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Abstract: Cyclophilin D (CypD) has been shown to play a critical role in mitochondrial permeability
transition pore (mPTP) opening and the subsequent cell death cascade. Studies consistently demon-
strate that mitochondrial dysfunction, including mitochondrial calcium overload and mPTP opening,
is essential to the pathobiology of cell death after a traumatic brain injury (TBI). CypD inhibitors,
such as cyclosporin A (CsA) or NIM811, administered following TBI, are neuroprotective and quell
neurological deficits. However, some pharmacological inhibitors of CypD have multiple biological
targets and, as such, do not directly implicate a role for CypD in arbitrating cell death after TBI. Here,
we reviewed the current understanding of the role CypD plays in TBI pathobiology. Further, we
directly assessed the role of CypD in mediating cell death following TBI by utilizing mice lacking the
CypD encoding gene Ppif. Following controlled cortical impact (CCI), the genetic knockout of CypD
protected acute mitochondrial bioenergetics at 6 h post-injury and reduced subacute cortical tissue
and hippocampal cell loss at 18 d post-injury. The administration of CsA following experimental
TBI in Ppif -/- mice improved cortical tissue sparing, highlighting the multiple cellular targets of
CsA in the mitigation of TBI pathology. The loss of CypD appeared to desensitize the mitochondrial
response to calcium burden induced by TBI; this maintenance of mitochondrial function underlies
the observed neuroprotective effect of the CypD knockout. These studies highlight the importance of
maintaining mitochondrial homeostasis after injury and validate CypD as a therapeutic target for
TBI. Further, these results solidify the beneficial effects of CsA treatment following TBI.

Keywords: controlled cortical impact; mitochondrial bioenergetics; mitochondria; cyclosporin a;
NIM811; mitochondrial permeability transition; Ppif; neuroprotection

1. Introduction
1.1. Secondary Mitochondrial Cascades in Traumatic Brain Injury

Traumatic brain injury (TBI) is a major health concern that affects significant num-
bers of people worldwide. According to the Centers for Disease Control and Prevention
(CDC), in the United States alone, there are an estimated 3 million TBI-related emergency
department visits, hospitalizations, and deaths yearly [1]. There are no current approved
treatments for TBI due to the complexity of the secondary injury cascade following primary
head injury. One important player in this injury cascade is the mitochondrion. Known
as the “powerhouse” of the cell, mitochondria are critical in regulating cellular energy
homeostasis, redox balance, calcium buffering, and cell death [2]. In the secondary phase of
brain injury, there is a bioenergetic collapse resulting from disrupted intracellular calcium
homeostasis and increases in oxidative stress. Mitochondria sequester increased levels of
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intracellular calcium, concomitant with excitotoxic mechanisms after TBI. Once the mito-
chondria can no longer take up any more calcium, they become dysfunctional, generate
ROS, and induce mitochondrial permeability transition (mPT).

1.2. Role of mPT in TBI Pathophysiology

The mitochondrial permeability transition pore (mPTP) is a non-selective channel in
the inner mitochondrial membrane, which leads to mitochondrial swelling and rupture of
the outer mitochondrial membrane. In turn, an outer membrane rupture allows the release
of calcium, cytochrome c, and other solutes (<1.5 kDa) from the matrix into the cytosol. This
results in mitochondrial swelling, dysfunction, rupture, and eventually cell death [3]. The
release of cytochrome c through the pore into the cytosol activates downstream caspases,
which also triggers apoptotic events, adding to CNS injury pathology, further implicates
mPT as an important target for neuroprotection after TBI [4,5]. Since mitochondria are arbi-
trators of both apoptotic and necrotic cell death, they have become targets for therapeutic
intervention in TBI and other neurodegenerative diseases [6]. Under stress conditions (such
as high mitochondrial calcium or increased reactive oxygen species (ROS)), cyclophilin D
(CypD) purportedly interacts with the adenine nucleotide translocase (ANT) and/or the
F-ATP synthase of the inner mitochondrial membrane. The interaction with ANT results
in a conformational change converts ANT into a non-specific pore located in the inner
membrane. Following the voltage dependent anion channel (VDAC) interacts with the
CypD/ANT complex, which promotes formation of the mPTP [7,8]. Other groups have con-
firmed the ability of ANT to form a large ion channel and constitute (or at least contribute)
to mPT [9,10]. However, recent evidence suggests that while these mitochondrial inner
membrane proteins contribute to mitochondrial desensitization to high calcium levels, they
may not constitute the primary mPTP [11,12]. After calcium overload, CypD can bind to
the oligomycin sensitivity-conferring protein (OSCP) subunit of the ATP synthase and this
interaction has been suggested to trigger the opening of a large conductance channel found
in ATP synthase, which is potentially a major component of the mPTP [13–15]. Conversely,
multiple groups have shown that mPTP can form in the absence of key subunits of the
F-ATP synthase [16–18] and the assembled ATP synthase itself [19]; thus, the molecular
identity of the mPTP remains highly disputed. Nevertheless, induction of mPT results in
a loss of the mitochondrial membrane potential, resulting in the uncoupling of electron
transport from ATP production. Moreover, mPT leads to mitochondrial swelling, rupture
of the outer mitochondrial membrane, release of pro-apoptotic molecules (i.e., cytochrome
c), and increased ROS production. Early studies found that CsA interacts and binds to
CypD to inhibit mPT [20,21]; therefore, CypD has emerged as a therapeutic target in TBI.

