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In this paper we approach the construction of the both upper and lower tolerance limit in
a two-way nested model with mixed effects in balanced data. In order to do so we proceed as
Fonseca et al [3] did in order to derive the upper tolerance limit in a two-way nested model with
mixed effects in unbalanced data, by using the generalized confidence interval idea earlier used
by Krishnamoorthy and Mathew [4] to perform the construction of the upper tolerance limit in a
one-way nested model with mixed or random effects model in balanced and unbalanced data. The
underlying idea goes through the construction of an approximation for the quantile of the general
pivotal quantity for a convinient parametric function.
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1 Introduction
In many research areas (such as public health, environmental contamination, and
others) one deals with the necessity of using data to infer whether some proportion
(%) of a population of interest is (or one wants it to be) below and/or over some
threshold, through the computation of tolerance interval. The idea is, once a thresh-
old is given, one computes the tolerance interval or limit (which might be one or
two - sided bounded) and then to check if it satisfies the given threshold.

Since in this work we deal with the computation of one - sided tolerance interval,
for the two-sided case we recomend, for instance, Krishnamoorthy and Mathew [5].

Krishnamoorthy and Mathew [4] performed the computation of upper tolerance
limit in balanced and unbalanced one-way random effects models, whereas Fonseca
∗Corresp. e-mail: adilson.dasilva@docente.unicv.edu.cv
†Corresp. e-mail: ad.silva@campus.fct.unl.pt
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et al [3] performed it based in a similar ideas but in a tow-way nested mixed or
random effects model. In case of random effects model, Fonseca et al [3] performed
the computation of such interval only for the balanced data, whereas in the mixed
effects case they dit it only for the unbalanced data. For the computation of two-
sided tolerance interval in models with mixed and/or random effects we recomend,
for instance, Sharma and Mathew [7].

The purpose of this paper is the computation of upper and lower tolerance in-
terval in a two-way nested mixed effects models in balanced data. For the case
of unbalanced data, as mentioned above, Fonseca et al [3] have already computed
upper tolerance interval. Hence, using the notions persented in Fonseca et al [3]
and Krishnamoorthy and Mathew [4], we present some results on the construction
of one-sided tolerance interval for the balanced case. Thus, in order to do so at first
instance we perform the construction for the upper case, and then the construction
for the lower case.

2 Nested Model Design - Basics Notions
A statistical model is said to have a mixed effects if it consists of a mixture of fixed
and random effects factors. Such a model is said to be a two-way nested one, if it
consists of two factors, say A and B, where levels of factor B are nested within levels
of the factor A. There is many publications abording nested models. For example,
in Ukaegbu and Smaila [8], the authors deal with the problem of performing the
ANOVA for the thee-way nested model, i.e., with thee factors nested. More over,
for complete notion about nested models we suggest Montegomery [6] and/or Dowdy
and Chilko [2].

The effects associated with any factor in a nested model are the effects which
the levels have on the interest response variable.

Let suppose that the factor B has bi, i = 1, ..., a, levels nested within the ith level
of the factor A. Thus, the two-way nested mixed effects model is given by

Yijk = µ+ τi + βj(i) + εk(ij), k = 1, . . . , nij, j = 1, . . . , bi, (1)

where µ is the general mean, τi is considered to be the fixed effect term due
to the ith, i = 1, ..., a, level of the factor A, βj(i), j = 1, ..., bi, the random effect
term due to the jth level of the factor B nested within the ith level of the factor A,
and εk(ij) the error term associated to the observed value Yijk. It is assumed that
βj(i) ∼ N(0, σ2

β), and εk(ij) ∼ N(0, σ2
ε ) are independent from each other.

Recalling that our model considers the data to be balanced, that is, bi = b,
i = 1, . . . , a, and nij = n, i = 1, . . . , a, j = 1, . . . , b, and letting Ȳij• = 1

n

∑n
k=1 Yijk,

the sums of squares are given by

SSβ =
a∑
i=1

b∑
j=1

(
Ȳij• −

1

b

b∑
j=1

Ȳij•

)2

and SSε =
a∑
i=1

b∑
j=1

n∑
k=1

(Yijk − Ȳij•)2.

Now (Ȳij•, SSβ and SSε are independent distributed variables.) we define the
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independent variables

Uε =
SSε
σ2
ε

and Uβ =
SSβ

σ2
β + n−1σ2

ε

.

