 0.426832 to 1.25317 

j. Repeated measurements, 

normal distribution 

RMANOVA 1.66683 to 2.49317 

k. Repeated measurements, 

normal distribution 

RMANOVA 0.64132 to 1.37868 

l. Normal distribution, 

Unequal variance 

Welch’s t-test 
-0.0003607 to 0.006133 

m. Normal distribution Student’s t-test 
0.0003556 to 0.002912 

n. Normal distribution Student’s t-test 
-0.001091 to 0.003178 

o. Normal distribution Student’s t-test 
-0.2916 to 1.237 

 223 

Results 224 

Respiratory motor plasticity in C2 hemisected humanized APOE mice 225 

At 3 months of age, male and female mice received a left C2 hemisection by making an 226 

incision from the midline to the left lateral edge of the spinal cord just caudal to the C2 dorsal 227 

roots. This injury effectively disrupts the neural circuitry that descends from the ipsilateral 228 
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medullary respiratory nuclei to phrenic motor neurons on the left side (Fig. 1 B). At the time of 229 

injury, hemisection was visually confirmed by observing the thorax of each mouse to ensure that 230 

only the right side of the thorax continued rhythmically expanding with each breath. Injury 231 

completeness was histologically confirmed upon sacrifice of a subset of mice (n=16) using cresyl 232 

violet (Fig. 1 C). All mice were homozygous for human 3 or 4 alleles expressed under control 233 

of the murine APOE promoter as described previously (Patrick M. Sullivan et al., 1997; Knouff 234 

et al., 1999). At 3 weeks post-injury, mice were exposed to intermittent hypoxia. This consisted 235 

of 3 hypoxic (11% O2) bouts of 5 minute duration separated by 5 minutes of normoxia as 236 

illustrated in Figure 1. We evaluated the breathing response to IH by concurrently recording 237 

diaphragmatic EMG, which continued for 1 hour following the final hypoxic bout. Amplitude of 238 

diaphragmatic bursts was quantified while blinded and then grouped according to APOE 239 

genotype. No difference was found in the response to IH between mice expressing 3 or 4 (Fig. 240 

1 D, RMANOVA p=0.741). All animals appear to experience an initial decrease in 241 

diaphragmatic activity during the first hypoxic bout. Breathing in both apoE3 and apoE4 mice 242 

remained constant once the IH protocol ended (Fig. 1 D).  243 

Previous studies in rodents (Bach & Mitchell, 1996; Baker & Mitchell, 2000; reviewed 244 

by Fuller et al., 2000; Terada et al., 2008)) have shown that IH treatment gives rise to an 245 

augmentation of breathing activity that characterizes LTF. We therefore compared amplitude at 246 

the beginning of IH and 40 minutes after the final bout of hypoxia to determine whether 247 

breathing activity increased in response to IH. Neither genotype exhibited significant 248 

augmentation of diaphragmatic activity at 40 minutes post-hypoxia, indicative of a lack of LTF 249 

in the humanized mice (Fig. 1 E, paired t-test E3 p=0.741, E4 p=0.405). 250 

Sex differences in apoE modulation of LTF 251 
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To investigate sex-dependent influences of APOE genotype on LTF, we separated data 252 

from males and females for independent analysis. Animals were weighed every day for the first 4 253 

days after injury and then once a week until diaphragmatic EMG recordings were performed. 254 

When comparing weights over time after injury, there was no significant difference between 255 

genotypes in male (p=0.16) or female (p=0.65) mice (data not shown). Figure 2 A shows 256 

representative traces from male apoE3 and E4 mice. As evidenced in these traces, both 257 

genotypes exhibited a decrease in frequency over time after IH. However, there was no 258 

significant genotype effect on the magnitude of this decrease (Fig. 2 A, extended Fig. 2-1 A, 259 

RMANOVA, p=0.846). Previous studies in rats (Warren et al., 2018) have reported no 260 

spontaneous recovery in the paralyzed hemidiaphragm even chronically after C2 hemisection. In 261 

contrast, the overwhelming majority of the 32 mice used in the current study showed 262 

spontaneous functional recovery of the paralyzed mouse hemidiaphragm. Considering all males 263 

and females from which we recorded diaphragmatic EMG’s, only 2 mice displayed no 264 

spontaneous recovery: 1 male of each genotype (Fig 2 B). Quantification of the diaphragmatic 265 

