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Abstract

Forecasting real-world quantities with basis on information from textual descriptions has re-

cently attracted significant interest as a research problem, although previous studies have

focused on applications involving only the English language.

This document presents an experimental study on the subject of making predictions with tex-

tual contents written in Portuguese, using documents from three distinct domains. I specifically

report on experiments using different types of regression models, using state-of-the-art feature

weighting schemes, and using features derived from cluster-based word representations.

Through controlled experiments, I have shown that prediction models using the textual infor-

mation achieve better results than simple baselines such as taking the average value over the

training data, and that richer document representations (i.e., using Brown clusters and the Delta-

TF-IDF feature weighting scheme) result in slight performance improvements.

Keywords: Text-Driven Forecasting, Supervised Learning of Regression Models, Word Clus-

tering, Feature Engineering for NLP Applications
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Sumário

A
previsão de quantidades do mundo real com base em informação proviniente de descrições

textuais atraiu recentemente um interesse significativo enquanto problema de investigação,

embora os estudos anteriores na área se tenham concentrado em aplicações que envolvem

apenas textos no idioma Inglês.

Este documento apresenta um estudo experimental sobre a realização de previsões com base

em conteúdos textuais escritos em Português, envolvendo o uso de documentos associados a

três domı́nios distintos. Eu relato especificamente experiências utilizando diferentes tipos de

modelos de regressão, usando esquemas de pesagem para as caracterı́sticas do actual estado

da arte, e usando caracterı́sticas derivadas de representações para as palavras baseadas no

agrupamento automático das mesmas.

Através de experiências controladas, desmonstrei que modelos preditores usando informação

textual atingem melhores resultados, quando comparados com abordagens simples tais como

realizar as previsões com base no valor médio dos dados de treino. Demonstrei ainda que

as representações de documentos mais ricas (ou seja, usando o algoritmo de Brown para o

agrupamento automático de palavras, e o esquema de pesagem das caracterı́sticas denomindo

Delta-TF-IDF) resultam em ligeiras melhorias no desempenho.

Palavras Chave: Previsões com Base em Texto, Modelos de Regressão, Agrupamento Au-

tomático de Palavras Semelhantes, Engenharia de Caracteristicas para Aplicações em PLN
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Chapter 1

Introduction

Text-driven forecasting has recently attracted a significant interest within the Information Ex-

traction (IE), Information Retrieval (IR), Machine Learning (ML) and Natural Language Pro-

cessing (NLP) international communities (Radinsky, 2012; Smith, 2010). Well-known examples

of previous studies include using textual contents for making predictions about stock or market

behavior (Bollen et al., 2011; Lerman et al., 2008; Luo et al., 2013; Schumaker & Chen, 2009;

Tirunillai & Tellis, 2012), sports betting market results (Hong & Skiena, 2010), product and ser-

vice sales patterns (Chahuneau et al., 2012; Joshi et al., 2010), government elections, legislative

activities and general political leans (Dahllöf, 2012; Yano et al., 2012), or general public opin-

ion polls (Mitchell et al., 2013; O’Connory et al., 2010; Schwartz et al., 2013). However, most

previous work in the area has focused on applications over the English language.

My MSc thesis addressed the task of making predictions with textual contents written in Por-

tuguese, using documents from three distinct domains, namely (i) descriptions for hotels in Por-

tugal collected from a well-known Web portal, associated with average room prices in the high

and low seasons for tourists, (ii) descriptions for restaurants and the corresponding menus, also

collected from the same Web portal, associated with the average meal prices, and (iii) movie

reviews collected from a specialized web site, together with the corresponding box-office results

for the first week of exhibition, as available from Instituto do Cinema e do Audiovisual. My re-

search focused on the usage of machine learning methods from the current state-of-the-art (e.g.,

Random Forest regression, or linear regression with Elastic Net regularization), as implemented

in an open source Python machine learning library named scikit-learn1. Besides the issue of

Portuguese contents, my study also introduces some technical novelties in relation to most pre-

vious work in the area, namely by experimenting with (i) state-of-the-art Information Retrieval

1http://scikit-learn.org

1

http://scikit-learn.org
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feature weighting schemes such as Delta-TF-IDF or Delta-BM25, and (ii) features derived from

cluster-based word representations such as those provided by Brown’s clustering algorithm.

This chapter presents the main objectives of my MSc thesis, describing the research hypothesis

and the evaluation methodology that I used in my work, as well as the main contributions that

were achieved. The chapter ends with a description for the organization of this dissertation.

1.1 Thesis Proposal and Methodology

My MSc research project attempted to validate the claim that text-driven forecasting problems

can also be effectively handled with basis on contents written in Portuguese.

I specifically tried to answer several questions regarding the problem of text-driven forecasting,

such as those referenced below:

• Is it possible to get a good predictive performance with texts written in Portuguese? Are the

results in this case comparable against those achieved for the English language?

• How do models based on ensembles of trees compare against linear regression models

with state-of-the-art regularization schemes, on these particular tasks?

• How do different textual features (e.g., words or cluster-based features derived from word

co-occurrences and representing latent topics) affect the performance of the models?

• Can a better performance be achieved through state-of-the-art feature weighting approaches

such as Delta-TF-IDF or Delta-BM25? And how can these feature weighting methods be

adapted to regression problems?

In order to answer the aforementioned questions, I used a methodology based on controlled

experiments with textual resources associated to real-world quantities. I implemented a software

framework supporting the realization of experiments, and I specifically collected textual contents

from three distinct domains, namely:

• Descriptions for hotels in Portugal from a well-known Web portal named Lifecooler, associ-

ated to average room prices in the high and low seasons for tourists;

• Descriptions for restaurants and the corresponding menus from the same Web portal in the

previous item, associated to the average meal prices;
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• Movie reviews from a Web site named Portal do Cinema, together with official numbers

for the corresponding box-office results for the first week of exhibition, as available from

Instituto do Cinema e do Audiovisual.

Using the previous three datasets, I performed experiments using different types of regression

models, different feature weighting schemes, and different feature sets. In order to evaluate the

quality of the results, so as to compare the different forecasting models, I used a 10-fold cross

validation technique, together with common evaluation metrics such as the Mean Absolute Error

(MAE) and the Root Mean Squared Error (RMSE).

There are several software frameworks that can support the realization of experiments with ma-

chine learning algorithms. For this work, I used the implementations of state-of-the-art learning

methods that are available in an open source Python machine learning library named scikit-learn.

This package was thus integrated with the rest of the software that I developed.

1.2 Contributions

The main contributions resulting from this work are as follows:

• I created a software framework that includes programs for collecting data from the Web and

for data processing, as well as methods for computing different feature weighting schemes,

and for feature analysis through visual inspection. This software framework can be now

exploited in other research studies focusing on text-driven forecasting, adapting it to the

domain being considered.

• Previous text-driven forecasting studies have focused on applications involving only tex-

tual contents written in English. This thesis introduces the novelty of using textual contents

written in Portuguese. I specifically used Portuguese datasets that were collected from well-

know web sites, such as Lifecooler and Portal do Cinema. The obtained results show that

it is possible to address different types of forecasting tasks with texts written in Portuguese.

In all three domains, models using features derived from the text have significantly outper-

formed baselines such as predicting the average value.

• Previous work in the context of text-driven forecasting has mostly used linear regression

models. In my work, I compared linear regression models with models based on ensem-

bles of trees, such as Random Forests for regression and Gradient Boosted Regression

Trees. I also experimented with linear regression models using different types of model

regularization approaches. The best results were achieved with linear regression using the
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Elastic Net regularization method. The Random Forest approach achieved slightly inferior

results, and this was the best approach in the case of ensemble learning methods.

• I also experimented with features derived from cluster-based word representations. I specif-

ically used an open-source implementation of Brown’s word clustering algorithm. To induce

the representations of words, I used Portuguese texts corresponding to a very large set of

phrases that combines the CINTIL corpus of modern Portuguese, with news articles pub-

lished in the Público newspaper. For instance in the case of hotel high season prices, when

using the Elastic Net regularization approach, the combination of the textual terms and the

word clusters achieved slightly better results, when compared with a model that used just

the textual terms. However, in some of our experiments, using word clusters actually lead

worse results.

• My research introduced the usage of state-of-the-art feature weighting schemes, such as

Delta-BM25 or Delta-TF-IDF, comparing their performance against more traditional feature

weighting functions. The richer representation is perhaps Delta-BM25, although the ob-

tained results with Delta-TF-IDF scheme, or with TF-IDF alone, were very similar in terms

of the prediction accuracy.

It is also worth mentioning that this dissertation was summarized in a paper that was submitted

to a journal focusing on the automatic processing of Iberian languages, called Linguamática1.

A second shorter paper, describing initial experiments with applications to the Portuguese lan-

guage, was also accepted at the 3rd Spanish Conference on Information Retrieval (CERI 2014).

1.3 Document Organization

The rest of this dissertation is organized as follows:

• Chapter 2 presents previews work related with the task of text-driven forecasting, describing

the datasets, the techniques used by the different authors, and the main results that were

reported on the corresponding articles.

• Chapter 3 details the main contributions from the research made on the context of this the-

sis, presenting the regression techniques that were considered, as well as the approaches

taken for representing the textual contents as feature vectors.

• Chapter 4 presents the experimental evaluation of the proposed methods. First, I present

the characteristics of each of the three domain datasets, as well as the distribution of the
1http://www.linguamatica.com/

http://www.linguamatica.com/
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values to be predicted. Then, I present the results achieved in my experiments, comparing

the results across different types of models, with different feature weighting schemes, and

with different features for representing the instances.

• Chapter 5 summarizes the main conclusions of this work. It presents an overview on the

contributions, and provides some guidelines for work that can be developed in the future,

with basis on the results achieved through this thesis.





Chapter 2

Previous and Related Work

I
n this chapter, I present the most relevant previous work that addressed challenges related to

text-driven forecasting. Particular emphasis is given to the previous work developed by Noah

Smith and his colleagues from the Language Technology Institute at Carnegie Mellon University.

For each of the considered previous studies, I describe the datasets, the techniques used by the

authors, as well as the main results that were reported on the corresponding articles.

