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Working memory is a core cognitive function and its deficits is one of the most
common cognitive impairments. Reduced working memory capacity manifests as
reduced accuracy in memory recall and prolonged speed of memory retrieval in older
adults. Currently, the relationship between healthy older individuals’ age-related changes
in resting brain oscillations and their working memory capacity is not clear. Eyes-closed
resting electroencephalogram (rEEG) is gaining momentum as a potential neuromarker
of mild cognitive impairments. Wearable and wireless EEG headset measuring key
electrophysiological brain signals during rest and a working memory task was utilized.
This research’s central hypothesis is that rEEG (e.g., eyes closed for 90 s) frequency and
network features are surrogate markers for working memory capacity in healthy older
adults. Forty-three older adults’ memory performance (accuracy and reaction times),
brain oscillations during rest, and inter-channel magnitude-squared coherence during
rest were analyzed. We report that individuals with a lower memory retrieval accuracy
showed significantly increased alpha and beta oscillations over the right parietal site.
Yet, faster working memory retrieval was significantly correlated with increased delta
and theta band powers over the left parietal sites. In addition, significantly increased
coherence between the left parietal site and the right frontal area is correlated with
the faster speed in memory retrieval. The frontal and parietal dynamics of resting
EEG is associated with the “accuracy and speed trade-off” during working memory in
healthy older adults. Our results suggest that rEEG brain oscillations at local and distant
neural circuits are surrogates of working memory retrieval’s accuracy and processing
speed. Our current findings further indicate that rEEG frequency and coherence features
recorded by wearable headsets and a brief resting and task protocol are potential
biomarkers for working memory capacity. Additionally, wearable headsets are useful
for fast screening of cognitive impairment risk.
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INTRODUCTION

Visual working memory plays pivotal roles in many daily goal-
directed activities, such as searching for a car in a parking lot
or driving. For an individual to find the right car, one must
keep task-relevant information (e.g., the color of the car) in
mind as a memory target, while rejecting non-target information.
The task holds true while driving, where one needs to survey
the mirror for the surroundings while the car is in motion.
Retrieval accuracy and speed are essential memory performance
measures that reflect working memory capacity as temporary
storage of information and later manipulation (Hollingworth and
Beck, 2016). There are age-related changes that occur in working
memory, such as slowed neural processing speed or reaction
times (Wang et al., 2011).

Recent advances in machine learning algorithms and wireless
technology have allowed for wearable EEGs to gain renewed
traction as a means to measure brain activity (Jiang et al., 2017;
Abiri et al., 2019b). EEG signals can provide information about
the oscillatory activity and brain functional connectivity across
long-range brain networks (Abiri et al., 2019b). Study of resting-
state and task-induced non-random patterns of intrinsic brain
activities brings about major advantages such as being non-
invasive, lower-cost, and portable (Noh et al., 2018; Guran et al.,
2019; Mapelli and Özkurt, 2019; Nyhus et al., 2019; Román-López
et al., 2019)9). For instance, analyzing event-related potentials
(ERPs), which is the averaged EEG brain response onset to
a psychological event (e.g., attentional vigilance or memory
retrieval), offers a brain imaging technique to gauge cognitive
processes (McBride et al., 2012; Li et al., 2017; Abiri et al., 2019a;
Borhani et al., 2019; Jiang et al., 2021)1). Additionally wearable
EEGs allows for the recording brainwaves during rest without
additional instruments to induce a series of stimuli, i.e., similar to
ERP-like experiments, which may induce less fatigue and anxiety
in participants. Although there are plenty of advantages there
are also disadvantages to wearable EEGs. One such disadvantage
is that wearable EEGs are more susceptible to excessive body
movement that can cause channel noise and artifacts in the
recorded EEG signals, which can negatively impact the quality of
the task-induced signals.

A variety of studies have examined the characteristics of
resting-state measures to explain the neurophysiology of various
diseases, such as migraines and Alzheimer’s disease (AD), which
further highlights the utility and quality of information obtained
from rEEG measurements (Cao et al., 2016; Cassani et al., 2018).
The dominant brain oscillation in awake resting-state is a low
alpha oscillation (8–10 Hz), which is related to global attention.
An overall increase in the low alpha power during the eyes-
closed compared to the eyes-opened resting would be easily
depictable. The increase is mostly manifested over parietal and
occipital areas (Barry and De Blasio, 2017). Increased alpha
positively correlates with higher accuracy and faster reaction
times during verbal recognition tasks (Zunini et al., 2013).
Resting eyes-closed EEG rhythms (e.g., posterior alpha and
delta) change in pathological aging as a function of the global
cognitive level (Babiloni et al., 2006). The higher alpha (10–
13 Hz) is mostly correlated with sensorimotor and semantic

processing related brain activities (Babiloni et al., 2010). Jeong
(2004) studied brain oscillations during rest among normal
aging individuals and individuals with dementia. They discovered
increased delta (1–4 Hz) and theta (4–8 Hz) and decreased
beta power among individuals with dementia when compared
to the normal aging group. In regard to theta, Rossini et al.
(2007) revealed that individuals with cerebrovascular dementia
may have an overall higher theta oscillation when compared to
individuals with AD.

