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Broiler genetics influences proteome profiles of normal and
woody breast muscle

Xue Zhang,* K. Virellia To,* Tessa R. Jarvis,y Yan L. Campbell,* Jasmine D. Hendrix,*
Surendranath P. Suman,z Shuting Li,z Daniel S. Antonelo,x Wei Zhai,# Jing Chen,k Haining Zhu,k and

M. Wes Schilling*,1

*Department of Food Science, Nutrition, and Health Promotion, Mississippi State University, Mississippi State
39762, USA; yDepartment of Animal Science, Iowa State University, Ames 50011, USA; zDepartment of Animal and
Food Sciences, University of Kentucky, Lexington 40546, USA; xDepartment of Animal Nutrition and Production,
College of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga/SP 13635-900, Brazil;
#Department of Poultry Science, Mississippi State University, Mississippi State 39762, USA; and kProteomics Core

Facility, University of Kentucky, Lexington 40506, USA

ABSTRACT Wooden or woody breast (WB) is a
myopathy of the pectoralis major in fast-growing
broilers that influences the quality of breast meat
and causes an economic loss in the poultry industry.
The objective of this study was to evaluate growth
and proteome differences between 5 genetic strains
of broilers that yield WB and normal breast (NB)
meat. Eight-week-old broilers were evaluated for the
WB myopathy and divided into NB and WB groups.
Differential expression of proteins was analyzed us-
ing 2-dimensional gel electrophoresis and LC-MS/MS
to elucidate the mechanism behind the breast
myopathy because of the genetic backgrounds of the
birds. The percentages of birds with WB were 61.3,
68.8, 46.9, 45.2, and 87.5% for strains 1-5, respec-
tively, indicating variability in WB myopathy
among broiler strains. Birds from strains 1, 3, and 5
in the WB group were heavier than those in the NB

group (P , 0.05). Woody breast meat from all
strains were heavier than NB meat (P , 0.05).
Within WB, strain 5 had a greater breast yield than
strains 1, 3, and 4 (P , 0.0001). Woody breast from
strains 2, 3, 4, and 5 had a greater breast yield than
NB (P , 0.05). Six proteins were more abundant in
NB of strain 5 than those of strains 2, 3, and 4, and
these proteins were related to muscle growth,
regeneration, contraction, apoptosis, and oxidative
stress. Within WB, 14 proteins were differentially
expressed between strain 5 and other strains, sug-
gesting high protein synthesis, weak structural
integrity, intense contraction, and oxidative stress in
strain 5 birds. The differences between WB from
strain 3 and strains 1, 2, and 4 were mainly glyco-
lytic. In conclusion, protein profiles of broiler breast
differed because of both broiler genetics and the
presence of WB myopathy.

Key words: woody breast myopathy, proteomics, broiler genetics, poultry

2021 Poultry Science 100:100994
https://doi.org/10.1016/j.psj.2021.01.017

INTRODUCTION

The increased demand for poultry meat since 2000 has
been attributed to good nutritional value, low cost, and
suitability for further processing (Petracci et al., 2015).
This increased demand has contributed to the need for
greater production efficiency. As a result, breeders
have focused on high growth rate and breast yield

hybrids, which has led to continuous improvements in
broiler production (Soglia et al., 2016). Unfortunately,
improvements in genetic selection have also contributed
to the development of muscle abnormalities and myopa-
thies, including “wooden or woody breast” (Petracci
et al., 2015; Soglia et al., 2016).

Woody breast (WB) starts developing in broilers at as
early as 2 wk of age. A chronic myodegradation may
appear at 3 to 4 wk of age (Baltic et al., 2019). According
to Sihvo et al. (2014), WB is a myopathy commonly
found on the pectoralis major in which the hardened
area is visibly bulging and pale. Various factors affect
the development of WB, including the broiler’s geno-
type, gender, egg incubation condition, diet, and feeding

� 2021 Published by Elsevier Inc. on behalf of Poultry Science
Association Inc. This is an open access article under the CC BY license
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allocation (Tijare et al., 2016; Bowker and Zhuang, 2017;
Meloche et al., 2018; Zhang et al., 2020a; Oviedo-
Rond�on et al., 2020). One factor that has been consis-
tently associated with the incidence of WB is heavier
body weight and thicker fillets (Trocino et al., 2015;
Baltic et al., 2019).

Compositional differences in WB negatively impact
the appearance and functional meat quality. According
to Tijare et al. (2016), the altered texture of WB fillets
is likely a result of the high content of connective tissue
and damaged muscle fiber structure. Woody breast fil-
lets have experienced increased muscle fiber degenera-
tion and regeneration, necrosis, fiber size variability,
lipid infiltration, increased fibrosis, and inflammatory
cell invasion (Bowker and Zhuang, 2017). Woody breast
meat has reduced water-holding capacity when
compared with normal breast (NB) (Bowker and
Zhuang, 2017). Soglia et al. (2016) suggested that the
proportion and mobility of the extra-myofibrillar water
fraction within the muscle increases in the WB condi-
tion, which decreases the ability of the muscle to retain
water. Even though this quality issue does not impose
a food safety risk, its unappealing appearance and
impaired nutritional quality (higher in fat and collagen,
poor water-holding capacity and texture) have a nega-
tive economic impact on poultry companies (Soglia
et al., 2016; Bowker and Zhuang, 2017; Baltic et al.,
2019) because WB is downgraded or even discarded in
more severe cases.

Proteomic techniques have been applied to study the
muscle protein profiles of livestock with different traits
or with different genetic origins (Yu et al., 2016;
Paredi et al., 2017; Nair et al., 2018), poultry meat qual-
ity, and defects (Kuttappan et al., 2017a; Cai et al.,
2018). In our previous studies, proteomic profiles of
WB and NB from 5 different broiler strains were charac-
terized, and the proteins that were found in abundance
in WB were related to oxidative stress, structural, and
transport proteins in which the 4 most consistently pre-
sent proteins (annexin A2, apolipoprotein A-1, cofilin-2,
and heat shock protein beat-1) were major contributors
to the development of WB (Zhang et al., 2020a).
Research has been conducted to compare proteome pro-
files of chicken breast, and 11 proteins were differentially
abundant between 3 Thai local chicken breeds of the
same age (Zanetti et al., 2009, 2011). However, little is
known about the impact of broiler genetics onWB devel-
opment and incidence. The objective of this study was to
evaluate how genetics affected birds’ growth and altered
proteomic profiles of WB and NB meat, as well as iden-
tify differentially expressed proteins that could serve as
potential biomarkers for the WB myopathy in 5 geneti-
cally different broiler strains.

