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1. Concentration of Distances (CoD) in High Dimensions

1.1. Introduction

Today we are in such a setting where almost every important data analysis problem is high dimensional.
The problem, which we face while working with high dimensional data, is that our intuition about space,
that was formed in two and three dimensions, is often misleading in high dimensions. This is sometimes
called ’Curse of Dimensionality ’. It is used to refer to the various phenomenon that arises when we work
with data in high dimensional space but not so visible in low-dimensional settings such as 2 or 3 dimensions.

There are many aspects of Curse of Dimensionality and their effects are still not well explored and huge
amount of research is still going on. Some of the well-known aspects of Curse of Dimensionality are as
follows :

(i) Search Space Complexity: In some problems, each dimensional variable can take one of several discrete
values, or the range of possible values is divided to give a finite number of possibilities. Taking the
variables together, a huge number of combinations of values must be considered. This effect is also
known as the combinatorial explosion. Even in the simplest case of d binary variables, the number
of possible combinations already is O(2d), exponential in the dimensionality. Naively, each additional
dimension doubles the effort needed to try all combinations.

(ii) Need for greed : - which refers to the need for atleast a sub-exponential growth in the number of
data points as dimension increases for many of the data analysis algorithms to be consistent, see for
instance, [11], for more details.

(iii) Intrinsic vs Embedding, which refer to the intrinsic and embedding dimensionalities of the data and
their influence on the algorithms.

(iv) Relevance of Dimensions, which again refers to the presence of irrelevant features that interfere with
the performance of similarity queries.

(v) Hubness Phenomenon [12], The term was coined after hubs, very frequent neighbor points which
dominate among all the occurrences in the k-neighbor sets of inherently high-dimensional data. Most
other points either never appear as neighbors or do so very rarely. They are referred to as anti-hubs.
This property is usually of a geometric nature and does not reflect the semantics of the data, for
instance, in the context of music retrieval. It has been noticed that some songs are very frequently
being retrieved, but were unable to attribute these occurrences to any similarity observable by people.

The next section is devoted to another major aspect of Curse of Dimensionality that is Concentration of
Distances phenomenon, but in detail!
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1.2. Survey on CoD in High Dimensions

Concentration of Distances is the phenomenon that, as the data dimensionality increases, all the pairwise
distances may converge to the same value. The lack of contrast between the nearest and the farthest points
affects each area where high dimensional data processing is required - high dimensional data analysis,
database indexing and retrieval, data analysis and statistical machine learning.
To understand this phenomenon, we can do empirically as follows :

• Consider placing 100 points, say X = x1, . . . , x100 uniformly at random in a unit interval [0, 1].

• Let us select a point,say xi0 and compute the distance 1 of this point xi0 to all the other points in
X \ {xi0}. If we plot the histogram of these distances and look at the distribution of these distances,
it will be spread throughout the interval [0, 1], see figure 1.2.
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Figure 1: Histogram of Distances in One dimension

Distribution of these distances will be spread throughout [0, 1].

• Now, consider placing 100 points uniformly at random in a unit square [0, 1]× [0, 1]. Each coordinate
is generated independently and uniformly at random from the interval [0, 1]. Now if we do the same,
the spread of the resulting distribution of distances is no more throughout the interval [0, 1].

• If we increase the dimension m and generate the points uniformly at random in a m-dimensional
unit hypercube, the distribution of distances becomes concentrated about an average distance. This
phenomenon is called the ”Concentration of Distances”[8].
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(a) m = 5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

1400

Dimn =10

(b) m = 10

As the dimension increases, the spread of the distribution of distances decreases.

1We have considered L∞ distance function for the above simulation.
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(c) m = 500
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(d) m = 1000

As the dimension continues to increase, distribution becomes more and more concentrated
about an average value.

1.3. Effects of Concentration of Distances

There are many domains where we have to use different distance functions to measure the proximity
and often the data is high dimensional and thus due to CoD, the distance functions which are useful in
low dimensions are no longer relevant in higher dimensions. Some of the major areas affected by the CoD
phenomenon is Nearest Neighbor Search, Clustering etc.

Nearest Neighbor Search is nothing but to find the object in the database, nearest to the given query
point, i.e. the object whose distance to the given query point is minimum. For instance, in face recognition,
one needs to search for a picture that is similar to the given query face in a database of images. A picture is
made up of thousand of pixels and hence is a high dimensional object. But due to the high dimensionality of
the data, all pairwise distances may converge and hence the search might return a lot of candidates similar
to our query object, which even does not make any sense. For instance, search for similar pictures of human
being might return a picture of table.

This clearly puts a question mark on the usefulness of distance functions in high dimensions as well as
meaningfulness of NN query. For more, see[2]

Existing Studies on the CoD Phenomenon

The research studies done on CoD, so far, can be broadly classified into the following three types:

(i) Studies that have theoretically proven the existence of CoD, and also compare different distance
functions on the basis of their concentration,

(ii) Studies that have proposed different indices or functions to illustrate or measure the CoD in specific
settings,

(iii) Studies that attempt to proposing new distance functions to mitigate the CoD phenomenon.

1.4. Existence of CoD: Theoretical Analysis

Distance functions are known to be sensitive to the dimension of data and hence reduces the efficiency
of the search. While searching for the nearest neighbor the obvious approach is to search the database and
compute the distance of every data to given query and then to compare the distances. Not only this naive
approach is computationally expensive with very large databases, the CoD phenomenon now adds another
level of discomfort, since almost all points become equidistant to the query point, i.e., almost all points
appear to be the nearest neighbors to the query data, thus questioning the very existence of meaningful
nearest neighbor in high dimension.