EMG data demonstrates that males expressing the 3 allele display a decline in the amplitude of 266 

diaphragmatic bursting beginning in the first hypoxic bout and persisting throughout the 267 

recording period (Fig. 2 C). Although this deterioration of activity did not reach statistical 268 

significance (RMANOVA, t=0.03), it is worthwhile to highlight how the apoE3 males diverged 269 

from apoE4, which demonstrate slightly heightened activity at 40 minutes post-IH (Fig. 2 C,D, 270 

RMANOVA, t=-0.65). 271 

Analysis of diaphragmatic EMGs in female mice of both genotypes showed a similar 272 

negative trend in the breathing frequency induced by IH (Fig. 3 A, extended Fig. 3-1, 273 

RMANOVA, p=0.673). A subset of mice displayed a complete loss of diaphragmatic activity 274 
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following hypoxic exposure. We refer to these animals as “non-responders”. Three non-275 

responders emerged in the apoE4 group, while none were observed in the mice that expressed 3 276 

(representative trace shown in Fig. 3 B). However, unlike the male mice, all females 277 

demonstrated spontaneous recovery prior to IH (data not shown). Quantification of 278 

diaphragmatic burst amplitude in females that maintained diaphragmatic activity after IH showed 279 

that apoE3 mice responded to IH with an initial decrease in burst amplitude. This decline was 280 

temporary and activity returned to near baseline levels by 40 minutes (Fig. 3 C). However, 281 

apoE4 females exhibited an immediate reduction in burst amplitude that is still evident the end of 282 

the recording period. At 40 minutes post-IH, breathing of apoE4 females is significantly 283 

depressed compared to that of apoE3’s at the same time point (Fig. 3 C,D, mixed model 284 

RMANOVA t=2.08). Consistent with the combined data, none of the female mice expressing 285 

human APOE developed the gradual and prolonged breathing augmentation that is characteristic 286 

of LTF. 287 

When animals are challenged with a brief bout of hypoxia, feedback from peripheral 288 

chemoreceptors induces an augmentation of respiratory output. This change in ventilation is 289 

known as the hypoxic ventilatory response (HVR, described by Pamenter & Powell, 2016). 290 

During the hypoxic bouts of IH treatment, all apoE mice exhibited a decline in diaphragmatic 291 

activity instead of the expected amplification. To further investigate the HVR in our humanized 292 

mice, we exposed an additional, smaller cohort of mice to a 10-minute bout of hypoxia and 293 

assessed the changes in amplitude and frequency of diaphragmatic bursting. No females of either 294 

genotype displayed an increase or decrease in amplitude, but breath frequency began to decline 295 

by the end of the hypoxic period in those expressing 4 (extended Fig. 3-1 B,C). In male mice 296 

expressing 3, there was a sharp decline in both amplitude and frequency of diaphragmatic firing 297 
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in response to hypoxia such that breathing activity was abolished at 10 minutes. Conversely, 298 

amplitude and frequency in apoE4 males remained constant  during hypoxia (extended Fig. 2-1 299 

B,C). 300 

Perineuronal net upregulation and serotonergic sprouting in the phrenic motor nucleus 301 

Secretion of chondroitin sulfate proteoglycans (CSPGs) is upregulated after SCI in wild 302 

type animals, creating a barrier to plasticity, regeneration, and sprouting (Tom et al., 2009; 303 

Alilain et al., 2011). Thus far, it is unknown if the magnitude of this upregulation is modulated 304 

by human APOE genotype. Therefore, we utilized WFA staining to compare the amount of PNN 305 

present in injured spinal cords at the C4 level to determine if the IH-induced reduction in 306 

diaphragmatic activity observed in E4 females was correlated with increased amounts of 307 

inhibitory PNN. Indeed, we found that apoE4 females tended to have a higher density of WFA 308 

around the phrenic motor nucleus after injury, although this trend did not reach significance (Fig 309 