1.3. Therapeutic Targeting of mPT by Cyclosporin A

CypD, a target of the FDA approved immunosuppressant cyclosporin A (CsA), has
been shown to play a key role in the modulation of mPTP formation [7,22,23]. CypD
belongs to a family of proteins known as peptidyl-prolyl cis-trans isomerases (PPIases) and
is localized in the mitochondrial matrix. This was elucidated by the observed effect of mPTP
desensitization after CsA administration, requiring higher levels of intra-mitochondrial
calcium to initiate pore formation [24]. The immunosuppressive properties of CsA were
not shown to be the cause of neuroprotection after another study was performed with a
more potent immunosuppressor, FK506. Both CsA and FK506 suppress T cell activation,
but only CsA offered neuroprotection, most likely due to action on the mPTP [25]. There is
an abundance of preclinical evidence that demonstrates that mPT inhibition following TBI
is neuroprotective. Administration of CsA to inhibit mPT following TBI has proven to be
effective at improving mitochondrial function and neuronal survival in multiple models
of TBI [25–35]; however, there are contradictory results on the cognitive effects following
TBI and CsA administration [27,36]. The neuroprotective effects of CsA are limited due
to toxicity at high doses [37,38] but Phase II trials involving 5 mg/kg of CsA have shown
efficacy in TBI patients administered within 8 h post-injury [39]. Alternatively, in another
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Phase II study in severe TBI patients, administration of CsA after 12 h did not show any
significant improvements in neurological outcomes [40]. In a rat model of spinal cord
injury (SCI), the optimal dose and regimen of CsA determined by Sullivan et al., did not
offer any beneficial effects in tissue sparing, which contradicted results obtained following
TBI [33,41]. Among further investigation, it was found that isolated brain and spinal cord
mitochondria are different; more specifically, in lipid peroxidation, mitochondrial mRNA
count, complex-I activity, and calcium sequestration [42]. Spinal cord mitochondria were
shown to form the mPTP at lower concentrations of calcium, with the addition of CsA
offering only slight inhibition at doses used in TBI animal models. This is in stark contrast
to cortical mitochondria, which require more calcium to form the pore and is significantly
inhibited by CsA. One possible explanation for this difference is that there is more CypD
mRNA in the spinal cord than in the cortex. In order for CsA to show neuroprotective
effects in the SCI model, the optimal dose should be increased; however, due to its toxicity,
this may not be a feasible therapeutic option [43]. Additionally, CsA has been shown to
bind to other targets such as the T-cell activator, calcineurin, which makes pinpointing the
mechanism(s) of action of CsA related to neuroprotection challenging [44].

1.4. Therapeutic Targeting of mPT by NIM811

A non-immunosuppressive analog of CsA, N-methyl-4-isoleucine-cyclosporin (NIM811),
has also been utilized to observe the effects of CypD inhibition on TBI outcomes. NIM811
is also tolerated better at high concentrations compared to CsA, most likely due to the
substitution of isoleucine in place of leucine; this alternate prevents NIM811 from binding
to calcineurin, the enzyme conferring CsA’s immunosuppressive properties [45]. However,
NIM811 binds CypD as well as CypA, another member of the cyclophilin, peptidylpro-
lyl isomerase (PPI) family [46]. NIM811 improved motor function, improved mitochon-
drial function, decreased oxidative damage, and decreased neurodegeneration following
TBI [47,48]. Results from these studies have shown NIM811 to have similar effects as CsA
on preserving mitochondrial function after TBI. Our group has also determined that admin-
istration of a single dose of 10 mg/kg NIM811 is sufficient for improving mitochondrial
respiration after experimental TBI [46]. In addition, dosing 15 min and 24 h after injury
improved cortical tissue sparing and performance in the Morris water maze (MWM) test,
implying translational efficacy of this compound after TBI [46]. NIM811 also improved
outcome measures following SCI in rats albeit at higher doses [49–51]. Presumably, the
neuroprotective actions of CsA and NIM811 are attributable to their inhibition of CypD,
which prevents the binding of CypD to ANT and formation of the mPTP [52]. However, it
is difficult to discern the protective mechanisms of NIM811 and CsA given that both have
targets other than CypD. Further, as cell death may occur independent of CypD, direct
evidence regarding the role of CypD in mPTP formation in the context of TBI is needed.