Beyer et. al.[2] were the first to point out that nearest neighbor searching may not always be meaningful
when the ratio of the variance of the distance between any two random points, drawn from the data and
query distributions, to the expected distance between them converges to zero as dimension goes to infinity
by proving the following result. Before stating the result, we have to define some notations, which can be
taken as a definition, to state the result.
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Definition 1 (Beyer et. al., [2]).

• m is the dimension of the dataset variable which ranges over all positive integers.

• Fd1, Fd2, . . . is a sequence of data distributions and Fq1, Fq2, . . . is a sequence of query distributions.

• n is the fixed number of samples (data points) from each distribution.

• ∀m,Pm1, Pm2, . . . , Pmn are n independent data points per m such that Pmi ∼ Fdm and Qm ∼ Fqm is
a query point chosen independently from all Pmi.

• 0 < p <∞ is a constant.

• ∀m, dm : Fdm × Fqm → R+ is a (distance) function, and then define :
DMINm = min{dm(Pmi, Qm)|1 ≤ i ≤ n}
DMAXm = max{dm(Pmi, Qm)|1 ≤ i ≤ n}

Theorem 1 (Beyer et. al., [2]). Under the conditions in definition 1 if

lim
m→∞

var

(
(dm(Pm1, Qm))p

E[(dm(Pm1, Qm))p]

)
= 0 , (1)

then for all ε > 0,

lim
m→∞

P [DMAXm ≤ (1 + ε)DMINm] = 1 . (2)

Thus, this result shows that under some pre-conditions on the data distribution and distance function
the difference between the maximum and minimum distances become very small compared to the minimum
distance in high dimension. This means all points are almost equidistant to the query point.

Theorem 1 clearly discusses only a sufficient condition for concentration, i.e., the distance to the nearest
neighbor and the distance to the farthest neighbor tend to converge, in a probabilistic sense, as the dimension
m increases. In other words, we get a poor contrast if the spread between the points tends towards 0.
However, the question of whether this condition is also necessary was not known. Almost after a decade
after the work of Beyer et al., the converse of Theorem 1 was proved by Durrant and Kabán in 2009.

Theorem 2 ( Durrant and Kabán, [5]). (Converse of theorem 1 )
Assume the sample size n is large enough for E[(dm(Pm1, Qm))p] ∈ [DMINm, DMAXm] to hold. Now, if
lim
m→∞

P [DMAXm ≤ (1 + ε)DMINm] = 1,∀ε > 0,

then

lim
m→∞

var

(
(dm(Pm1, Qm))p

E[(dm(Pm1, Qm))p]

)
= 0

This result, in a sense, tries to answer the question when is nearest neighbour meaningful in high
dimensions.

1.5. Study of Concentration of Minkowski-type Norms

Theorem 1 and Theorem 2 provided a necessary and sufficient condition on a general distance function
to suffer from concentration in high dimensions. Thus, subsequently, researchers began investigating some
indices, which were derived out of these results, for different types of distance functions, specifically for
Minkowski Norms (Lp norms).
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Minkowski Norms (Lp norms) :

Minkowski Norms are the family of p-norms parametrized by exponent p ∈ (0,∞) which are defined as
For an x̄ = (x1, . . . , xm) ∈ Rm:

‖x̄‖p =
(∑

|xi|p
) 1
p

.

• For p = 1, it is called the Manhattan norm and is denoted as L1 norm.

• For p = 2, it corresponds to the Euclidean norm and is denoted as L2 norm.

• If p =∞, it becomes the L∞-norm or the sup-norm or the Chebyshev metric.

• For 0 < p < 1 , triangle inequality does not hold for Lp. Hence they are not norms but are called
prenorms. An Lp-norm, with 0 < p < 1, is called a Fractional norm and is denoted by Fp.

1.5.1. Empirical Measure to Illustrate the CoD phenomenon

Motivated by theorem 1, an index, called relative contrast, which is based on the contrast present between
minimum and maximum distances, was proposed to illustrate the presence of concentration. The definition
is as follows

Definition 2. Let us consider a similarity workload, (Ω, X, ρ, µ). The Relative Contrast with exponent p is
defined as

RC(p,m) =
DMAXm −DMINm

DMINm
,

where DMAXm and DMINm are as defined earlier.

While Beyer et al. studied the CoD phenomenon for arbitrary norms, the first result for concentration of
norms was studied for the Euclidean norms by Demartines in his doctoral thesis, who presented the following
imporant theorem.

Theorem 3 ( Demartines, 1994, [4]). let X ( Rm be an m-dimensional data set, where each dimension
is distributed in an i.i.d. fashion, i.e., each Xi ∼ F and ρ is the L2 norm. Then,

E(ρ(x̄, 0̄)) = E
(
‖x̄‖
)

=
√
am− b+O

(
1

m

)
,

V ar(ρ(x̄, 0̄)) = V ar
(
‖x̄‖
)

= b+O

(
1√
m

)
,

where a and b are some constants independent of the dimension m.

This theorem shows that expectation of the distances to the origin increases as dimension increases, but
the variance remains a constant. Thus, when the dimension is very large, the variance will still be small as
compared to the expected distance, hence the points will be closely packed.

The result of Demartines was generalised to any Lp norm by Hinneburg et al..