4 A-C, Welch’s t-test, p=0.0697).  310 

The PNN can limit 5-HT sprouting after injury (Alilain et al., 2011). To determine 311 

whether differences in respiratory motor plasticity observed in females were due to the amount 312 

of serotonin at the level of the phrenic motor nucleus after C2Hx, serotonergic fibers were 313 

labeled and quantified in the ventral horn ipsilateral to injury. Serotonergic sprouting after injury 314 

has previously been correlated with the restoration of breathing function and enhancement of 315 

LTF (Golder, 2005). We postulated that dampened respiratory plasticity in 4 females may be 316 

due to a lack of serotonergic sprouting after injury. Surprisingly, quantification of 5-HT+ fibers 317 

ipsilateral to injury revealed enhanced serotonergic sprouting in apoE4 females compared to 318 

apoE3 (Fig. 5 A-C Student’s t-test, p=0.0193). This contradicted our expectation that a blunted 319 

respiratory response to IH would correspond with attenuated fiber sprouting after injury. 320 
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Quantification of 5-HT fibers contralateral to injury showed no significant difference between E3 321 

and E4 females, although E4 tended to have more 5-HT staining (Fig. 5 D, Student’s t-test, 322 

p=0.286). After injury, E4 females had more 5-HT fibers ipsilateral than contralateral to injury, 323 

although this did not reach statistical significance (Fig. 5 E, Student’s t-test, p=0.187). 324 

Discussion 325 

This study represents the first investigation into human genetic influences on the efficacy 326 

of experimental therapeutic strategies for SCI. Our results demonstrate that individuals’ 327 

propensity for initiating beneficial neuroplastic responses to therapeutic IH is modified by sex 328 

and apolipoprotein E genotype. By utilizing a well-described model of SCI and spinally-329 

mediated motor plasticity, we provide evidence to support the hypothesis that human genetic 330 

factors that are not represented by preclinical animal models limit the potential for recovery after 331 

SCI. Our physiology and histology data indicate that sex and genotype influence the CNS 332 

response to injury and therapeutic intervention, which poses a significant challenge to translating 333 

one-size-fits-all treatment strategies. 334 

APOE genotype and respiratory motor plasticity 335 

Recovery of breathing function is a top priority for people living with cervical SCI 336 

(Anderson, 2004). Intermittent hypoxia has promising potential to enhance spinal plasticity for 337 

the restoration of a variety of motor behaviors, including breathing (Fuller et al., 2003; Lovett-338 

Barr et al., 2012; Trumbower et al., 2012). Studies by Wadhwa et al. (2008) and Tester et al. 339 

(2014) in human participants have demonstrated that ventilatory LTF is expressed by both male 340 

and female subjects, even when living with a chronic SCI. However, to our knowledge, the 341 

interaction of sex and genetic factors remains unexplored in the LTF literature. Preclinical 342 
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studies that have addressed the impact of sex on respiratory motor plasticity revealed that sex 343 

hormone levels have significant ramifications for the potential to induce plasticity, likely due to 344 

the interaction of sex hormones and the serotonergic system (Zabka et al., 2001a, 2001b, 2003). 345 

Additionally, Baker-Herman et al. (2010) found that rat strains of different genetic backgrounds 346 

vary in their responses to IH, which was associated with differences in the expression of 5-HT2A 347 

receptors on PMNs. 348 

To further address how genetic variability impacts spinal plasticity, we examined the 349 

efficacy of IH for inducing LTF in targeted replacement mice expressing the human apoE 3, 350 

and 4 alleles. Since apoE first gained notoriety as a genetic marker for Alzheimer’s Disease 351 

(AD), an extensive body of literature has investigated impact of the apoE isoforms in the brain. 352 

The 4 allele increases the risk of developing AD and lowers the age of onset in a dose-353 

dependent manner (Corder et al., 1993; Saunders et al., 1993). E4 carriers display mitochondrial 354 

dysfunction, aggravated neuroinflammatory responses to CNS damage, loss of blood brain 355 

barrier integrity, and impaired synaptic plasticity (Safieh et al., 2019).  These factors are also key 356 

determinants for the extent of tissue damage, plasticity, regeneration, and the potential for 357 

recovery after SCI (Noble & Wrathall, 1989; P. G. Sullivan et al., 2007; Alilain & Goshgarian, 358 