1.5. The Effects of CypD Knockout (KO) in Neurodegenerative Diseases

In order to examine the direct role of CypD in mPTP formation, CypD knockout mice
lacking the encoding gene, Ppif, have been used by researchers. Studies have demonstrated
the role CypD plays in mPTP formation and the subsequent effects on calcium uptake of
mitochondria [23,53]. Interestingly, CypD-null mitochondria were not completely resistant
to mPTP formation even though they were desensitized to calcium stress. Compared to
brain mitochondria from WT mice, mitochondria from CypD KO mice retained 30–40%
more calcium when given in 10 µM boluses. Additionally, CypD KO mitochondria required
80 µM of calcium to diminish the membrane potential, whereas the wild-type mice only
required 50 µM calcium. Further, CsA treatment did not increase the calcium threshold
in CypD KO mitochondria nor their ability to maintain membrane potential [54]. CypD
knockout mice were indeed insensitive to CsA, providing further evidence of its action
on CypD [53]. Studies in CypD knockout mice have demonstrated that mitochondria
lacking CypD are resistant to Ca2+- and ROS-induced mPT [23,53,54]. In corroboration,
the CypD knockout increased mitochondrial resistance to mPTP opening during cardiac
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ischemia/reperfusion (I/R) injury and lowers necrosis [22]. While the CypD knockout
significantly reduces infarct area after cardiac I/R injury, which is predominantly driven
by Ca2+ and oxidative stress, it did not protect against cell death induced by pro-apoptotic
Bcl-2 family members [23]. CypD-mediated sensitization to mitochondrial calcium stress
can also be observed in brain mitochondria, where the CypD knockout improved mito-
chondrial membrane polarization and survival due to desensitization to increased calcium
levels [54,55]. This indicated that cell death may occur through either CypD-dependent or
CypD-independent mechanisms but reinforced the close-knit relationship between CypD
and mPTP opening.

To elucidate the role CypD plays in neuropathology following TBI, we subjected mice
lacking the CypD encoding gene Ppif to controlled cortical impact (CCI). We hypothesize
that genetic knockout of CypD would confer neuroprotection following TBI due to inhibi-
tion of mPT. Indeed, the CypD knockout restored acute mitochondrial function following
TBI. In the subacute phase following injury, cortical tissue sparing and CA3 neuron density
are improved in mice lacking CypD, although this does not benefit cognitive function.
The data demonstrate that knockout of CypD, likely via maintenance of mitochondrial
homeostasis, spares cortical tissue and protects CA3 neurons following TBI, which supports
CypD as an important mediator of cell death following TBI.

2. Materials and Methods
2.1. Animals and Experimental Design

All of the studies performed were approved by the University of Kentucky Institu-
tional Animal Care and Use Committee (IACUC). Additionally, the Division of Laboratory
Animal Resources at the University is accredited by the Association for the Assessment
and Accreditation for Laboratory Animal Care, International (AAALAC, International); all
experiments were performed within its guidelines. All animal experiments complied with
ARRIVE (Animal Research: Reporting of In Vivo Experiments) guidelines and experiments
were carried out in accordance with the National Institutes of Health Guide for the Care
and Use of Laboratory Animals (NIH Publications No. 8023, 8th edition, revised 2011).
Ppif -null (CypD knockout (KO)) mice and control C57BL/6 wild-type mice were bred at
the University of Kentucky (Lexington, KY, USA), and were originally obtained as a gift
from Dr. J.D. Molkentin (Cincinnati Children’s Research Foundation). Adult (~8 to 10
weeks old) male wild-type (WT) and CypD KO mice were utilized and randomly assigned
to experimental groups. The animals were housed 5 (mice) per cage and maintained in a
14-h light/10 h dark cycle. All animals were fed a balanced diet ad libitum and water was
reverse osmosis generated. One cohort was euthanized at 6 h post-injury for mitochondrial
assessments (n = 5–6/group) while a second cohort was euthanized at 18 d post-injury,
following a week of rest and subsequent behavioral analysis, for tissue sparing and hip-
pocampal cell count analysis (n = 5/group). The final (third) cohort was administered
treatment targeting mPT and was euthanized for tissue sparing assessment at 7 d post-
injury (n = 7–8/group). For mitochondrial bioenergetics assessment, experiments were
conducted with n = 5–6 biological replicates and for each biological replicate there were
technical replicates of n > 3. All data analysis was performed blinded to treatment groups.