Theorem 4 ( Hinneburg et. al., [1] ). Let X = {x̄m1 , x̄m2 , ..., x̄mn } be n m-dimensional i.i.d. random
vectors, ρ be any of the Minkowski norms Lp with exponent p. Then there exists a constant Cp, independent
of the underlying distribution F of x̄mi , such that

Cp ≤ lim
m→∞

E

(
DMAXm −DMINm

m
1
p−

1
2

)
≤ (n− 1)Cp . (3)

Theorem 4 says that the ratio of contrast to m
1
p−

1
2 is bounded by Cp that depends on the exponent p.

Based on (3) Hinneburg et al. have made the following observations on the exponent p:
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• For Lp norm (p ≥ 3), the relative contrast rapidly goes to 0 as m increases. It means that the distance
function has lost its discriminative power for p ≥ 3 in high dimensions.

• For the Euclidean L2 norm (p = 2), contrast remains constant.

• For the Manhattan L1 norm (p = 1), contrast increases as
√
m increases.

• This tends to imply that the L1 norm is more preferable than the L2 norm for high dimensional data
as it provides a better contrast than L2 norm.

This result motivated some researchers to consider the Minkowski norms where the exponent p ∈ (0, 1),
i.e., the Fractional norms Fp. Aggarwal et al. further extended Theorem 4 to study the concentration of
Fractional norms.

Theorem 5 ( Aggarwal et al., [1] ). X = {x̄m1 , x̄m2 , ..., x̄mn } be n m-dimensional i.i.d. random vectors
uniformly distributed over [0, 1]m. Then there exists a constant C, independent of p and m, such that

C

√
1

2p+ 1
≤ lim
m→∞

E

(
DMAXm −DMINm

DMINm

)
.
√
m ≤ (n− 1).C

√
1

2p+ 1
. (4)

From (3), it is clear that the constant C may be independent of p but the bounds for relative contrast

depend largely on

√
1

2p+ 1
. Hence, they concluded that on an average fractional norms provide better

contrast then Minkowski norms.

1.5.2. Theoretical Measure to Illustrate the CoD phenomenon

While RC(p,m) is a good empirical measure to illustrate whether a norm concentrates or not, it is not
amenable to theoretical analysis. This motivated François et al. [6] to introduce a more theoretical index
to measure the concentration in a similarity workload (Ω, X, ρ, µ). Note that this index is also derived from
the result of Beyer et al., Theorem 1.

Definition 3 (François et al. [6], pg. 877). Given a similarity workload, (Ω, X, ρ, µ), where Ω is m-
dimensional, the relative variance of ρ(x̄, 0̄) = ‖x̄‖ is defined as:

RV (p,m) =

√
V ar (‖x̄m‖p)
E
(
‖x̄m‖p

) .

The relative variance RV (p,m) illustrates the concentration of distances by comparing the spread of
points with the expectation. If RV (p,m) has small value then it indicates that norms are concentrated and
a large value for RV (p,m) denotes a good amount of spread between the points. In some sense it is similar
to RC(p,m) as it also compares the measure of spread to measure of location.

In fact, Theorems 1 and 2 can be restated as follows based on the above indices: If the relative variance
is not tending to zero then the relative contrast will also not converge to zero and therefore one does obtain
a good separation between points.

For a fixed but large dimension m, François et al. also determined the explicit relation between RC(p,m)
and p as follows (see [6], Theorem 6):

RV (p,m) =

√
V ar‖x̄m‖p
E‖x̄m‖p

≈ 1

p

(
σp

νp

)
, (5)

where νp = E(|Xi|p) and σp = V ar(|Xi|p) .
The above relation (5) shows that for a fixed large m, as p decreases the relative variance RV (p,m) in-

creases and thus explains why an Fp norm (0 < p < 1) gives better contrast than other Lp norms where p ≥ 1.

While both the indices illustrate the concentration phenomenon well, they do not give any information
on the rate at which a norm concentrates. Recently, Pestov [10] introduced a more general mathematical
function to measure concentration.
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Definition 4 (Pestov, [10]). Let us be given a measurable metric space (Ω, ρ, µ). The concentration function
αΩ : R≥0 → [ 1

2 , 1] is defined as follows:

αΩ(ε) =

{
1− inf{µ(Oε(A)) : A ⊆ Ω is Borel & µ(A) ≥ 1/2} , if ε > 0 ,
1
2 , if ε = 0 ,

where

Oε(A) = {x ∈ Ω : for some a ∈ A, ρ(x, a) < ε} .

The value αΩ(ε) gives an upper bound on the measure of the complement to the ε-neighborhood Aε of
every subset A of measure greater than or equal to 1

2 .
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2. Motivation and Intent of the work

2.1. Motivation

Recently, [9] a new index to measure the concentration of different distance functions called the dispersion
index, denoted by τρ where ρ is the distance function, has been proposed which is explained in detail below.

Notations :

Let us fix some notations before going further :

Symbol Explanation

X Given Data set,
m Dimension of Data,
N Total number of data points,
δi Nearest Neighbor Distance of ith point,
∆i
p Random variable of δi with respect to Lp distance,

F∆i
p

Cumulative Distribution Function of ∆i
p,

f∆i
p

Probability Density function of ∆i
p,

∆0
p Maximum of ∆1

p,∆
2
p, . . . ,∆

n
p ,

f∆0
p

Probability Density function of ∆0
p,

δ0 Expectation of ∆0
p,

Pr(A) Probability of event A,
Pr(A,B) Probability of A ∩B,
Pr(A|B) Probability of A given B.

Dispersion Index and Related Concepts

All the definitions and theorems in this section has been taken from [9].