MATERIALS AND METHODS

Eggs and Broilers

This study was approved by the Institutional Animal
Care and Use Committee at Mississippi State University

(approval # IACUC-16-542A). Eggs were procured
from 5 commercial breeder hens (strains 1-5) that were
30 wk old. All eggs were collected within the same period
and placed in a single-stage incubator (Chick Master
Incubator Co, Medina, OH). The incubator was set at
37.5�C and 55% relative humidity from day 1 to 18 of in-
cubation. The eggs were transferred into the hatcher on
day 18. The hatcher was set at 36.7�C with 60% relative
humidity till day 21 of incubation when the chicks were
hatched. Eggs were candled on day 11, and dead and
infertile eggs were removed. Eggs were transferred to a
hatcher (Chick Master Incubator Co.) on day 18 of incu-
bation. On day 21, a total of 640 (128 birds/strain)
newly hatched chicks were transferred to the Mississippi
State University Poultry Farm. The farm was divided
into 8 blocks, and 128 chicks of each strain were
randomly assigned to 8 pens (16 birds/pen/block,
0.0846 m2/bird). These newly hatched chicks weighed
39.7, 39.7, 41.8, 39.4, and 40.2 g for strains 1-5, respec-
tively (Zhang et al., 2020b). Chicks were fed with a con-
trol diet that was formulated to meet the highest
recommended digestible amino acids (Zhang et al.,
2020b). These 5 commercially used broiler strains differ
in genetic background. Strains 1 and 2, strain 3, and
strains 4 and 5 were from 3 different breeding companies.
In the chicken house, each pen was equipped with one
hanging feeder and 3 nipple drinkers. Water and feed
were provided on an ad libitum basis. The birds received
a 24 L:0 D photoperiod from day 0 to 7 and a 20 L:4 D
photoperiod from day 8 to 60. The temperature of the
house was 34�C on the day of hatch, gradually decreased
to 31�C on day 7 of age, 27�C on day 14, 24�C on day 21,
21�C on day 28, 19�C on day 35, 18�C on day 42, and
stayed at 18�C thereafter.

Processing and Sampling

At 8 wk of age, live male birds were evaluated for WB
myopathy by manual palpation. For each strain of birds,
4 birds (n 5 1 bird/pen) with NB were selected from
blocks 1-4, and 4 birds (n 5 1 bird/pen) with WB
were selected from blocks 5-8. After euthanizing broilers
with CO2 gas, 5-10 g of muscle from the cranial portion
of the breast was collected and snap-frozen in liquid ni-
trogen. The proteomic profiles of broiler breast muscle
were evaluated.
After 8 wk, broilers (n 5 4 birds/pen, 160 birds in to-

tal) were randomly selected, weighed, and tagged for
processing. After 14 h fasting, birds were processed in
the processing plant at the Mississippi State University
Poultry Farm. Body weight, carcass weight, and pH15min
of the breast were immediately measured after process-
ing. Part weights, including breast, tender, wings, drum-
sticks, and thighs, were weighed after carcasses were
chilled for 4 h in ice water. TheWBmyopathy and white
striping (WS) were evaluated at 24 h postmortem ac-
cording to Tijare et al. (2016), where 0 5 normal,
15 slight, 25moderate, and 35 severe. Breast samples
were grouped into NB with scores of 0 and 1 and WB
with scores of 2 and 3. Slight WB was considered as
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NB because manual palpation on live birds did not
differentiate these 2 groups. Breast pH and surface color
were also evaluated at 24 h postmortem. Breast samples
were stored at 218�C for 6 to 8 wk before cooking loss
and shear force analysis.

Physicochemical Properties of Broiler
Breast Meat

pH Measurement The pH values of the breast muscle
(n5 32/strain) were measured using a pH meter (Model
Accumet 61a; Fisher Scientific, Hampton, NH) with a
penetrating pH probe (Model FlexipHet SS Penetration
tip; Cole Palmer, Vernon Hills, IL). The pH was
measured on the processing line at 15 min and 24 h post-
mortem by inserting the pH probe in the cranial part at
2.5 cm below the top of the fillet.
Color Measurement The color of NB and WB samples
were determined at the surface (skin side) of the breast
muscle (n 5 32/strain) at 3 different locations (cranial,
middle, and caudal) at 24 h postmortem. Color was eval-
uated using a portable, reflected-color spectrophotom-
eter (MiniScan EZ 4500L; HunterLab, Reston, VA) with
a 31.8-mm port size, a 10� standard observer, and a D65
illuminant. The color attributes were expressed as CIE
L* (lightness), a* (redness), and b* (yellowness). Hue
angle [tan21(b*/a*)] and chroma [(a*2 1 b*2)1/2] were
calculated (AMSA, 2012).
Cooking Loss and Warner-Bratzler Shear Force
Determination Half of the chicken breast samples (2
birds/pen, n 5 16 in total) were thawed overnight at
4�C. Breast samples were weighed (initial weight) and
then baked in a preheated oven (Viking, Greenwood,
MS) at 177�C to a final internal temperature of 77�C. Af-
ter cooking, the breast samples were cooled to room tem-
perature (22 6 2�C) and weighed again (final weight).
Cooking loss of breast samples was reported as a percent-
age and calculated as [(initial weight 2 final weight)/
(initial weight)] ! 100%.
For Warner-Bratzler shear force analysis, 6 adjacent

1 cm (width) ! 1 cm (thickness) ! 2 cm (length) strips
were cut from the cranial part of the breast sample in a
direction that was parallel to the muscle fibers. Samples
were sheared perpendicular to the muscle fibers using a
Warner-Bratzler shear attachment that is mounted to
an Instron Universal Testing Center (Model 3300; Ins-
tron, Norwood, MA). The shear force was reported as
the maximum peak force (N) that was required to cut
through the chicken breast strips (Schilling et al., 2012).

Protein Extraction

Proteomic analysis was carried out on the NB (n 5 3/
strain) and WB (n 5 3/strain) tissues as previously
described (Zhang et al., 2020a). Frozen breast tissue (1-
2 g) was ground in liquid nitrogen, and 200 mg of ground
tissuewas homogenized for 30 s using a homogenizer (FSH
500;ThermoFisher Scientific,Waltham,MA) in 1.0mLof
ice-cold buffer containing 8.3 M urea, 2 M thiourea, 2%

CHAPS 3-((3-cholamidopropyl) dimethylammonio)-1-
propanesulfonate, and 1% dithiothreitol (DTT). The
homogenate was further mixed for 2 h in ice water on a
magnetic stirrer followed by centrifugation at 18,000 g
for 30 min at 4�C. The protein concentration in the super-
natant was determined using the Bradford Assay (Bio-
Rad, Hercules, CA).

Two-Dimensional Gel Electrophoresis

The protein extract (500 mg) was included in a Des-
treak rehydration buffer (GE Healthcare, Chicago, IL)
with the addition of 1% DTT and 0.5% carrier ampho-
lytes (GE Healthcare, Chicago, IL). The mixture was
centrifuged at 14,000 g for 5 min, and the supernatant
was applied onto immobilized non-linear pH gradient
(IPG) strips (pH 3 to 11, 11 cm; GE Healthcare) and
covered with 2 mL mineral oil. The first-dimension iso-
electric focusing was performed using a Protean Isoelec-
tric Focusing system (Bio-Rad, Hercules, CA). Gels were
passively rehydrated for 12 h, and subsequently applied
voltage to reach a cumulative 35 kV h. The IPG strips
were equilibrated for 15 min in equilibration buffer I
(Bio-Rad, Hercules, CA) and another 15 min in Equili-
bration buffer II (Bio-Rad, Hercules, CA). In the second
dimension, proteins were resolved on 12.5% Criterion
Precast gels (Bio-Rad, Hercules, CA) in tris-glycine elec-
trophoresis buffer. Gels were stained in Brilliant Blue G-
Colloidal solution (Sigma-Aldrich, Milwaukee, WI) and
de-stained in 25% methanol (Fisher Scientific, Pitts-
burgh, PA). Two gels were produced for each protein
extract sample. Figure 1 contains a representative gel
image from strain 5 WB tissue.

