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The pelvic flexure separates 
distinct microbial communities 
in the equine hindgut
Kailee J. Reed1,2, Isabelle G. Z. Kunz1, Jessica A. Scare3, Martin K. Nielsen3, Philip J. Turk1,4, 
Robert J. Coleman5 & Stephen J. Coleman1,2*

As hindgut fermenters, horses are especially dependent on the microbiota residing in their cecum 
and large intestines. Interactions between these microbial populations and the horse are critical for 
maintaining gut homeostasis, which supports proper digestion. The current project was motivated to 
determine if any features of the fecal microbiota are informative of the microbial communities from 
the cecum, ventral colon, or dorsal colon. Digesta from the cecum, ventral colon, dorsal colon and 
feces were collected from 6 yearling miniature horses. Microbial DNA was isolated and the microbiota 
from each sample was characterized by profiling the V4 region of the 16S rRNA. Principal coordinate 
analysis of the beta diversity results revealed significant (p = 0.0001; F = 5.2393) similarities between 
the microbial populations from cecal and ventral colon and the dorsal colon and fecal samples, 
however, there was little overlap between the proximal and distal ends of the hindgut. These distinct 
population structures observed in our results coincide with the pelvic flexure, which itself separates 
intestinal compartments with distinct roles in digestive physiology. An indicator species analysis 
confirmed the population differences, supported by the identification of several microbial families 
characteristic of the compartments upstream of the pelvic flexure that were not represented following 
it. Our data suggest that the fecal microbiota is not informative of the proximal hindgut but can 
provide insight into communities of the distal compartments. Further, our results suggest that the 
pelvic flexure might be an important anatomical landmark relative to the microbial communities in the 
equine large intestine.

The equine gastrointestinal tract (GI) is a complex organ system that can be divided into two main sections. The 
foregut, which consists of the stomach (glandular and non-glandular regions) and small intestine (duodenum, 
jejunum and ileum), is the primary site of enzymatic digestion and absorption of nutrients1,2. The hindgut, 
which consists of the cecum, large colon (ventral and dorsal), and small colon, is the primary site of fiber diges-
tion and water reabsorption3,4. The hindgut accounts for approximately 62% of entire GI volume3–5. Horses are 
monogastric herbivores with diets consisting of high fiber and insoluble carbohydrates. Horses do not possess 
the enzymes required to digest the dietary fiber they consume and instead rely on the production of volatile fatty 
acids by fermentation in their hindgut to generate energy6. This fermentation and associated energy production 
depend directly on the activity of resident microbes7.

The cecum and large colon support the majority of the microbial populations that exist in the equine GI6,8. 
Collectively, these populations of microorganisms are referred to as an animal’s microbiota, a term often used 
interchangeably with “microbiome” which refers to the collection of genes and genomes contributed by the com-
munity of microorganisms9. Horses, in particular, rely heavily on the microbial communities in their GI tract. The 
symbiotic nature of the interaction between host and microbiota in the equine GI is critical for proper physiology 
and performance of the horse10. Proper GI function relies on maintaining dynamic equilibrium between the host 
and the microbial community constituents. Disruption of the microbial communities within the GI has been 
associated with metabolic syndrome11, colitis7,12, and several other GI dysbioses in horses and other mammals. 
Since most of the GI compartments are not directly or easily accessible, fecal samples may provide an effective 
proxy to monitor the microbiota in those compartments.
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Sampling of feces is commonly used for investigations of the gut microbiota because the sampling is non-
invasive, and it is relatively convenient to acquire fresh material for analysis. The Human Microbiome Project 
suggested that fecal samples are sufficiently representative of the microbial communities present across the 
various intestinal compartments in the humans to serve as an effective proxy13. Additional published studies 
have supported the utility of fecal microbial analysis as a proxy of the gut communities14 and for discovery and 
monitoring of biomarkers related to gut health15,16. Fecal samples informing about gut health and disease has been 
thoroughly reviewed previously17 as well as the importance of the collection methods for microbiome studies18,19. 
Methods for study of the equine microbiome using fecal samples have also been reviewed20 and many studies 
are published which use fecal samples to examine the link between GI microbiota and horse health8,21–24. Several 
investigations have been conducted comparing the microbial populations of equine fecal samples with different 
segments of the equine GI. Studies which relied on PCR-based methods both identified differences between 
fecal samples and different hindgut compartments, suggesting caution when making inferences based on fecal 
analysis25,26. Other studies which relied on sequencing of the 16S rRNA gene demonstrated that the small and 
large intestine have distinct microbial profiles compared to one another and that there are considerable differ-
ences between the compartments of the hindgut27,28. Another sequence-based GI survey demonstrated that the 
microbial communities of the hindgut become more distinct from that observed in the feces as they proceeded 
proximally along the GI tract towards the cecum29. Most recently, a study of the GI tract microbiota in Mongolian 
horses supported the conclusions of distinct differences between the small and large intestines and that direct 
sampling of intestinal compartments was more accurate than indirect analysis using fecal samples30. Previous 
investigations have not specifically examined the variation in microbial profiles in the separate segments of the 
hindgut or if community features are shared amongst other areas.