In addition to diseased states, rEEG has been linked to
cognitive performance in healthy normal adults. Analyzing
resting-state EEG (rEEG) during eyes-open, a significant positive
correlation between delta power captured over the left frontal
and temporal regions and reaction times were observed among
healthy adult participants. Additionally, higher frontal and
parietal alpha correspond to lower accuracy and higher inter-
trial variability of reaction times (Torkamani-Azar et al., 2020).
Individuals with a lower working memory capacity have also
shown larger changes between delta/theta ratios in rEEG with
eyes open and eyes closed. The changes were also identified
in the right posterior frontal and parietal cortices (Heister
et al., 2013). Increased beta and gamma power over the
right temporal and parietal areas during eyes-closed rEEG
were positively correlated with second language acquisition
(Prat et al., 2016), which is an indicator of working memory
capacity. EEG signals’ high temporal resolution allows the
evaluation of functional connectivity by estimating coupling
between different pairs of independent signal sources or different
electrodes across frequency bands. The connectivity can capture
relationships between different brain areas, providing valuable
information to discover novel neuromarkers. Magnitude-squared
coherence is a normalized measure of co-activation and temporal
synchronization in the spectral domain between pairs of
sources, or electrodes, representing functional coupling. The
measure calculated by fast Fourier Transform, illustrating how
information is processed during motor and cognitive processing
between the active regions.

There is a network of brain regions subserving working
memory functions. Older adults with cognitive impairment and
preclinical AD pathologies show network connectivity changes
(blood-oxygen level dependent signals at different brain regions)
subserving working memory functions (Jiang et al., 2016).
Thus, coherence during resting-state is a potential neuromarker
of different neurodegenerative diseases. Babiloni et al. (2009)
investigated the coherence network during resting between
normal aging, MCI, and AD cohorts. The study revealed that
AD cohorts have higher coherence over delta band and lower
coherence over alpha oscillations compared to MCI and normal
peers. Using magnetoencephalography (MEG) brain imaging,
Stam and Van Dijk (2002) indicated a decrease in total brain
synchronization in the beta and gamma bands among AD
cohorts compared to normal aging cohorts. Bosboom et al. (2009)
demonstrated that dementia in individuals with Parkinson’s
disease is positively correlated with a decrease of alpha
frontotemporal coherence and a drop of local gamma oscillation
during rest. Decrease of frontoparietal and interhemispheric
coherence in the delta and alpha bands during rest in individuals
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with AD has also been depicted (Sankari et al., 2011). Overall, a
decrease in the measure of coherence in individuals with AD is
often associated with damage in the cholinergic system and its
interactions with the intrinsic neurotransmitters’ excitation and
inhibitions along pathways that connecting the frontal area to
other brain regions, including temporal, occipital, and parietal
areas (Scarr et al., 2013). The increase of coherence between
the temporal region and other brain regions is considered a
compensatory mechanism to tackle a decline in the coherence
between other regions (Demirtaş et al., 2017).

Using a wireless headset with a 15 min resting and task
protocol, we test the hypothesis that individuals with a higher
working memory capacity show significant correlations with
specific brain oscillations at local and distant neural circuits.
Specifically, we explore relations between mean performance
(i.e., reaction times and accuracy) of the Bluegrass memory
task and the various rhythms during eyes-closed rEEG.
Additionally, the connectivity between pairs of EEG electrodes
in all oscillation bands were explored using magnitude-squared
coherence between two EEG sites. The neural correlates of
rEEG that correspond to task-dependent performance scores
were measured in older adults with normal cognition. This
research aimed to examine easy-to-use EEG markers to identify
preclinical risk for cognitive impairments. The identification
of these correlates is the first step toward early detection of
preclinical changes in the brain that affects working memory
(core cognitive functions). Early identification may allow for
early intervention and prolongation of the maximal cognitive
functioning in rapid-growing older populations.

MATERIALS AND METHODS

Human Participants
Using identical Bluegrass memory protocol, 43 community-
dwelling older adults (age ≥ 60 years) including 20 males
[median = 68 years, interquartile range (IQR) = 5.5], and
23 females (median = 72 years, IQR = 10) were recruited.
All participants were tested at either the University of
Kentucky (United Kingdom) Alzheimer’s Disease (AD) Center
(United Kingdom-ADC) or Aging, Brain, and Cognition
Laboratory, at the Department of Behavioral Science, College of
Medicine. The average age of participants was 71.6 ± 7.0 (min:
60, max: 91). Participants had a normal or corrected-to-normal
vision and were not under the influence of any drowsiness-
inducing or cognitive enhancing medication. Participants were
all native English speakers, and mostly right-handed (6 were left-
handed). To balance dominate hand bias (faster reaction times)
within each participant, the index finger of the dominated hand
was used to indicate memory target in the first 5 min of the task
(Figure 1). Then the person’s non-dominate hand was used to
indicate memory target in the second 5-min of the task.