Definition 5. Let (Ω,X , ρ, µ) be the similarity workload. Given a query point q ∈ X and ε ∈ R+, a range
query is said to be ε unstable if

#
{
x ∈ X : ρ(q, x) ≥ (1 + ε)δ

}
≥ #(X )

2

where δ = min{ρ(q, x) : x ∈ X}

Definition 6. Let X be given data set whose cardinality is N i.e., µc(X ) = N . Let x ∈ X and let δ denote
the nearest neighbor distance of x. For any g ∈ R+, the gδ nbd of x is defined as:

Ng,δ = Ng(x, δ) = {x′ ∈ X : ρ(x′, x) ≤ gδ}

Definition 7. Define a function C : X ×R+ → Nn as

C(x, g) = µc(Ngδ(x))

C(x, g) is called the gδ count of the point x.

If C(x, g) values of most of the x ∈ X for small values of g are high, the more points are lying in the
dilated gδ nbd of each x ∈ X and hence we can say the data is distributed very close to each other and
relative distance between the data points will be small.

Definition 8. Define C∗ : X ×R+ → [0, 1], called the normalized complement of C, as

C∗(x, g) =
(#X − C(x, g))

#X
= 1− C(x, g)

#X

9



Definition 9 ([9], Definition 4.2). Dispersion Function (λρ): Let (Ω,X , ρ, µ) be the similarity workload
and µc(X ) = n. Define λρ : (−1,∞]→ [0, 1] as

λρ(ε) = avgxi∈X (C∗(xi, (1 + ε)δ0))

For a given ε > 0, λρ returns the average of the fraction of the data set which is not captured by a data
point in its dilated (1 + ε)δ0 neighborhood. Thus, when n is large, high values of λρ indicate that a large
part of the data set are such that most of the data are lying at a distance greater than (1 + ε)δ0 to each of
them.

If we take ε to be small, then (1 + ε)δ0 ≈ δ0 and therefore remaining points are at least δ0 distance away
from each point and so data will still be well separated. Thus λρ can be considered as a statistical measure
of the dispersion as measured by the distance function ρ.

Theorem 6 ([9], Theorem 5.1). For any given similarity workload (Ω,X , ρ, µ), λρ is a decreasing function
i.e., if ε1 ≤ ε2 then λρ(ε1) ≥ λρ(ε2).

Proof. Let ε1 ≤ ε2 for ε1, ε2 ∈ (−1,∞] .

ε1 ≤ ε2
=⇒ (1 + ε1)δ0 ≤ (1 + ε2)δ0

=⇒ N(xi, (1 + ε1)δ0) ⊂ N(xi(1 + ε2)δ0 ∀i
=⇒ µc(N(xi, (1 + ε1)δ0)) ≤ µc(N(xi(1 + ε2)δ0) ∀i
=⇒ C(xi, (1 + ε1)δ0) ≤ C(xi, (1 + ε2)δ0) ∀i
=⇒ C∗(xi, (1 + ε1)δ0) ≥ C∗(xi, (1 + ε2)δ0) ∀i
=⇒ avgxi∈X (C∗(xi, (1 + ε1)δ0)) ≥ avgxi∈X (C∗(xi, (1 + ε2)δ0))

=⇒ λρ(ε1) ≥ λρ(ε2).

Definition 10. Let (Ω,X , ρ, µ) be the similarity workload and λρ be the corresponding dispersion function.
Define ε+ρ , ε

−
ρ as

ε+ρ = sup{ε ∈ [−1,∞) : λρ(ε) = 1}

ε−ρ = inf{ε ∈ [−1,∞) : λρ(ε) = 0}

Definition 11 ([9], Definition 6.1). Given a similarity workload (Ω,X , ρ, µ) and the corresponding dispersion
function λρ, define the index τρ as

τρ =

∫ ε−ρ

ε+ρ

λρ(ε)dε

τρ is called the dispersion index.

Clearly, τρ calculates the area under λρ over the interval [ε+ρ , ε
−
ρ ].

Empirically the author has also shown in the paper [9] that the above dispersion index can be used to
compare different distance functions on the basis of their concentration in high dimensions. Specifically if
τρ1 > τρ2 then ρ1 is less concentrated than ρ2. Using this index the above claim about the family of Lp or
Minkowski norms was validated empirically.
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2.2. Intent of this work

In this work, we are interested in doing a theoretical, largely probabilistic, analysis of the dispersion
index, specifically, for the L∞ distance function. This is specific case of the Lp distance function.

Consider the following setting:

• Let X be the given data set in m dimension and with cardinality N , i.e., let the total number of points
in X be N .

• X ∼ U [0, 1]m. Each dimension Xi is independent of the other dimensions and identically distributed
as U [0, 1] .

• Let Lp denote the pth-Minkowski norm where p ∈ (0,∞].

Given the above, we intend to analyze probabilistically the dispersion function for the L∞ distance
function. This will provide the mathematical backup to the above index and also helps to verify the
consistency of the dispersion function mathematically.

2.3. Method

Study above concepts gives idea to divide our work into the following steps:

• Step 1: Calculation of the probability density function of nearest neighbor distance (δi) for each ith

point of the given dataset X i.e., calculation of f∆i
p

for each ith point.

• Step 2: Calculation of the probability density function of the maximum of ∆1
p,∆

1
p . . . ,∆

N
p i.e., calcu-

lation of f∆0
p
.

• Step 3: Calculation of Expectation of ∆0
p i.e., calculation of δ0.

• Step 4: Let ε ∈ [−1,∞) be fixed. Let µxi denote the number of points in ((1 + ε)δ0)(= r). Clearly
µxi is discrete random variable. Thus this step is about the calculation of probability mass function
of µxi . Hence calculation of probability mass function of µcxi which is the complement of the µxi .