2.2. Controlled Cortical Impact

Mice were subjected to a severe (1.0 mm) unilateral controlled cortical contusion
TBI or sham-operation according to past studies [56–58]. Briefly, mice were put under
anesthesia with 2–5% isoflurane and the skull was exposed through a midline incision. An
approximately 3 mm craniotomy was made lateral to the midline and centered between
bregma and lambda, without disrupting the dura. A cortical contusion was produced
using a pneumatically driven injury device (TBI-0310 Impactor, Precision Systems and
Instrumentation (PSI), Fairfax, VA USA) with a 2 mm tip as previously described [58].
Following injury, a prosthetic skull cap was glued over the craniotomy site and incisions
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were sutured together. Animals remained on a 37◦ heating pad until they were mobile and
fully responsive.

For the third cohort, mice subjected to a severe CCI were then administered vehicle
(100% DMSO), NIM811 (10 mg/kg), or CsA (20 mg/kg) 15 min after TBI with a subsequent
injection at 24 h post-injury.

2.3. Mitochondrial Isolation and Respirometry Analysis

At 6 h post-injury, the first cohort of wild-type and CypD knockout mice were asphyx-
iated with CO2 until unconscious, decapitated, and the brains were rapidly removed and
placed in isolation buffer (215 mM mannitol, 75 mM sucrose, 0.1% BSA, 20 mM HEPES,
and 1 mM EGTA; pH 7.2). The ipsilateral cortex was dissected with a 3 mm-diameter
punch centered on the site of impact. The cortical tissue punch contained tissue from the
site of the impact and the surrounding penumbra. The tissue punches were homogenized
and isolated by differential centrifugation as previously described [56,59,60]. Briefly, the
homogenate was centrifuged at 1300× g for 3 min. Following the first spin, the super-
natant was placed in a fresh tube and the pellet was resuspended in isolation buffer and
centrifuged at 1300× g for 3 min. The supernatant from the first and second spins were
collected in separate tubes and spun at 13,000× g for 10 min. The pellets from both tubes
were combined, resuspended in 400 µL isolation buffer, and placed in a nitrogen bomb
at 1200 psi for 10 min. The pressure in the nitrogen bomb was rapidly released and the
sample was placed as the top layer on a Ficoll separation column, which consisted of a
10% Ficoll layer and a 7.5% Ficoll layer. The Ficoll column with sample was centrifuged at
100,000× g for 30 min at 4 ◦C using a Beckman SW 55Ti rotor and ultra-centrifuge.

The supernatants were carefully removed, and the pellet was resuspended in isolation
buffer without EGTA and centrifuged at 13,000× g for 10 min at 4 ◦C. In order to completely
wash all Ficoll out of the sample, the mitochondrial pellets were recentrifuged at 10,000× g
for 5 min at 4 ◦C. The final mitochondrial pellet was resuspended in isolation buffer without
EGTA to yield a concentration of ~10 mg/mL. The protein concentration was determined
using a bicinchoninic acid protein assay kit (Pierce, Rockford, IL, USA).

Mitochondrial respiration was measured using a Seahorse Biosciences XFe24 Flux
Analyzer (North Billerica, MA, USA) as previously described [46,56,60]. Briefly, 5 µg of
mitochondrial protein were added to each well in 50 µL respiration buffer. The assay
plates were centrifuged at 3000 rpm for 4 min at 4 ◦C. Additional respiration buffer was
added to bring the starting volume to 475 µL. After calibration, the assay plate was placed
and pyruvate/malate/ADP, oligomycin, FCCP, and rotenone/succinate were injected
sequentially through ports A–D, respectively. The final concentrations of substrates and
inhibitors were 5 mM (pyruvate), 2.5 mM (malate), 1 mM (ADP), 1 µg/mL (oligomycin),
1 µM (FCCP), 100 nM (rotenone), and 10 mM (succinate). Oxygen consumption rates (OCR)
were recorded in each distinct respiration state.