Here, we characterized the microbial populations of three main compartments in the equine hindgut and 
compared those to microbiota of the feces. Using robust statistical analyses not previously applied for studies of 
the equine GI microbiota, the current study provides new insight of the equine hindgut microbial populations 
and identifies features that are indicative of the hindgut GI compartments.

Results
A total of 2,163,951 sequencing reads were generated from the 24 samples sequenced. Following quality control 
and feature table construction, 4461 total features (mean of 485 frequencies per feature) were identified. For 
downstream analysis, the feature table was sampled at a depth of 59,157 features per sample, from which 65.61% 
(1,419,768) of the original sequences and all 24 samples were retained for analysis.

Diversity metrics.  As the digesta from the proximal to distal compartments of the hindgut, Shannon Diver-
sity Index values seemed to increase slightly (averaged Shannon Diversity Index’s based upon body site: cecum: 
8.01; right ventral colon: 8.04; right dorsal colon: 8.10; feces: 8.41). However, there was no significant differences 
between the GI compartments or feces.

Beta diversity was assessed using Bray–Curtis dissimilarity values. A principal coordinates analysis was done 
using the Bray–Curtis dissimilarity matrix in order to visualize the community’s differences (Fig. 1), showing 
clustering of communities based upon body site. The cecum and ventral colon microbial communities were clus-
tered together, while the dorsal colon and fecal communities clustered together. The F-test was highly significant, 
confirming that the microbial community is different among body sites (p = 0.0001). Pairwise comparisons were 
also tested and all these comparisons with cecum were significant (p = 0.03125), indicating these populations 
differ, while dorsal to fecal, dorsal to ventral and fecal to ventral comparisons were not significant (p = 0.09375; 
p = 0.09375; p = 0.0625, respectively), indicating more similar microbial communities. Dispersion testing of the 
PERMANOVA results revealed that there is insufficient evidence to suggest the four body sites differed with 
respect to dispersion (p = 0.4648).

Figure 1.   Principal coordinate analysis of gut microbial populations from cecum (red), right ventral colon 
(green), right dorsal colon (orange) and feces (blue).
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Taxonomic classifications.  The total number of features identified in each GI compartment increased 
from the cecum to the dorsal colon, with the largest number of features identified in the fecal samples. There was 
also a corresponding increase in the number of features which were shared by a specific GI compartment and 
the feces. The microbial phyla identified were principally Bacteroidetes and Firmicutes, with representation of 
Spirochaetes, Verrucomicrobia and Euryarchaeota as well. There was an apparent shift of microbial populations 
before and after the pelvic flexure with a large decrease (~ 50% to ~ 30%) in Bacteroidetes identified in the dorsal 
colon and fecal samples compared with samples from the cecum and ventral colon. The phylum Euryarchaeota 
increased in abundance in the samples following the pelvic flexure. The taxonomic differences before and after 
the pelvic flexure were in concordance with the beta diversity clustering results. The phyla and family relative 
abundances presented in Fig. 2A,B respectively. The corresponding taxonomic data for the individual horses is 
available in Tables S1 and S2.

Indicator species analysis.  To further understand the microbial community structures of the equine 
hindgut, we applied an indicator species analysis to identify representative features from each GI compartment. 
We used absolute counts at the family level due to the small number of reads mapped to the species (~ 27% of 
sequence reads were identified at the species level) and genus (~ 38% of sequence reads were identified at the 
genus level) levels. By contrast, ~ 60% were identified at the family level. For this reason, species was referred to 
as family in our analyses.