2.1 Work in Text-Driven Forecasting from Noah Smith et al.

Taking inspiration from recent research on sentiment analysis (Pang & Lee, 2008), in which ma-

chine learning techniques are used to interpret text based on the subjective attitude of the author,

Noah Smith and his colleagues have addressed several related text-mining tasks, where textual

documents are interpreted to predict some extrinsic, real-valued outcome of interest, that can be

observed in non-text data. This group is perhaps the one with the highest level of activity in this

specific research problem. A relatively recent white paper, summarizing the work that these re-

searchers have been developing, has been published online by Smith (2010). Specific examples

for the text-driven forecasting tasks that these authors have addressed include:

1. The interpretation of the textual contents of an annual financial report published by a com-

pany to its shareholders, in order to try predicting the risk incurred by investing in that same

company, in the coming year (Kogan et al., 2009).

2. The interpretation of a movie critic’s textual review of a film, to try predicting the film’s box-

office success (Joshi et al., 2010).

7



8 CHAPTER 2. PREVIOUS AND RELATED WORK

3. Interpreting textual contents from political blog posts, to try predicting the response that

they will gather from the readers (Yano & Smith, 2010).

4. The interpretation of a day’s microblog feeds, in order to try predicting the public’s opinion

about a particular issue (O’Connory et al., 2010).

5. The interpretation of food writings, as given on restaurant descriptions, on restaurant menus,

and on customer reviews, to try predicting average meal prices and costumer rantings for

the restaurants (Chahuneau et al., 2012).

In all of the above cases, one aspect of the text’s meaning is observable from objective real-world

data, although perhaps not immediately at the time the text is published (i.e., respectively, we ob-

serve the return volatility, the gross revenue, the user comments, measurements from traditional

opinion polls, and average meal prices, in the five problems that were previously enumerated).

Smith (2010) proposed a generic approach to text-driven forecasting, based on fitting regression

models that leverage on features derived from the text, which are generally noisy and sparse. He

argued that text-driven forecasting, as a research problem, can be addressed through learning-

based methodologies that are neutral to different theories of language. At the same time, an

attractive property of this line of research is that the evaluation of different approaches can be

objective, inexpensive, and theory-neutral (Smith, 2010).

On what regards movie reviews and gross revenues, and summarizing the previous research

presented by Joshi et al. (2010), Smith mentioned that before a movie premiere, critics attend

advance viewings and publish textual reviews about them. Smith considered making predictions

about the box-office with basis on the text from these reviews, right after they are produced by

expert critics. He considered 1,351 movies released between January 2005 and June 2009. For

each movie, two kinds of data were obtained:

1. Descriptive metadata was gathered from Metacritic1, which includes the name, production

house, genre(s), scriptwriter(s), director(s), primary actors, and the country of origin, among

other information. Metadata from a website called The Numbers2 was also gathered, con-

taining information about the production budget, opening weekend gross revenues, and

number of screens on which the movie played in that weekend.

2. Reviews were extracted from the six review Web sites that appeared most frequently at

Metacritic, only considering reviews made before the release date of the movie.

1http://www.metacritic.com
2http://www.the-numbers.com

http://www.metacritic.com
http://www.the-numbers.com
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Smith described the application of linear regression modeling with state-of-the-art Elastic Net

regularization (Fridman et al., 2008; Zou & Hastie, 2005). The model was trained on 988 ex-

amples released from 2005-2007, and it was evaluated by forecasting the box-office revenue for

each film released between September 2008 and June 2009 (i.e., a total of 180 movies). The

authors calculated the Mean Absolute Error (MAE) on the test set, analysing the difference be-

tween the estimated revenue generated by a movie during its release weekend, and the actual

gross earnings, per screen. Models that use the text alone (MAE of $6,729) or in addition to

metadata (MAE of $6,725) were better than models using only the metadata (MAE of $7,313).

Text reduces the error by 8% compared to metadata, and by 5% against the strong baseline of

predicting box-office results with basis on the median value at movies from the training data.

Regarding the prediction of risk from financial reports, and with basis on previous research de-

veloped by Kogan et al. (2009), Smith said that predicting returns and profit is indeed a difficult

problem, given the risk (i.e., the volatility or standard deviation of returns, over a period of time).

In these experiments, the authors considered annual reports known as Form 10K, seeking to

predict volatility (i.e., an indicator to risk) in the year following a report’s publication.

A total of 26,806 Form 10K reports were collected, consisting of a quarter billion words, from

1996-2006. Financial data were also used to calculate the volatility for the firm that published

each report in two periods, namely in the twelve months V (−12) before the reports, and in the

twelve months V (+12) after. The aim was to predict the months after the reports, because volatility

shows strong autocorrelation. The authors used a linear regression model, based on support

vector regression (Drucker et al., 1997), to predict V (+12) from word and bigram frequencies

in Section 7 of the Form 10K reports, including V (−12) as a optional feature. Smith discussed

one set of experimental results where the volatility for 3,612 firms was predicted, following their

2003 Form 10K reports. The text-only model outperformed the models based on a baseline that

corresponds to the volatility in V (−12), in terms of the Mean Squared Error. Having models that

use the two types of data works even better.

In what concerns the interpretation of political blogs, Smith reported the main results of the pre-

vious research made by Yano & Smith (2010) and by Yano et al. (2009). The authors created

a dataset containing 79,030 blog posts extracted from five American political blogs in 2007 and

2008. For each post, the readers can leave their comments. Smith reported on studies in which

the authors tried to predict the individual (Yano et al., 2009) and aggregate (Yano & Smith, 2010)

behavior of blog readers, using hidden-variable models based on Dirichlet allocation. These

models produce not just a forecast, but clusters that tend to be topically coherent and that can

be quantitatively linked to the prediction. The authors also used the CommentLDA model (Yano
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et al., 2009) to predict the five most likely comments per new post. The model achieved a pre-

cision of 27.5%, which is a good result when compared to a Naı̈ve Bayes bag-of-words baseline

that achieved 25.1%. The model also discovered topics relating to religion, domestic policy, and

the Iraq war, among others. For comments with a number of words that is higher than the av-

erage, the authors built a model combining CommentLDA with Poisson regression (Armstrong &

Collopy, 1987). The precision of this model dropped slightly when compared to a Naı̈ve Bayes

bag-of-words model (72.5% to 70.2%), but recall significantly increased from 41.7% to 68.8%.

In his survey paper, Smith also summarized the research by O’Connory et al. (2010), connecting

measures of public opinion collected from polls, with population-level sentiment measured from

text. For this experiment, the authors used two kinds of data, namely text data from Twitter, and

public opinion survey data from multiple polling organizations. The messages on Twitter are short,

averaging 11 words per message. A total of 1 billion Twitter messages, posted over the years of

2008 and 2009, were collected by querying the Twitter API. For the ground-truth public opinion,

several measures of consumer confidence and political opinion were considered. The consumer

confidence refers to how optimistic the public feels, regarding the economy and their personal

finances. The main goal was assessing the population’s aggregate opinion on a topic, and the

results showed that a simple aggregate score, based on positive and negative sentiment word

frequencies, closely tracks a time series of tremendous interest to investors, i.e., the consumer

confidence. The tweets that mentioned the word economy derived the score, and one of the

specific indexes that the authors tried to predict was Gallup’s1 economy confidence index.

More recently, Chahuneau et al. (2012) explored the interactions in language use that occur

between restaurant menu prices, menu descriptions, and sentiments expressed in user reviews,

from data extracted from Allmenus.com2. From this website, the authors gathered menus for

restaurants in seven North American cities, namely Boston, Chicago, San Francisco, Los Angels,

New York, Washington D.C., and Philadelphia. Each menu contains a list of item names, with

optional textual descriptions and prices. Additional metadata (e.g., price range, location, and

ambiance) and user reviews (i.e., textual descriptions associated to ratings in a 5-star scale), for

most of the restaurants, were collected from a service named Yelp3.

The authors considered diverse forecasting tasks, such as predicting individual item prices, pre-

dicting price range for each restaurant, and jointly predicting median price and sentiment. For

the first two tasks, the authors used linear regression, and for the third task, they used logistic

regression models, all with l1 regularization when sparsity is desirable. For the evaluation, they

used metrics like the Mean Absolute Error (MAE) or the Mean Relative Error (MRE).

1http://www.gallup.com/poll/122840/gallup-daily-economic-indexes.aspx
2http://www.allmenus.com
3http://www.yelp.com

http://www.gallup.com/poll/122840/gallup-daily-economic-indexes.aspx
http://www.allmenus.com
http://www.yelp.com


2.1. WORK IN TEXT-DRIVEN FORECASTING FROM NOAH SMITH ET AL. 11

When predicting the price of each individual item on a menu, Chahuneau et al. (2012) used the

logarithm of the price as the output value, because the price distribution is more symmetric in

the log domain. The authors evaluated several baselines that make independent predictions for

each distinct item name. Two simple baselines use the mean and the median of the price, in

the training set and given the item name. A third baseline used a l1-regularized linear regression

model, that was trained with multiple binary features, one for each item name in the training data.

They performed a simple normalization of the item names for all the baselines, due to the large

variation of menu item names in the dataset (i.e., there were more than 400,000 distinct names).

The normalization consists in removing stop words compiled from the most frequent words in

the item names, and ordering the words in each item name lexicographically. This normalization

reduced the unique item name count by 40%.

The authors also used several feature-rich models based on regularized regression, considering

(i) binary features for each restaurant metadata property, (ii) n-grams in menu item names, with

n-grams corresponding to sequences of n tokens (i.e., with n ∈ {1, 2, 3}) from a given sentence,

(iii) n-grams in the menu item descriptions, and (iv) n-grams from mentions of menu items in

the corresponding reviews. When using the complete set of features, the authors report on a

final reduction of 50 cents in the MAE metric, and of nearly 10% in MRE, a good result when

compared with the baselines.

For the task of predicting the price range, the target values were integers from 1 to 4 that denote

the price of a typical meal from the restaurant. For the evaluation of this specific task, the authors

rounded the predicted values to integers, and used the Mean Absolute Error (MAE) and the

Accuracy evaluation metrics. They achieved a small improvement when comparing their linear

regression model with an ordinal regression model (i.e., a regression model that assigns, to

each instance, a ranking value between one and four, and that takes the ordering of the target

values into consideration (McCullagh, 1980)), measuring 77.32% of Accuracy against 77.15%,

for models with metadata features. They also used features from the complete text of the reviews,

besides the features used for the task of predicting the individual menu item prices. By combining

metadata and review features, the measured Accuracy exceed the value of 80%.