Thus (a generalization of the Theorem 5.3.1 of Casella and Berger [1] together with
Fonseca et al [3] may be very useful here!)

Uβ ∼ χ2
a(b−1) and Uε ∼ χ2

ab(n−1),

with χ2
r the chi-square distribution with r degrees of freedom.

In this paper we approach the two following problems:

1) The construction of both upper and lower tolerance limit for the observable
random variable Y , where Y ∼ N(µi, σ

2
β + σ2

ε ), with µi = µ+ τi;

2) The construction of both upper and lower tolerance limit for the unobserved
“true effect” Y ∗ = µi + τi + βj(i) ∼ N(µi, σ

2
β).

The next section is addressed to the construction of upper tolerance limit for
both cases Y ∼ N(µi, σ

2
β + σ2

ε ) and Y ∗ = µi + τi + βj(i) ∼ N(µi, σ
2
β). The first one

is the subsection of 3.1, and the later one of subsection 3.2.

3 Upper Tolerance Limit
Let Y = {Yij1, . . . , Yijk} be a sample of the random variable Y ∼ N(µi, σ

2
β + σ2

ε ). A
statistic C is a (p, γ)-upper tolerance limit for Y , if the equation

PY[PY (Y ≤ C‖Y) ≥ p] = γ ⇐⇒ PY[qp ≤ C] = γ, (2)

holds for 0 < γ < 1, and 0 < p < 1, where qp is the pth quantile of N(µi, σ
2
β + σ2

ε ).
Thus, clearly, C is also a γ-upper confidence limit for the quantile qp. More over, C
is a γ-upper confidence limit for the parametric function

µi + zp

(√
σ2
β + σ2

ε

)
,

where zp denotes the pth quantile of the N(0, 1) (the standard normal distribution),
as we are about to show:

PY[PY (Y ≤ C‖Y) ≥ p] = γ ⇐⇒

PY

PY
 Y − µi√

σ2
β + σ2

ε

≤ C − µi√
σ2
β + σ2

ε

‖Y

 ≥ p

 = γ ⇐⇒

PY

zp ≤ C − µi√
σ2
β + σ2

ε

 = γ ⇐⇒

PY

[
µi + zp

(√
σ2
β + σ2

ε

)
≤ C

]
= γ,
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where zp is the standard normal distribution ith quantile, since Y−µi√
σ2
β+σ

2
ε

∼ N(0, 1).

Now, with out lost of generality, let Y = {Yij1, . . . , Yijk} be a sample of the
random variable Y ∗ ∼ N(µi, σ

2
β). Then, proceeding identically to the case of

Y ∼ N(µi, σ
2
β + σ2

ε ), since the unobserved “true effect” variable Y ∗ ∼ N(µi, σ
2
β),

the

(p, γ)-upper tolerance limit for Y ∗

is simply the

γ-upper confidence limit for the parametric function µi + zpσβ.

3.1 The Observable Random Variable Y ∼ N(µi, σ
2
β + σ2ε )

Here our concern is the the construction of the upper tolerance limit for Y ∼
N(µi, σ

2
β + σ2

ε ).
Let Wi = µ̂i = 1

b

∑b
j=1 Ȳij•. Then easy computation shows that

Wi ∼ N

(
µi,

σ2
β + n−1σ2

ε

b

)
,

and

Z =

√
b(Wi − µi)√
σ2
β + n−1σ2

ε

∼ N(0, 1).

Since a (p, γ)-upper tolerance limit for Y ∼ N(µi, σ
2
β + σ2

ε ) is simply a γ-upper

confidence limit for the parametric function µi + zp

(√
σ2
β + σ2

ε

)
, with zp the pth

quantile of the standard normal distribution, we consctruct an aproximation for the
γth quantile, say L1p(γ), for the general pivotal quantity, say L1p, for the function
µi + zp

(√
σ2
β + σ2

ε

)
to obtain an approximation for such γ-upper confidence limit

and, consequentely, for such a (p, γ)-upper tolerance limit for Y .