2.4. Morris Water Maze

A variant of the MWM task was used to assess cognitive function/dysfunction follow-
ing TBI in these experiments [61]. The maze was in low light and consisted of a circular
pool filled with water (27 ◦C). A platform was placed below the water surface rendering
it invisible and was used as the goal platform. The pool was situated in a room that had
numerous extra-maze cues that remained constant throughout the experiment. A video
camera system placed directly above the center of the pool recorded swimming perfor-
mance and each video record was processed by a video motion analyzer (Ethovision-XT,
Noldus, Leesburg, VA, USA). Water maze testing began 10 d after surgery and training
consisted of four daily trials one each starting from a different labeled quadrant. Each
trial was initiated by placing the mouse into the water in a quadrant either adjacent or
opposite to the platform. The platform location was fixed throughout the training. Each
trial lasted 60 s or until the mouse located the platform. Mice that did not find the platform
were guided to it and given a latency score of 60 s. Each mouse was required to spend 15 s
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on the platform at the end of each trial. During this learning period mice used external
visual cues as a reference to find the submerged platform. The latency to find the platform
was recorded for each trial. On the fifth day of the MWM task, mice were given one probe
trial, in which the platform was removed. A first dependent measure was the time spent
swimming in each quadrant. The second dependent measure was the number of times the
mouse crossed over the platform arena.

2.5. Tissue Processing and Tissue Sparing Measurement

At 18 days post-injury, wild-type and CypD knockout mice were anesthetized by
an overdose of pentobarbital (95 mg/kg body weight) and transcardially perfused with
physiological saline followed by 4% paraformaldehyde. After removal, the brains were
placed in 4% paraformaldehyde-15% sucrose for an additional 24 h. Coronal sections
(30 µm) were then cut using a freezing microtome, throughout the rostrocaudal extent of the
brain, extending through the septal area to the most posterior extent of the hippocampus.
A series of coronal tissue sections spaced ~400 µm apart (minimum of 12 slices) were
mounted on slides, stained with cresyl violet, and subjected to image analysis for lesion
volume assessment. Quantitative assessment of cortical damage employed a blinded
unbiased tracing protocol utilizing the Cavalieri method of segmentation to compare
ipsilateral cortex to contralateral cortex. All slides were assessed blindly with respect to
treatment group, for ROI analysis to measure cortical sparing, using ImageJ software (NIH,
Bethesda, MD, USA).

2.6. Stereology—Hippocampal Cell Counts

The same series of cresyl violet-stained coronal brain slices were used for hippocampal
cell counting. All sampling was conducted using an Olympus BX51 microscope with a 60 X
oil objective, with an ASI automated stage (Eugene, OR, USA). The neuronal cells were
distinguished from other cells based on the cell size, morphology and granular staining [62].
Bioquant Image analysis software (R and M Biometrics, Memphis, TN, USA) was used to
estimate the total cell number in ipsilateral hippocampal regions CA1, CA3, and DG using
the optical fractionator method as previously described [63]. Briefly, this method involves
sampling a known fraction of the section thickness, under a known fraction of the sectional
area, in a known fraction of the sections that contain the structure. The total number of
neurons (N) is estimated by: N = ΣQ * t/h * 1/asf * 1/ssf, where ΣQ is the number of
neurons counted in the optical dissectors, t is the tissue thickness (20 µm), h is the height of
the dissector (20 µm), 1/asf is the counting grid area (100 × 100)/the dissector area (CA3,
CA 1–15 µm × 15 µm; DG-10 µm × 10 µm), and 1/ssf is the sampling section fraction (12).

2.7. Statistics

Power analysis was conducted (using G*Power statistical software; version 3.0.10) for
all experimental data. Analysis was completed based on the ANOVA or t-test. A priori
analysis was performed and effect size was calculated based on expected mean ± SD within
each group. Power analysis was calculated for behavioral experiments using the following
parameters: α = 0.05, 1 − β = 0.8, and standard deviation 20% of mean (effect size = 1.12)
for experimental groups. For all statistical comparisons, significance was set at p < 0.05.
For each measure, data were measured using interval/ratio scales. The Brown-Forsythe
and/or Bartlett’s tests were performed to ensure homogeneity of variance. Furthermore,
the Shapiro-Wilk test was completed to ensure normality. As these criteria were met for
all experimental data, parametric statistics were employed for all analyses. Tissue sparing
assessment with WT compared to CypD KO were analyzed using unpaired t-test. All other
data were analyzed using one-way ANOVA followed by Tukey’s post-hoc analysis.
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3. Results
3.1. Cyclophilin D Knockout Improves Mitochondrial Bioenergetics