• Step 5: Calculation of Expectation of µcxi . Hence calculation of avgxi∈XC
∗(xi, (1 + ε)δ0) which is

nothing but λρ(ε).

Note 1. We have described the above method for the general Lp distance function, though we will do only
for the L∞ distance function.
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3. Distribution of Nearest Neighbor Distances

We have started by focusing on 1st step of our method described above with respect to the L∞ norm
i.e., calculation of f∆i

∞
for each ith point.

3.1. Layman’s View

Let xi be a point at the center of the hypercube [0, 1]m. Let us consider an L∞ hypercube of radius r
centered at xi. Clearly r varies from 0 to 1

2

Case 1: when r ≤ 0, Pr(δi ≤ r) = 0 .

Case 2: when 0 ≤ r ≤ 1
2 ,Pr(δi ≤ r) = 1− Pr(δi > r)

Now, the volume contained in the above hypercube in m-dimensions is (2r)m and since X is uniformly
distributed the probability of finding a single point outside of this hypercube is 1 − (2r)m. Hence,
the probability of finding all the remaining N − 1 points outside of this hypercube is Pr(δi > r) =
(1− (2r)m)(N−1) and hence the probability that there exists at least one point at a distance of r from
the point xi is given by

Pr(δi ≤ r) = 1− (1− (2r)m)(N−1) .

Case 3: when r ≥ 1
2 , Pr(δi ≤ r) = 1 .

Thus, F∆i
∞

=


0, r ≤ 0 ,

1− (1− (2r)m)(N−1), 0 ≤ r ≤ 1
2 ,

1, 1
2 ≤ r .

(6)

Now, to check the correctness of the equation (6), we will compare the (6) with the simulations for the
dimensions m = 1, 2, 3, 4, 5, 8, 10, 50.
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Figure 2: Comparison of the CDF as calculated with (6) and the empirical CDF for m = 1, 2,.
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Figure 3: Comparison of the CDF as calculated with (6) and the empirical CDF for m = 3, 4, 5, 8, 10, 50.

From the distribution function F∆i
∞

a probability density function f∆i
∞

can be derived by differentiation:

f∆i
∞

=
∂F∆i

∞

∂r
= 2m(n− 1)(2r)(m−1)(1− (2r)m)(n−2) , 0 ≤ r ≤ 1

2
. (7)

3.1.1. Observations From Simulations

• From the above figures, it is very clear that up to 5 dimensional datasets, the above calculated cumu-
lative density function (6) seems to match almost exactly with the empirically calculated cumulative
density function of δi.

• But as we increase the dimension of the data set, the empirically calculated CDF moves away from
our theoretical CDF (see Figure 3).
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• Thus we can say our calculated CDF does not correctly capture the phenomenon when we move to
high dimensions.

Therefore, in the next section we will try to find out some likely causes that lead to this situation in higher
dimensions.

3.2. Effects in High-Dimensional Data Spaces

In this section we describe one of the many effects occurring in high-dimensional data spaces which are
not accordingly captured by (6) and also try to modify (6) accordingly.

Problems specific to higher Dimensional Data spaces

The effect occurring especially in high-dimensional data space is that all data points are likely to be near
by the boundary of the data space. This effect is known as Boundary Effect[7].

Intuitively this can be reasoned as follows :
Let us have 100 dimensional data set where points are generated uniformly in [0, 1]100 hypercube and each
dimension is independent of the others. Let x = (x1, x2, ....., x100) be a point generated where 0 ≤ xi ≤
1, i ∈ {1, 2, 3....100}. Since the dimensions are independent of each other, we can think coordinates of x as
generating 100 points uniformly in [0, 1] interval. Since distribution of points is uniform, it is very likely to
have at least one point near 0 or near1, say y and this y is one of the ordinates of x say xj . Therefore the
distance between xj and jth axis is very likely either to be close to zero or to be close to 1. Thus in the
both cases, x will be pulled or pushed by jth to the boundary.

It is very clear from the above reasoning that” Boundary effect is due to the assumption of the uniform
distribution of the data points and independence between the dimensions.”

The same can also be answered probabilistically as follows :
Let Ps(r) be the probability that a point randomly taken from a uniform and independent distribution in a
m-dimensional data space has a distance of r or below to the space boundary.

Case 1: when r ≤ 0, Ps(r) = 0 .

Case 2: when 0 ≤ r ≤ 1
2 , Ps(r) = 1− (1− 2r)m .

Case 3: when r ≥ 1
2 , Ps(r) = 1 .

Therefore when m is large even for smaller values of r, Ps(r) is close to 1 which implies the same effect.
The same phenomenon can also be said in terms of the volume of the hypercube as most of the volume
of the hypercube is contained in annulus of width ε near the boundary where ε is inversely related to the
dimension of the hypercube and in the uniform distribution case, volume of a region in nothing but the
number of points contained in the region divided by total number of points.

Justification

In this section we will try to justify that (6) will not work correctly in high dimension space mainly
because of the above discussed Boundary Effect phenomenon.

Let us try to explain this with fixing a point (say x). Now in high Dimension Space this point is more
likely to near the boundary due to Boundary effect. So let us fix x near the boundary in two dimensional
space (Figure 3.2). Now at a radius (r) greater than the minimum of the distance of the point x from the
boundaries of the square, B(x, r) (ball centered at x, of radius r) will not completely lie inside the square.
In other words, B(x, r) is no more uniform. Let Va be the volume of the B(x, r) which completely lie inside
the square.

