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Modified fluctuation-dissipation and Einstein relation at nonequilibrium steady states
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Starting from the pioneering work of Agarwal [G. S. Agarwal, Zeitschrift für Physik 252, 25 (1972)], we present
a unified derivation of a number of modified fluctuation-dissipation relations (MFDR) that relate response to
small perturbations around nonequilibrium steady states to steady-state correlations. Using this formalism we
show the equivalence of velocity forms of MFDR derived using continuum Langevin and discrete master equation
dynamics. The resulting additive correction to the Einstein relation is exemplified using a flashing ratchet model
of molecular motors.
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I. INTRODUCTION

Derived within linear response theory, the fluctuation
dissipation theorem (FDT) predicts how the response function
of a thermodynamic observable is related to correlation of
thermal fluctuations at equilibrium. Let us assume that an
equilibrium system described by a Hamiltonian H is perturbed
at time t = t1 by an external force h(t). The FDT predicts a
response at a later time t2 > t1 [1]

R
eq
A (t2 − t1) = δ〈A(t2)〉

δh(t1)
= β

∂

∂t1
〈A(t2)[−∂hH (t1)]h=0〉eq

(1)

where the correlation is calculated at equilibrium correspond-
ing to temperature T with β = 1/T . The differential operator
∂h in the above relation denotes the scalar derivative evaluated
at time t1. Thus −∂hH is the displacement conjugate to h

with respect to the Hamiltonian. Throughout this paper we use
the Boltzman constant kB = 1, unless otherwise stated. Using
the Onsager regression hypothesis the FDT can be interpreted
as follows: The decay of a fluctuation is independent of how
it has been created, under the influence of a small applied
force or spontaneously by thermal noise. The FDT is violated
away from the equilibrium regime and this violation has been
studied in context of glassy systems, granular matter, sheared
fluid, stochastic processes, and biological systems [1–9].

In a pioneering study back in 1972 [10], Agarwal obtained
a modified fluctuation-dissipation relation (MFDR) that re-
lated response functions around nonequilibrium steady states
(NESS) to correlations evaluated at a steady state. For a
system evolving with a statistical dynamics characterized by
the Fokker-Planck (FP) equation ∂tp = L0p, Agarwal showed
that a perturbation in the operator L0 → L0 + h(t)L1 leads to
a response that can be expressed in terms of a correlation
function evaluated at the unperturbed steady state [10,11]

RA(t2 − t1) = δ〈A(t2)〉
δh(t1)

= 〈A(t2)M(t1)〉, (2)
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where the Agarwal term M = [L1ps]/ps with ps denoting the
steady-state probability distribution. Throughout this paper by
〈. . .〉 we denote a steady-state average.

Over the last decade a formalism of stochastic thermo-
dynamics has been developed that allows the description of
energy and entropy along fluctuating trajectories [12–14].
Various fluctuation theorems involving the distribution of
entropy [15–21] and work theorems [22–24] were discovered.
Recently, using an integral fluctuation theorem, a number
of these relations were derived in a unified manner [14,25].
Important experimental tests include colloidal particles ma-
nipulated by laser traps [26–28], biomolecules pulled by
AFM or laser tweezer [29,30], and the autonomous motion
of motor proteins [31]. Stochastic thermodynamics has also
been used to derive several versions of MFDR around NESS
[6,7,9,32–36]. Some of these predictions were experimentally
verified [27,37].

In this paper, we present a unified derivation of a number
of MFDRs based entirely on the Agarwal formalism [10].
Thus the MFDRs we obtain are intrinsically equivalent to each
other. We show that the Agarwal term M can be expressed as
a velocity excess from a local mean velocity using both the
continuum Langevin and discrete master equation dynamics.
This interpretation leads us to a modified Einstein relation
that has the same additive correction term for the two cases.
Finally, we apply this framework to a flashing ratchet model
of molecular motors [38–40] to calculate the MFDR and the
additive correction in the Einstein relation, which shows a
nonmonotonic variation with the asymmetry parameter of the
ratchet.

The structure of this paper is as follows. In Sec. II we
review the derivation of the Agarwal form of MFDR that we
use throughout this paper to calculate other versions of MFDR
expressed in physically observable forms. Using this result, in
Sec. III we present a simple and straightforward derivation of
the MFDR in terms of stochastic entropy production, keeping
in mind that this relation was used earlier to derive velocity
MFDR for a master equation dynamics [9]. Then, directly
using the Agarwal form, we derive the velocity MFDR for
a system evolving with continuum Langevin dynamics in
Sec. IV, and a discrete master equation in Sec. V. The velocity
MFDR is used in Sec. VI to derive a modified Einstein relation
at NESS. In Sec. VII, we study the velocity MFDR, and the
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violation of the Einstein relation in a flashing ratchet model
of molecular motors. Finally, in Sec. VIII we summarize our
main results and conclude.