The first step of the analysis was identification of features at the ‘family’ level which are characteristic of a ‘sin-
gle’ body site. The analysis revealed five families (Prevotellaceae, Paraprevotellaceae, unclassified Planctomycetes, 
unclassified Spirochaetes, unclassified Synergistales) to be indicators of the cecal community and two families 
(S24-7 and unclassified Lactobacillales) to be indicators of the right ventral colon community. No families were 
significant indicators of the right dorsal colon or fecal communities. This could be due to the number of animals 
that were available for this study. Table 1 displays the specific families, indicator values and associated p-values.

The second step of the analysis was to identify families that were indicative of microbial communities shared 
between body sites. The combined comparisons were also intended to identify signatures shared between the 
feces and the individual hindgut compartments. The indicator value formula was modified and the randomiza-
tion test re-run. There was one family (unclassified Synergistales) identified as an indicator of the cecum and 
right ventral colon communities, three families (unclassified WCHB1-41, unclassified Euryarchaeota, unclas-
sified Methanomicrobiales) were indicative of the right dorsal colon and feces and two families (unclassified 
Anaerolineae, Pirellulaceae) identified for the right ventral colon, right dorsal colon, and feces. The indicator 
values and associated p-values of these results are displayed in Table 2.

Discussion
The present study investigated the composition of microbial communities residing in distinct compartments of 
the equine hindgut (includes the cecum, large colon, and small colon) and compared them with fecal samples 
obtained from the same animal in order to determine similarities and differences between those communities. 
The data comparing the fecal microbiota to the microbiota from different segments of the equine GI tract has 
not yet conclusively determined it’s utility for that purpose27,29,31. These studies report differing results in regard 
to which compartments had similar microbial populations when compared to the fecal samples. Thus, our goal 
of this study was to further determine what features, if any, of the fecal microbiota were informative for under-
standing the microbiota from the cecum, ventral colon, and dorsal colon. Our results reveal some shared aspects 
of the microbial communities at the four sites tested but also support the conclusion that each compartment 
comprises a unique ecosystem which supports a distinct microbiota. We demonstrate the presence of shared 
community features across each GI location and the fecal sample. A majority of the taxonomic features identi-
fied by the sequencing data were shared by all four test sites (cecum, ventral colon, dorsal colon, and feces). The 
closer the compartment is to the terminal end of the digestive tract, the more shared taxonomic features there 
are between the feces and the GI compartments.

There are several results from our analysis which reinforce the conclusion that the various compartments of 
the equine hindgut support a microbial population which is specific to that region. The observed differences seem 
to correlate with the shifting physiological roles of each compartment in the process of digestion. The general 
metrics of these differences include changes in diversity and taxonomic abundances between the sampling sites. 
Alpha diversity increased, though non-significantly, from the cecum to feces indicating within sample diversity 
differences between the different intestinal sites corresponding to an increase in species richness (calculated 
Shannon Diversity Index value) along the length of the hindgut. The increase in alpha diversity corresponds with 
an increase in the total number of taxonomic features identified in each compartment as sampling proceeded 
from the proximal to distal end of the hindgut. Other published studies comparing the different compartments 
of the equine gut have reported data which reflects a similar trend in alpha diversity28,32. There are differences 
noted between the alpha diversity in our study and these others which may be due to host (breed and age), envi-
ronmental (diet and management), or technical (sample collection and processing) factors. Additional study is 
required in horses to understand how these variables might impact analyses of the microbiome. Beta diversity, 
as visualized by PCoA generated using Bray–Curtis values, revealed clustering of the microbial communities 
from the different sampling sites. The first axis identified that the greatest contribution to separation between the 
samples was in fact body site. Further, there was a distinct separation of the communities identified in the cecum 
and ventral colon relative to those of the dorsal colon and feces (Fig. 1). The differences between body sites were 
statistically significant (p < 0.0001) as were the differences between cecum and the other samples with respect 
to community composition. The shift in beta diversity relative to body site is supported by observed differences 
in the taxonomic profiles derived from the different samples. The resulting taxonomic plots (Fig. 2A,B) reveal a 
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Figure 2.   Relative abundance of microbial communities identified in the cecum, right ventral colon, right 
dorsal colon and feces, assigned to the phylum (A) and family level (B). For the family relative abundances, this 
figure depicts the top 30 features in the category, The complete list of families identified is available in Table S2.
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unique distribution of the taxonomic classifications. Despite the differences between body site, it is also apparent 
that the cecal and ventral colon profiles are similar to each other, as are the dorsal colon and fecal profiles. As 
with the beta diversity results, there is an observable separation between the cecum and ventral colon relative to 
the dorsal colon and fecal samples. Anatomically, this distinction corresponds with the pelvic flexure.