Gel Visualization and Image Acquisition

Gel images were acquired using a VersaDoc Model
3000 imaging system (Bio-Rad) and were analyzed using
PDQuest software (Bio-Rad). Image analysis was per-
formed as previously described (Zhang et al., 2020c).
Protein spots from the NB (n 5 6 gels) and WB
(n5 6 gels) gel images were detected and analyzed using
qualitative, quantitative, and statistical modes. Protein
spots in each comparison were considered differentially
abundant when they exhibited a 2.0-fold or more inten-
sity difference that was associated with a 5% statistical
significance (P , 0.05) in the Student’s t test.

Protein Identification byMass Spectrometry

The protein spots that were excised from gels were
subjected to DTT reduction, iodoacetamide alkylation,
and in-gel trypsin digestion according to Desai et al.
(2014) and analyzed using liquid chromatography
(LC)-tandem mass spectrometry (MS/MS) as previ-
ously described (Zhang et al., 2020a). The LC-MS/MS
analysis was performed using a Linear Trap Quadrupole
(LTQ) Orbitrap Velos mass spectrometer (Thermo
Fisher Scientific, Waltham, MA) coupled with an
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Eksigent cHiPLC-nanoflex system (Eksigent, Dublin,
CA) through a nano-electrospray ionization source.

The LC-MS/MS data were submitted to a local
MASCOT server for MS/MS protein identification via
Proteome Discoverer (version 1.3; Thermo Fisher Scien-
tific, Waltham, MA) against a custom database of
Gallus gallus (Chicken) proteins downloaded from the
National Center for Biotechnology Information as previ-
ously described (Zhang et al., 2020a).

Statistical Analysis

A randomized complete block design was used to
select birds from the chicken house and process birds. Af-
ter evaluating woody breast myopathy, the birds were
divided into NB and WB groups. The differences among
5 genetic strains of birds with respect to body weight
(BW), part weights, part percentage (the ratio of part
weight to BW), pH, color, cooking loss, and shear force
were analyzed using one-way analysis of variance
(ANOVA) within either NB or WB group (P , 0.05;
SAS version 9.4, NC). As samples from 5 strains of
broilers within NB or WB group were unbalanced and
strain 5 had only 4 samples in NB group and 28 samples
in WB group, no matter if the analysis from the model
was significant between treatments, the means were

separated using MEANS statement that was adjusted
by Tukey’s Honestly Significant Difference (HSD) test
(P , 0.05). The difference of each attribute between
NB and WB within each strain was also compared using
MEANS statement that was adjusted by Tukey’s HSD
test (P , 0.05). The correlations between WB and
WS, pH24h, BW, breast weight, and breast yield were
analyzed using Spearman’s rank correlation within
each strain.

RESULTS

Weights

For each broiler strain, birds were processed and
grouped into NB or WB after grading the breast myop-
athy at 24 h postmortem. There were 61.3, 68.8, 46.9,
45.2, and 87.5% birds that hadWBmyopathy for strains
1-5, respectively (Table 1). Within NB group, strains 3
and 4 had greater live BW (P 5 0.0003) than strains 2
and 5. There were differences in carcass (P 5 0.001),
wing (P , 0.0001), thigh (P 5 0.0003) and drumstick
(P , 0.0001) weights among strains (Table 1). Mean
separation with Tukey’s HSD indicated that strain 5
yielded less breast meat (P , 0.05) than other strains;
however, the overall P-value (0.091) of the model was

Figure 1. A representative 2-dimensional gel electrophoresis image of whole muscle proteome from woody breast of strain 5 separated using an
immobilized non-linear (NL) pH gradient (IPG) pH 3-11 strip (11 cm) and a 12.5% Criterion precast Tris-HCl gel. The protein loading was
500 mg, and the gel was stained with brilliant blue G-colloidal solution. Abbreviations: ACTN2, alpha-actinin 2; ACTR3, actin-related protein 3;
AHCY, adenosylhomocysteinase; ANXA5, annexin A5; ALB, serum albumin precursor; DES, desmin; EEF2, elongation factor 2; GSN, gelsolin,
HSP60, 60 kDa heat shock protein (mitochondrial), LDB3, LIM domain-binding protein 3; MYBPH, myosin-binding protein H; MYOZ3,
myozenin-3; TNNT3, troponin T, fast skeletal muscle isoform; UCH-L1, ubiquitin carboxyl-terminal hydrolase.
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Table 1. Processing weights and yields of 5 strains of broilers with normal and woody breast on day 56.

Strain (N)1
Processing weight (g) Processing yield (% of BW)

BW (g) Carcass (g) Breast (g) Tender (g) Wing (g) Thigh (g) Drumstick (g) Carcass (%) Breast (%) Tender (%) Wing (%) Thigh (%) Drumstick (%)

Birds with Normal Breast
Strain 1 (12) 3,748a,b,* 2,698a,b,* 744a,b,* 166 282a,b 462a,b 342b,c 72.0 19.8a,b 4.41a,b 7.53 12.3 9.16
Strain 2 (10) 3,580b 2,606a,b 745a,b,* 174 264b 424b 325c 72.9 20.9a,* 4.86a,* 7.42 11.8 9.12
Strain 3 (17) 4,027a,* 2,899a,* 776a,* 179* 303a,* 511a,* 377a,b,* 72.2 19.3a,b,* 4.45a,b,* 7.53 12.7 9.36
Strain 4 (17) 4,042a 2,868a 750a,b,* 163 302a 504a 390a 71.0 18.6b,* 4.05b 7.50 12.5 9.64
Strain 5 (4) 3,252b,* 2,325b,* 625b,* 159 248b,* 392b,* 291c,* 71.4* 19.1a,b,* 4.83a 7.65 12.1 8.98
SEM 123 89.2 31.4 7.61 8.45 20.3 13.7 0.660 0.609 0.164 0.145 0.311 0.210
P-value 0.0003 0.001 0.0912 0.212 ,0.0001 0.0003 ,0.0001 0.183 0.047 0.001 0.926 0.172 0.140

Birds with Woody Breast
Strain 1 (19) 4,119a,b,* 2,957a,b,* 863* 175 302a,b 491b,c 367a,b,c 71.8b 20.9b,c 4.24a,b 7.30 11.9b 8.88c

Strain 2 (22) 3,739b 2,738b 836* 166 273b 449c 329c 73.2a,b 22.3a,b,* 4.44a,* 7.31 12.0b 8.79c

Strain 3 (15) 4,399a,* 3,228a,* 910* 179 333a,* 575a,* 423a,* 73.4a,b 20.7c,* 4.08a,b,* 7.56 13.1a 9.62a

Strain 4 (14) 4,248a 3,049a,b 841* 165 308a,b 534a,b 410a,b 71.7b 19.8c,* 3.88b 7.24 12.5a,b 9.60a,b

Strain 5 (28) 4,029a,b,* 2,964a,b,* 948* 173 291b,* 479b,c,* 363b,c,* 73.6a,* 23.5a,* 4.33a,b 7.24 11.9b 9.01b,c