Clearly, V (B(x, r)) ≥ Va
=⇒ (1− V (B(x, r))) ≤ (1− Va)

=⇒ 1− (1− V (B(x, r))) ≥ 1− (1− Va)

14



Figure 4: Boundary Effect

Thus, according to (6) Probability of nearest neighbor distance of x less than or equal to r is greater than
the actual probability which implies in the Figure 3 the blue curve raises above the x axis before the red
curve in high dimension.

The variation or deviation of the blue curve from the red curve is more in high dimensions (see Figure
3) because with the increase in dimension the difference V (B(x, r))− Va increases when Va > 0.

3.3. Modification

It is clear from above discussion that due to boundary effect in higher dimensions we have to consider
also the position of the point while calculating the probability density function of nearest neighbor distance
for that point.

Let us begin by considering one dimensional data set spread over the unit interval [0, 1]. Consider the
intersection of the interval (x − r, x + r) with the unit interval [0, 1], where r ∈ [0, 1

2 ] is fixed and x is the
position of the point in the interval [0, 1]. The function g : [0, 1] → [0, 1] given below plots the amount of
intersection:[3]

Figure 5: Amount of intersection of the interval (x− r, x + r) with the unit interval [0, 1] for fixed r ∈
[
0, 1

2

]

g(x) =


x+ r, 0 ≤ x ≤ r ,
2r, r ≤ x ≤ (1− r) ,
r − x+ 1, (1− r) ≤ x ≤ 1 .

(8)

Thus when r ∈
[
0, 1

2

]
, for a fixed position x of the point, the intersection of the interval (x− r, x+ r) with

the interval [0, 1] is given by g(x).
Observe that the above graph or definition of function g(x) is valid only when fixed r ∈

[
0, 1

2

]
. Therefore

Lets fix r ∈
[

1
2 , 1
]
. Now see below the intersection of the interval (x− r, x+ r) with the unit interval [0, 1],

where r ∈ [ 1
2 , 1] is fixed and x is the position of the point in the interval [0, 1]. The function h : [0, 1]→ [0, 1]

given below plots the amount of intersection:

h(x) =


x+ r, 0 ≤ x ≤ (1− r) ,
1, (1− r) ≤ x ≤ r ,
r − x+ 1, r ≤ x ≤ 1 .

(9)

15



Figure 6: Amount of intersection of the interval (x− r, x + r) with the unit interval [0, 1] for fixed r ∈
[
1
2
, 1

]

Thus when r ∈
[

1
2 , 1
]
, for a fixed position x of the point, the intersection of the interval (x− r, x+ r) with

the interval [0, 1] is given by h(x).
We can also write the two functions g(x) and h(x) together and introduce a new function f : [0.1] → [0, 1]
as

f(x) =


x+ r, 0 ≤ x ≤ min(r, (1− r)) ,
min(2r, 1), min(r, (1− r)) ≤ x ≤ max(r, (1− r)) ,
r − x+ 1, max(r, (1− r)) ≤ x ≤ 1 .

(10)

Let V(m, q, r) denote the volume of the m dimensional hypercube centered at q of radius r, completely
contained in [0, 1]m hypercube .

Therefore, From equation (10), V(1, q, r) is nothing but equal to the f(q) .
Since the dimensions are independent of each other, we can write for a q = (q1, q2 . . . , qm),

V(m, q, r) =

m∏
j=1

f(qj)

Thus for a particular point, say xi = (x1
i , x

2
i , . . . , x

m
i ) in the m dimensional data set we can calculate the

distribution of the nearest neighbor distance δi as follows :

Case 1: when r ≤ 0, Prxi(δi ≤ r) = 0 .

Case 2: when 0 ≤ r ≤ 1, Prxi(δi ≤ r) = 1− [1− V(m,xi, r)]
(n−1)

= 1− [1−
m∏
j=1

f(xji )]
(n−1) .

Case 3: when r ≥ 1, Prxi(δi ≤ r) = 1 .

Now since the position of a point matters, we will compare the above calculated CDF with the simulations
by taking three different positions of a point in dimensions 5, 10, 50, 100.

• When the point is at the origin. In the case

V(m, q, r) =

{
rm, 0 ≤ r ≤ 1 ,

1, r ≥ 1 .
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Figure 7: Point is at the origin

• When the point is at the center of the hypercube. In the case

V(m, q, r) =

{
(2r)m, 0 ≤ r ≤ 1

2 ,

1, 1
2 ≤ r .

r
0   0.25 0.5 0.75 1   1.25

cd
f

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Dimn =5

Empricially cdf
theortically cdf

r
0   0.25 0.5 0.75 1   1.25

cd
f

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Dimn =10

Empricially cdf
theortically cdf

17



r
0   0.25 0.5 0.75 1   1.25

cd
f

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Dimn =50

Empricially cdf
theortically cdf

r
0   0.25 0.5 0.75 1   1.25

cd
f

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Dimn =100

Empricially cdf
theortically cdf

Figure 8: Point is at the center of the hypercube

• When the point is at the center of the one face of hypercube.In this case

V(m, q, r) =


r(2r)(m−1), 0 ≤ r ≤ 1

2 ,

r, 1
2 ≤ r ≤ 1 ,

1, r ≥ 1 .
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Figure 9: Point is at the center of the face of the hypercube

3.4. Position of the Point: Unknown!

From the above figures we have seen that boundary effect phenomenon can be resolved by considering
the position of the point. But for the second step to be solved, above formulas does not help much. The
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reason simply that it depends on the position of the point which in actual we do not know. Therefore we
need some formula like we have above in Layman’s view which is independent of the position of the point
and also works well in high dimensions.