Definition 3.1. Let x = {x1, . . . , xn} be an observed value of any random vector
X = {X1, . . . , Xn}, n > 0, whose distribution depends on the parameter of interest
θ and a nuisance parameter η. A random function T (X;x, θ, η), which is a function
of the random vector X, its observed value x, and the parameters θ and η, is said
to be a generalized pivotal quantity for the parameter of interest θ, if it satisfies the
following two conditions:

• For fixed value of x, the distribution of T (X;x, θ, η) is free of unknown pa-
rameters.

• The observed value of T (X;x, θ, η), which is obtained by replacing X with its
observed value x, is simply the parameter of interest θ.
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The definition of a general pivotal quantity we presented above may be founded
(in a slightly different way) at Krishnamoorthy and Mathew [5].

Let wi, ssβ, and ssε be the observable values of the random variables Wi, SSβ,
and SSε, respectively (or (wi, ssβ, ssε) the observed vector of the random vector
(Wi, SSβ, SSε)). Now, let L1p be given by

L1p = wi −
√
b(Wi − µi)√

SSβ

√
ssβ
b

+ zp

[(
σ2
β + n−1σ2

ε

)
SSβ

ssβ +
(
1− n−1

) σ2
ε

SSε
ssε

] 1
2

(3)

= wi −
√
b(Wi − µi)√

SSβ

√
ssβ
b

+ zp

[
ssβ
Uβ

+
(
1− n−1

) ssε
Uε

] 1
2

(4)

= wi +

√
ssβ

ab(b− 1)

−Z + zp

(
b+ a(b− 1) ssε

ssβ

[Uβ/a(b−1)]

[Uε/b(1−n−1)]

) 1
2√

Uβ/a(b− 1)

 (5)

= wi +

√
ssβ

ab(b− 1)


−Z + zp

(
b+ a(b−1)

ab(n−1)
ssε
ssβ

[Uβ/a(b−1)]b(1−n−1)
[Uε/ab(n−1)]

) 1
2

√
Uβ/a(b− 1)

 (6)

= wi +

√
ssβ

ab(b− 1)


Z + zp

(
b+

(b−1)(1−n−1)
(n−1)

ssε
ssβ
F

) 1
2

√
Uβ/a(b− 1)

 (7)

≈d wi +

√
ssβ

ab(b− 1)


Z + zp

(
b+

(b−1)(1−n−1)
(n−1)

ssε
ssβ
Fa(b−1);ab(n−1)(θ)

) 1
2

√
Uβ/a(b− 1)

 (8)

where F =
[Uβ/a(b−1)]

[Uε/ab(n−1)]
has a F (Fisher) distribution with (a(b−1), ab(n−1)) degrees

of freedon (df ), θ = 1−γ and Fr;s(m) denotes the mth quantile of the F distribution
with (r, s) df. Looking at the equation (3) one sees that replacing the random
variables Wi, SSβ, and SSε with their observed values wi, ssβ, and ssε, respectively,
the resulting value is precisely µi + zp

(√
σ2
β + σ2

ε

)
, that is, the parameter of the

interest, and looking equation (4) one sees that given a sample (wi, ssβ, and ssε are
fixed) L1p is free of unknown parameters. So we just showed that L1p is a general
pivotal quantity.

Remark 3.1. Let M ∼ N(0, 1), and V = −M . Then, since

E(V ) = −E(M) = 0 and V ar(V ) = (−1)2V ar(M) = 1,

V ∼ N(0, 1).

This Remark justifies the transition from the equation (6) to the equation (7).

5



Remark 3.2. The transition from the equation (7) to the approximation (8) is due
to the replacement of the F distribution with its (1−γ)th quantile. Indeed, according
to Krishnamoorthy and Mathew [5], the idea is to replace F with a suitable quantile
and for that, the other option would be its γth quantile, but by doing so, the γth
quantile of the term

√
ssβ

ab(b− 1)


Z + zp

(
b+

(b−1)(1−n−1)
(n−1)

ssε
ssβ
Fa(b−1);ab(n−1)(θ)

) 1
2

√
Uβ/a(b− 1)


with Fa(b−1);ab(n−1)(θ) replaced with Fa(b−1);ab(n−1)(γ) is much larger than the γth
quantile of the original random variable

√
ssβ

ab(b− 1)


Z + zp

(
b+

(b−1)(1−n−1)
(n−1)

ssε
ssβ
F

) 1
2

√
Uβ/a(b− 1)

 .
Thus, as we see, it is necessary to replace F with a quantity smaller than Fa(b−1);ab(n−1)(γ).
Furthermore, according to Krishnamoorthy and Mathew [5], simulations show that
Fa(b−1);ab(n−1)(θ) is the appropriate choice.