The differences in community structure observed in our results agree with previously published comparisons 
of the microbiota from different compartments of the equine hindgut27–29,33. With some variation, correspond-
ing to variation in sample processing, sequencing primer selection, and analytical approach, these studies all 
demonstrate a difference in community composition between the proximal and distal ends of the hindgut. As 
with our reported differences, the pelvic flexure sits between the compositional shifts reported by these other 
studies. Dougal et al. (2012) first described the differences between the cecal and right dorsal colon microbial 
communities and recognized that the populations shift corresponded to the pelvic flexure33. Similarly, Costa et al. 
(2015) reported changes in relative taxonomic abundance following the pelvic flexure and a study by Ericsson 
et al. (2016) revealed large dissimilarity between the cecum/ventral colon and the dorsal colon27,28. In both of 
these studies, the level of dissimilarity between the proximal and distal compartments appears less substantial 
than the dissimilarity observed between microbial communities of the small and large intestines, however it 
remains detectable. In our data, changes in the microbial populations of the various hindgut compartments 
seemed to be related to the pelvic flexure. Interestingly, the microbial changes observed relative to the pelvic 
flexure are detectable in each of the described studies even with sampling from different population of animals. 
The sampled populations used are vastly different in terms of geographical location, diet, breed, age, gender, 
and management practices. Separately, these factors have been demonstrated to have significant impacts on 
composition of the gastrointestinal or fecal microbiota in other species, including horses34,35. The fact that the 
data from these different studies all display a similar pattern of community structure across the various segments 
of the hindgut may indicate the importance of digestive physiology in determining composition of the GI tract 
microbiota. One possible explanation of the consistent pattern of differences between hindgut compartments 
could be a so called “core” microbiota or a set of requirements constituents for a functional microbial commu-
nity as suggested by Dougal et al.33. Another possible explanation for the similar results observed across studies, 
despite the differences in animal subjects, sampling methods, and protocols used, could be the host’s control 
over whether particular members of the microbiota are retained or removed from different compartments of 
the gastrointestinal tract. Several published studies have provided evidence that the host “shapes” the microbiota 
present in its GI tract through a variety of physiological mechanisms. These include secretion of immunological 
mediators36, post-transcriptional regulation of gene expression37,38, cell differentiation and inflammation39 and 
overall gut homeostasis.

Taxonomic classifications and measures of alpha and beta diversity are capable of describing broad trends 
in microbial communities in terms of composition and differences which may be associated with important 
physiological or environmental parameters. In our data, these metrics indicate both the similarities and dif-
ferences between the various compartments of the equine hindgut. These metrics do not, however, address the 
original premise of this study. Published studies have demonstrated that the fecal sample provides a reasonable 

Table 1.   Families identified to be most significant indicators based on single body sites, which include the 
indicator value (IV) and p-value for each. (o order, p phylum).

Body site Family IV p-value

Cecum

Prevotellaceae 0.6792 0.0196

Paraprevotellaceae 0.6567 0.0435

Planctomycetes (p) 0.8606 0.0278

Spirochaetes (p) 0.9071 0.0195

Synergistales (o) 0.8511 0.0195

Ventral colon
S24-7 0.7379 0.0195

Lactobacillales (o) 0.7017 0.0435

Table 2.   Families identified to be most significant indicators based on combinations of body sites, which 
include the indicator value (IV) and p-value for each. (o order, p phylum, c class).