For the task of analysing the sentiments expressed in review texts, the authors trained a logistic

regression model, predicting the polarity for each review. The polarity of a review was determined

by the corresponding star rating, i.e., if it was above or below the average rating. The obtained

Accuracy was of 87%.

The authors also performed a fine-grained analysis of the sentiments expressed in the review

texts. The aim was to see the contribution of this particular aspect to the price range prediction
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Figure 2.1: Local sentiment and price estimates for two test sentences (Chahuneau et al., 2012).

task. Figure 2.1 shows the influence of each word, in a review sentence, on the predicted senti-

ment polarity (brown) and price range (yellow). The height of a bar is proportional to the sum of

the feature weights for each unigram, bigram, and trigram feature containing the token. The first

example presents a smooth change being expressed in terms of sentiment from the beginning

to the end of the sentence. The second example is perhaps more difficult for sentiment analysis,

since there are several positive words but the overall sentiment is essentially expressed in the

final part. The model noted the constant positive sentiment at the beginning of the phrase, but

also identified the fundamental negation, given the strong negative weight on bigrams such as

fresh but, left me, and me yearning. In both examples, the yellow bars show that the price is

reflected especially through isolated mentions of offerings and amenities, for instance through

n-grams like drinks, atmosphere, security, and good services.

Finally, Chahuneau et al. (2012) considered the task of predicting aggregate price and sentiment

for a restaurant. To do this, they tried to model, at the same time, the review polarity r and the item

price p. They calculated, for each restaurant in the dataset, the median item price and the median

star rating. A plane (r,p) was divided into four sections, with the average of these two values in

the dataset as the origin coordinates, namely $8.69 for p and 3.55 stars for r. This division

allowed the authors to train a 4-class logistic regression model, using the features extracted from

the reviews for each restaurant. The obtained Accuracy was in this case of 65%. The authors

also mapped every word that appears in some review text according to the two-dimensions, i.e.,

sentiment and price. They observed that there were word groups with different characteristics,

namely a group of words that appears in positive reviews of inexpensive restaurants, such as

very reasonable, and a group of words that are used in negative reviews of more expensive

restaurants, such as no flavor. These examples are represented in Figure 2.2.
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Figure 2.2: Top features for jointly predicting sentiment and price (Chahuneau et al., 2012).

2.2 Textual Predictors of Congress Bill Survival

A U.S. Congressional bill is a textual artifact that must first pass through a series of hurdles to

become a law, one of them being its consideration by a Congressional committee. In a related

previous study Yano et al. (2012) evaluated predictive models to tell whether a bill will survive

the congressional committee, starting with a strong baseline that uses features derived from the

bill’s sponsor and the committee it is referred to, and later augmenting the model with information

from the textual contents of bills. The authors have experimentally shown that models using

features derived from textual contents achieve a significant reduction in the prediction error, thus

highlighting the importance of bill substance.

More specifically, Yano et al. proposed to leverage on the formalism of logistic regression models,

considering l1 regularization, to assign one of two classes to each bill, telling if it will survive or

not. The authors collected the text of all bills introduced in the U.S. House of Representatives

from the 103rd to the 111th Congresses (i.e., from 1/3/1993 to 1/3/2011), from the Library of

Congress’s Thomas website1. In this corpus, each bill is associated with its title, the bill’s text,

committee referral(s), and a binary value indicating whether or not the committee reported the

bill to the chamber. Each bill is also associated to metadata properties, such as the sponsor’s

name. There were a total of 51,762 bills during the seventeen-year period that was considered,

of which 6,828 bills survived the committee and progressed further. Bills from the 103rd to the

110th Congresses served as the training dataset, while the bills from the 111th Congress were

1http://thomas.loc.gov/home/thomas.php

http://thomas.loc.gov/home/thomas.php
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used as the test dataset. The authors considered the following features for representing each

bill, later augmenting the representation based on these features with textual information:

1. For each party p, a binary feature indicating if the bill’s sponsor is affiliated or not with the

specific party p.

2. A binary feature indicating if the bill’s sponsor is affiliated in the same party as the committee

chair where the bill was proposed.

3. A binary feature telling if the bill’s sponsor is a member of the committee.

4. A binary feature indicating if the bill’s sponsor is a majority member of the committee where

the bill is being referred to.

5. A binary feature indicating if s the bill’s sponsor is the chairman of the committee where the

bill is being referred to.

6. For each House member j, a binary feature indicating if j is a sponsor of the bill.

7. For each House member j, a binary feature indicating if the bill is sponsored by j and

referred to a committee that j chairs.

8. For each House member j, a binary feature indicating if the bill is sponsored by j and if j

is in the same party as the committee chair.

9. For each state s, a binary feature indicating if the bill’s sponsor is from s.

10. For each month m, a binary feature indicating if the bill was introduced during the specific

month m.

11. For v ∈ {1, 2}, a binary feature indicating if the bill was introduced during the v-th year of

the (two-year) Congress.

Regarding the textual features, the authors experimented with three different approaches:

1. Using unigram features from the body of each bill’s text to pre-categorize bills into three

generic classes (i.e., trivial, recurring, and important), later using these classes as features

in the prediction model for bill success. For each of the three possible labels, the authors

considered two classifiers trained with different hyperparameter settings, giving a total of

24 additional features.

2. Using the similarity towards past bills, in order to estimate votes by members of the com-

mittee on the bill. Using the cosine similarity between the TF-IDF vectors of each two bills,
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the authors modeled the notion that representatives should vote on a bill x identically to

how he voted on a similar bill x′ through a simple probabilistic model, later quantizing the

probability values into bins, and building 141 features with basis on these values;

3. Seeing the predictive model as a document classifier, and incorporating standard bag-of-

words features directly into the model, rather than deriving functional categories or proxy

votes from the text. The authors included unigram features from the body and unigram and

bigram features for the title of the bill, resulting in a model with 28,246 features, of which

24,515 are lexical.

A most-frequent-class predictor (i.e., a constant prediction that no bill will survive the committee)

achieves an error rate of 12.6%, whereas an l1 regularized logistic regression model, using only

the non-textual features, achieved an error rate of 11.8%. Unsurprisingly, the model’s predictions

are strongly influenced toward survival when a bill is sponsored by someone who is on the com-

mittee and/or in the majority party. On what regards the usage of textual features, Method 3 from

the previous enumeration resulted in the best performance. Combined with baseline features,

word and bigram features led to nearly 18% relative error reduction compared to the baseline,

and 9% relative to the l1 regularized logistic regression model. When using all three kinds of text

features together, the authors report on an error reduction of only 2% relative to the bag of words

model. Together, these results suggest that there is more information in the text contents than

either on the functional categories or in the similarity towards past bills.

2.3 Characterizing Variation in Well-Being Using Tweets

Schwartz et al. (2013) reported on a study that analyzed the content of twitter messages from

1,300 different US counties, attempting to predict the subjective well-being of people living in

these counties, as measured by overall life satisfaction (Diener, 2000; Diener & Suh, 1999; Diener

et al., 1985). Subjective well-being refers to how people evaluate their lives in terms of cognition

(i.e., their general satisfaction with life) and emotion (i.e., positive and negative emotions) and,

although several social media studies have focused on the analysis of the emotion component

as expressed in the text (e.g., sentiment analysis applications (Pang & Lee, 2008)), the authors

argue that most previous studies failed to capture the many nuances of subjective well being.

Specifically, the authors started by collecting approximately a billion tweets from June 2009 to

March 2010, mapping these tweets to the corresponding US counties either through geospatial

coordiantes associated to the tweets, or through the free-response location field that accompa-

nies a tweeter message. After mapping the tweets and reducing the data to 1,300 different US
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counties, the authors were left with approximately 82 million tweets. Afterwards, the authors an-

alyzed the language of these twitter messages through lexical and topical features, attempting to

use language together with other popular predictors of county-level well being, such as the me-

dian age, gender (i.e., the percentage of female inhabitants), information on minorities (i.e., the

percentage of black and hispanic inhabitants), the median household income, and educational

attainment. The predictor variables besides language (i.e., besides the lexical and the topical

features) drew on demographic and social-economic data from the US Census Bureau, and they

were essentially used as controls (i.e., the authors attempted to see if predictive models based

on language can add information beyond what these variables already contribute).

On what regards the lexical features, the authors relied on hand-built lists of words, including

those from the psychological tool named Linguistic Inquire and Word Count (LIWC) (Pennebaker

et al., 2001), as well as terms associated to the PERMA (positive, emotion, engagement, rela-

tionships, meaning in life, and accomplishment) construct of well-being (Seligman, 2011). Each

word in these lists is associated with a semantic category, such as positive emotion, leisure, en-

gagement, etc. The actual features correspond to measurements of the percentage of a county’s

words within each given category (i.e., one feature for each category), using a log transformation

to reduce the variance.

As for the topical features, the authors relied on clusters of lexico-semanticaly related words,

derived automatically from a Latent Dirichlet Allocation topic model (Blei et al., 2003). Specifically,

the authors used an LDA model previously build by Schwartz et al. (2013) with basis on status

updates from 18 million Facebook users. This LDA model considered 2000 different topics, and

the authors argue that it captures well the different types of topics that are discussed within

social media. The actual features correspond to the different topic probabilities for each county,

obtained from the LDA model with basis on the concatenation of all twitter messages associated

to a particular county. Again, a log transformation is used to reduce the variance on the features.

The actual predictive model corresponds to a Lasso linear regression model, using information

from representative pooling surveys as the objective variable. A total of 75% of the tweets were

used for model training (i.e., 970 counties), whereas the remaining 25% (i.e., 323 counties) were

used for model validation. The quality of the results was measured through Pearson’s correlation

coefficient, computed between the predicted life satisfaction scores and those measured by the

pooling surveys. Results showed that the control variables are more predictive than the LDA-

based topic features alone, which in turn are more predictive than the lexicon-based features.

However, combining the full set of features resulted in an increased performance, confirming that

the words in tweeter messages contain information beyond that which is conveyed in the control

variables that were considered for the study.
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Figure 2.3: Map of the United States showing life satisfaction as measured using survey data and as
predicted using the approach proposed by Schwartz et al. (2013).