The experimental protocols were approved by the Institutional
Review Board (IRB) of the University of Kentucky, Lexington,
KY, United States. All participants provided signed informed
consent in accordance with United Kingdom IRB. In other words,
the recordings were carried out under the Code of Ethics of

the World Medical Association (Declaration of Helsinki) for
experiments involving humans.

Wireless EEG Signal Acquisition and the
Experimental Procedure
Neural data collections were performed in a quiet and dimly
lit room. A water-hydrated, portable, and wireless EEG headset,
Emotiv EPOC+, was used for recording all EEG signals. The
headset has 14 channels over AF3, F7, F3, FC5, T7, P7,
O1, O2, P8, T8, FC6, F4, F8, and AF4 according to 10–20
International Electrode Placement System, and collects brain
electrical activities with a sampling rate of 128 Hz with 14 bits
resolution. A low impedance (<10 K�) was maintained for
all EEG electrodes during the experiments. EEG signals were
electrically referenced using CMS/DRL references at the left/right
mastoid (P3/P4). Participants were seated comfortably on a chair
50 cm from a 24-inch LCD monitor. Every participant completed
a 60-s resting session with eyes open, followed by a 60-s resting
session with eyes closed.

The experimental interface provided the participants with
instruction and primed them with a count-down to initiate
resting sessions. During the eyes opened condition, the
participants were requested to stay relaxed and look straight
at a fixed-in-time and pleasant scenery of the blue ocean
and avoid mind wandering. During the eyes closed condition,
participants were requested to stay relaxed and avoid falling
asleep once resting-state sessions were completed, participants
were instructed to prepare for a memory task. A delayed-match-
to-sample (DMS) task was adopted to assess simultaneous visual
matching ability and short-term visual recognition memory.
This short-term memory task, which is a variant of the
Sternberg memory-scanning task (Sternberg, 1969) has been
well-studied and can modulate various cognitive processes
including encoding, decision making, visuomotor selection,
rehearsal, and retrieval. In this current version of the task,
participants were instructed to memorize two sample images
in 5 s. Two target images with a green border were initially
presented for 3 s (initial memory encoding). After a jittered delay
(1.6∼1.8 s), a sequence of 12 test images, including target and
distractor images, were serially presented.

The number of target and distractor images were fairly
distributed in each trial. Each trial lasted approximately 40 s,
which included a 3-s encoding and 1-s presentation of each test
image, and a fixation jittered inter-trial of 1.6∼1.8 s in between
(see Figure 1). Stimuli included two-dimensional black and white
pictures of familiar objects taken from Snodgrass and Vanderwart
(1980). Each picture was presented with a black background in
an area of 8.3 cm × 5.8 cm. All stimuli were presented on a
high-resolution color monitor with a 60 Hz refresh rate. Stimuli
were presented at a 65-cm visual distance and a visual angle of
approximately seven degrees. Test images were normalized across
retrieval status (i.e., target matching or non-matching) for image
familiarity and image complexity.

All participants practiced two sample trials prior to starting
the memory task. The task was performed in two blocks of
eight trials each. After presenting each picture, participants were
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FIGURE 1 | A schematic of the resting EEG (rEEG) and Bluegrass memory protocol in a right-hand dominant human participant. The participants’ eyes-opened
resting-state followed by an eyes-closed resting-state followed by a memory task (a modified, delayed match-to-sample paradigm). The task includes encoding two
target images in mind, then responding with the right index to indicate the memory target match (pressing “L” key on the keyboard) and left index finger for
non-target in a 5-min task. During the second 5-min testing block, the participant was asked to indicate a memory target match by using the left index finger
(pressing “A” key on the keyboard).

asked to respond whether the image matched one of the test
images by pressing either the “A” or “L” key. During the first
block, the participants responded to the match target images
based on their dominant hand. For example, a right-handed
individual would press the “L” key for a match and the “A” key
for a non-match. The keys would be reversed for a left-handed
individual- the match key would be the “A” key, and the non-
match would be the “L” key. Once the first block was completed,
participants were reinstructed for the second block. The second
block required the match response to be from the non-dominant
hand. Overall, the Bluegrass resting and memory protocol lasted
approximately 15 min.