Now, once Z ∼ N(0, 1), and Uβ ∼ χ2
a(b−1), the term

T1p =


Z + zp

(
b+

(b−1)(1−n−1)
(n−1)

ssε
ssβ
Fa(b−1);ab(n−1)(θ)

) 1
2

√
Uβ/a(b− 1)


(in approximation (8) of the L1p development) has a noncentral t (student) distribu-

tion with a(b−1) df and the noncentrality parameter zp
(
b+

(b−1)(1−n−1)
(n−1)

ssε
ssβ
Fa(b−1);ab(n−1)(θ)

)1/2

.

Then, an approximation for the γth quantile of L1p, say L1p(γ), is

L1p(γ) = wi + ta(b−1);γ(δ1)

√
ssβ

ab(b− 1)
, (9)

with

δ1 = zp

(
b+

(b− 1) (1− n−1)

(n− 1)

ssε
ssβ

Fa(b−1);ab(n−1)(θ)

)1/2

, (10)

where tr;s(m) denotes the sth quantile of a noncentral t distribution with r df, and
the noncentrality parameter m.
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3.2 The Unobserved “True Effects” Variable Y ∗ ∼ N(µi, σ
2
β)

Now our concern is the construction of an upper tolerance limit for the unobserved
“true effect” Y ∗ = µi + τi + βj(i) ∼ N(µi, σ

2
β).

As proven in section 3, it is easily shown that the (p, γ)-upper tolerance limit
for Y ∗ is simply the γ-upper confidence limit for the parametric function µi + zpσβ,
with zp the pth quantile of the standard normal distribution. Hence, we consider
the following general pivotal quantity for the parametric function µi + zpσβ:

L2p = wi −
√
b

(
Wi − µi√

SSβ

)√
ssβ
b

+ zp

[
σ2
β + n−1σ2

ε

SSβ
ssβ − n−1 σ

2
ε

SSε
ssε

] 1
2

+

(11)

= wi −
√
b

(
Wi − µi√

SSβ

)√
ssβ
b

+ zp

[
ssβ
Uβ
− n−1 ssε

Uε

] 1
2

+

(12)

= wi +

√
ssβ

ab(b− 1)

Z + zp

{
b+ a(b− 1) ssε

ssβ

[Uβ/a(b−1)]

[Uε/(−n−1)]

} 1
2

+√
Uβ/a(b− 1)

 (13)

= wi +

√
ssβ

ab(b− 1)

Z + zp

{
b− n−1 (b−1)

b(n−1)
ssε
ssβ
F
} 1

2

+√
Uβ/a(b− 1)

 (14)

≈d wi +

√
ssβ

ab(b− 1)

Z + zp

{
b− n−1 (b−1)

b(n−1)
ssε
ssβ
Fa(b−1);ab(n−1)(θ)

} 1
2

+√
Uβ/a(b− 1)

 ,(15)
where c+ = max(0, c), and all parameters as defined above at section 3.

Proceeding in some way as in the section 3, for the term

T2p =

Z + zp

{
b− n−1 (b−1)

b(n−1)
ssε
ssβ
Fa(b−1);ab(n−1)(θ)

} 1
2

+√
Uβ/a(b− 1)


of the approximation (15) (the L2p approximation), since Z ∼ N(0, 1) and Uβ ∼
χ2
a(b−1),

T2p ∼ ta(b−1)(δ2),

with

δ2 = zp

{
b− n−1 (b− 1)

b(n− 1)

ssε
ssβ

Fa(b−1);ab(n−1)(θ)

} 1
2

+

.