2008; Kigerl et al., 2009).  359 

ApoE further became a gene of interest in our investigation after studies in human SCI 360 

patients found that people who carried the 4 allele experienced significantly less motor recovery 361 

than non-carriers, despite spending more time in rehabilitation (Jha et al., 2008; Sun et al., 2011). 362 

ApoE4 is known to curb recycling of NMDA and AMPA receptors to the postsynaptic 363 

membrane and reduces levels of BDNF in the CNS (Chen et al., 2010; Chhibber & Zhao, 2017; 364 

Sen et al., 2017). Since LTF requires BDNF signaling and activation of NMDA receptors, 365 
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individuals expressing the 4 allele may have a constrained response to IH (Baker-Herman et al., 366 

2004; McGuire et al., 2005). However, our data demonstrates that mice expressing human apoE 367 

isoforms did not differ in their diaphragmatic response to IH, indicating that there may be no 368 

effect on LTF when APOE genotype is the sole variable being considered, 369 

The lack of divergence between genotypes and the absence of augmented diaphragmatic 370 

activity in response to IH could also be due to metabolic changes. Many protocols for the 371 

induction of LTF, which are primarily conducted in rats, include the measurement of pCO2 372 

throughout recording (Hayashi et al., 1993; Bach & Mitchell, 1996). This measurement provides 373 

a gauge of how metabolism is changing as a result of hypoxic hypometabolism: instead of 374 

increasing respiratory activity, small mammals respond to hypoxic conditions by downregulating 375 

their metabolic rate to reduce oxygen consumption (Hill, 1959). Because we did not measure 376 

pCO2 during EMG recordings due to the low blood volume of mice, we were unable to control 377 

for changes in metabolic rate, which could have prevented IH-induced breathing augmentation. 378 

However, we do not think that hypometabolism was responsible for masking genotype effects 379 

since differences emerged when animals were grouped according to sex. 380 

Interestingly, mice displayed a decrease in ipsilateral hemidiaphragmatic activity during 381 

hypoxic bouts, instead of the heightened activity that is typical of the HVR observed in rats 382 

(Pamenter & Powell, 2016). Very little data is available on the respiratory response to IH and 383 

manifestation of LTF in C2 hemisected mice, although Minor et al. (2006) demonstrated the 384 

presence and viability of the murine crossed phrenic pathway (CPP), the anatomical substrate 385 

that mediates LTF (Golder and Mitchell, 2005). The few studies performed in mice are variable 386 

in IH protocols and methods of assessing LTF (Terada et al., 2008; Hickner et al., 2014; 387 

ElMallah et al., 2016). Our HVR data indicates that mice respond to bouts of hypoxia differently 388 
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than rats, but further experiments are needed to characterize this phenomenon. Considering the 389 

availability of transgenic mouse models, a standardized protocol for inducing and evaluating 390 

LTF in murine models would be extremely advantageous for studying how human genes 391 

influence spinally-mediated breathing plasticity. 392 

Sex effects 393 

Another explanation for the lack of observable differences between genotypes is that they 394 

could be masked by sex effects. APOE has long been studied in the Alzheimer’s field, where 395 

genotype influences are known to be modulated by sex. While expression of the 4 allele 396 

increases the risk of developing AD in both males and females, this risk is greater in females 397 

(Duara et al., 1996; Altmann et al., 2014). In rodents, apoE4-related deficits in learning and 398 

memory are aggravated in females, indicating that synaptic plasticity in the brain is impaired in a 399 

sex-dependent manner (Raber et al., 1998; Kulkarni et al., 2020).The implication for similar 400 

trends in spinally-mediated plasticity led to further analysis of our data, in which the influence of 401 

genotype was investigated separately in males and females. 402 

Diaphragmatic EMG recordings from females revealed a significant difference between 403 

the response of apoE3 and apoE4 animals. Forty minutes after IH, diaphragmatic activity was 404 

significantly depressed in females expressing 4. Consistent with findings in the brain, this 405 

demonstrates that apoE4 females have a limited propensity for plasticity in the spinal cord. This 406 