Newly Developed Experimental Software
for Sharing
To eliminate the need for commercial software, a free PsychoPy3
builder and coder software (Brooks, 2019; Peirce et al., 2019)
were utilized in the design and to present visual stimuli in a
timely synchronous manner. The software suite is a version
of the Psychopy python library used to develop, measure, and
deliver different behavioral experiments. Behavioral responses
in terms of key presses along with the continuous EEG signals
were recorded during the experiment. Lab Streaming Layer (LSL)
(Kothe, 2014) was used to synchronize behavioral and neural
responses and record them into a single file. Researchers also
developed and publicly shared a low-latency pipeline in Java
programming language to parse in the real-time measured EEG
data from the Emotiv EPOC+ application development interface
(API) and parse out in LSL (O’neil, 2019). App-LabRecorder
(2019) software was utilized as a unified recorder to collect and
save behavioral and neural time series in a single file with the .xdf
file extension. XDF is an open-source and general-purpose file
format designed in tandem with LSL and supports LSL protocol
features. The file extension is compatible with both MATLAB
and Python languages and provides a convenient data structure
container to record various data modality streams, concurrently.

Researchers have publicly shared the experimental setup under
open-source terms and conditions for other researchers [Borhani
(2019) for free sharing]. The developed platform with all its
software dependencies were installed on a computer in the clinics
at United Kingdom-ADC and on a workstation in Aging, Brain,
and Cognition Laboratory, United Kingdom College of Medicine.

Data Analysis
Resting-State EEG Preprocessing and Frequency
Analysis
The impedance between each electrode and scalp were kept
below 10 KW. EEGLAB software library (Delorme and Makeig,
2004) was employed for preprocessing and artifact removal. EEG
signals were re-referenced to the average and band-pass filtered
between 0.5 and 46 Hz. EEG recordings were analyzed for eye
blinks and muscle artifacts. The artifact subspace reconstruction
(ASR) algorithm (Kothe and Makeig, 2013; Gabard-Durnam
et al., 2018) was implemented in the EEGLAB software and
employed to cope with channel noise and artifacts. ASR
algorithm is an advanced method that allows the detection and
reconstruction of noisy and artifactual chunks of EEG signals.
Makoto’s EEG preprocessing pipeline (Makoto, 2018), along with
Pernet et al. (2020) recommendations for EEG processing, were
followed to process the EEG signals. Channels that were flat for
more than 5 s, or with abnormal high/low peaks were deleted and
removed. ASR finds the cleanest part of data as the calibration
data by applying a 0.5-s sliding window principal component
analysis (PCA) on the continuous EEG data to classify principal
components into high variance (20 standard deviations the
calibration data) or normal variance. By detecting high variance
chunks of signals, ASR reconstructs the high variance subspace
using the normal calibration chunks. A minimum of 60 s from
each participant’s data after channel noise and artifact removal
was kept for analysis.

A Fast Fourier Transform (FFT) on 4-s epochs of EEG yields a
0.25 Hz frequency resolution over the frequency span of 1–46 Hz.
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A sliding window of 4-s window length with a 2-s overlap was
used to minimize the effect of the windowing of FFT procedure.
The band power in delta (d:1–4 Hz), theta (q: 4–8 Hz), alpha
(a: 8–13 Hz), beta (b: 13–28 Hz), and gamma (g: 28–46 Hz)
frequency bands from all 14 EEG electrodes were computed.
The absolute band power in each frequency band as well as
magnitude-squared inter-channel coherence is computed for the
eyes-closed resting-state session.

EEG Coherence Analysis
An electrode-by-electrode analysis was conducted to correlate
rEEG band powers and magnitude-squared coherence with the
memory task’s performance measures. The approach helped
to identify correlations between band-delimited power in
all electrodes and the memory task performance. Pearson
correlations between EEG band power and task performance
presented the relationship, and significant correlations depicted
the participants’ dominant pattern. The recorded EEG data
were analyzed using custom scripts in the MATLAB language
(MATLAB, 2019). For each electrode, the correlation between
the participants’ behavioral measures of the memory task (mean
reaction time and mean accuracy score) and mean power
bands in the delta (d:1–4 Hz), theta (q: 4–8 Hz), alpha (a: 8–
13 Hz), beta (b: 13–28 Hz), and gamma (g: 28–46 Hz) frequency
bands were calculated using Pearson correlation. Additionally,
the correlations between the inter-electrode coherence network
during resting-state and the and memory task performance
measures were analyzed. MATLAB connected topoplot toolbox
(Namburi, 2020) was used to illustrate pairs of inter-channel
coherence with a significant correlation between resting-state and
task performance measures. To explore connectivity between all
pairs of EEG electrodes in all oscillation bands, the magnitude-
squared coherence was used as the connectivity estimation metric
obtained by:

Cohxy(f ) =

∣∣Gxy(f )
∣∣2

Gxx
(
f
)
.Gyy(f )

(1)

Where Gxx and Gyy are autospectral density of channels x and
y and Gxy is the cross-spectral density between EEG signals
on channel x and channel y. Autospectral and cross-spectral
density are functions of frequency. The magnitude coherence
between two channels is an estimate showing the predictability
of information from one channel using the other channel’s data.
We identified the neural correlates of resting-state EEG that
correspond to task-dependent behavioral scores (see Figure 1) in
a population of aging adults with normal cognition.