SEM 123 93.4 32.8 6.57 9.78 18.2 14.1 0.391 0.400 0.126 0.091 0.216 0.159
P-value 0.004 0.010 0.0413 0.533 0.001 ,0.0001 ,0.0001 0.0005 ,0.0001 0.027 0.125 0.0005 0.0003

a-cMeans with the same letter are not different due to strain within normal or woody breast bird groups.
Means without a ‘*’ are not different between normal and woody breast birds within each strain.
1For each strain, 32 birds were selected for processing. Strains 1 and 4 had 31 samples due to the missing tags in the processing.
2ANOVA test did not show significance due to the very small sample size of strain 5 in NB group (n5 4) that does not provide enough power to show significant results. Power is the probability of rejecting the null

hypothesis when the alternative hypothesis is true.
3ANOVA test showed significant results but mean separation did not because the very large sample size of strain 5 in WB group (n 5 28) that provides too much power.
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not significant, which was likely due to the small sample
size of strain 5 NB (n 5 4). Expressed as a percentage of
BW, however, there were only differences in breast
(P 5 0.047) and tender (P 5 0.001) between strains
where strain 2 had higher breast and tender yields
than strain 4.

Within WB, strains 3 and 4 had greater BW
(P 5 0.0042) than strain 2. There were differences in
carcass (P 5 0.010), breast (P 5 0.040), wing
(P 5 0.001), thigh (P , 0.0001) and drumstick
(P, 0.0001) weights among strains (Table 1). However,
mean separation did not indicate differences in breast
weight, which was likely due to the large sample size of
strain 5, which created too much power in variance anal-
ysis. Expressed as a percentage of BW, unlike NB birds,
there were difference in carcass and parts among strains
(P , 0.05), with the exception of the wing. Within WB,
strain 5 had a greater carcass yield than strains 1 and 4
(P 5 0.005). Strain 5 had a greater breast yield than
strains 1, 3, and 4, and strain 2 had a greater breast yield
than strains 3 and 4 (P, 0.0001). Strain 2 had a greater
tender yield than strain 4 (P 5 0.027), and there was no
difference in strains 1, 3, 4 and 5 (P. 0.05). Strain 3 had
a greater thigh yield than strains 1, 2, and 5
(P 5 0.0005). Strain 3 also had greater drumstick yield
than strains 1 and 2 (P 5 0.0003) (Table 1).

Within each strain, strains 3 and 5 with WB had
greater body, carcass, breast, wing, thigh, and drumstick
weights than those with NB (P, 0.05; Table 1). In addi-
tion, strain 1 with WB had greater BW and carcass
weight than strain 1 birds with NB (P , 0.05). All
strains with WB had greater breast weights than those
with NB (P , 0.05). As for the percentage, strain 5
with WB had a greater carcass yield than NB birds
(P , 0.05). Strains 2-5 with WB had a greater breast
yield than those with NB (P , 0.05). Strains 2 and 3
with WB had a smaller tender percentage than those

with NB (P, 0.05). No other difference existed between
birds with WB and NB with respect to processing yield.

pH and Instrumental Color (CIE*)

For birds with NB or WB, there were no differences
among strains with respect to pH15min, L*24h, b*24h,
hue angle, and chroma (P , 0.05) with the exception
of pH24h and a*24h for NB (Table 2). The NB of strain
5 had a higher pH24h than strain 2 (P , 0.05) but did
not differ from other strains (P. 0.05). The NB of strain
1 had a greater a*24h than strain 4 (P, 0.05) but did not
differ from other strains (P . 0.05) based on the mean
separation results (Table 2). Within each strain, strain
5 WB had a higher pH15min than NB (P , 0.05) and
strain 2 WB had a higher pH24h than NB (P , 0.05).
With respect to color, strain 4 WB had greater a*24h
and chroma than NB (P , 0.05), and strain 3 WB had
greater b*24h and chroma than NB (P, 0.05) (Table 2).

Relationship Between WB Severity and
Other Attributes

Woody breast score was positively correlated with
WS, breast weight and breast yield for each strain
(P, 0.05) (Table 3). Body weight was found to be posi-
tively correlated with WB within strains 2, 3 and 5
(P, 0.05). However, WB was only positively associated
with pH24h within strain 2 (P 5 0.001).

Cooking Loss and Shear Force

There were no differences in cooking loss within birds
with NB (P 5 0.533) or WB (P 5 0.076) (Table 2).
There were also no differences between NB and WB of
any strains (P . 0.05) (Table 2). Within NB, strains 1
and 4 had greater shear force than strain 3

Table 2. pH, color, cooking loss, and shear force measurements of normal and woody breast from 5 strains of broilers.

Strain (N)1 pH15min pH24h L*24h a*24h b*24h Hue Chroma Cooking loss (%)3 Shear force (N)3

Birds with Normal Breast
Strain 1 (12) 6.50 5.83a,b 62.8 8.49a 17.8 64.3 19.8 25.2 18.3a

Strain 2 (10) 6.52 5.73b,* 64.2 7.63a,b 16.7 65.5 18.4 24.1 16.4a,b

Strain 3 (17) 6.44 5.79a,b 63.8 7.47a,b 16.6* 65.9 18.2* 27.3 14.7b

Strain 4 (17) 6.44 5.83a,b 63.6 6.98b,* 16.5 66.9 17.9* 24.0 18.0a

Strain 5 (4) 6.34* 5.97a 63.3 7.74a,b 16.3 64.5 18.1 25.3 15.8a,b

SEM 0.067 0.046 0.944 0.473 0.775 1.397 0.787 1.98 1.056
P-value 0.562 0.0582 0.818 0.1002 0.608 0.530 0.316 0.533 0.013

Birds with Woody Breast
Strain 1 (19) 6.48 5.86 64.2 8.24 18.0 65.4 19.8 27.0 17.4a,b

Strain 2 (22) 6.54 5.87* 64.9 8.20 18.0 65.5 19.8 25.0 15.9b

Strain 3 (15) 6.51 5.86 65.4 8.65 18.9* 65.5 20.8* 28.8 16.3a,b

Strain 4 (14) 6.54 5.90 64.5 8.06* 18.1 66.0 19.9* 20.0 18.7a,b

Strain 5 (28) 6.52* 5.95 64.2 8.14 17.5 65.2 19.4 27.6 18.8a

SEM 0.038 0.038 0.721 0.355 0.479 0.819 0.526 2.001 0.872
P-value 0.844 0.245 0.733 0.840 0.376 0.977 0.392 0.076 0.030

a-bMeans with the same letter are not different due to strain within normal or woody breast bird groups.
Means without a ‘*’ are not different between normal and woody breast birds within each strain.
1For each strain, 32 birds were selected for processing. Strains 1 and 4 had 31 samples due to the missing tags in the processing.
2ANOVA test did not show significance due to the very small sample size of strain 5 inNB group (n5 4) that does not provide enough

power to show significant results. Power is the probability of rejecting the null hypothesis when the alternative hypothesis is true.
3For each strain, only half of the chicken breast samples (2 birds/pen, n5 16 in total) were measured for cooking loss and shear force.
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(P 5 0.013), no other difference existed (P . 0.05).
Within WB, strain 5 had a greater shear force than
strain 2 (P5 0.030) but did not differ from other strains
(P , 0.05) (Table 2). There were no differences in shear
force between NB and WB of any broiler strains
(P . 0.05) (Table 2).