We found that brain mitochondria derived from the CypD knockout buffered higher
calcium levels compared to mitochondria from WT mice (data not shown), confirming
previous research. To determine the effects of the CypD knockout on mitochondrial res-
piration following TBI, mitochondria were isolated at 6 h post-injury from the ipsilateral
cortex of wild-type and CypD knockout mice. In the presence of pyruvate/malate/ADP,
injury-induced impairments (F(2,14) = 8.37, p = 0.003 WT Sham vs. WT Injured) in complex I
driven State III respiration (dependent on the rate of ATP synthase) were attenuated by the
CypD knockout (F(2,14) = 8.37, p = 0.047 WT Injured vs. CypD KO Injured) (Figure 1). There
were no differences in State IV respiration (dependent upon proton leak across the inner
membrane) among treatment groups. While complex II driven State V respiration (maximal
rate of the electron transport chain) was significantly reduced in both WT Injured and
CypD KO Injured mice (F(2,14) = 9.69, p < 0.03), complex I driven State V respiration was
only significantly reduced in WT Injured (F(2,14) = 5.08, p < 0.03 WT Sham vs. WT Injured).
The respiratory control ratio (RCR; a metric for the coupling of electron transport with
ATP production) did not differ among groups, indicating a similar level of mitochondrial
coupling between the groups (data not shown).

Figure 1. Cyclophilin D (CypD) knockout attenuates mitochondrial dysfunction following traumatic
brain injury (TBI). At 6 h post-injury, complex I driven State III respiration was significantly reduced
compared to sham in wild-type (WT) animals. However, CypD knockout attenuated State III mitochon-
drial dysfunction after TBI. For State V respiration, there was no significant difference between WT
Injured and CypD KO Injured. * p = 0.0046 vs. WT Injured, ** p < 0.002 vs. WT Injured and knockout
(KO) Injured, *** p = 0.0001 vs. WT Injured, # p = 0.047 vs. WT Injured. Five µg mitochondrial protein
were added to each well. Data points represent group mean ± SEM. N = 5–6/group.

3.2. Cyclophilin D Knockout Alleviates TBI-Related Reduction of CA3 Hippocampal Neurons

To determine the effects of CypD knockout on hippocampal cell survival after TBI,
neurons were counted for regions dentate gyrus (DG), CA3, and CA1 using the optical
dissector method. The number of surviving CA1, CA3, and DG neurons were estimated at
18 days post-injury (Figure 2). In WT mice, injury significantly decreased the number of
neurons in ipsilateral CA1 (F(3,16) = 40.59; p < 0.0001), CA3 (F(3,16) = 9.31; p = 0.003), and DG
(F(3,16) = 37.02; p < 0.0001) compared to WT Sham. In CypD KO mice, injury significantly
decreased the number of neurons in ipsilateral CA1 (F(3,16) = 40.59; p < 0.0001) and DG
(F(3,16) = 37.02; p < 0.0001) compared to CypD KO Sham. In ipsilateral CA3 of CypD KO
Injured mice, neuronal count was not significantly different than CypD KO Sham mice,
highlighting mitigation of the TBI-associated CA3 neuronal loss.
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Figure 2. CypD knockout mitigates TBI-related CA3 neuronal loss. (A) Outline of hippocampal sub-regions, DG, CA3,
and CA1. (B) Injury significantly decreased the number of CA1 neurons in both WT and CypD KO mice. (C) There was
a significant decrease in CA3 neurons after TBI in WT mice. However, CypD knockout protected CA3 neurons from
injury-induced cell loss. (D) TBI resulted in a significant decrease of DG neurons in both WT and CypD KO mice. * p < 0.003
compared to injured counterpart in each genotype. Data points represent group mean ± SEM. N = 5/group.

3.3. Cyclophilin D knockout Increases Tissue Sparing Following TBI

In order to determine the effects of CypD knockout on tissue sparing following TBI,
cortical tissue sparing was measured at 18 days following severe CCI utilizing the Cavalieri
method. CypD KO Injured mice had significantly higher tissue sparing levels (84.1 ± 2.1)
compared to WT Injured mice (76.2 ± 2.248) (t = 2.57, p < 0.03) (Figure 3).

Figure 3. CypD knockout increases tissue sparing following TBI. (A) Representative coronal brain
sections displaying lesion area (bregma level −1.4 mm). (B) Quantitative assessment of tissue sparing
revealed that CypD knockout animals had significantly higher tissue sparing percentage compared
to WT animals. * p = 0.033. Data points represent group mean ± SEM. N = 5/group.