RESULTS

Using a wireless EEG setup in both laboratory and clinics, an
11-min visual working memory task (modified delayed matched
to sample) was used to investigate rEEG surrogates of memory
performance. Every participant’s reaction-time (seconds) and
accuracy score (correct percentage) during the working memory
task were analyzed. Furthermore, correlations between the
behavioral measures and neural measures were conducted.

Behavioral Results
Accuracy of Working Memory Retrieval
The mean and standard deviation (SD) of the older participants’
percentage accuracy in correctly identifying the memory target
and non-target stimuli were shown in Figure 2. The mean (SD)
accuracy of the correct responses to target and non-target stimuli
are 91.56 (5.02)% and 91.93 (5.84)%, respectively.

Reaction Times of Working Memory Retrieval
Figure 3 shows the mean and standard deviation of the reaction
times to memory target match and non-match. Mean (SD) of
correct reaction times to target and non-target images were

FIGURE 2 | Bar plot showing group mean percent and standard deviation of
the mean accuracy of retrieval of target match and non-target, non-match
visual stimuli.

FIGURE 3 | Bar plot showing the group mean and standard deviation of the
reaction times to target match and non-target distractors during correct
(green) and incorrect (red) trials. The normal older adults were significantly
faster in identifying memory targets than non-targets (p < 0.05).
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673 (51) ms and 698 (48) ms, respectively. The non-parametric
Kruskal–Wallis significance test revealed a significantly faster
correct reaction to target-match compared to non-match
(p < 0.05). Also, we extracted the mean incorrect reaction time
to target and non-target (false alarm) stimuli. Mean (SD) of mean
incorrect reaction time to target and non-target images are 649
(85) ms and 715 (118) ms, respectively. Non-parametric Kruskal-
Wallis significance test revealed a significantly slower reaction to
non-target non-matched (false alarm) images compared to target
images (p < 0.05).

Sex Differences in Accuracy and Reaction Times
The male group (n = 20, median = 68, IQR = 5.5) were
relatively younger than the female group (n = 23, median = 72,
IQR = 10). Unsurprisingly, males showed a relatively higher
accuracy (mean = 92.34%, SD = 4.32%) and faster reaction times
(mean = 677 ms, SD = 51) (see Figure 4) compared to those
of older females (accuracy: mean = 91.28%, SD = 4.97%, RT:
mean = 693 ms, SD = 43).

Resting-State Alpha Band During
Eyes-Closed and Eyes-Open
As a test of quality reassurance of our EEG data, we analyzed
the eyes-closed and eyes-opened alpha bands because increased
alpha activity under eyes closed is well established in the literature
(as described in the introduction). We examined the group
average and the group standard deviation of the alpha band
power over the occipital sites (O1, O2) during resting-state
(see Figure 5). The group mean ± SD during the resting-state
eyes-closed is 38.80 ± 4.32 (µV2/Hz) and during resting-state
eyes-open is 35.65 ± 3.23 (µV2/Hz). Using non-parametric
Kruskal-Wallis significance test, the average occipital alpha
during the resting-state eyes close is significantly larger than
the eyes-open (p = 3.6× 10−4). Figure 6 illustrates average
power spectral density during resting-state eyes opened and
eyes closed and the corresponding topographic distribution
of the alpha frequency spectrum (8–13 Hz), showing the
increased occipital alpha during eyes-closed compared to eyes-
open resting-state EEG.

FIGURE 4 | The distribution of (A) mean accuracy score and (B) mean reaction time (RT) across age for both male (orange) and female (red) groups.

FIGURE 5 | (A) Montage of the 14-channels wireless EEG headset, (B) Bar plot showing the group average and standard deviation of the alpha band power over
occipital sites (O1 and O2 electrodes) during eyes-open and eyes-closed.
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FIGURE 6 | The corresponding dorsal view topographic distribution of the alpha wave (8–13 Hz), during resting-state (A) eyes-closed and (B) eyes-open (Top panel).
C. Average power spectral density at combined occipital sites (O1 & O2) during eyes-closed (A) and eyes-open (B); The black color curves show the average
occipital power spectral density of all participants, and the blue curves show individuals’ power spectral density. (C) the point by point confidence level shown by
p-value in the older adults.