pattern was not reflected in male mice. In contrast with the current body of literature, we show 407 

that apoE3 males experience a barrier to synaptic plasticity, as they display the largest decrease 408 

in diaphragmatic activity. 409 
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To our knowledge, apoE3-associated attenuations of plasticity have never been reported 410 

in young adult mice. Since the majority of apoE literature describes its effects on the brain, it is 411 

possible that our results are due to a unique action of apoE in the spinal cord. The mechanism 412 

behind induction of LTF in the bulbospinal breathing circuitry is similar to that of long term 413 

potentiation (LTP) in the hippocampus: both rely on synaptic strengthening brought about by 414 

activation of postsynaptic NMDA receptors and signaling through ERK (English & Sweatt, 415 

1997; McGuire et al., 2005; Hoffman et al., 2012). Disparate results from a variety of studies in 416 

targeted replacement mice suggest apoE4 can be detrimental or beneficial to LTP depending on 417 

brain region, sex, and age (Levi et al., 2003; Kitamura et al., 2004; Trommer et al., 2004; 418 

Korwek et al., 2009). Taking this into account, it is less surprising to see that apoE3 also has the 419 

potential to augment or impede similar mechanisms of plasticity. This effect may also be 420 

dependent on age and region of the CNS. 421 

The inhibitory PNN and serotonergic presence after C2Hx in targeted replacement mice 422 

 Following SCI, there is a dramatic upregulation of inhibitory CSPGs at the site of injury 423 

and in denervated targets (Bradbury et al., 2002; Massey et al., 2008; Alilain et al., 2011). 424 

Indeed, after dorsal column transections, there is an upregulation of the CSPG-containing PNN 425 

around sensory nuclei (Massey et al., 2008) and in previous studies utilizing lateral C2 426 

hemisections, PMNs became further encased by CSPGs and the PNN (Alilain et al., 2011). 427 

Despite the abundance of evidence implicating the importance of CSPGs in limiting plasticity, 428 

regeneration, and recovery (reviewed by Tran et al., 2018), the influence of human genetics (and 429 

APOE alleles) on PNN structure and neuronal sprouting in the injured spinal cord has never been 430 

investigated. However, a study of human brains indicated that apoE4 augments expression of a 431 
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CSPG known as brevican in the brain of Alzheimer’s patients, which could explain the more 432 

extensive staining of PNN observed in E4 mice (Conejero-Goldberg et al., 2015).  433 

Indeed, our findings indicate that apoE4 females exhibit a greater density of the PNN in 434 

the ventral horn region containing PMNs after injury. Although PMNS were not discreetly 435 

labeled, upregulation of the PNN at the C4 level ipsilateral to injury suggests that deficits in 436 

respiratory motor plasticity could be a consequence of the PNN’s numerous influences on CNS 437 

function and plasticity. Appearance of the PNNs containing CSPGs during development ends 438 

critical periods in which experience-dependent plasticity shapes neural circuitry. Degradation of 439 

CSPGs reopens this critical period and restores synaptic plasticity in the adult CNS (Pizzorusso 440 

et al., 2002). Following lateral spinal hemisection, increasing densities of CSPG molecules 441 

impede calcium diffusion and block action potential conduction in intact axons that are spared by 442 

the injury (Hrabětová et al., 2009; Hunanyan et al., 2010). These molecules also create an 443 

inhibitory microenvironment that prevents sprouting and regeneration of fibers in the injured 444 

spinal cord, including 5-HT fibers that have the potential to enhance functional recovery after 445 

experimental SCI (Alilain et al., 2011; Warren et al., 2018; Warren & Alilain, 2019). 446 

Since serotonergic signaling at the level of PMNs is crucial to induction of LTF (Bach & 447 

Mitchell, 1996), we quantified 5-HT staining around the putative PMN in spinal cords from E3 448 

and E4 females. Density of 5-HT fibers was higher in E4 females both contralateral and 449 

ipsilateral to injury, although this difference did not reach statistical significance on the 450 

contralateral side. This indicates that compared to apoE3, apoE4 females may have greater 451 

serotonergic innervation of the PMN in the absence of injury. However, additional studies are 452 

needed to determine whether females expressing 4 have greater serotonergic innervation prior 453 

to injury, as well as after C2Hx. Indeed, if this pattern is consistent regardless of injury status, 454 