Body sites Family IV p-value

Cecum & ventral colon Synergistales (o) 0.9285 0.0396

Dorsal colon & feces

WCHB1-41 (o) 0.9155 0.0385

Euryarchaeota (p) 0.9451 0.0385

Methanomicrobiales (o) 0.8995 0.0424

Ventral/dorsal colons & feces
Anaerolineae (c) 0.9520 0.0424

Pirellulaceae 0.9616 0.0385
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representation of the distal hindgut compartments, but not the proximal ones29. These findings are contrasted 
with another study which seem to indicate that the fecal microbial population is similar to the population in the 
cecum31. Regardless of the conflicting conclusions, none of these previous studies have completely addressed 
the utility of a fecal sample for understanding the GI tract microbiota. In our study, we applied an indicator spe-
cies analysis approach40,41 to identify features of the microbiota which could help define the compartments of 
the hindgut and determine if any of these features were shared with the fecal sample. Indicator species analyses 
were developed in the context of ecological community investigations40 and have been adapted previously to 
the study of gut microbiota42–44. Our study is the first time that an indicator species analysis has been used with 
the equine gastrointestinal microbiota.

We first considered the intestinal compartments and fecal sample individually for our comparisons in order 
to identify family features from each community which were characteristic of sampling site—so called indicator 
families. There were more significant indicator families identified in the cecum compared to the other body sites 
followed by the right ventral colon. An increased number of indicator families present at the cecum and ventral 
colon may be associated with their central roles in microbial fermentation of the fiber and insoluble carbohydrates 
in the equine diet. Five indicator families were identified in the cecum and 2 identified in the right ventral colon. 
The Prevotellaceae family was identified as an indicator family in the cecum and has been associated with many 
functions but is primarily recognized for its role in the breakdown of the proteins and complex carbohydrates 
present in feedstuffs. This functional role is especially important in the rumen of cattle and sheep, and the hindgut 
of horses45. The indicator status of Prevotellaceae in the cecum aligns with its anatomical function as the primary 
site of fermentation and breakdown of complex carbohydrates which pass through undigested from the small 
intestine. Research of the equine cecal microbiota using culture-based methods also identified the Prevotellaceae 
family to be highly abundant32,33,46, which seems to support its status as an indicator of the cecal ecosystem. The 
confirmation of Prevotellaceae’s importance in the cecum by these methods also lends credibility to the more 
novel families identified in each compartment by our analysis. Another indicator family identified in the cecum, 
also found in previous studies32, was Paraprevotellaceae. Unfortunately, little is known about the functional 
consequences of this group in mammals. It is likely an interesting candidate for further investigation to better 
understand its potential impact on digestive physiology in the cecum. An unclassified family member from the 
order Lactobacillales was identified as an indicator family in the right ventral colon. Members of this order have 
been implicated in the final stages of carbohydrate fermentation with individual families branching into many 
distinct species and strains47. Like the cecum, the right ventral colon is an important site of fermentation in the 
equine hindgut, and the presence of Lactobacillales families aligns with physiological role. This order has also 
been demonstrated to naturally associate with mucosal surfaces (like those of the GI tract) and is known for the 
metabolism and fermentation of lactic acid48. The family S24-7 was also identified as an indicator family in the 
right ventral colon and has been demonstrated to inhabit the gut of other homeothermic mammals49. Individual 
members of this family can be differentiated by IgA-labeling50,51 which suggests a potential host-microbe inter-
action through the immune system. There were no indicator families identified in either the right dorsal colon 
or fecal samples. Following the individual comparisons, sites were combined in order to compare communities 
from the proximal and distal regions of the hindgut. This second round of the analysis identified three features 
as indicators of the distal hindgut. One of these, an uncharacterized family member of the WCHB1-41 order, is 
a eubacterium that has been identified previously in biofilms52. The presence of WCHB1-41 is difficult to detect 
and track, but further research in terms of how this order interacts with intestinal epithelium and microbes could 
be beneficial for the poorly understood communication pathway between host and microbe. Also identified as 
indicators of the distal hindgut region were two archaea groups (these are two of the three groups mentioned 
above—the third was WCHB1-41), an uncharacterized family of the Euryarchaeota phylum and an uncharacter-
ized family of the order Methanomicrobiales. Euryarchaeota, a dominant phylum discovered in several other 
studies, has been associated with host and gut interactions53–55, but with very specific genus and species in other 
mammals. Members of the Archaea kingdom has been associated with function in the gastrointestinal tract of 
many different mammals including horses, cattle and sheep56–58.