Proteins that Were Differentially Expressed
Between Strains

Protein profiles of NB and WB samples were evalu-
ated among strains and presented in Tables 4 and 5.
These identified proteins belong to different functional
groups and are listed in the following paragraphs.
Structural Proteins A few structural proteins were
more abundant in strain 5 compared to other strains of
broilers. Cofilin-2 (CFL2) was more abundant in strain
5 NB compared to strain 2 (P , 0.05) (Table 4).
Myozenin-1 isoform X2 (MYOZ1) in NB and desmin
(DES) in WB were more abundant in strain 5 compared
to strain 4 NB and WB, respectively (P , 0.05)
(Tables 4 and 5). Myozenin-3 (MYOZ3) was more
abundant in strain 5 WB compared to strains 1 and 3
(P , 0.05). LIM domain-binding protein 3 (LDB3) was
more abundant in WB of strain 5 compared to strains 2
and 3 (P , 0.05). In addition, strain 5 WB was less
abundant in alpha-actinin 2 (ACTN2) and gelsolin
(GSN) than strain 1 WB (P , 0.05). The only other
difference in strains for structural proteins was that of a
higher abundance of MYOZ3 in strain 4 NB compared to
strain 3 NB (P , 0.05).
Contractile Proteins Differences in contractile pro-
teins were present between strain 5 and strains 4 and 2
(Tables 4 and 5). Within NB, actin, alpha skeletal
muscle (ACTA1) was more abundant in strain 5 than
strain 2 (P , 0.05). Within WB, actin-related protein 3
(ACTR3) and troponin T, fast skeletal muscle isoform
(TNNT3) were more abundant in strain 5 than strain 4
(P , 0.05), and myosin-binding protein H (MYBPH)
was less abundant in strain 5 than strain 4 (P , 0.05).
Enzymatic Proteins Within NB, ubiquitin carboxyl-
terminal hydrolase (UCH-L1) and nucleoside diphos-
phate kinase (NDPK) were more abundant in strain 5
compared to strain 2 and strain 3 (P , 0.05) (Table 4).
Within WB, adenosylhomocysteinase (AHCY) and
UCH-L1 were more abundant in strain 5 compared to
strains 2 (P, 0.05) and strain 4 (P, 0.05), respectively
(Table 5). The abundances of pyruvate kinase (PKM),
beta-enolase (ENO3), and alpha-enolase (ENO1) in

strain 3 WB were different from strains 1, 2 and 4,
respectively (P , 0.05) (Table 5).
Transport Proteins Differences in transport proteins
were present between strain 5 and strains 2, 3 and 4.
Within NB, voltage-dependent anion-selective channel
protein 2 isoform X1 (VDAC2) was more abundant in
strain 5 than strains 2 and 3 (P , 0.05) (Table 4).
Within WB, annexin A5 (ANXA5), and serum albumin
precursor (ALB precursor) were more abundant in strain
5 than strain 4 (P , 0.05) (Table 5).
Chaperones and Others Elongation factor 2 (EEF2)
was more abundant in strain 5 WB compared to strain
1 (P , 0.05), and mitochondrial 60 kDa heat shock pro-
tein (HSP60) was less abundant in strain 5 WB
compared to strain 4 (P , 0.05) (Table 5). In strain 4
WB, PIT54 protein precursor (PIT54) was less abun-
dant compared to strain 1 (P , 0.05) (Table 5).

DISCUSSION

Growth Performance and Breast Quality of
Different Strains of Broilers

TheWBmyopathy is related to the selection of broiler
birds with increased growth rate, carcass weight and
breast yield. In the current study, broilers of strains 1-
5 at 55 d of age had averaged BWs of 3.88, 3.86, 4.25,
4.23 and 3.99 kg, respectively (Zhang et al., 2020b),
which fall in the target BW ranges of commercial broilers
with strains 1-4 being at 3.6 to 4.5 kg and strain 5 being
at 3.6 to 4.7 kg. These 5 genetic strains of broilers that
are all fast-growing birds with averaged for strain
yielded WB percentages (moderate and severe WB)
from 45% for strain 4 to 88% for strain 5 when the birds
were fed with the same diet and raised in the same envi-
ronment, indicating a variation in WB incidence among
genetic lines. The processing weight and yield data also
support this statement. For example, strain 2 birds
with WB were not different from strain 2 birds with
NB (P . 0.05) but weighed less than strain 3 and strain
4 with NB (Table 1). In addition, birds of strain 3 were
heavier than strain 5 in both NB and WB group, but
the WB incidence of strain 3 was much lower than strain
5 (Table 1). These facts support the genetic basis of WB
development but also suggest that the BW at harvest is
not a primary determinant for WB myopathy for all ge-
netic strains even though it is generally accepted that
heavier birds tend to have WB within each strain. It
has been suggested that WB myopathy may appear as

Table 3. The coefficients and P value of Spearman’s rank correlation of WB score with white striping, pH24h, BW, breast
weight and yield of 5 strains of broiler fed a control diet.

Strain

White striping pH24h BW Breast weight Breast yield

Coefficient P-value Coefficient P-value Coefficient P-value Coefficient P-value Coefficient P-value

Strain 1 0.395 0.030 0.103 0.594 0.308 0.098 0.413 0.023 0.452 0.014
Strain 2 0.352 0.048 0.545 0.001 0.353 0.048 0.523 0.002 0.502 0.003
Strain 3 0.557 0.001 0.206 0.258 0.507 0.003 0.631 0.0001 0.497 0.004
Strain 4 0.492 0.005 0.198 0.285 0.289 0.115 0.410 0.022 0.404 0.024
Strain 5 0.547 0.001 0.164 0.369 0.552 0.001 0.666 ,0.0001 0.503 0.004

BROILER GENETICS AND MYOPATHY IMPACT PROTEOME 7



Table 4. Identification of differentially expressed proteins in normal breast from broilers of different strains.

Proteins (strains A/B) Protein ID Gene Coverage (%) MW (kDa) Calc. pI A/B fold change1 Over-abundance in Category Function2

Strain 5/Strain 2
Actin, alpha skeletal

muscle
P68139 ACTA1 70.0 42.0 5.39 2.29 Strain 5 Contractile Actin and actin related protein

Cofilin-2, muscle
isoform

17433708 CFL2 94.6 18.6 7.88 2.17 Strain 5 Structural Non-motor actin binding protein

Ubiquitin carboxyl-
terminal hydrolase

A1IMF0 UCH-L1 60.5 25.1 6.07 2.06 Strain 5 Enzymatic Cysteine protease

Voltage-dependent
anion-selective
channel protein 2
isoform X1

XP_015143678.1 VDAC2 66.6 31.5 8.63 3.25 Strain 5 Transport Voltage-gated ion channel

Strain 4/Strain 3
Myozenin-3 118097461 MYOZ3 84.2 26.7 7.03 2.45 Strain 4 Structural Non-motor actin binding protein

Strain 5/Strain 3
Nucleoside

diphosphate kinase
45384260 NDPK 92.2 17.3 7.90 2.01 Strain 5 Enzymatic NF3

Voltage-dependent
anion-selective
channel protein 2
isoform X1

XP_015143678.1 VDAC2 62.8 31.5 8.63 5.06 Strain 5 Transport Voltage-gated ion channel

Strain 5/Strain 4
Myozenin-1 isoform

X2
XP_004942140.1 MYOZ1 90.3 29.5 8.12 2.12 Strain 5 Structural NF

1Comparison ratio was the protein expression of A/B (ratio . 2.0 or ratio , 0.5).
2Functions of protein were found on the PANTHER (protein annotation through evolutionary relationship) classification system against Gallus gallus.
3NF: Proteins were not found on the PANTHER.
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Table 5. Identification of differentially expressed proteins in woody breast from broilers of different strains.