 

 23 

increased 5-HT fiber density could represent a compensatory mechanism that maintains motor 455 

neuron excitability in these animals while combatting the loss of synaptic integrity over time that 456 

is observed in E4 animals (Klein et al., 2010). The observed attenuation of LTF after injury may 457 

therefore be due to apoE4-dependent decreases in 5-HT receptor expression on PMNs, or a result 458 

of alterations downstream of 5-HT receptor activation in the signaling pathways that are 459 

necessary for the induction of LTF. 460 

Although the higher density of PNN in E4 females is not associated with a decrease in the 461 

amount of 5-HT at the level of the PMN after injury, the CSPG-containing PNN could still play a 462 

role in abrogating respiratory motor plasticity. Further investigations are needed to determine 463 

whether CSPGs block ion flow in spared axons such as the CPP after cervical hemisection 464 

similar to the inhibition observed after thoracic injury (Hrabětová et al., 2009; Hunanyan et al., 465 

2010). Previous studies have shown that degradation of CSPGs leads to increased presence of 5-466 

HT around PMNs, which is associated with recovery of breathing function. However, these 467 

studies did not address at the effect of CSPG upregulation or degradation on glutamatergic 468 

sprouting or regeneration (Alilain et al., 2011; Warren et al., 2018; Warren & Alilain, 2019). 469 

Therefore, alterations glutamatergic innervation of PMNs could also contribute to the 470 

enhancement of diaphragmatic function demonstrated in these studies. Although E4 females 471 

displayed more 5-HT fibers than E3 females, further examination of glutamatergic axon 472 

regeneration and sprouting, as well as how enzymatic degradation of CSPGs alters this 473 

innervation, could provide insight into whether PNN upregulation contributes to a lack of 474 

respiratory motor plasticity in females expressing 4. 475 

The primary goal of this study was to investigate the role of genetic variability in 476 

determining an individual’s propensity for spinal plasticity and recovery of breathing function 477 
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after SCI. Preclinical studies typically test therapeutic approaches in a homogenous group of 478 

animals, which does not represent the diversity found in the human population. As IH and other 479 

therapeutics enter clinical trials, their efficacy for treating a heterogeneous population is an 480 

important consideration. Overall, our findings that sex and APOE genotype modulate the 481 

response to therapeutic IH, along with the current dearth of successful treatment strategies for 482 

SCI, emphasizes the importance of advancing personalized medicine to improve outcomes for 483 

injured individuals.  484 
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Legends 786 

Table 1. 787 

Group sizes for diaphragmatic EMGs 788 

Figure 1.  789 

Magnitude of respiratory motor plasticity is not determined by apoE genotype alone. A. 790 

Timeline of intermittent hypoxia protocol. Green arrows represent time point at which peak 791 

amplitude was analyzed. B. Schematic of the neural circuitry that mediates breathing. Location 792 

of the left C2 hemisection is indicated by red X. C. Representative image of cresyl violet staining 793 

of the spinal cord at the C2 level after injury. D. Quantification of diaphragmatic amplitude over 794 

time during and after IH. There was no difference between genotypes in the change in amplitude 795 

over time (a. RM ANOVA p=0.741, MD=0.043, CI=-0.22 to 0.31) E. Quantification of 796 

diaphragmatic amplitude during the first normoxic bout and 40 minutes after IH (b. Paired t-test 797 

E3 normoxia v. 40min p=0.741, MD=0.029, CI=-0.16 to 0.22, c. E4 normoxia v. 40min p=0.405, 798 

MD=0.084, CI=-0.29 to 0.12). Bars show mean and SEM values. 799 

Figure 2. 800 

ApoE3 males demonstrate a trend of decreasing diaphragmatic activity in response to IH. 801 

A. Representative traces of diaphragmatic activity during the first normoxic bout and 40 minutes 802 

after IH. B. Representative traces from male mice that had no spontaneous recovery. C. 803 

Quantification of diaphragmatic activity over time during and after IH. Amplitude of 804 

diaphragmatic bursts is not significantly different between E3 and E4 animals. D. Quantification 805 

of diaphragmatic activity during the first normoxic bout and 40 minutes after IH (d. RM 806 