3.4. Cyclophilin D Knockout Does Not Improve Cognition Following TBI

To examine the effect of CypD KO on cognitive function after TBI, mice performed
the MWM task on five consecutive days starting at 10 days post-injury. In general, CypD
KO mice (both Sham and Injured) displayed worse performance, higher latency to find
the platform, during the learning phase (Figure 4A). This is highlighted by a significantly
increased average latency over the four training days in the CypD KO Injured group
compared to WT Injured animals (Figure 4B; F(3,15) = 7.23, p = 0.033). During the probe
trial, there was no difference in time in the target quadrant or platform quadrant crossings
amongst experimental groups (Figure 4C,D).
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Figure 4. CypD knockout does not improve memory function following TBI. (A) Average learning
progression, characterized by latency to platform, over days 10 to 13 after injury. (B) Morris water
maze (MWM) latency to platform data collapsed across all training days. CypD knockout in injured
animals resulted in an increase in latency to platform compared to WT Injured mice. * p = 0.033 vs.
WT Injured. (C) At 14 d after TBI, mice performed the probe trial. Time in the target quadrant was
calculated. (D) During the probe trial, the number of times mice crossed the platform area was also
quantified. Data points represent group mean ± SEM. N = 3–6/group.

3.5. Cyclosporin A Provides Neuroprotection in CypD KO Mice after TBI

In order to determine the effects CsA and NIM811 administration in CypD KO mice
after TBI, cortical tissue sparing was measured at 7 days following severe CCI utilizing the
Cavalieri method. NIM811 administration after CCI in CypD KO mice did not improve tis-
sue sparing compare to Vehicle administration (Figure 5). However, CsA treatment resulted
in increased cortical sparing compared to vehicle-treated CypD KO mice (F(2,20) = 3.40,
p = 0.039).

Figure 5. Cyclosporin A (CsA) and NIM811 treatment in CypD KO animals following TBI. While
NIM811 did not alter tissue sparing in CypD KO animals compared to vehicle, CsA administration
improved tissue sparing following experimental TBI mice. * p = 0.039 vs. Vehicle. Data points
represent group mean ± SEM. N = 7–8/group.



Cells 2021, 10, 199 10 of 15

4. Discussion

The results of this study uncovered the role of CypD in the pathophysiology of TBI, in
which CypD-dependent cell death mechanisms have been implicated due to intracellular
Ca2+ dyshomeostasis and subsequent mitochondrial calcium sequestration. We presented
data that demonstrates that genetic ablation of CypD is neuroprotective following TBI.
Further, CypD knockout attenuated injury-induced mitochondrial dysfunction. The data
confirms the key role CypD plays in cell death following TBI.

Pharmacological studies have suggested an important role for CypD in neurodegen-
eration and TBI. Administration of CsA has been shown to be neuroprotective following
multiple experimental models of TBI [25,28,29,31,33,34]. Since CsA has multiple biological
targets, interacting with CypD and inhibiting calcineurin, the neuroprotective mecha-
nism(s) of CsA is greatly debated. Indeed, we found that CsA provides neuroprotection via
pathways other than CypD inhibition (Figure 5). NIM811, which inhibits CypD but does
not affect calcineurin, has also been shown to have neuroprotective properties following
TBI [46,47]. However, NIM811 has a U-dose response curve following TBI, which may
indicate that NIM811 is acting through other potential off-target mechanisms, such as
CypA. Genetic knockout of CypD provides a novel approach for directly examining the
role that CypD plays without the confounding off-target effects of pharmacological studies.

The observed improvement in mitochondrial complex I activity following TBI in
CypD knockout mice likely reflects a secondary effect of inhibition of mPTP formation via
CypD ablation [48]. Improvement of mitochondrial complex I function suggests that loss
of CypD increases mitochondrial preservation after TBI. These findings are in line with
studies involving mitochondria isolated from CypD deficient mice, which showed that
mitochondria lacking CypD are resistant to Ca2+ induced mPTP formation [23].

We found that the CypD knockout was neuroprotective at 18 days following TBI
(Figures 2 and 3). While previous studies examined neuroprotection at 7 days post-
injury [33,35], we chose to examine neuroprotection at a later time point in order to
incorporate cognitive assessment. The selective mitigation of CA3 neuronal loss observed
in CypD knockout mice could be, in part, explained by the relative vulnerability of hip-
pocampal subfields following brain contusion. Selective vulnerability of CA1 neurons is
well-documented following hypoxia-ischemia insult [64,65]. In fact, it has been shown that
inhibition of complex II with malonate results in a selective loss of CA1 neurons in rats [66].
However, another study showcases that CA3 is more vulnerable after CCI impact compared
to CA1 [67]. Our group showed that mild mitochondrial uncoupling treatment lessens
CA3 neuronal loss following severe CCI [56]. This suggests that CA3 neuronal loss may be
selectively mediated through mitochondrial-dependent mechanisms and therefore more
amenable to mitochondrial-directed therapy. CypD knockout reduced some, but not all,
subtypes of axonal injury following mild TBI, again highlighting regional selectivity [68].
Further, the effects in CA3 may be partially explained by the predominant expression of
CypD in GABAergic interneurons, including those of the CA3 [69]. It may also be pertinent
to examine other brain regions in future studies as a report has demonstrated that CypD
immunoreactivity is higher in the substantia nigra as compared to other regions such as
cortex [69].