Although the lexicon-based features added very little information over the topic-based features,

the authors choose to keep them in their final predictive model, as they are useful for interpreting

the results and for making comparisons against previous studies. Several LDA topics were highly

predictive of positive well-being, including those related to outdoors (e.g., see/water, mountains

or hiking) and recreation activities, as well as those related to learning and money. Topics asso-

ciated to negative well being were less varied, involving the use of substantive words and words

related to attitude (e.g., sick, hate, bored, etc.).

Figure 2.3 shows the regional variation in life satisfaction, as determined by survey data and as

predicted by the text-driven approach proposed by the authors.

2.4 Predicting News Story Importance Using Their Text

Krestel & Mehta have reported on two studies that address the problem of anticipating a news

story importance, (i.e., given a news item, automatically predicting if it will be of interest for a

majority of users) (Krestel & Mehta, 2008, 2010). The authors argue that using natural language

features for addressing this particular prediction task can have advantages, since user feedback,

though very helpful for prediction (e.g., several previous work have reported on good results for

this same prediction task, but relying on click data collected immediately after the publication of

the news item (Szabo & Huberman, 2010; Tatar et al., 2011; Yin et al., 2012)), is associated with

high latency, and sufficient user feedback may not be available when information is still new.

In a first experiment, the authors considered a learning setup whose objective was to predict if

a news item lies in one of 4 categories (i.e., extremely important, highly important, moderately
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important, and unimportant), with basis on natural language features represented with a standard

bag-of-words approach (Krestel & Mehta, 2008). In a second experiment, the authors used the

Latent Dirichlet Allocation (LDA) topic model (Blei et al., 2003) to find the latent factors behind

important news stories, afterwards using these factors to train a classifier that enables them to

see if new news items will become important in the future, as news item appear in services such

as Google News (Krestel & Mehta, 2010).

We specifically have that, in the first experiment, the authors collected data from Google News1,

downloading stories displayed in the World category between November 15th 2007 and July 3rd

2008. This dataset covered a total of 1295 topics, each containing between 3 and 5 articles

from the time when the topic first appeared. Google News uses a text clustering method to

group similar news items, afterwards tracking updates and growth in interest with basis on these

clusters. The authors argued that the relative importance of a particular news article is strongly

tied to the cluster size of the corresponding topic, and so they started by assigning their data into

different bins based on cluster size. Specifically, they used one bin for the topics with cluster size

between 0 and 500, one for clusters 500 to 1000 articles, one for clusters 1000 to 2000 articles,

and one bin for the news topics with more than 2000 articles in the corresponding cluster. These

bins were assigned the values of one (i.e., unimportant), two (i.e., moderately important), three

(i.e., highly important) and four (i.e., extremely important). The objective was to predict this value,

with basis on the textual features.

The authors performed some cleaning on the HTML contents of the news pages, to remove nav-

igation and advertisement information. The text of the pages was also processed in order to

remove stopwords and to generate lemmas from the individual words. Each topic was repre-

sented using a space vector model, and the respective weights were computed using the TF-IDF

scheme. Krestel & Mehta measured the accuracy of classification through of a 0-1 loss function

over a test set. This function reports an error of zero if the correct label has been assigned, and

of one otherwise. In the case of two class problems, the 0-1 function is very indicative of accu-

racy. However in the case of multi-class problems, this function considers a misclassification of

highly important as unimportant to be the same as a classification as very important. Therefore,

the authors also used the Mean Average Error (MAE) and the Root Mean Square Error (RMSE),

using the label set {1,2,3,4}.

Regarding to the prediction accuracy, the results showed that textual features are indicative of

importance, although the accuracy was not very high. The authors noticed that binary prediction,

i.e., considering only the important and unimportant classes, achieved nearly 80% of accuracy,

1http://news.google.com

http://news.google.com
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with linear SVMs. They also concluded that their classifiers are highly accurate in making predic-

tion of truly important news correctly. For the task of predicting unimportant news, they achieved

the highest precision using only nouns, whereas for the task of predicting important news, using

all features resulted an increase of approximately 10% in terms of accuracy. Regarding to re-

gression accuracy, we have that the regression task is more sensitive to larger misclassification

errors. For the four-class problem, the best regression results were achieved by using all fea-

tures. The lowest MAE was achieved when using only job titles. To find the most discriminative

features, the authors analyzed the SVM model. They concluded that world leader’s names are

influential features, and disaster related words (e.g., wreckage and explode) also are highly influ-

ential. News that contain terms related to economics are usually also considered more important

that others. Finally, Krestel & Mehta investigated if the weights of terms can change over time.

They noticed that the changing of political environment had a influence over the importance for

the names of politicians, e.g., Abbas had an importance peak in the month of May 2008, while

the name Musharraf is loosing importance over time.

For the second experiment (Krestel & Mehta, 2010), the authors used again data collected from

the Google News service, namely 3202 stories, gathering from 4 to 7 articles that were crawled

from different sources, over a period of one year (i.e., the year of 2008). First, the authors ex-

plored the effectiveness of SVM based classifiers using term frequency vectors. This approach

performed well, although it is difficult to generalize, due to the sparseness of features and redun-

dancy. Therefore, the authors proposed to use LDA to identify latent factors derived from the text,

using them as features for a classifier. In the context of the generative LDA model, the documents

are represented as probabilist combinations of topics, denoted as P(z|d), with each topic being

described by terms following another probability distribution, denoted by P (w|z). We have that

the LDA model can be formulated as follows:

P(wi) =

T∑
j=1

P(wi|zi = j)P(zi = j) (2.1)

In the formula, P(wi) corresponds to the probability of word wi appearing in a given document,

and zi refers to a latent topic. The term P(wi|zi = j) represents the probability of a word wi within

the topic j, while the term P(zi = j) represents the probability of choosing a word form topic j in

the document, and the parameter T corresponds to the number of topics, being used to adjust

the degree of specialization of latent topics.

The authors compared the two approaches, and the results proved that the LDA approach yielded

a better accuracy than the bag-of-words approach. The task of reducing the number of features,

using LDA, improves the efficiency, interpretability, and accuracy. The authors concluded that
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the higher the number of latent topics, the more specific are the LDA topics. In terms of the

correlation coefficient, when using the LDA approach, the authors measured a value of 0.47,

whereas using the bag-of-words approach they achieved a score of 0.39.

2.5 Exploring Yelp Reviews in Forecasting Tasks

Yelp is an online service to help people find interesting local business (e.g., restaurants) that

includes social networking features. On Yelp, the users can read restaurant reviews, and they

can leave their reviews about the restaurants that they visited. Yelp leverages the wisdom of

the crowd, with each business being reviewed many times. However, the higher the number of

reviews left on the service, the more time-consuming and difficult it becomes for a consumer to

process the underlying information. Several questions have been raised in the context of services

such as Yelp, including the following:

1. Do online consumer reviews affect restaurant demand?

2. Can a group of amateur opinionators transform the restaurant industry, where heavily mar-

keted chains and highly regarded professional critics have long had a stronghold?

3. Given a set of reviews in a service such as Yelp, what is the optimal way to construct an

average rating for each local business?

4. Is it possible, given a particular review, to predict the number of users that will find the

review useful?

To answer the first two questions, Luca (2011) combined a Yelp dataset with the revenues for

every restaurant in Seattle (WA), between 2003 and 2009. In this work, the author examined

the impact of Yelp reviews on revenues, specifically for chain restaurants. The study showed

that a one-star increase on Yelp brings about to a 5 to 9 percent increase in revenue, but this

effect only applies for independent restaurants. Moreover, the higher the penetration of Yelp, the

more chain restaurants have declined in market share. The impact of online consumer reviews

is larger for products of relatively unknown quality. Luca concludes that Yelp may help to drive

worse restaurants out of business.

Regarding Question 3, Dai et al. (2012) developed a framework for better estimating business

ratings, that allows reviewers to vary in stringency and accuracy, and to be influenced by existing

reviews. This framework also takes into account that a restaurant’s quality can change over

time. The authors applied their approach to reviews from Yelp, to derive optimal ratings for each



2.5. EXPLORING YELP REVIEWS IN FORECASTING TASKS 21

restaurant. To identify the relevant factors, the authors used variation in ratings within and across

reviewers and restaurants. Dai et al. (2012) created optimal average ratings for all restaurants on

Yelp, using their estimated parameters, and then compared them to the simple arithmetic mean

displayed by Yelp. Regarding the results that were achieved, the authors found that the difference

between the optimal average ratings and the simple average by Yelp is of more than 0.15 stars

for 24-28% of the restaurants, and of more than 0.25 stars for 8-10% of the restaurants. In sum,

a large gain in terms of rating accuracy can be acquired by implementing optimal ratings in a

service such as Yelp.

An answer for the last question is presented by anonymous students of a machine learning

course, taught by Nando de Freitas at the University of British Columbia, who have addressed

the task of predicting Yelp review usefulness, with basis on the text1. The dataset collected from

Yelp consisted of 229,907 reviews of 11,537 businesses, by 43,873 users. Yelp also provided a

dataset that contains 8,282 sets of check-ins. The training data was gathered between March

2005 and January 2013. The data extraction was made by using text mining techniques, such

as those implemented on the text mining package tm2 for the R statistical programming lan-

guage. The authors split the dataset into two parts, using the oldest 80% of the reviews to train

the models, and the remaining 20% of the data to test the models. The authors used a simple

bag-of-words approach to represent the text data in a document term matrix (DTM), in which

the rows represent the documents, the columns refer to the words, and the entry in row i and

column j represents the weighted frequency that the jth word appears in the ith document. The

authors used Term Frequency-Inverse Document Frequency (TF-IDF) weighting, to calculate the

importance of a word in the DTM.

Before extracting features from the text, the authors performed a data cleaning process, that

includes removing text formatting, converting data into plain text, stemming words, removing

whitespace and uppercase characters, and removing stopwords. To do this, they followed the

workflow for preprocessing the data and extracting features, that is provided by the authors of

the tm package. After this process, the final DTM contained 288 words of interest. The authors

added to the DTM some useful features provided in supplementary datasets, creating some

new features as well. Supplementary data allows connecting the reviews to the actual local

businesses, personal information about the users, and check-ins data.