FIGURE 7 | Topographical plot of Pearson correlations between resting EEG (Eyes-closed) relative frequency band power and mean reaction times during working
memory task. Significant negative correlation was observed at the P7 (left parieto-occipital site) at delta (δ) frequency band (p < 0.05) and approaching significant
(p = 0.068) theta (θ) band power. In other words, increased δ and θ frequencies power observed in the left posterior brain region is correlated with faster reaction
times. Reaction times did not correlate with higher frequency band power, i.e., α, β, nor γ.

Eyes-Closed Resting-State EEG and Task-Related
Behavior
rEEG and Reaction Times
Since eyes-closed rEEG is gaining momentum as easy biomarker
for cognitive decline, we examined Pearson correlations between
rEEG relative frequency band power recorded during the resting-
state eyes-closed session before the memory task and mean
behavioral results during the working memory task. Figure 7
show the topographical distribution of the Pearson correlations
between eyes closed rEEG relative frequency band power
and reaction times during the memory task. The significant
correlations between rEEG power spectral density in each
frequency band on 14 EEG sites and the individuals’ performance
in the working memory task were investigated. A significant
negative correlation was found between individuals’ mean
reaction times during the memory task and the delta band power
(ρ (43) = −0.31, p < 0.05). The correlation is mostly focused
over the left parietal site over the P7 EEG electrode.

With approaching significance, higher activities in the theta
band over the left parietal correlates with faster reaction time

(ρ (43) = −0.28, p = 0.07). As shown in Table 1, brainwave
EEG during resting did not correlate with mean reaction times
in the higher frequency bands in alpha, beta, and gamma bands.

rEEG and Accuracy
Next, we explored a potential rEEG neuromarker of individuals’
mean accuracy scores (percentage of correct responses) during
a short-term memory task. Figure 8 reveals the topographical
distribution of Pearson correlations between the eyes-closed
rEEG and mean percent accuracy during the memory task.

TABLE 1 | Correlations between eyes-closed resting-state EEG and
mean reaction time.

Frequency
band (Hz)

Electrode (location) Pearson
correlation (ρ )

p

delta (1–4 Hz) P7 (left parieto-occipital) −0.31 0.042*

theta (4–8 Hz) P7 (left parieto-occipital) −0.28 0.068

*indicates significant p value at the 0.05 level.
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FIGURE 8 | Topographical plot of Pearson correlations between relative frequency band power of resting eyes-closed EEG and Accuracy (% correct) of the working
memory task.

TABLE 2 | Correlations between eyes-closed resting-state EEG and
mean accuracy score.

Frequency
band (Hz)

Electrode (location) Pearson
correlation (ρ )

p

delta (1–4 Hz) O2 (right occipital) −0.29 0.058

theta (4–8 Hz) F7 (left frontal) −0.31 0.043*

O1 (right occipital) −0.28 0.064

P8 (right parietal) −0.31 0.041*

FC6 (right frontocentral) −0.29 0.059

alpha (8–13 Hz) P8 (right parietal) −0.39 0.0095**

F4 (right frontal) −0.28 0.068

beta (13–28 Hz) P8 (right parietal) −0.42 0.0054**

gamma
(28–46 Hz)

P8 (right parietal) −0.32 0.033*

AF4 (right frontal) −0.33 0.032*

*indicates significant p value at the 0.05 level; **indicates significant p < 0.01.

A significant negative correlation (ρ (43) = −0.42, p < 0.01)
was found between individuals’ EEG frequency band power in the
beta band over the right parietal site (P8 electrode).

Table 2 shows Pearson correlations and the significance
level in terms of p-value for the EEG frequency bands and
EEG electrodes. The significance level of correlations between
eyes-closed resting-state and mean accuracy scores were lower
than 0.05. The overall distribution of the Pearson correlations
in all frequency bands and all EEG electrode sites suggests

that lower brain activity over the right parietal site in alpha
and beta bands as well as the right frontal site in the
gamma band during eyes-closed resting-state was significantly
correlated with higher ability to correctly distinguish between
target and distractor images in a short-term memory task.
Lower alpha and beta activities of rEEG over right parietal
areas during eyes-closed were found to be indicators of
higher accuracy score.

Magnitude-Squared Coherence of the Fronto-Parietal Sites
Subserving Reaction Times
The coupling between brain sites within the delta, theta, alpha,
beta, and gamma frequency bands based on the magnitude-
squared coherence algorithm was explored. As demonstrated
in Figure 9, significant correlations (p < 0.05) between paired
eyes-closed rEEG magnitude-squared coherence in frequency
band oscillations during and mean reaction time were extracted.
Significant differences were mainly found in the alpha band
in the EEG inter-channel coherence network. Increased alpha
coherence between the right parietal and the left frontal sites
correlates with increased reaction time.