Proteins (strains A/B) Protein ID Gene Coverage (%) MW (kDa) Calc. pI A/B fold change1 Over-expressed in Category Function2

Strain 3/Strain 1
Pyruvate kinase P00548 PKM 72.8 58.0 7.61 2.22 Strain 1 Enzymatic Kinase

Strain 4/Strain 1
PIT54 protein precursor 46395491 PIT54 63.4 50.8 4.73 0.31 Strain 1 Receptor NF3

Strain 5/Strain 1
Alpha-actinin 2 P20111 ACTN2 60.8 104.2 5.39 0.38 Strain 1 Structural Calponin homology domain-containing

protein
Elongation factor 2 Q90705 EEF2 75.3 95.3 6.83 2.22 Strain 5 Chaperone Translation elongation
Gelsolin O93510 GSN 59.0 85.8 6.32 0.44 Strain 1 Structural Non-motor actin binding protein
Myozenin-3 118097461 MYOZ3 94.2 26.7 7.03 6.52 Strain 5 Structural Non-motor actin binding protein

Strain 3/Strain 2
Beta-enolase P07322 ENO3 59.9 47.2 7.61 0.33 Strain 2 Enzymatic Lyase

Strain 5/Strain 2
Adenosylhomocysteinase 971428595 AHCY 92.2 47.7 6.89 2.92 Strain 5 Enzymatic Hydrolase
LIM domain-binding protein 3 NP_001273190.1 LDB3 70.0 31.2 9.32 4.05 Strain 5 Structural Actin-binding cytoskeletal protein

Strain 4/Strain 3
Alpha-enolase F1NZ78 ENO1 81.3 47.3 6.80 0.45 Strain 3 Enzymatic Lyase

Strain 5/Strain 3
LIM domain-binding protein 3 NP_001273190.1 LDB3 67.8 31.2 9.32 2.92 Strain 5 Structural Actin-binding cytoskeletal protein
Myozenin-3 118097461 MYOZ3 84.2 26.7 7.03 7.49 Strain 5 Structural Non-motor actin binding protein

Strain 5/Strain 4
Actin-related protein 3 Q90WD0 ACTR3 60.1 47.4 5.88 21.9 Strain 5 Contractile Actin related protein
Annexin A5 P17153 ANXA5 85.1 36.2 5.82 2.10 Strain 5 Transport Calcium-binding protein
Desmin XP_015145578.2 DES 86.6 53.5 5.38 2.67 Strain 5 Structural Glial fibrillary acidic protein
60 kDa heat shock protein,

mitochondrial
Q5ZL72 HSP60 83.1 60.9 5.87 0.29 Strain 4 Chaperone Unfolded protein binding

Myosin-binding protein H Q05623 MYBPH 62.0 58.6 7.53 0.46 Strain 4 Contractile Myosin-binding protein
Serum albumin precursor NP_990592.2 ALB 87.6 69.8 5.74 2.91 Strain 5 Transport Transfer/carrier protein
Troponin T, fast skeletal muscle isoform O57559 TNNT3 44.9 33.8 7.09 2.59 Strain 5 Contractile Actin binding motor protein
Ubiquitin carboxyl-terminal hydrolase A1IMF0 UCH-L1 63.0 25.1 6.07 2.08 Strain 5 Enzymatic Cysteine protease

1Comparison ratio was the protein expression of A/B (ratio . 2.0 or ratio , 0.5).
2Functions of protein were found on the PANTHER (protein annotation through evolutionary relationship) classification system against Gallus gallus.
3NF: Proteins were not found on the PANTHER.
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early as 14 d (Radaelli et al., 2017). On day 14, strain 3
birds (n 5 128) were heavier (P , 0.05) than other
strains (n 5 128/strain) that were not different
(P . 0.05) from each other (Zhang et al., 2020b), which
indicates that BW at the early life of birds is not a deter-
minant for WB myopathy either. In comparison, WB is
associated with breast weight because birds with WB
had heavier breast weights than those with NB for all
5 strains, which agrees with a previous study conducted
by Sihvo et al. (2014) in which they concluded that
increased breast muscle weight is a key factor in WB
muscle myopathy. Birds with WB showed genetic varia-
tions on all weights but breast and tender, suggesting
that the bird would likely develop WB if the breast
was too heavy (.830 g on average) regardless of the ge-
netic strains. Birds with WB also showed genetic varia-
tions in all processing yields but the wing. The breast
yield of strain 5 with WB was greater than strains 1, 3,
and 4 with WB but did not differ from strain 2. There
was a 4.4% increase in breast yield of strain 5 with WB
compared to strain 5 with NB but only 1.1 to 1.4% in-
crease for other strains. Breast yield results concur
with Kuttappan et al. (2017a), who determined that se-
vere WB had a greater breast yield than NB meat.
Therefore, the WB development and incidence are not
only related to breast weight and yield but also genetics.
Hubert et al. (2018) suggested a mechanistic, heritable
basis for WB after comparing the transcriptome data be-
tween commercial fast-growth and slow-growth broiler
strains. Alnahhas et al. (2016) observed a positive ge-
netic association between WS and muscle ultimate pH,
and suggested that genetics is major determinant of
WS. The genetic basis was also investigated for WS
through the identification of quantitative traits loci in
high-yield broilers with results suggesting a polygenic in-
heritance of the WS defect (Pampouille et al., 2018).
These 2 aforementioned research may also support the
existence of a genetic basis for WB since WB and WS
share common characteristics (Griffin et al., 2018). How-
ever, the Pampouille et al. (2018) study may not be
applicable to commercial broilers since it was conducted
on an inbred stain and can therefore overestimate ge-
netic contributions. In contrast, a previous study
compared the differences in selection history for
increased breast yield between 2 purebred commercial
broiler lines with breast yields of 21% and 29%, the re-
sults indicated a very low heritability (the ratio between
the additive genetic variance and the phenotypic vari-
ance) for WB, which suggests a non-genetic basis
explaining the variation in WB incidence (Bailey et al.,
2015). A similar conclusion was drawn in another study
conducted by the same group with a pure-bred commer-
cial broiler line (Bailey et al., 2020). The inconsistent re-
sults may be due to the differences in the sample size, the
genetic lines that were used, the technique used to eval-
uate the genetic contribution, etc.