The motivation of the current study was to determine if a fecal sample could provide insight into the microbial 
communities of the various compartments of the equine hindgut. More importantly, we hoped to establish which 
features of the fecal microbiota were informative to understanding of microbial communities within the GI. As 
determined by taxonomic analysis, beta diversity and the indicator species analysis, fecal samples would seem 
to provide a good metric for investigations of the distal hindgut. Specifically, uncharacterized families from the 
order WCHB1-41, the order Methanomicrobiales, and the phylum Euryarchaeota may provide the most direct 
insights. Additional work will be required to determine if these similarities are consequential or informative 
when using a fecal sample to monitor the compartments of the distal hindgut. Specifically, are changes to the 
microbiota in the dorsal colon and other compartments reflected in changes to the fecal microbiota. The limit 
of a fecal sample for the communities of the hindgut seems to extend up to the pelvic flexure. Proximal to that 
point, the fecal communities display distinct differences from the communities in the ventral colon and cecum. 
This supports the conclusion that fecal samples are not informative of the proximal hindgut. Curiously, our data 
suggest a role of the pelvic flexure and potentially a physiological aspect from the host as an important compo-
nent of the curation of microbial communities in different parts of the GI, which should be investigated further.

Methods
Animal subjects and sample collection.  Digesta and fecal samples were collected postmortem from 
6 yearling Miniature breed horses housed and managed at the University of Kentucky in Lexington, Kentucky. 
Animal care and handling methods were conducted in accordance with the guidelines and regulations estab-
lished by the Animal Welfare Act administered by the USDA Animal and Plant Health Inspection Service. The 
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study design and analysis parameters conform to the ARRIVE recommendations for animal research. All animal 
protocols were reviewed and approved by the University of Kentucky Institutional Animal Care and Use Com-
mittee (protocol number 2012-1046). Animals were maintained with a body condition score between 5.5 and 
6.5 on a mixed grass hay pasture with ad libitum access to food and water with no deworming treatment prior 
to sample collection. The miniature horses were sampled from Population-S59 (a well-known herd within the 
equine research community that is used for studying equine health as it relates to parasite infections) and had 
an equal distribution of males (n = 3) and females (n = 3). The miniature horses were euthanized following the 
approved protocol for reasons unrelated to gastrointestinal disease between March and July 2016. Gut digesta 
and fecal samples were collected within one-hour postmortem. Sample collections proceeded as follows. The GI 
tract was removed and each intestinal compartment, the cecum, right dorsal colon, and right ventral colon, were 
identified and segregated. Digesta were emptied from each compartment, mixed and a sub-sample was collected 
for our analysis. Fecal material was collected from the rectum. Gut contents and fecal matter were placed in 
sterile 50 mL conical tubes and stored at − 20 °C.

DNA isolation.  Collected samples were thawed on ice and homogenized in sterile cups. Two hundred and 
fifty milligrams (0.25 g) of the homogenized sample was used for the extraction protocol. Microbial DNA was 
isolated using the PowerSoil DNA Isolation Kit (Qiagen, Venlo, Netherlands) according to the manufacturer’s 
recommended protocol with two minor alterations. The two modifications were (1) the addition of a 65  °C 
incubation for 10 min prior to vortexing the samples after addition of the lysis solution, and (2) increasing the 
centrifuge speed to 13,000 g for each centrifugation step. DNA quality (purity, quantity, integrity) was evaluated 
by spectrophotometry, using the NanoDrop 1000 (ThermoFisher Scientific Inc., Waltham, MA, USA), and PCR 
amplification of the V4 region of the 16S rRNA gene using the 515F/806R Earth Microbiome Project (EMP) 
standard primer set. Thermocycler settings and reaction mixtures can also be found under the protocols and 
standards section of the EMP website (http://www.earth​micro​biome​.org/proto​cols-and-stand​ards/dna-extra​
ction​-proto​col). Samples were deemed acceptable if the DNA concentration was above 25 ng/μl, the 260/280 
ratio was 1.8 or higher, and amplicons following PCR were approximately 300–350 base pairs.