Coherence of the rEEG at Parietal Sites in the Delta and
Theta Bands Correlates With the Mean Percent Accuracy
As demonstrated in Figure 10, significant correlations (p < 0.05)
between paired rEEG magnitude-squared coherence in
oscillations during frequency band and mean accuracy score

FIGURE 9 | Brain connectivity graphs showing the significant correlations between paired EEG channels’ magnitude-squared coherence during the eye-closed
resting-state and mean reaction time in (A) delta, (B) theta, (C) alpha, (D) beta, and (E) gamma bands. The color designates the level of correlation between paired
coherence and the reaction times were significant (p < 0.05). Increased alpha coherence between the left frontal and right posterior sites correlates with increased
reaction time.
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FIGURE 10 | Brain connectivity graphs showing the significant correlations between mean percent accuracy and paired rEEG channels’ coherence during the
eye-closed in (A) delta, (B) theta, (C) alpha, (D) beta, and (E) gamma bands. The color designates the level of correlation between all paired coherence and the
corresponding measure where the observed correlation was significant (p < 0.05). Significant increased of frontal delta and theta coherence correlates with better
memory accuracy.

were extracted. Significant correlations were found in the
theta and delta bands for the rEEG inter-channel coherence
network. Increased frontal contralateral coherence between
frontal and temporal sites is positively correlated with increased
mean accuracy scores during memory retrieval. No significant
correlations were noted in the inter-channel coherence network
in the beta band and mean accuracy score.

DISCUSSION

Summary of the Findings
We report several new findings to explore the clinical-friendly
eyes-closed rEEG and healthy older individuals’ working memory
capacity. First, working memory retrievals’ accuracy is correlated
with higher frequency brain oscillations (beta and alpha) at local
and distant neural circuits in the right hemisphere support.
Second, faster memory retrieval is significantly correlated with
increased delta and theta band powers over the left parietal

sites. Also, increased coherence between the right parietal site
and the left frontal area is associated with slowed memory
retrieval speed.

Accuracy of Working Memory Retrievals
and Gamma, Beta, and Alpha
Before we test our hypothesis, we analyzed memory performance
data and alpha eyes closed and open data to make sure the quality
of our performance and EEG data. We found that accuracy is
approximately 91% to correctly identify one of the two memory
targets and non-target distractors in the current working memory
task in older adults. In a slightly easier version of the task (only
one memory target), the accuracy was 92 and 97% (Lawson
et al., 2007). Eyes-closed (EC) evoked larger alpha powers than
eyes open (EO) has been well documented in the literature.
Interestingly, the difference between EC and EO are reduced in
patients with MCI and AD (Wan et al., 2019). The results from
the current research are consistent with previous literature of
rEEG in healthy older adults.
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We report the significant correlations between memory
retrieval accuracy and rEEG band power. Specifically, increased
alpha and beta bands over the right parietal and gamma in
the right frontal sites, were significantly correlated with poorer
accuracy during the memory task. The right parietal site within
alpha and beta bands showed even a higher relationship with the
mean accuracy compared to the gamma band.

Reaction Times and Delta/Theta Band
Powers
Interestingly, memory retrieval of non-match distractor objects
took longer than target objects (see Figure 3). Pearson correlation
was analyzed between neural oscillations in different frequency
bands recorded with a wearable EEG headset during eyes-
closed resting-state and the participants’ mean reaction time and
mean accuracy score during a delayed visual target matching
task. The results suggest that rEEG in specific brain sites
and specific rhythms are significantly correlated with working
memory performance measures. Researchers discovered that
the analysis of EEG signals during resting and conscious state
of mind carries a predictive utility to tell apart behavioral
performance associated with short-term memory performance.
Results of significant correlations of rEEG band powers and
individuals’ mean reaction time indicate that a faster reaction
in target matching memory task to significantly correlates with
higher delta and theta rhythms over left parietal sites (Figure 7).
Additionally, we discovered that rEEG over right parietal and
right frontal sites carried valuable information about the mean
accuracy of target recognition in the memory task. Lower brain
activities in alpha, beta, and gamma bands over the right parietal
region correlate well with a higher accuracy score. These results
suggest that rEEG over the parietal can be a potential biomarker,
reflecting memory retrieval accuracy among normal aging adults.

The current findings are consistent with the literature that
higher theta and lower beta, which results in higher theta/beta
ratio before, is an indicator of memory capacity. Heister et al.
(2013) studied neural associates of working memory during
resting-state captured by MEG signals, which found that right
frontal and parietal cortex delta/theta power were inversely
correlated with three-back working memory performance. Those
results demonstrated that individuals with poor accuracy in
working memory showed larger increases in right posterior
frontal and parietal delta/theta in resting-state condition. An
individual’s working memory also requires input from attention.
A new study highlighted the predictive utility of resting-state EEG
and investigated neural correlates of vigilance score and response
time during varying-duration sessions of sustained attention to
response task (SART) (Torkamani-Azar et al., 2020). The results
indicated an increase in the left central and temporal gamma, and
upper beta during rest predicts slower reaction time.