Normal pH values of chicken breast at 15 min post-
mortem are 6.20-6.50 (Berri et al., 2005). In this study,
pH15min values were 6.34-6.54. The absolute average
pH15min values for WB of strains 2-5 and NB of strain

2 were greater than 6.50, indicating a slight increase in
pH for modern fast-growing broilers. Normal ultimate
pH (pH24h) values are 5.80-5.90 (Petracci et al., 2017;
Baldi et al., 2020) and in the current study pH24 values
ranged from 5.73 to 5.97. The pH was measured using
a penetration pH probe on the cranial part of the chicken
breast where the WB myopathy was often observed,
therefore we observed relatively higher pH values. The
absolute values of pHu of WB were numerically greater
than NB for strains 1-4 (Table 2). Also, WB had higher
pH15min (P 5 0.0474) and pHu (P 5 0.0014) when aver-
aged over broiler strains. As for color measurements,
although our results were not consistent across all
strains, the absolute differences between NB and WB
of strains 2-5 are consistent with previous literature
that WB is redder and yellower than NB meat (Dalle
Zotte et al., 2017; Cai et al., 2018). Althoughmultiple lit-
eratures reported that WB had a greater cooking loss
than NB meat (Dalle Zotte et al., 2017; Dalgaard
et al., 2018), this was not observed in the current study.
The tenderness among meat samples varies due to ani-
mal age, strain, sex, deboning time, aging time, environ-
mental stress, and feeds. These factors affect the mass of
muscle fibers and the percentage of connective tissue in
muscle (Ismail and Joo, 2017). In the present study,
strain variation was found in the shear force of cooked
NB where strain 3 was more tender than strains 1 and
4, and cooked WB where strain 2 was more tender
than strain 5 (Table 2), which might be due to the con-
nective tissue content and the level of proteolysis of
myofibrillar proteins during post-mortem storage
(Marcinkowska-Lesiak et al., 2016). However, no differ-
ence existed between NB and WB within each strain
(Table 2). Shear force results for WB have been contra-
dictory, and therefore may not accurately depict WB
from NB. In addition, the shear force values were be-
tween 14.7 and 18.8 N, far below 45 N, a cutoff number
that consumers evaluated chicken meat as tender or
tough (Schilling et al., 2008). It has been found in
many studies, however, that WB was less tender than
NB in texture profile analysis and descriptive sensory
analysis (Dalgaard et al., 2018; Jarvis et al., 2020).

Protein Expression of Normal Chicken
Breast From Different Broiler Strains

The effects of genetics on NBmuscle proteome profiles
were limited to small changes in the abundance of 7 pro-
teins, including 1 contractile, 3 structural, 2 enzymatic
and 1 transport proteins (Table 4). Normal breast mus-
cle protein profiles in strains 1-4 showed large similarities
with only one protein (MYOZ3) that was differentially
expressed between strains 3 and 4 (Table 4). Strain 5
NB muscle was most different from others, with 4, 2
and 1 proteins that were expressed differently compared
to strains 2, 3 and 4, respectively (Table 4). First,
MYOZ1 was more abundant in strain 5 than strain 4.
Frey and Olson (2002) reported that MYOZ1 negatively
regulates skeletal muscle tissue regeneration and
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development, which may partially explain the smaller
BW and averaged absolute breast weight of strain 5 in
comparison to strain 4. In addition, another structural
protein, CFL2, and one contractile protein, ACTA1,
were differentially expressed in NB between strains 5
and 2. Cofilin-2 belongs to the actin depolymerization
factor family and regulates actin filament dynamics
(Kanellos and Frame, 2016) while ACTA1 interacts
with other proteins, specifically myosin, to produce force
for muscle contraction. Thus, the decreased CFL2 and
ACTA1 may indicate a weak muscle structure with
decreased contractibility in strain 2 birds
(Balakrishnan et al., 2019). Moreover, strain 5 NB had
a higher abundance of VDAC2 compared to strains 2
and 3. It is known that VDAC2 mediates the flow of
ions and metabolites across the outer mitochondria
membrane and allow the movement of superoxide from
mitochondria to cytosol (Han et al., 2003). Overexpres-
sion of VDAC2 may increase the oxidative reactions of
enzymes and others in cell cytosol, implying that strain
5 NB muscle cells may be more oxidative than those
from strains 2 and 3. VDAC2 is also involved in the mito-
chondrial recruitment of BAK, a protein from the BCL2
protein family, that is responsible for inducing apoptosis
(Veresov and Davidovskii, 2014). The combined effect of
oxidative stress and increased apoptosis, the known
causes of WB myopathy (Hubert et al., 2018), might
indicate that strain 5 is genetically more prone to
developWB since 28 out of 32 birds of strain 5 developed
WB (Table 1). Finally, 2 enzymes (UCH-L1 and NDPK)
were more abundant in NB from strain 5 in comparison
to strains 2 and 3 (Table 4). The upregulated UCH-L1 in
strain 5 NB promotes myoblast activation and prolifera-
tion during muscle regeneration and repair processes
(Gao et al., 2017), while an increased NDPK may indi-
cate the upregulation of DNA and protein synthesis in
strain 5 NB because NDPK is an ubiquitous enzyme
that catalyzes the transfer of the g -phosphate of a
(deoxy)nucleoside triphosphate to a (deoxy) nucleoside
diphosphate, and processes transcriptional regulation
and protein histidine kinase activities (Roymans et al.,
2002).

Protein Expression of Woody Chicken
Breast From Different Broiler Strains

For WB, 20 proteins exhibited differential abundance
between strains. Only 2 out of 10 comparisons among 5
strains did not show any differences in WB protein pro-
files, including strains 1 vs. 2 and strains 2 vs. 4. No dif-
ferences in NB protein profiles were found for these 2
pairs of comparisons either. It is not surprising to see
the similarity in breast proteomes of strains 1 and 2 since
they share a similar genetic background and did not
show any phenotypic differences in processing weight,
processing yield, pH or color attributes within NB or
WB group. However, strains 2 and 4 are from different
genetic backgrounds and differed in BW and breast yield
within NB and WB groups. Therefore, genetics is one

contributing factor to muscle development and meat
quality since the proteome changes during animal
growth as a response to nutrition, management, stress,
etc. Strain 5 exhibited differences from all other strains
in the expression of structural, contractile, enzymatic,
transport, and chaperone proteins (Table 5).