The authors modeled the response variable, corresponding to useful votes, as count data that

takes positive integer values. The average number of votes in the dataset was of 1.387, and the

data was highly skewed to the right, since over 40% of the 229,907 reviews received 0 votes.

1http://www.cs.ubc.ca/˜nando/540-2013/projects/p9.pdf
2http://cran.r-project.org/web/packages/tm/index.html

http://www.cs.ubc.ca/~nando/540-2013/projects/p9.pdf
http://cran.r-project.org/web/packages/tm/index.html
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Therefore, they transformed the discrete count data by applying the logarithm function to the re-

sponse variable. The authors used a small constant smoothing value of ε = 0.01 to avoid the

problem of computing the logarithm of 0. The authors tried fitting a non-parametric Random For-

est regression model, on both the response variable and the log of the response. For the task of

feature selection, they used these two models. Finally, the authors tried to fit fully parametric re-

gression models, such as Negative Binomial (NB) and Zero Inflated Negative Binomial (ZINB), on

the discrete response variable. The Random Forest and Lasso implementations were provided

by the scikit-learn Python package.

Random Forest regression and the Lasso regression models assume that the response variable

is unbounded, while in the Negative Binomial model, the response variable is considered as

discrete and positive, and following a negative binomial distribution. To fit the fully parametrized

NB regression, the authors used the glm1 package available for R2, with the variables selected

by Lasso and Random Forest. The Zero Inflated Negative Binomial regression model is used

to model count variables with excessive zeros, and it is usually effective for overdispersed count

outcome variables. To amend the problem of excessive zeros on the Yelp review dataset, the

authors also experimented with fitting a ZINB model. This assumes that the response comes

from of a mixture of responses that correspond to zero votes with probability one, and responses

that follow the negative binomial model. To fit the ZINB model, the authors used the pscl3

package, also available for the R system for statistical computing.

Regarding to the evaluation of the different models, the authors used the Root Mean Squared

Log Error (RMSLE), taking the logarithm of both the predicted and of the actual number of useful

votes of reviews and measuring their differences.

The authors compared the results obtained from fitting the Random Forest and Lasso models

using term frequency text features or TF-IDF weighted text features, on the log of the response,

or on the discrete response. They concluded that, both in the Random Forest and Lasso models,

using the TF-IDF weighted text features provides better predictions relative to the RMSLE metric.

The effect of fitting the models on the log response shows that training Random Forests yielded

better results, unlike Lasso that performed better on untransformed responses. In sum, the

authors achieved the best results using Lasso on the TF-IDF weighted text features and over

the discrete response variable. On what regards the parametric models, results showed that the

ZINB regression model performed slightly better on the validation set. However, the parametric

models performed worse than the Lasso and Random Forest regression models.

1http://cran.r-project.org/web/packages/glmnet/index.html
2http://www.r-project.org
3http://cran.r-project.org/web/packages/pscl/index.html

http://cran.r-project.org/web/packages/glmnet/index.html
http://www.r-project.org
http://cran.r-project.org/web/packages/pscl/index.html
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2.6 Summary and Critical Discussion

This chapter presented the most important related work previously developed in the area of text-

driven forecasting, on which I based the developments made in the context of my MSc thesis.

The most relevant group of related works is perhaps the one that corresponds to the studies

made by Noah Smith and his colleagues at the Language Technology Institute from Carnegie

Mellon University. In sum, we have that Smith (2010) proposed a generic approach for text-

driven forecasting, with basis on fitting regression models that leverage features derived from

the text contents, that are often noisy and sparse. He claimed that text-driven forecasting can

be addressed through learning-based methodologies that are neutral with respect to different

theories of language. Furthermore, the evaluation in this area can be objective, inexpensive,

and theory-neutral, and thus text-driven forecasting tasks can support the effective comparison

of different modelling choices for representing textual contents, in NLP applications.

All previous works that were presented in this chapter considered only the case of predicting

values using English contents. In the context of my MSc thesis, particular emphasis is given to

experiments with documents written in Portuguese.

Previous studies have also only considered relatively simple representations for the textual con-

tents, for instance based on word features and TF-IDF weighting. In my work, I experimented

with more sophisticated term weighting schemes, such as the Delta-TF-IDF and Delta-BM25 ap-

proaches, that measure the relative importance of a term in two distinct classes. In the next

chapter, I will present the most important contributions of my MSc dissertation.





Chapter 3

Making Predictions with Textual

Contents

I
n my study, similarly to Noah Smith and his colleges, I approached the problem of making

predictions from textual contents as a regression task. This chapter details the developments

made in the context of my MSc thesis, which built on and extended previous works in the area,

e.g., by Noah Smith (2010), most of them performed with English contents. I specifically used

texts written in Portuguese form different domains, and I used different representations for the

words, different feature weighting schemes, and different learning methods.

The following section presents an overview on the considered methodology. Section 3.2 ad-

dresses the usage of features derived from cluster-based word representation, i.e., word clus-

tering. Section 3.3 presents the approaches taken for representing textual contents as feature

vectors. Finally, Section 3.4 presents the regression techniques that were considered, namely

linear regression models and ensemble learning methods.

3.1 The General Approach

Text-driven forecasting concerns with the analysis of document collections, where each docu-

ment corresponds to a character string, in a given natural language. Each document, in a given

dataset, is made of simpler units, and in the context of tasks such as document classification and

text-driven forecasting, documents are typically represented through sets or vectors derived such

smaller units, like words, n-grams of words (i.e., sequences of n continuous words in a document)

or n-grams of characters (i.e., sequences of n continuous characters in a document).

25
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Considering these units for the computational representation, each document can be modeled as

a vector of characteristics in a given vector space, in which the dimensionality corresponds to the

number of different constituent elements (i.e., characteristics) that can be used in the formation

of documents. This representation is associated with a well-known model for processing and

representing documents in the area of Information Retrieval, commonly referred to as the vector

space model. Formally, we have that each textual document thus is represented as a feature

vector
−→
dj =< w1,j , w2,j , ..., wk,j >, where k is the number of features, and where wi,j corresponds

to a weight that reflects the importance of feature i for describing the contents of document j.

In the case of the experiments reported on this dissertation, the features are essentially the

words that occur in the document collection, but in some of my experiments I also tried other

features, such as metadata referring to the geographic location (i.e., the administrative districts)

associated to the instances, the type of restaurants, or word clusters associated to the textual

tokens occurring in the corresponding document.

In the general case, we have that the regression problem deals with the prediction of a response

variable y given the values of a vector of predictor variables x. Considering X as the domain of

x and Y as the domain of y, this problem can be reduced to a task of finding a function d(x),

that maps each point in X to a point in Y. The construction of d(x) requires the existence of a

training set of n observations L = {(x1, y1), . . . , (xn, yn)}. For the case of regression problems,

the criterion for choosing d(x) is usually the mean squared prediction error E{d(x) − E(y|x)}2,

where E(y|x) is the expected value of y at x.

Over the years, many different learning methods have been proposed to address the task of

finding the function d(x). In my research work, I focused on the usage of linear regression

models with different types of regularization approaches, and regression approaches based on

ensembles of trees. The problem of text-driven forecasting is therefore addressed as a regression

task, according to the procedure shown in Figure 3.4. For each document in the set of training

data, I built a representation by extracting the relevant features. Based on these representations,

a regression model is trained and saved for latter application. For each document in the test

set, the features are also extracted, in order to latter make predictions using the trained model.

After predicting the target values for the test instances, the quality of the results is measured by

comparing the predictions against the ground-truth values.
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Figure 3.4: Text-driven forecasting as a regression task.

3.2 Word Clustering

Word clustering essentially aims to address the problem of data sparsity, by providing a lower-

dimensional representation for the words in a document collection. In this work, I used the word

clustering algorithm proposed by Brown et al. (1992), which induces generalized representations

of individual words. Brown’s algorithm is essentially a process of hierarchical clustering that

groups words with common characteristics, in order to maximize the mutual information of bi-

grams. The input for the algorithm is a textual corpus, which can be seen as a sequence of N

words w1, · · · , wN . The output is a binary tree, in which the leaves of the tree are the words. The

process is based on a language model leveraging bi-grams and classes, which is illustrated in

Figure 3.5 and formalized bellow:

P(wN1 |C) =

N∏
i=1

P (C(wi)|C(wi−1))× P (wi|C(wi))

In the formula, P(c|c′) corresponds to the transition probability for the class c given its predecessor

class c′, and P(w|c) is the probability of emission for the word w in a particular class c. The
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Figure 3.5: The class-based bi-gram language model, that supports the word clustering.

probabilities can be estimated by counting the relative frequencies of unigrams and bi-grams. To

determine the optimal classes C for a number of classes M , we can adopt a maximum likelihood

approach to find C = arg maxC P(WN
1 |C). It can be shown that the best possible grouping is that

which results from maximizing the average mutual information between adjacent word clusters:

∑
c,c′

P(c, c′)× log
P(c, c′)

P(c)× P(c′)

The estimation of the language model is based on an agglomerative clustering procedure which

is used to build a tree hierarchy over the word class distributions. The algorithm starts with a set of

leaf nodes, one for each of the word classes (i.e., initially we have one cluster for each word), and

then iteratively selects pairs of nodes to merge, greedily optimizing a clustering quality criteria

based on the average mutual information between adjacent word clusters (Brown et al., 1992).

Each word is thus initially assigned to its own cluster, and we iteratively merge two classes so as

to induce the minimum reduction on the average mutual information, stopping when the number

of classes is reduced to the predefined number |C|. Figure 3.6 shows an example of a binary

tree resulting from Brown’s clustering algorithm.

For this work, to induce the generalized representations of words, I used an open-source1 im-

plementation of Brown’s algorithm, following the description given by Turian et al. (2010). This

software was used together with a large collection of texts in Portuguese. These Portuguese texts

correspond to a set of phrases that combines the CINTIL corpus of modern Portuguese (Barreto

et al., 2006), with news articles published in the Público2 newspaper, over a period of 10 years.

We induced one thousand word groups, where each group has a unique identifier.

1https://github.com/percyliang/brown-cluster
2http://www.publico.pt

https://github.com/percyliang/brown-cluster
http://www.publico.pt
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Figure 3.6: Example binary tree resulting from word clustering.