To address this issue, we consider on an average what is the volume of intersection of interval (x−r, x+r)
with the interval [0, 1] where x ∈ [0, 1] is the position of the point and r is fixed i.e., nothing but the average
of functions g(x) and h(x). Let Vg and Vh denote the average of g(x) and h(x) respectively.

Vg =

∫ 1

0

g(x) dx

=

∫ r

0

(x+ r) dx+

∫ 1−r

r

2r dx+

∫ 1

1−r
(r − x+ 1) dx

= 2r − r2 where r ∈
[
0,

1

2

]
.

∴ Vg = 2r − r2 where r ∈
[
0, 1

2

]
. Similarly,

Vh =

∫ 1

0

h(x) dx

=

∫ 1−r

0

(x+ r) dx+

∫ r

1−r
1 dx+

∫ 1

r

(r − x+ 1) dx

= 2r − r2 where r ∈
[

1

2
, 1

]
.

∴ Vh = 2r − r2 where r ∈ [ 1
2 , 1]

Thus On an average the volume of intersection of the interval (x− r, x+ r) with the interval [0, 1] where
x ∈ [0, 1] and fixed r ∈ [0, 1] is determined by the formula :

Vavg = 2r − r2 where r ∈ [0, 1]

Since the dimensions are independent, In the case of m dimensional dataset average volume of intersection
is given by :

V mavg = (2r − r2)m where r ∈ [0, 1]

Thus we can replace (6) and can write :

Case 1: when r ≤ 0, Pr(δi ≤ r) = 0 .

Case 2: when 0 ≤ r ≤ 1, Pr(δi ≤ r) = 1− (1− (2r − r2)m)(N−1) .

Case 3: when r ≥ 1, Pr(δi ≤ r) = 1 .

Thus, F∆i
∞

=


0, r ≤ 0 ,

1− (1− (2r − r2)m)(N−1), 0 ≤ r ≤ 1 ,

1, 1 ≤ r .
(11)

Now again to check the correctness, we will compare the equation (11) by the simulations for the dimensions
m = 1, 2, 3, 4, 5, 10, 50, 100, 500, 1000, 1200, 1500 .
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Figure 10: Comparison of the CDF as calculated with (11) and the empirical CDF for m = 1, 2, 3, 4, 5, 10 .
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Figure 11: Comparison of the CDF as calculated with (11) and the empirical CDF for m = 50, 100, 500, 1000, 1200, 1500 .

Remarks

So far more or less we have completed the first step of the problem and also address some non intuitive
phenomenon (Boundary Effect) occurring in High Dimension Space. We modify our formulas to account for
this phenomenon.
Also we have noticed though not emphasized much that this Boundary Effect phenomenon is due to the
assumptions of the uniformity of the dataset and independency of the dimensions. So it is also interesting
to see what happens when we remove either or both the assumptions .
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4. Dispersion Function: A Theoretical Approximation

In this section, we carry out the remaining steps, i.e., Steps (2)–(5).

4.1. Distribution of the Maximum NN distance (Step 2)

To calculate the step(2), see 2.3, we will use the concept of order statistics which is as follows :

Definition 12. For X1, X2, . . . , Xn iid random variables, X(k) is the kth smallest X, usually called the kth

order statistic.

In our case we need only maximum order statistic i.e. X(n) = max(X1, X2, . . . , Xn), thus need to have
only the density of the maximum order statistic.

Density of the maximum order statistic (X(n))

For X1, X2, . . . , Xn iid continuous2 random variables with PDF f and CDF F, the density of the maximum
order statistic is :

Pr(X(n) ∈ [x, x+ ε]) = Pr(one of the X’s ∈ [x, x+ ε] and all others < x)

=

n∑
i=1

Pr(Xi ∈ [x, x+ ε] and all others < x)

= n Pr(X1 ∈ [x, x+ ε]) Pr(and all others < x)

= n Pr(X1 ∈ [x, x+ ε]) Pr(X2 < x) Pr(X3 < x) . . . P r(Xn < x)

= n f(x) ε (F (x))(n−1)

=⇒ f(n)(x) = n f(x) (F (x))(n−1)

where f(n) is the PDF of X(n). Thus the CDF, i.e F(n) of X(n) is as follows

F(n) = (F (x))n (12)

Using equation (12), CDF of maximum nearest neighbor distance is as follows :

F∆0
∞

=


0, r ≤ 0 ,

(1− (1− (2r − r2)m)(N−1))N , 0 ≤ r ≤ 1 ,

1, 1 ≤ r .
(13)

4.2. Maximum Nearest Distance on an Average (Step 3)

Now the next step is to calculate the expectation of the ∆0
∞, i.e. δ0, which will be calculated by

integrating equation (13) from r = 0 to 1, i.e.

δ0 = 1−
∫ 1

0

(1− (1− (2r − r2)m)(N−1))N dr

But it is not possible to find out the closed form solution in terms of m and N. So we move to the next steps,
i.e. step (4) and (5) with assuming the maximum nearest neighbor distance on an average is δ0. Finally, we
shall find the values of δ0, for different values of m and N numerically, to verify the results, which we will
obtain in the next section.

2In the case of continuous random variable X, Pr(X(i) = X(j)) = 0 ∀ i 6= j
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4.3. Distribution of C(xi, (1 + ε)δ0) (Step 4)

Let us look at the distribution of C(xi, (1 + ε)δ0), which is nothing but the number of points lying in the
neighborhood of point xi of radius (1 + ε)δ0.