The CA3 region has been shown to play a critical role in spatial memory acquisition
and in the formation of long-term spatial memory [70]. Since CypD knockout resulted
in alleviation of CA3 neuronal loss, this suggests that modulation of CypD may improve
memory following TBI. To directly address this, we performed cognitive studies using
the MWM in CypD KO mice subjected to TBI. We did not observe any injury-induced
impairment in cognitive function in WT animals using the MWM. Interestingly, we did
observe a genotype-dependent impairment in MWM function in CypD KO mice compared
to WT mice (Figure 4). Similar results were reported by Mouri and colleagues [71]. In these
studies, genetic knockout of CypD resulted in cognitive impairments in several behavioral
tasks. These data provide a potential physiological role for CypD, likely related to calcium
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signaling, and offer a mechanism by which memory is at least partially dependent on
CypD function.

Although it is generally accepted that mPT plays a role in cell death, the mechanisms
underlying induction of mPT following TBI remain unclear. There appears to be two
alternative routes to cell death, one that is CypD dependent and an alternative route that is
CypD independent; both pathways have been implicated in TBI. It is currently unclear on
the amount of interplay between these two separate cell death pathways. There is growing
evidence that suggests that CypD knockout is protective in neurodegenerative disorder
models [72,73]. Interestingly, one study found that CypD-dependent cell death pathway is
more critical in the progression of brain injury after hypoxic-ischemic insult [74]. This study
further demonstrated that CypD knockout significantly reduced hypoxic-ischemic brain
injury in adult mice while knockout exacerbated the injury in neonatal mice, highlighting
age-dependent effects. Indeed, it has been shown that CypD levels in brain mitochondria
increase with age, leading to dysfunction of F-ATP synthase [75]. Again, our results indicate
that maintenance of mitochondrial homeostasis, by the absence of CypD, following TBI
is protective.

We have previously demonstrated that continuous infusion of CsA for up to 7 days
produces greater protection than a single dose administration of CsA following TBI [33].
Moreover, we have recently shown that the earlier the treatment with CsA is initiated
following TBI the greater the neuroprotection that is afforded [35]. Taken together these
results suggest that the mechanisms underlying cell death following TBI are an on-going
process and that early intervention provides the greatest benefit. Past research demon-
strated that NIM811 and CsA are equally as effective at providing neuroprotection in WT
mice [47]. Here, we compared our own findings to these previously studies [33,35] by ex-
amining cortical tissue sparing also at 7 days post-injury. We show that CsA administration
provides additive neuroprotection via non-CypD targeted biological pathway (Figure 5).

CypD knockout was shown to protect neurons against glutamate triggered cell death
in vitro [55]. Importantly, the protection was dependent on the severity of the glutamate
insult such that protection was not observed following the more severe insult. This may
indicate that following more severe insults that CypD independent cell death mechanisms
are more prevalent. In unpublished data from our lab, we showed that following a mild
(0.5 mm) CCI TBI there is modest neuroprotection.

There are several limitations to this study. Only male mice were used to examine
the effects of genetic knockout of CypD after TBI. Growing evidence suggests sex-specific
responses to TBI [76]; therefore, future studies should examine sex in the context of CypD-
dependent cell death after experimental brain injury. Further, breeding of CypD KO animals
posed a challenge, which resulted in low n/group for comparison to WT. Of course, it
would be interesting to investigate the role of CypD in other models of experimental TBI,
such as a mild closed head injury model [60]. Finally, the only cognitive task utilized was
the MWM. We recognize that other cognitive assays, such as novel object recognition, could
be more sensitive to deficits and future studies should incorporate additional assays to
fully examine the role of CypD in TBI-induced cognitive dysfunction.

Although knockout of CypD leads to significant neuroprotection, we observed that this
does not lead to cognitive restoration. In fact, CypD KO animals display greater cognitive
impairment. This could be explained by impaired calcium signaling in the absence of
CypD or mPT as a necessary process to the recovery after TBI, whereby mitochondrial
calcium scavenging and removal of dysfunction cells could result in overall neural network
function. Nevertheless, our results suggest that CypD plays a prominent role in cell death
mechanisms after TBI, as CypD ablation resulted in neuroprotection after TBI. This is
the first study to report the effects of CypD knockout in a model of TBI and we showed
that the lack of CypD significantly decreased neuronal damage associated with TBI. Thus,
CypD-dependent cell death is critically involved in TBI, supporting the hypothesis that
CypD is a valid target for neuroprotection following TBI.
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