ANOVA E3/E3 t=0.03, MD=0.0086, CI=-0.295 to 0.36  e. E3/E4 norm t=-0.55, MD=0.23, CI=-807 
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1.18 to 0.078,  f. E3/E4 40 min t=-0.91, MD=0.35, CI=-1.54 to -0.28  g. E4/E4 t=-0.67, 808 

MD=0.11, CI=-0.41 to 0.63). Bars show mean and SEM values. 809 

Figure 3. 810 

ApoE4 females display significantly less diaphragmatic activity than E3 females after IH. 811 

A. representative traces of diaphragmatic activity during the first normoxic bout and 40 minutes 812 

after IH. B. Representative traces from an apoE4 female non-responder. C. Quantification of 813 

diaphragmatic activity over time during and after IH. Amplitude of diaphragmatic bursts are 814 

significantly greater in E3 females than in E4. D. Quantification of diaphragmatic activity during 815 

the first normoxic bout and 40 minutes after IH (h. RM ANOVA E3/E3 t=-0.32, MD=0.071, 816 

CI=-0.75to 0.11, i. E3/E4 normoxia t=0.84, MD=0.18, CI=0.43 to 1.25, j. E3/E4 40 min t=2.08, 817 

MD=0.44, CI=1.67 to 2.49, k. E4/E4 t=1.01, MD=0.19, CI=0.64 to 1.38). Bars show mean and 818 

SEM values. 819 

Figure 4. 820 

E4 females have higher levels of PNN.  A. Representative images of WFA staining at the C4 821 

spinal cord level (DAPI is in red, WFA is in green). B. Higher magnification images show the 822 

PNN surrounding putative phrenic motor neurons. C. Quantification of WFA indicates that 823 

apoE4 mice express more WFA than E3 mice, although this trend is not statistically significant 824 

(l. Welch’s t-test p=0.0697, MD=0.0029, CI=-0.00036 to 0.0061). Bars represent mean  SEM.  825 

Figure 5. 826 

E4 females have higher density of spinal 5-HT fibers.  A. Representative images of stained 5-827 

HT fibers in the C4 spinal cord level. Higher magnification shows individual 5-HT fibers in the 828 

area of the putative PMN. C. Significantly more serotonergic fibers are found contralateral to 829 
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injury in apoE4 females (m. Student’s t-test p=0.0193, MD=0.0016, CI=0.00036 to 0.0029).  D. 830 

5-HT fibers contralateral to injury at the C4 level (n. Student’s t-test p=0.286, MD=0.00104, 831 

CI=-0.0011 to 0.0032). E. Ipsilateral 5-HT staining normalized to contralateral (o. Student’s t-832 

test p=0.187, MD=0.47, CI=-0.29 to 1.24). Bars represent mean  SEM. 833 
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Extended Data 2-1. 835 

The respiratory response to hypoxia is determined by APOE genotype in male mice. A. 836 

Quantification of diaphragmatic burst frequency in male mice. There is no significant difference 837 

between the decreases in apoE3 and apoE4 mice (RM ANOVA p=0.846). B,C Quantification of 838 

diaphragmatic burst amplitude (B.) and frequency (C.) in response to a 10-minute hypoxic 839 

exposure. Hypoxia appears to attenuate breathing in apoE3 males. No statistics were performed 840 

due to low n. E3 and E4 n=2. 841 

Extended Data 3-1.  842 

Hypoxia induces a decline in breathing frequency in female APOE targeted replacement 843 

mice. A. Quantification of diaphragmatic burst frequency in female mice. There is no significant 844 

difference between the decreases in apoE3 and apoE4 mice (RM ANOVA p=0.673). B,C. 845 

Quantification of diaphragmatic burst amplitude (B.) and frequency (C.) in response to a 10-846 

minute hypoxic exposure. Breathing frequency displayed a negative trend in apoE4 females. No 847 

statistics were performed due to low n. E3 n=3, E4 n=2. 848 
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Table 1. 850 

 Male  Female 

E3 n=7 n=8 

E4 n=6 n=11 

851 
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