Let Ci be the random variable corresponding to C(xi, (1+ε)δ0). Clearly, it is a binomial random variable
whose probability mass function is as follows :

Pr(Ci = K) =

(
N − 2

K − 2

)
(V(m,xi, (1 + ε)δ0))(K−2) (1− V(m,xi, (1 + ε)δ0))(N−K)

The reason to choose (K − 2) out of (N − 2) is that the points xi and its nearest neighbor always present
in the neighborhood of point xi of radius (1 + ε)δ0 ∀ε ∈ (−1,∞].

But to make analysis easier, we shall use Vmavg((1+ε)δ0) instead of V(m,xi, (1+ε)δ0), so that C1, C2, . . . , CN
will become iid binomial random variables. Also when N is large, (N − 2) ∼ N .

Thus, Probability mass function of Ci is as follows :

Pr(Ci = K) =

(
N

K

)
(Vmavg((1 + ε)δ0))K (1− Vmavg((1 + ε)δ0))(N−K)

where Vmavg(r) = (2r − r2), r ∈ [0, 1]

4.4. Theoretical Form of Dispersion function (Step 5)

Now, dispersion function (see Definition 9) can also be written as :

λ∞(ε) = avgxi∈X

(
1− C(xi, (1 + ε)δ0)

N

)
which, in terms of probability, is nothing as :

λ∞(ε) = 1− E[Ci]

N

λ∞(ε) = 1− Vmavg((1 + ε)δ0)

. Thus,

λ∞(ε) =

{
1− (2(1 + ε)δ0 − ((1 + ε)δ0)2)m, −1 ≤ ε ≤ 1

δ0
− 1 ,

0, otherwise .
(14)
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Simulations to verify the above :

epsilon
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

la
m

bd
a

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 N =5000  m =100 D =0.75255

Empirical
Theoretical

(a) m=100,N=5000

epsilon
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

la
m

bd
a

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 N =10000  m =100 D =0.74112

Empirical
Theoretical

(b) m=100,N=10000

epsilon
-1 -0.5 0 0.5

la
m

bd
a

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 N =5000  m =50 D =0.65545

Empirical
Theoretical

(c) m=50,N=5000

-1 -0.8 -0.6 -0.4 -0.2 0 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 N =10000  m =500max dist =0.86625

(d) m=500,N=10000

epsilon
-1 -0.8 -0.6 -0.4 -0.2 0 0.2

la
m

bd
a

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 N =10000  m =1000 D =0.91685

Empirical
Theoretical

(e) m=1000,N=10000
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Figure 12: Comparison of the (14) with Definition (9)

4.5. Dispersion Function for General Minkowski norms

Let Vm(avg,p)(r), denote the average volume of intersection with [0, 1]m, when Lp distance function is

considered. Thus Vm(avg,∞)(r) is nothing but Vmavg(r) as stated above.

Observe that for each p ∈ (0,∞] and for each r ∈ [0,∞), Vm(avg,p)(r) ≤ 1.

Theorem 7. Let δp0 be the maximum nearest neighbor distance on an average when Lp is considered. Then
the dispersion function λp : (−1,∞]→ [0, 1] can also be defined as :

λp(ε) =

1− Vm(avg,p)((1 + ε)δp0), −1 ≤ ε ≤ m
1
p

δp0
− 1 ,

0, otherwise .
(15)

With the understanding that 1
∞ = 0.

Proof. Proof is similar as that of equation 14.

Observe that if we want to have closed form formula for the Vm(avg,p)(r), for distance functions other than
L∞, it will become very difficult because we cannot simply generalize the volume of intersection from one
dimension to any dimension as in the case of L∞ distance function (see Section 3.3). This suggests some
qualitative analysis has to be done so that one can at least compare the values of the dispersion function,
for a given ε, for two different distance functions.

By ”Qualitative Analysis” we mean , not to calculate the CDF of nearest neighbor for each different
distance functions or any formula analytically, but to give general results, which points one towards some
possible answers about the ordering between values of the dispersion function, for a given ε, for two different
distance functions.

For instance, still confining ourselves to the data setting as given in Section 2.2, we have the following
result:

Proposition 1. Let us consider Lp and Lq distance functions such that p < q. Let B(x, r) be the ball
centered at x and of radius r completely contained in [0, 1]m. Then Prp(δ ≤ r) < Prq(δ ≤ r)

Proof.

Clearly, Vp(B(x, r)) ≤ Vq(B(x, r))

=⇒ 1− Vp(B(x, r)) ≥ 1− Vq(B(x, r))

=⇒ (1− Vp(B(x, r)))N−1 ≥ (1− Vq(B(x, r)))N−1

=⇒ 1− (1− Vp(B(x, r)))N−1 ≤ 1− (1− Vq(B(x, r)))N−1

=⇒ Prp(δ ≤ r) ≤ Prq(δ ≤ r).
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The above proposition tells us that if we plot the CDF of nearest neighbor distances for two different
distance functions, say Lp and Lq such that p < q in the same figure then the graph of CDF corresponding
to Lq is far behind the graph of the CDF of nearest neighbor distances corresponding to the Lp distance
function. We will verify the same by simulation.

Simulation to verify the above proposition

Here we consider three different distance functions, which are L∞,L2 and L1. So, by above proposition,
graph of CDF for L∞ should come first, then graph for L2 and then for L1 distance function. (see Figure
4.5 )
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Figure 13: Comparison of the CDF of NN distance wrt L∞,L2 and L1 distance functions respectively.
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