Selective Neural Communications Within
the Working Memory Network via
Frequency Oscillations and Coherence
The nature of neural coding in mammalian brains, which may
support selective communication, are not fully understood.

Research has postulated that the structure of oscillations
varies in time and space according to behavioral state.
Multiplexing implemented through periodic modulation of
firing-rate population codes enables flexible reconfiguration of
effective connectivity. Memory retrieval is a dynamic process
continuously regulated by both synaptic and intrinsic neural
mechanisms, e.g., intrinsic excitability, synaptic plasticity, and
interactions among brain areas (Chen et al., 2020). The findings
suggest that neural dynamics underlying accuracy are different
from those undeserving memory retrieval speed.

By analyzing spectral coherence between paired EEG sites,
we reported increased connectivity between resting EEG sites
and working memory accuracy and reaction times. Literature
has suggested the significance of coherence between frontal and
posterior brain areas as an indicator of brain overall cognitive
function. In a comprehensive review of the literature (Babiloni
et al., 2016), changes in the connectivity network between
different brain areas, including the frontal and parietal areas, have
been observed among people with MCI and AD. The research has
demonstrated that the coherence between frontoparietal regions
in the theta band would correlate with the working memory
performance-related measures on the Digit Span (Tóth et al.,
2012). Fleck et al. (2016) studied resting-state EEG in search of
a neuromarker of cognitive decline, and they observed a positive
correlation between the delta and the beta coherence within the
frontal and posterior regions and performance on measures of
memory and executive function in older adults.

Implications and Limitations
Findings suggest an increased resting eyes-closed delta and theta
bands at the left parietal site are associated with faster speed, while
increased alpha and delta at right parietal site is associated with
reduced accuracy during working memory. Increased coherence
between the right parietal and the left frontal sites correlates
with slowed reaction time. The frontal and posterior dynamics of
resting EEG is associated with the “accuracy and speed trade-off ”
during working memory in healthy older adults.

Importantly, the wireless headset is a beneficial, pre-screening
tool utilized at physician offices before sophisticated biomarkers
tests in various clinical populations. Deficits in working memory
are common in amnestic mild cognitive impairment (MCI), an
early stage of AD, and related dementia (ADRD). Currently, the
AD biomarkers for early diagnosis of mild cognitive impairment
are not only expensive to measure, but also involve invasive and
time-consuming neuroimaging, laboratory examinations, and
cognitive assessments. Depending on the degree of change, the
quantitative analysis of cognitive processing changes may provide
evidence of pathologic cognitive changes beyond age-related
decline, MCI, and ADRD.

The study is a preliminary stage to test the utility
of the resting-state EEG using a wearable headset as a
pre-screening methodology for cognitive measures besides
other well-established behavioral and cognitive questionnaires.
There are both advantages and disadvantages to current
rEEG approaches, which gauge working memory capacity.
Currently, clinicians rely on well-established but time-consuming
neuropsychological testing as a proxy to identify changes in brain
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networks in the aging population. Different cognitive tasks such
as working memory and selective attention have been used to
enumerate the rate of cognitive decline measured by accuracy
and reaction time, which has been shown to provide a reliable
cognitive decline measure. Cognitive testing is less sensitive
for the small changes in memory that accumulate overtime
but can identify the changes’ summation when the effect is
significant. However, cognitive deficiency may not be appeared
and diagnosed at the onset of AD, motivating the discovery
of non-invasive and inexpensive-to-collect neuromarker, i.e.,
a neuromarker showing altered brain connectivity across
interconnected networks of the brain.

A noted limitation in the present study was a small sample size
(n = 43). As such, further research is necessary to understand
the underlying neural mechanisms. Additionally, a follow-up
study should include a longitudinal approach that includes a
large number of healthy, aging adults. With the wearable and
wireless EEG headset that is non-invasive and easy-to-use, the
current study offers an affordable option for large-scale repeated
recording in the clinics. Furthermore, research efforts should
focus on evaluating EEG neuromarkers in patients with amnestic
MCI, or those in dementia. Future investigation is needed to
evaluate the associations and correlations of rEEG with other
neural degenerative biomarkers such as A-beta, p-tau, or cortical
atrophy in MRI scans. Overall, brief resting and task protocol
using wearable EEG headset has demonstrated great potential for
gauging working memory capacity, a sensitive and fast screening
tool for cognitive impairment risk. Our current findings indicate
the need for future large-scale validation to understand individual
measurements of rEEG frequency and coherence features.

CONCLUSION

We report that the frontal and posterior dynamics of resting
EEG is associated with the “accuracy and speed trade-off ” during
working memory in healthy older adults. The Bluegrass protocol
recorded resting EEG oscillations under 3 min and likely to be
used as fast surrogate markers for assessing individual working
memory capacity.
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