3.3 Feature Weighting

In this work, I also experimented with different ways to compute the feature weights to be used

within my models, for both the textual terms and the word clusters. The feature weighting

schemes that were considered include binary values, term frequency scores, TF-IDF, and also

with more sophisticated term weighting schemes, such as the Delta-TF-IDF and Delta-BM25

schemes previously discussed by Martineau & Finin (2009) and by Paltoglou & Thelwall (2010).

In the case of binary weights, wi,j is either zero or one, depending on whether the element i is

present or not in document j. In addition to binary values, another common approach is to use

the frequency of occurrence of each element i within document j. Notice that the high frequency

terms are more important for describing a document, which motivates the usage of the Term

Frequency (TF) component. A variant of the TF weighting scheme that uses log normalization is

given in Equation 3.2:

TFi,j =

 log2(1 + frequencyi,j) if frequencyi,j > 0

0 otherwise
(3.2)

TF-IDF is perhaps the most popular term weighting scheme, combining the individual frequency

for each element i in a document j (i.e, the Term Frequency component, or TF), with the in-

verse frequency of element i in the entire collection of documents (i.e., the Inverse Document

Frequency component, or IDF). Although there are multiple variants of the TF-IDF scheme, in all

of them we have that the weight wi,j of a element i is proportional to the term frequency, i.e.,

the more often the element i appears in document j, the higher its weight wi,j , and inversely

proportional to the document frequency of element i.
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The inverse document frequency is a measure of element importance within the collection of

documents. An element that appears in most of the documents of a given collection is not impor-

tant to discriminate between the different documents. So, the IDF is the inverse of the number of

times that element i occurs in all documents, typically considering a base 2 logarithmic decay as

shown in the equation bellow:

IDFi = log2

(
N

ni

)
(3.3)

In the formula, N is the total number of documents in the collection, and ni is the number of

documents containing element i. The TF-IDF weight of an element i for a document j is thus

given by the combination of Formulas 3.2 and 3.3:

TF–IDFi,j =

 log2(1 + frequencyi,j)× log2

(
N
ni

)
if ni > 0

0 otherwise
(3.4)

The Delta–TF–IDF and Delta–BM25 schemes measure the relative importance of a term in

two distinct classes. In the context of my regression problems, I have no binary classifications

associated to each of the instances, but instead real values. We nonetheless considered two

classes in order to determine the feature weights according to these schemes, by splitting the

examples into those that have a value greater or equal to the median target value in the training

data, and those that are less or equal than the median value.

The Delta–TF–IDF scheme extends the TF–IDF formulation, and localizes the estimation of IDF

scores to the documents associated to each of the two classes, latter subtracting the two values.

Thus, the weight of an element i in a document j can be given as shown in the equation bellow:

∆TF–IDFi,j = TFi,j × log2

(
Npos
ni,pos

)
− TFi,j × log2

(
Nneg
ni,neg

)
= TFi,j × log2

(
Npos × ni,neg
ni,pos ×Nneg

)

In the formula, each Nc corresponds to the number of training documents respectively in each

collection c, and ni,c is the number of documents from collection c in which the term i occurs. In

the context of this work, c can be positive for examples with a target value above the median, and

negative for these bellow the median. According to a large set of experiments related to binary

opinion classification, the approach named Delta–TF–IDF performs significantly better than the

traditional TF–IDF or the binary weighting schemes (Martineau & Finin, 2009).

Paltoglou & Thelwall (2010) concluded that by additionally introducing smoothed localized vari-

ants of the original IDF functions, together with scaled or binary TF weighting schemes, the
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accuracy can be further increased. In the Delta–BM25 term weighting scheme, the weight of an

element i for a document j is given by the following equation, where s is a smoothing constant

that is usually set to 0.5:

∆BM25i,j = TFi,j × log2

(
(Npos − ni,pos + s)× ni,neg + s

(Nneg − ni,neg + s)× ni,pos + s

)

3.4 Regression Models

One can use several types of regression models in order to address text-driven forecasting tasks.

In this work, I compared linear regression models, using different types of regularization, against

models based on ensembles of trees.

3.4.1 Linear Regression Methods

Considering a dataset {yi, xi1, ..., xik}ni=1 with n instances, and assuming that the relationship

between the dependent variable yi and the k-vector of features xi is linear, we have that a linear

regression model takes the following form:


y1

y2

· · ·

yn

 =


1 x11 · · · xk1

1 x12 · · · xk2

· · · · · · · · · · · ·

1 x1n · · · xkn

×

b0

b1

· · ·

bk

+


e1

e2

· · ·

en


In the formula, xij corresponds to the i-th feature of the j-th instance, the bi parameters corre-

spond to the regression coefficients, and ej is an error that captures the difference between the

actual observed responses yi, and the prediction outcomes of the regression model. The formula

can be rewritten in a matrix notation form:

y = Xb+ e

There are several procedures that have been developed for parameter estimation and inference in

linear regression. Linear Least Squares Regression (LSR) is the simplest and most widely used

method for estimating the unknown parameters in a linear regression model. LSR minimizes the

sum of the squared residuals S(b) between the data and the model, i.e., it minimizes
∑n
i=1 e

2
i .

The squared residuals can be rewritten in matrix notation as e′e, where the apostrophe means
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that the matrix was transposed. Replacing e by y −Xb, we have that:

S(b) =

n∑
i=1

e2i

= (y −Xb)′(y −Xb)

= y′y − y′Xb− b′X ′y + b′X ′Xb

The condition for S(b) to be at a minimum is for the derivatives ∂S(b)
∂b = 0. The first term of the

above equation does not depend on b, while the second and the third terms are equal in their

derivatives, and the last term is a quadratic form of the elements b. Thus, we have that:

∂S(b)

∂b
= −2X ′y + 2X ′Xb

Equaling the differential equation to zero we get:

−2X ′y + 2X ′Xb = 0

X ′Xb = X ′y

b = (X ′X)−1X ′y

b =

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiyi

)
b = arg min

b
||y −Xb||2

In linear least squares regression, it is well know that when the number of training instances n

is less than the number of features k, or if there are many correlated features, the regression

coefficients can exhibit a high variance, and they tend to be unstable. In this case, regularized or

penalized methods are needed to fit the regression model to the data, and to keep the variance

of the regression coefficients under control.

The Ridge regression approach penalizes the size of the regression coefficients, by adding a

l2-penalty ||b||22 to the model. Thus, the Ridge regression coefficients are estimated as follows:

b = arg min
b
||y −Xb||2 + λ||b||22

In the formula λ ≥ 0 is a tuning parameter, which controls the strength of the penalty term. When
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Figure 3.7: Estimating Lasso and Ridge regression.

λ = 0 we get the regular linear regression estimate, and when λ =∞ we get b = 0.

Tibshirani (1996) proposed another penalized method, called Least Absolute Shrinkage and Se-

lection Operator (Lasso), that shrinks some coefficients and sets others to zero. The Lasso

method uses a l1-penalty ||b||1 for model regularization, and tries to estimate the parameters b

according to the following optimization problem:

b = arg min
b
||y −Xb||2 + λ||b||1

Figure 3.7 illustrates a geometrical interpretation for the Lasso (left) and the Ridge (right) regu-

larization approaches, when there are only two parameters. The elliptical contours correspond

to the least squares error function. The constraint region corresponding to the Lasso is the blue

diamond, and for Ridge regression is the blue disk. Both models find the first point where the

elliptical contours reach the constraint region.

One of the main differences between Lasso and Ridge regression is that in Ridge regression, as

the penalty is increased, all the parameters are reduced while still remaining non-zero, whereas

with Lasso regularization, increasing the penalty will cause more of the parameters to be driven to

zero. Hence, Lasso models tend to be sparse, in the sense that they use less features. However,

one limitation of the Lasso is that if k > n, the Lasso selects at most n variables, i.e., the number

of selected variables is bounded by the number of training examples. Another limitation of the

Lasso method occurs when there is a group of highly correlated variables. In this case, the Lasso
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tends to select one variable from a group, ignoring the others.

To solve the aforementioned limitations Zou & Hastie (2005) proposed the Elastic Net approach,

that combines the l1 and l2 regularizations with weights λ1 and λ2, respectively. The estimates

from the Elastic Net method are defined by the following formula:

b = arg min
b
||y −Xb||2 + λ1||b||1 + λ2||b||22

The Elastic Net method tends to result in better predictions when the variables are considerably

correlated. The method removes the limitation on the number of selected variables, encourages

grouping effects, and stabilizes the l1 regularization approach.

Various methods have been proposed for estimating linear regression models with Ridge, Lasso,

and Elastic Net regularization, including cyclical coordinate descent (Kim & Kim, 2006), or other

convex optimization methods based on iterative computations (Boyd & Vandenberghe, 2004),

such as SpaRSA (Wright et al., 2009). In this study, I used the implementation available from the

scikit-learn Python machine learning package.

3.4.2 Ensemble Learning Methods

Regression trees are another type of machine-learning method for constructing prediction mod-

els from data. A regression tree is essentially a tree-structured solution to regression problems

in which a constant, or a relatively simple regression model, is fitted to the data in each parti-

tion. Regression trees are typically trained using fast divide and conquer greedy algorithms that

recursively partition the given training data into smaller subsets.

A related idea is that of ensemble learning methods, which attempt to combine multiple models,

usually relatively simple models based on trees, to achieve better predictive performance (Sewell,

2011). In my experiments, I used two types of ensemble regression methods, namely Random

Forests, and Gradient Boosted Regression Trees, again as implemented within the scikit-learn

Python machine learning package.

The Random Forest is an ensemble-learning method based on decision trees, for classifica-

tion and regression (Breiman, 2001). This method combines the idea of bagging, developed

by Breiman (1996), with a random selection of features. In brief, we have that the Random Forest

method builds a collection of de-correlated trees (see Figure 3.8), and then averages them. This

approach has been argued to have a similar performance to boosting, but it is simpler to train and

tune. The main objective in Random Forests is to reduce variance, by reducing the correlation

between variables. This is achieved by the random selection of variables. Let N be the number
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Figure 3.8: Multiple regression trees used on the Random Forest method.

of training cases, and let M be the number of instances used for model training. The algorithm

proceeds is as follows:

1. Choose a training set for each tree in the ensemble, by sampling n times with replacement

from all N available training instances. Use the remaining instances to estimate the error

of the tree, when making predictions.