Sarcomeres are composed of 4 structural elements,
including Z-discs (e.g. ACTN2, LDB3, and MYOZ3),
thick myosin-containing filaments (e.g. MYBPH), thin
actin-containing filaments (e.g. ACTR3, TNNT3,
GSN), and intermediate filaments (e.g. DES). The
increased abundance in MYOZ3 in strain 5 WB
compared to strains 2 and 3 WB indicates that strain 5
WB may have a greater muscle growth rate since
MYOZ3 plays a role in cell proliferation (Ye et al.,
2017), which is consistent with a higher breast weight
and breast yield in strain 5. Both MYOZ3 and LDB3
contribute to Z-disc formation. The lower abundance
of any of these 2 proteins in WB of strains 2 and 3
compared to strain 5 may lead to aberrant Z-disc signal
transduction and muscle development (Ye et al., 2017).
Another Z-disc protein, ACTN2 plays a role in thin fila-
ment organization and the interaction between muscle
membrane and the sarcomeric cytoskeleton (Mills
et al., 2001). Gelsolin is a Ca21 regulated actin-binding
protein that can sever and cap the filament servers and
nucleate actin polymerization (Hlushchenko and
Hotulainen, 2019). The higher abundance of MYOZ3
in combination with a lower abundance of ACTN2 and
GSN may suggest an unbalanced protein interaction
and a weakening Z-disc and cytoskeleton structure in
strain 5 WB. One structural and 3 contractile proteins
were differentially present in WB of strains 4 and 5, 2
broiler strains of similar genetic background, indicating
a potential difference in their muscle structure and
contractibility. Desmin, the largest intermediate fila-
ment, maintains cell integrity by connecting Z-discs to
the sarcolemmal cytoskeleton as well as nucleus and
mitochondria, which strengthens the muscles when
used (Hnia et al., 2015). Human DES-related skeletal
and cardiac myopathies are characterized by abnormal
accumulation of DES within muscle fibers (Goebel,
1995). The contractile protein MYBPH that is known
to be specifically expressed in fast-twitch glycolytic mus-
cle fibers showed lower abundance in strain 5 WB mus-
cle, indicating muscle weakness since MYBPH
maintains the structural integrity of the muscle
(Hundley et al., 2006). Troponin-T is involved in the
calcium-dependent regulation of skeletal muscle contrac-
tion but not in the maintenance of the muscle structure
(Huang et al., 2011). The higher abundance of TNNT3
in strain 5 WB muscle may indicate that strain 5 birds
with WB are straining regularly to contract and relax
their breast muscles, which may be due to the reduced
supply of oxygen to the breast muscle. This again sup-
ports that strain 5 birds might be more prone to develop
WB.

Two enzymatic proteins, AHCY and UCH-L1, were
more abundant in WB of strain 5 compared to strains
2 and 4, respectively (Table 5). Adenosylhomocysteinase
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converts s-adenosyl-homocysteine to homocysteine,
which is either used in the transsulfuration pathway
for glutathione synthesis or remethylated to methionine
by methionine synthase (Sanderson et al., 2019). There-
fore, the higher abundance of AHCY in strain 5 WB
created more homocysteine and methionine, and
increased methionine levels have been shown to increase
BW in broilers (Esteve-Garcia and Mack, 2000), which
may have been what happened for strain 5 in the current
study in comparison to strain 2. This also suggests that
strain 5 birds may have higher demand on methionine
intake. When birds were fed with a reduced amino acid
diet (the digestible amino acids, including lysine, methi-
onine, cysteine and threonine, were 20% lower than the
control diet), the birds of strain 5 were lighter but the
birds of strain 2 remained the same BW when compared
to birds that were fed the control diet (Zhang et al.,
2020a), indicating a greater demand of digestible amino
acids for strain 5 to maximize growth performance.
Another enzyme, UCH-L1 is primarily expressed in
neuronal tissue but upregulated in skeletal muscle in dis-
ease conditions, which affects skeletal muscle function
through the neuro-control of muscles (Gao et al.,
2017). It was also found that UCH-L1 was more abun-
dant in WB than NB in strain 5 (Zhang et al., 2020a).
Therefore, WB is not just a myopathy status in muscle
but may be an indicator of neuronal tissue disease in
affected birds.

Transport proteins, ANXA5 and ALB precursor, were
also more abundant in strain 5 WB compared to strain 4
(Table 5). Annexin A5 is associated with transmem-
brane activity and collagen binding in the Ca21 channel.
Although the calcium concentration was not measured
in the present study, Livingston (2018) observed an
increased calcium accumulation in WB and WS tissue
which may contribute to muscle contraction due to
ante mortem rigor (Livingston, 2018). This may
partially explain the severity of the WB stiffness and ri-
gidity in strain 5 birds. Annexin A5 is also known to posi-
tively regulate the apoptotic process (Gaudet et al.,
2011), which is a potential contributor to WB formation
(Zhang et al., 2020a). Serum albumin is the most abun-
dant serum protein whose redox modifications modulate
its physiological function, as well as serves as a
biomarker for oxidative stress (Prakash, 2017). Strain
5 birds may undergo more intense contraction and
oxidative stress when compared to strain 4.

Three glycolytic enzymes, PKM, ENO3, and ENO1,
were differently abundant in strain 3 WB compared to
strains 1, 2 and 4, respectively (Table 5). Enolases
(ENO1, ENO2 and ENO3) catalyze the dehydration of
2-phosphoglycerate to phosphoenolpyruvate, which is
converted to pyruvate by PKM. Although broiler breast
muscles are primarily glycolytic and use anaerobic
glucose metabolism to produce energy (Lilburn et al.,
2019), the differences in glycolytic enzymes between
strains may indicate the differences in glycolytic activ-
ities among different strains. In severe WB, glycolysis
and gluconeogenesis are the 2 most down-regulated
pathways (Kuttappan et al., 2017b). The down

regulation of glycolysis means that less energy was pro-
duced in the breast muscle, which contributes to a higher
pH in WB. Alpha-enolase is a multifunctional protein,
that is expressed differently under pathological stress,
performing several of its multiple functions, mainly as
a plasminogen receptor in muscle regeneration after
injury by modulating pericellular fibrinolytic activity
(Díaz-Ramos et al., 2012). Strain 3 birds with WB
may be under more stress and therefore more active in
muscle regeneration in comparison to strain 4 due to a
higher abundance of ENO1 in strain 3 WB.
To deal with environmental stress, organisms use

chaperone proteins to protect and stabilize the cellular
proteome. Two chaperone proteins were identified in
the current study. EEF2 was more abundant in WB of
strain 5 compared to strain 1 and mitochondrial
HSP60 that was less abundant in WB of strain 5
compared to strain 4 (Table 5). Elongation factor 2 is
responsible for guanosine triphosphate-dependent ribo-
somal translocation during translation elongation, and
therefore protein synthesis. The higher abundance of
EEF2 may suggest a higher protein synthesis rate in
strain 5 WB considering the higher breast yield of strain
5 than strain 1. Mitochondria HSP60 is predominantly
present in mitochondria and is involved in the folding
of proteins entering the mitochondria. The presence of
high levels of HSP60 in the mitochondria protects mito-
chondrial proteins from unfolding and potentially pre-
vents age-associated increases in ROS-production by
mitochondrial proteins involved in oxidative reactions
(Krivoruchko and Storey, 2010). Therefore, the lower
abundance of HSP60 in WB suggests that strain 5 birds
exhibited a weaker protection against protein unfolding
and oxidative stress, which may explain the higher WB
incidence of strain 5 compared with other strains.

CONCLUSIONS

It was confirmed that the WB myopathy is closely
related to increased breast weights. Also, genetic varia-
tion that causes phenotypic differences were observed
in 5 strains of broilers that produce NB and WB. The
proteomes of broiler breast muscle act as a molecular
link between the genome and phenotypic characteristics.
Strain 5 breast proteomes were most different from other
strains in both NB and WB groups. Strain 5 birds are
genetically more prone to develop WB when birds were
fed the control diet due to the evidence of increased
apoptosis and protein synthesis, more intense contrac-
tion, and high oxidative stress in strain 5 WB muscle
in comparison to other strains. In the future, the genome
sequencing of broiler strains will facilitate the applica-
tion of proteomics to detect biomarkers for meat defects
and monitoring the effectiveness of corrective strategies.
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