That is, T2p as a t distribution with a(b− 1) df, and the noncentrality parameter δ2.
Thus, an aproximation, say L2p(γ), for the the (p, γ)-upper tolerance limit is

given by
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L2p(γ) = wi + ta(b−1);γ(δ2)

√
ssβ

ab(b− 1)
. (16)

with

δ2 = zp

{
b− n−1 (b− 1)

b(n− 1)

ssε
ssβ

Fa(b−1);ab(n−1)(θ)

} 1
2

+

. (17)

4 Lower Tolerance Limit
Let Y = {Yij1, . . . , Yijk} be a sample of the random variable Y ∼ N(µi, σ

2
β + σ2

ε ). A
statistic D is a (p, γ)- lower tolerance limit for Y , if

PY[PY (Y ≥ D‖Y) ≥ p] = γ ⇐⇒ PY[D ≤ q1−p] = γ, (18)

holds for 0 < γ < 1, and 0 < p < 1, where q1−p is the (1-p)th quantile of N(µi, σ
2
β +

σ2
ε ). Like at the section 3, it is readily shown that D is a γ-lower confidence limit for

the parametric function µi + z1−p
√
σ2
β + σ2

ε , where z1−p denotes the (1-p)th quantile
of the N(0, 1), as we are about to show:

PY[PY (Y ≥ D‖Y) ≥ p] = γ ⇐⇒

PY

PY
 Y − µi√

σ2
β + σ2

ε

≥ D − µi√
σ2
β + σ2

ε

‖Y

 ≥ p

 = γ ⇐⇒

PY

z1−p ≥ D − µi√
σ2
β + σ2

ε

 = γ ⇐⇒

PY

[
D ≤ µi + z1−p

√
σ2
β + σ2

ε

]
= γ,

where z1−p is the standard normal distribution, since Y−µi√
σ2
β+σ

2
ε

∼ N(0, 1).

Now, again with out lost of generality, let Y = {Yij1, . . . , Yijk} be a sample of the
random variable Y ∗ ∼ N(µi, σ

2
β). Then, proceeding in a simillar way as at section

3, one concludes that the

(p, γ)-lower tolerance limit for the “true effects” variable
Y ∗ = µi + τi + βj(i) ∼ N(µi, σ

2
β)

is simply the

γ-lower confidence limit for the parametric function µi + z1−pσβ.
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4.1 The Observable Random Variable Y ∼ N(µi, σ
2
β + σ2ε )

This section is devoted to the construction of the (p, γ)-lower tolerance limit for the
random variable Y ∼ N(µi, σ

2
β +σ2

ε ). In order to do so, we consider a general pivotal

quantity, say L3p, for the parametric function µi + z1−p
√
σ2
β + σ2

ε and then, like as
at the section 3.1, we construct an appoximation, say L3p(γ), to its γth quantile.

Following the procedure performed at the section 3.1,

L3p = wi −
√
b(Wi − µi)√

SSβ

√
ssβ
b

+ z1−p

[(
σ2
β + n−1σ2

ε

)
SSβ

ssβ +
(
1− n−1

) σ2
ε

SSε
ssε

] 1
2

= wi −
√
b(Wi − µi)√

SSβ

√
ssβ
b

+ z1−p

[
ssβ
Uβ

+
(
1− n−1

) ssε
Uε

] 1
2

(19)

≈d wi +

√
ssβ

ab(b− 1)


−Z + z1−p

(
b+

(b−1)(1−n−1)
(n−1)

ssε
ssβ
Fa(b−1);ab(n−1)(θ)

) 1
2

√
Uβ/a(b− 1)

(20)

= wi −
√

ssβ
ab(b− 1)


Z + zp

(
b+

(b−1)(1−n−1)
(n−1)

ssε
ssβ
Fa(b−1);ab(n−1)(θ)

) 1
2

√
Uβ/a(b− 1)

 (21)

= wi −
√

ssβ
ab(b− 1)


Z + zp

(
b+

(b−1)(1−n−1)
(n−1)

ssε
ssβ
Fa(b−1);ab(n−1)(θ)

) 1
2

√
Uβ/a(b− 1)

 , (22)

and therefore, proceeding in same way, the approximation referred to at the previous
paragraph is given by

L3p(γ) = wi − ta(b−1);γ(δ3)

√
ssβ

ab(b− 1)
, (23)

with

δ3 = zp

(
b+

(b− 1) (1− n−1)

(n− 1)

ssε
ssβ

Fa(b−1);ab(n−1)(θ)

)1/2

, (24)

where tr;s(m) denotes the sth quantile of a noncentral t distribution with r df, and
the noncentrality parameter m, with the random variablesWi, SSβ, SSε, Z, Uε, and
Uβ, and the quantities zp, wi, ssβ, ssε, Fr;s(m), and θ defineds at section 3. L3p is
clearly a general pivotal quantity as shown at section 3.