2. For each node of the tree, select m variables at random to support the decision at that

node, and calculate the best split for the tree, based on these m variables and using the

training set from the previous step.

3. Each tree grows to the largest extend, and no pruning is performed. The CART algorithm

proposed by Breiman et al. (1984) is used for growing the trees in the ensemble.

The above steps are iterated to generate a set of trees. When making a prediction decision, the

average vote of all trees is reported as the prediction. Each tree votes with a weight correspond-

ing to its performance on the subset of the data that was left out during training.

As for Gradient Boosted Regression Trees (GBRT), this is another ensemble method instead

based on the idea of boosting, supporting loss functions for regression such as the sum of the

squared errors (Friedman, 2001). A GBRT model consists of an ensemble of weak prediction

models, typically decision tress (i.e., CART trees, similar to those that are used in the case of

Random Forest regression) of the following form, where hm(X) are the basis functions, which

are usually called weak learners in the context of ensemble methods based on boosting.

y = F(X) =

M∑
m=1

hm(X)
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Similarly to most boosting algorithms, GBRT builds the additive model in a forward stage-wise

procedure. In accordance with the empirical risk minimization principle, the method tries to min-

imizes the average value of a loss function over the training set. It does so by starting with a

model, consisting of a constant function F0, and incrementally expanding it in a greedy fashion,

according to the following equation:

Fm = Fm−1(X)− γmhm(X)

At each stage, a decision tree hm(X) is chosen to minimize the considered loss function (i.e., the

sum of the squared errors) given the current model Fm−1 and its fit Fm−1(X) (i.e., the trees hm

learned at each stage are grown by using pseudo-residuals as the training set). The initialization

for model F0 is commonly chosen with basis on the mean of the target values, and the multiplier

γm is found at each stage by solving the following optimization problem, where L is the loss

function that we are trying to minimize:

γm = arg min
γ

n∑
i=1

L(yi,Fm−1(xi) + γhm(xi))

The optimization problem is typically addressed numerically via a steepest descent procedure (Boyd

& Vandenberghe, 2004).

3.5 Summary

Ths chapter described the proposed regression-based methodology for addressing text-driven

forecasting tasks. I discussed the approaches used for representing textual contents as feature

vectors, as well as the schemes that can be used to compute the feature weights (e.g., binary

weights, term frequency, the TF-IDF weighting scheme, and more sophisticated term weighting

schemes, such as the Delta-TF-IDF and Delta-BM25). Finally, I presented several types of re-

gression models that can support text-driven forecasting tasks. I focused on linear regression

models with different regularization approaches, and on models based on ensembles of trees.

In the next chapter, I will present an experimental comparison for the different techniques that

were discussed here, with basis on documents written in Portuguese from three distinct domains,

namely (i) textual descriptions from Lifecooler, for hotels and restaurants, and (ii) movie reviews

from Portal do Cinema, together with metadata from Instituto do Cinema e do Audiovisual.



Chapter 4

Experimental Validation

This chapter presents a set of validation experiments in which different modeling approaches

for text-driven forecasting tasks were compared. In the following section, I present the

datasets associated to each of the experimental domains that were considered, and the evalua-

tion methodologies that I used. Then, I discuss the results achieved in the different experiments,

comparing different types of regression models, different feature weighting schemes, and differ-

ent sets of features. The chapter ends with an overview on the main conclusions.

4.1 Datasets and Methodology

This work explored text-driven forecasting in three distinct domains with different characteristics,

namely by considering information about hotels, restaurants and their prices in Portugal, or about

movie reviews together with the corresponding box-office revenues. For hotels and restaurants, I

crawled textual descriptions from Lifecooler1. For each restaurant, the information available from

this site includes the name, a textual description, the menu, the specialities, the type of restaurant,

the average meal price, and the location, which includes the city name and the district. For the

hotels, the information available includes the name, a textual description, the location, and the

price over the low and high tourist seasons. For the case of movies, I used review data from Portal

do Cinema2, and metadata from Instituto do Cinema e do Audiovisual3, for movies that were

released from 2008 to 2013. The available information includes the movie name, the distributor,

the producer, the number of screens on which the movie played during the first week, the gross

1http://www.lifecooler.com
2http://www.portal-cinema.com
3http://www.ica-ip.pt
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Table 4.1: Statistical characterization for the three different datasets.

Hotels High Hotels Low Restaurants Movies
Number of textual descriptions 2656 2656 4677 502
Term vocabulary size 9932 9932 19421 28720
Average number of terms per document 35 35 47 346

Minimum target value 10.00 10.00 4.50 0.93
Maximum target value 3000.00 1200.00 100.00 1437.71
Mean target value 95.92 71.48 18.10 162.75
Median target value 75.00 60.00 15.00 73.56
Standard deviation in target values 93.42 51.67 8.41 229.21

Figure 4.9: Distribution for the target values, in the hotels, restaurants, and movies datasets.

revenue during the first week, the number of viewers, and the release date. Each review includes

the movie name, the textual review, and a star rating on a scale from 0 to 5. Only movies found on

both Web sites were included in my dataset, and I ended up with a set of 502 movies. The main

characteristics of all three data datasets are presented in Table 4.1. For hotels and restaurants,

statistics over the target values are shown in Euros, while for the case of movies they are shown

in thousands of Euros.

The three datasets differ in several aspects, such as in the number of documents, and the in dis-

tribution for the values to be predicted. The distribution of the target values for all three domains

is shown through violin plots on Figure 4.9.

All the available text was used in my experiments (e.g., for hotels, I used the hotel name and

textual description, while for restaurants I used the restaurant name, the textual description, the

specialities, and the menus). For movies, I used the movie name, and the textual review). In
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Figure 4.10: Distribution for the target values, per district in Continental Portugal.

addition to textual features, in some of the experiments I used location features (i.e., the ad-

ministrative districts), for hotels and restaurants, type features for restaurants, or the number of

screens that the movie was played at. The location features (i.e., administrative districts) can

naturally influence how expensive is a hotel or a restaurant. For instance, as one can see in

Figure 4.10, the districts with the most expensive hotels and restaurants are Lisbon and Faro,

and those same districts are the ones showing the highest variation in the corresponding prices.

All my experiments were done with a 10-fold cross validation methodology, and the quality of the

obtained results was measured using evaluation metrics such as the Mean Absolute Error, and

the Root Mean Squared Error.

The Mean Absolute Error (MAE) is a measure that compares forecasts against their eventual out-

comes, essentially corresponding to an average of the absolute errors, as shown in Equation 4.5.

The Root Mean Squared Error (RMSE) is another measure of the accuracy of a predictor, com-

puted as the square root of the mean of the squares of the errors, as shown in Equation 4.6.

MAE =
1

n

n∑
i=1

|yi − ŷi| (4.5) RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (4.6)
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Table 4.2: Results for the first experiment, with a representation based on TF-IDF.

Hotels High Hotels Low Restaurants Movies

MAE RMSE MAE RMSE MAE RMSE MAE RMSE
Average 44.06 93.65 28.58 51.86 6.09 8.41 161.15 247.87
Median 39.96 95.69 26.59 52.92 5.80 8.97 140.48 264.29

Ridge Regression 45.87 72.94 30.38 42.41 6.40 6.83 127.70 201.52
Lasso 35.78 72.96 24.27 43.60 4.59 6.57 183.01 268.33
Elastic Net 34.63 70.86 23.25 41.97 4.27 6.20 127.55 192.70
Random Forest 34.25 74.13 23.17 44.25 4.40 6.56 135.89 211.77
Gradient Boosting 37.91 79.94 25.18 47.09 4.65 7.02 166.74 269.95

Considering a dataset {yi, xi1, ..., xik}ni=1, where xik corresponds to the inputs, where yi corre-

sponds to the true outputs, and having ŷi corresponding to the predicted outputs, one can easily

see that the previous metrics estimate errors in the same units of measurement as the target

value, i.e., in Euros or in thousand of Euros, in the case of the experiments reported here.

The MAE is perhaps the most natural and unambiguous measure of average error magnitude.

On the other hand, the RMSE is one of the most widely reported error measures in the literature,

and has also been widely used for comparing forecasting methods. This metric is more sensitive

to the occasional large error.

4.2 Experimental Results

In a first experiment, I tried to predict room prices for hotels, the average meal prices for restau-

rants, or the movie box-office revenues, by using only the textual contents. In this task, I com-

pared my regression models against baselines such as the average and median value, consid-

ering representations based on the most popular term weighting scheme, i.e., TF-IDF. As one

can see in Table 4.2, regression models using the text achieve better results than the considered

baselines. Of all the models that were used, the best results were achieved with the Elastic Net

method. The best ensemble model is given by the Random Forest approach.

In a separate set of experiments, I attempted to analyse the importance of the different features

corresponding to textual tokens, seeing their relative differences in terms of the contribution to

predicting the target values. This was made for the case of models based on Random Forests, or

based on linear regression with Elastic Net regularization, using feature weights computed with

the TF-IDF approach.

In the case of linear regression models with Elastic Net regularization, I inspected the feature

weights (i.e., the regression coefficients) of my learned models, averaging the weights of each
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Figure 4.11: The 20 most important features in the case of predicting hotel room prices.

Figure 4.12: The 20 most important features in the case of predicting meal prices at restaurants, or in
the case of predicting movie box-office results.

feature over the multiple folds of my cross-validation experiments. In the case of Random For-

est regression models, the relative rank (i.e., the depth) of a feature that is used as a decision

node in a tree can be used to assess the relative importance of that feature, with respect to the

predictability of the target variable. Features that are used at the top of the tree contribute to the

final prediction decision of a larger fraction of the input samples and, thus, the expected fraction

of the samples they contribute to can be used as an estimate of the relative importance of the

features. By averaging those expected activity rates over the several trees of the Random Forest

ensemble, and by averaging also over the multiple folds of my cross-validation experiments, one

can estimate a feature importance score.