16S rRNA library preparation and next generation sequencing.  Sequencing libraries were gener-
ated by targeting the V4 region of the 16S rRNA gene according to the EMP protocol (http://www.earth​micro​
biome​.org/proto​cols-and-stand​ards/16s/). Each sample was amplified in triplicate, pooled and visualized by gel 
electrophoresis to verify the correct insert size of 300–350 base pairs. Amplicon sequencing was performed on 
an Illumina MiSeq platform using V3 chemistry and generated 2 × 151 bp sequence reads (SeqMatic LLC, Fre-
mont, CA, USA).

Data processing and statistical analysis.  Demultiplexing of the pooled samples was completed using 
the MiSeq Reporter Software System (Illumina, San Diego, CA, USA) using a golay error-correcting barcode 
associated with the forward primer sequence. Raw sequence files were imported into Qiime2 version 2017.11. 
The DADA2 pipeline was used to concatenate the forward and reverse pairs of each read, to correct for phiX 
controls, and to detect and remove chimeric sequences60. The resulting feature table was used to generate a phy-
logenetic tree for diversity metric analysis using the FastTree2 method61 and for taxonomic assignments using 
GreenGenes (v13.8) reference database by training a BLAST + classifier62.

Alpha diversity was evaluated by calculation of the Shannon Diversity Index, a quantitative measure of both 
the amount and abundance of different species within a sample63. Significance of intestinal site variable effect 
on alpha diversity was tested using a pairwise Kruskal–Wallis method comparing each of the body sites. Beta 
diversity was analyzed using PERMANOVA. This multivariate technique uses permutations of distances between 
horse and body site combinations computed with Bray–Curtis dissimilarity to assess the relative similarity 
of community structure between samples64. We first applied a square root transformation to the abundance 
(count) data due to the extreme range of values. Then, the Bray–Curtis dissimilarity was computed for each pair 
of horse-body site combinations. Due to the fact that equivalent dispersion among groups is an assumption of 
PERMANOVA, we also tested the multivariate homogeneity of group dispersions (variances)64.

Indicator species analysis.  Indicator species represent community features which characterize a group of 
samples and has commonly been used for ecological comparisons40. Indicator species analysis combines infor-
mation about the abundance of a feature (species, genus, family, etc.) and the faithfulness of occurrence of a 
feature in a particular group41. Our ‘groups’ were the different body sites we sampled from (cecum, ventral colon, 
ventral colon, feces). An indicator value was calculated for each family in each group based off faithfulness (Eq. 1 
below = Fir : measure of constancy of presence of a family in a particular body site among the 6 horses) and exclu-
siveness (Eq. 2 below = Eir : measure of the family’s specificity to a particular body site to the exclusion of other 
body sites). These can be computed with the equations below, where yijr is the abundance for the ith body site 
(i = 1,2,3,4), the jth horse (j = 1,2,3,4,5,6) and the rth family (r = 1, 2, …, 87), 

−
yir is defined as the mean abundance 

over horses for family (r) in body site (i), and Iijr is an indicator function denoting the presence or absence of 
family (r) in body site (i) for horse (j).

(1)Fir =

∑
jIijr

6
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The indicator value (IVir) for each family (r) in body site (i) is defined by the Eq. 3 below. The highest IVir 
for a family among the body sites was taken to be the overall indicator value for the family and is denoted IV. If 
the indicator value for each family in the body site approaches 1, this means this family is a good indicator for 
a particular body site. However, if the indicator value approaches 0, this means the family is a poor indicator 
for that body site.

Analysis was performed in R (v 3.5.0) using packages indicspecies65 and vegan66. The data matrix imported 
consisted of 87 families across 24 body sites × horse combinations, with body site being a factor with four levels 
and six horses. Using a randomization test (Monte Carlo), body sites were randomly shuffled within horse (block) 
9999 times and IVir was computed each time in order to obtain a p-value for our observed value. To control the 
Type I error rate, we ran the Benjamini–Hochberg method at a false discovery rate of 0.05 to find the families 
with significant indicator values.

Data availability
All raw high-throughput sequencing data described here has been submitted to the NCBI Sequence Read Archive 
and is available under BioProject number PRJNA631014.
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