The transition from approximation (20) to the equation (21) in the L3p develop-
ment is due to the standard normal distribution symmetry around 0.

9



4.2 The Unobserved “True Effects” Variable Y ∗ ∼ N(µi, σ
2
β)

Here our concern is the construction of an lower tolerance limit for the unobserved
“true effect” Y ∗ = µi + τi + βj(i) ∼ N(µi, σ

2
β).

As proven at the section 4.1, it is easily shown that the (p, γ)-lower tolerance limit
for Y ∗ is simply the γ-lower confidence limit for the parametric function µi+z1−pσβ,
with z1−p the (1-p)th quantile of the standard normal distribution. Hence, the
following quantity (L4p) is a general pivotal quantity for the parametric function
µi + zpσβ:

L4p = wi −
√
b

(
Wi − µi√

SSβ

)√
ssβ
b

+ z1−p

[
σ2
β + n−1σ2

ε

SSβ
ssβ − n−1 σ

2
ε

SSε
ssε

] 1
2

+

(25)

= wi −
√
b

(
Wi − µi√

SSβ

)√
ssβ
b

+ z1−p

[
ssβ
Uβ
− n−1 ssε

Uε

] 1
2

+

(26)

= wi +

√
ssβ

ab(b− 1)

Z + z1−p

{
b+ a(b− 1) ssε

ssβ

[Uβ/a(b−1)]

[Uε/(−n−1)]

} 1
2

+√
Uβ/a(b− 1)

 (27)

= wi +

√
ssβ

ab(b− 1)

Z + z1−p

{
b− n−1 (b−1)

b(n−1)
ssε
ssβ
F
} 1

2

+√
Uβ/a(b− 1)

 (28)

≈d wi +

√
ssβ

ab(b− 1)

Z + z1−p

{
b− n−1 (b−1)

b(n−1)
ssε
ssβ
Fa(b−1);ab(n−1)(θ)

} 1
2

+√
Uβ/a(b− 1)

(29)

= wi −
√

ssβ
ab(b− 1)

Z + zp

{
b− n−1 (b−1)

b(n−1)
ssε
ssβ
Fa(b−1);ab(n−1)(θ)

} 1
2

+√
Uβ/a(b− 1)

 , (30)
where c+ = max(0, c), and all parameters as defined at section 3.

Recalling from the section 3.2 that the term

T4p =

Z + zp

{
b− n−1 (b−1)

b(n−1)
ssε
ssβ
Fa(b−1);ab(n−1)(θ)

} 1
2

+√
Uβ/a(b− 1)


of equation (30) (of the L4p development) has a t distribution with a(b− 1) df, and
the noncentrality parameter δ4, i.e,

T4p ∼ ta(b−1)(δ4),

with δ4 = zp

{
b− n−1 (b−1)

b(n−1)
ssε
ssβ
Fa(b−1);ab(n−1)(θ)

} 1
2

+
, an aproximation, say L4p(γ), for

the the (p, γ)-lower tolerance interval is given by,
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L4p(γ) = wi − ta(b−1);γ(δ4)

√
ssβ

ab(b− 1)
. (31)

with

δ4 = zp

{
b− n−1 (b− 1)

b(n− 1)

ssε
ssβ

Fa(b−1);ab(n−1)(θ)

} 1
2

+

. (32)

5 Concluding Remarks
In spite of the problem of deriving the one-sided tolerance limit presented here and
so at Fonseca et al [3], and Krishnamoorthy and Mathew [4], by using the generalized
confidence limit, confidence limit and tolerance limit solve different problems in the
statistical inferences context. The first one only provides bounds for unknowns
scalar parameters of the population such as its mean, its variance, its quantile, its
tail probability, etc, having the sample available. The later one, the tolerance limit,
provides bounds for the entire populations, based on populations data, i.e., such limit
is expected to contain a specified proportion or more of the sample population. Both
tolerance limit and confidence limit regions are similarly defined for a multivariate
population.

The approximation for the upper tolerance limit for both the observed random
variable Y and the unobserved true effects Y ∗ presented here have a very satisfactory
performance in the context of unbalanced data as shown by Fonseca et al [3] by
numerically investigating both of them. In this sense, and once the lower tolerance
limit we have constructed here is based on the same generalized confidence limit
idea we do not investigate its numerical performance once it would be exactly the
same one.
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