Figure 4.11 plots the 20 most important features in terms of either the linear regression coeffi-

cients (i.e., 10 with the highest positive value, and 10 with highest negative value), or in terms

of the relative rank of the decision nodes, for the case of models predicting hotel room prices in

the high and low seasons. As expected, terms such as sheraton, luxo or hotel seem to indicate

higher prices, whereas terms such as pensão or camporeal are associated with lower prices.
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Table 4.3: Results with Elastic Net models using different feature weighting schemes.

Hotels High Hotels Low Restaurants Movies

MAE RMSE MAE RMSE MAE RMSE MAE RMSE
Binary 40.91 77.49 27.14 46.64 5.94 8.22 133.01 199.34
Term Frequency 51.18 86.10 30.34 48.64 5.42 6.31 209.50 279.51
TF-IDF 34.63 70.86 23.25 41.97 4.27 6.20 127.55 192.70
Delta-TF-IDF 34.55 70.63 24.33 41.77 4.36 6.62 131.59 194.37
Delta-BM25 34.70 72.82 23.21 40.24 4.22 6.14 127.41 191.08

Table 4.4: Results with Random Forest models using different feature weighting schemes.

Hotels High Hotels Low Restaurants Movies

MAE RMSE MAE RMSE MAE RMSE MAE RMSE
Binary 36.56 79.06 24.28 46.19 4.83 7.08 135.68 214.60
Term Frequency 36.62 77.09 25.53 46.69 5.37 6.51 137.92 207.82
TF-IDF 34.25 74.13 23.17 44.25 4.40 6.56 135.89 211.77
Delta-TF-IDF 34.12 73.43 24.91 44.04 4.32 6.85 130.59 209.49
Delta-BM25 34.47 73.55 23.19 43.45 4.63 6.52 134.84 210.24

Figure 4.12 also plots the 10 most important features, but in this case for models predicting meal

prices at restaurants (i.e., the plots on the left), and for models predicting movie box-office results.

In the case of restaurants, terms such as hotel or michelin seem to be highly discriminative,

whereas in the case of movie box-office results, terms such as saga, animação or terror seem to

provide goog clues for estimating the target values.

Tables 4.3 and 4.4 show a comparison of the results obtained with the best models, i.e., linear re-

gression with Elastic Net regularization and Random Forest regression, respectively, using each

of the representations for the textual contents that were described in Chapter 3. The richer doc-

ument representation is perhaps Delta-BM25, although Delta-TF-IDF or TF-IDF alone achieved

very similar results, particularly on the case of models based on Random Forest approach.

In addition to the textual contents, I considered other metadata elements, such as the location

for hotels and restaurants, the type of restaurant, or the number of screens on which the movie

was shown in the opening weekend. We also experimented with adding word clusters to the

representation of the textual contents.

Metadata properties such as locations or the type of restaurant are represented as a set of

binary values (e.g., one for each administrative district), where a single position takes the value

of 1 depending on the location or the type corresponding to the textual description. Thus, the

final vector used in the experiment is the concatenation of the feature vector derived from the text

(i.e., using just the individual terms, or the terms plus the corresponding word clusters), and the

vector associated to the metadata. For the case of movies, we added the number of screens an

on for the dimensions the last position on the feature vector.
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Table 4.5: Results for predicting hotel room prices with different feature sets.

Only Text +WClusters +Location All

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Low Season Elastic Net 23.21 40.24 23.32 42.55 23.57 43.05 23.40 42.83
Random Forest 23.19 43.45 23.52 45.03 23.18 43.06 23.66 44.00

High Season Elastic Net 34.70 72.82 34.33 70.12 34.75 70.46 34.53 70.81
Random Forest 34.47 73.55 35.22 74.20 34.38 76.46 34.07 74.63

Table 4.6: Results for predicting restaurant prices with different feature sets.

Only Text +WClusters +Type +Location All

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Elastic Net 4.22 6.14 4.90 7.04 4.88 7.03 4.87 7.02 4.94 7.04
Random Forest 4.63 6.52 4.45 6.66 4.36 6.59 4.33 6.52 4.41 6.65

Table 4.5 lists the corresponding results when predicting hotel room prices with different feature

sets. The combination of the textual contents, the metada, and the word clusters achieved the

best performance, both in term of MAE and RMSE, by using the Elastic Net approach. When

using Random Forests, the combination of text and location yielded better results.

Table 4.6 shows the results for predicting average meal prices for restaurants, using different

feature sets. With the Elastic Net method, the experiment considered only the word features

produced better results, and with the Random Forest approach, the combination of text and

location produced better results.

Finally, Table 4.7 presents the corresponding results when predicting movie box-office revenues.

The number of screens has a strong influence on the results. With both types of regression

models, the experiment that yielded better results is clearly the one involving the combination of

text and the number of screens. The number of screens and the box-office revenues are indeed

highly correlated, as shown in Figure 4.13.

4.3 Summary

This chapter described a set of experiments validating the techniques proposed in my MSc dis-

sertation. I specifically addressed the usage of regression models for text-driven forecasting

Table 4.7: Results for predicting movie box-office revenues with different feature sets.

Only Text +WClusters +Screens All

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Elastic Net 127.91 191.08 109.87 179.09 79.06 125.45 70.37 126.03
Random Forest 130.59 209.49 136.24 208.22 66.02 137.78 79.65 128.53
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Figure 4.13: Box-Office revenues versus the number of screens on which the movie was shown.

Table 4.8: Overall results for the different forecasting tasks.

Hotels High Hotels Low Restaurants Movies

MAE RMSE MAE RMSE MAE RMSE MAE RMSE
Average 44.06 93.65 28.58 51.86 6.09 8.41 161.15 247.87
Average per Location 40.57 90.80 28.11 50.91 5.81 8.11 – –
Number of Screens – – – – – – 83.45 131.89
Best Regression Model 34.07 70.12 23.18 40.24 4.22 6.14 66.02 122.29

tasks, and I considered Portuguese texts from three different domains, collected from Lifecooler

and from Portal do Cinema. I experimented with different types of regression models, with state-

of-the-art feature weighting schemes, and with different sets of features.

On what regards hotels and restaurants, I compared the results of prediction models using textual

information against baselines such as predicting the training set average value, or the average

value per location. In the case of movies, I also experimented with using just the number of

screens, a variable that is highly correlated with box-office results. An overview on the obtained

results is reported in Table 4.8. In sum we have that better results were achieved when using the

average value per location, when compared to using the average over the entire training dataset

(i.e., a difference of almost 4 Euros, in the case of high season hotel prices). We can also

conclude that regression models using textual contents indeed result in gains for the prediction

accuracy over the considered forecasting tasks.



Chapter 5

Conclusions and Future Work

This dissertation presented an experimental study in which I tried to make predictions with textual

contents written in Portuguese, using documents from three distinct domains and using different

types of regression models. The specific tasks considered in my MSc thesis involved predicting:

• Room prices for hotels in Portugal, both in the high and low touristic seasons, using textual

descriptions collected from a well known Web portal named Lifecooler;

• Average meal prices in Portuguese restaurants, using textual descriptions for the restau-

rants and their menus, as collected from the same Web portal from the previous item;

• Movie box-office results in the first week of exhibition, as reported by Instituto do Cinema

do Audiovisual, for movies exhibited in Portugal and using textual reviews from another

well-known Web site named Portal do Cinema.

I explored the usage of different types of regression models, with state-of-the-art feature weight-

ing schemes, and with features derived from cluster-based word representations. The results

clearly shown that prediction models using the textual information achieve better results than

baselines such as the average value for the target variable. I also concluded that using richer doc-

ument representations, involving Brown clusters and the Delta-TF-IDF feature weighting scheme,

may result in slight performance improvements.

5.1 Main Contributions

The main contributions resulting from this work can be summarized as follows:

45
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• I developed a software framework to support the experiments made in the context of my

MSc thesis. This software framework includes programs for collecting data from the Web

and for data processing, as well as methods for computing different feature weighting

schemes, and for feature analysis. This framework can now be used in other research

studies in text-driven forecasting.

• Previous works only considered the case of predicting some extrinsic real-word values us-

ing English contents, whereas this thesis gave particular emphasis to experiments with

contents written in Portuguese. The results proved that it is possible to address differ-

ent types of forecasting tasks using texts written in Portuguese. For all three domains that

were considered, the models that used features derived from textual contents outperformed

baselines such as the average value.

• Unlike previous works that focused only in the usage of linear regression models, in the con-

text of my work, I compared linear regression models, using different model regularization

approaches, against models based on ensembles of trees, such as Random Forests and

Gradient Boosted Regression Trees. The best results were achieved with linear regression

using Elastic Net regularization. The Random Forest method reached slightly lower results,

and this was the best model in case of ensemble learning methods.

• I experimented with the usage of features derived from cluster-based word representations.

I specifically used an open-source implementation of Brown’s word clustering algorithm. In

order to induce the representations of words, I used Portuguese texts corresponding to a

very large set of phrases that combines the CINTIL corpus of modern Portuguese, with

news articles published in the Público newspaper. In some of the experiments, the combi-

nation of the textual terms and the word clusters achieved slightly better results, compared

against models that used only textual terms.

• I compared the results obtained with the state-of-the-art feature weighting schemes, such

as Delta-BM25 or Delta-TF-IDF, with more traditional feature weighting schemes, such as

binary weights, the term frequency, and TF-IDF. The richer representation is perhaps Delta-

BM25, although the obtained results with Delta-TF-IDF or TF-IDF alone are almost similar.

5.2 Future Work

Despite the interesting results, there are also many ideas for future work. Given that I only

had access to relatively small training datasets, I believe that one interesting path for future work
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concerns with evaluating semi-supervised learning techniques, capable of levering large amounts

of non-labeled data for text driven forecasting (Chapelle et al., 2006).

It also seems reasonable to assume that the cues to correctly estimating a given target value,

with basis on a textual document, may lie in a handful of the document’s sentences. Yogatama &

Smith (2014) have, for instance, introduced a learning algorithm that exploits this intuition through

a carefully designed regularization approach (i.e., a sparse overlapping group Lasso, with one

group for every bundle of features occurring together in a training-data sentence), showing that

the resulting method can significantly outperform other approaches (e.g., standard Ridge, Lasso,

and Elastic Net regularizers) on many different real-world text categorization problems.

Finally, given the relative success of document representations using Brown clusters, I would also

like to experiment with other types of representations based on distributional similarity, such as

the word embeddings proposed by Mikolov et al. (2013).
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