II. THE AGARWAL FORM OF MFDR

The probability distribution p(ς,t) of finding a system at
state ς at time t evolves with time as

∂tp(ς,t) = L(ς,h)p(ς,t), (3)

where L is a general time evolution operator that depends on
external force h(t). For weak h, Taylor expanding the operator
we get

L(ς,h) = L0(ς ) + h(t)L1(ς ), (4)

where L1 = [∂hL]h=0. The solution to Eq. (3) is

p(ς,t) = ps +
∫ t

−∞
dτeL0(t−τ )h(τ )L1ps(ς ), (5)

where ps denotes the steady-state distribution that obeys
L0ps = 0. Then the response of any observable 〈A(t)〉 =∫

dςA(ς )p(ς,t) to a force h(t) is

RA(t2 − t1) = δ〈A(t2)〉
δh(t1)

=
∫

dςA(ς )
δp(ς,t2)

δh(t1)

=
∫

dςA(ς )eL0(t2−t1)L1ps(ς )

=
∫

dςA(ς )eL0(t2−t1)M(ς )ps(ς ), (6)

where in the last step we used the Agarwal term M(ς ) ≡
[L1ps]/ps . By definition, the two-time correlation function
is 〈A(t)B(0)〉 = ∫

dς
∫

dς ′A(ς )B(ς ′)p2(ς,t ; ς ′,0), where
p2(ς,t ; ς ′,0) is the joint probability distribution of finding
the system at state ς ′ at time 0 and at state ς at time t .
One can express p2(ς,t ; ς ′,0) = w(ς,t |ς ′,0) p(ς ′,0), where
w(ς,t |ς ′,0) is the transition probability. The time evolution
∂tp = L0p can be solved to obtain the transition probability at
steady state w(ς,t |ς ′,0) = exp(L0t)δ(ς − ς ′). Thus the two-
time correlation at a steady state takes the form 〈A(t)B(0)〉 =∫

dςA(ς ) exp(L0t)B(ς )ps(ς ). Therefore we can write Eq. (6)
as

RA(t2 − t1) = 〈A(t2)M(t1)〉. (7)

This is the Agarwal form of MFDR [10]. The derivation
presented here used a continuum notation of the phase space
variable ς . However, the result is general, and can be derived
similarly for a system that evolves through transitions between
discrete states [see Eq. (21)].

The Agarwal term in its operator form M(ς ) ≡ [L1ps]/ps

requires detailed knowledge of the probability distribution at
a steady state. In the rest of this paper we focus on expressing
this term in physically observable forms.

III. MFDR IN TERMS OF STOCHASTIC ENTROPY

The definition of nonequilibrium Gibb’s entropy S =
− ∫

dς p(ς,t) ln p(ς,t) ≡ 〈s(t)〉 has recently been used to get
a definition of the stochastic entropy s(t) = − ln p(ς,t) [25].
For a master equation based discrete dynamics between states

denoted by n(t), the stochastic entropy can be written as
s(t) = − ln pn(t). Using this definition we obtain a simple
interpretation of the Agarwal term in terms of stochastic
entropy

M = 1

ps

L1ps = ∂hL(h)p

p

∣∣∣∣
h=0

= ∂h∂tp

p

∣∣∣∣
h=0

= −∂t [∂hs]h=0.

(8)

In deriving the above relation we assumed that L(h) is linear
in h. We also used the fact that the steady-state distribution
ps = p|h=0. Thus M is expressed as the time evolution of a
variable conjugate to the external force h with respect to the
stochastic system entropy s. In this sense, s in NESS plays a
role similar to the Hamiltonian in equilibrium FDT. We can
now write the MFDR at NESS as

RA(t2 − t1) = ∂

∂t1
〈A(t2)[−∂hs(t1)]h=0〉. (9)

The authors of Refs. [7,41] found this relation by considering
a perturbation that takes the system to a final steady state. Note
that our simple and straightforward derivation does not require
such an assumption, and thus the result is more general.

A. Equilibrium FDT

The FDT at equilibrium can easily be derived from Eq. (9).
If, even in the presence of external perturbation the system
remains at equilibrium, one can write down the probability
distributions as p = exp[−β(H − F )] where F is the free
energy. This distribution leads to the relation [∂hp]h=0 =
β[(∂hF − ∂hH )p]h=0. Note that the equilibrium displacement
evaluated at h = 0 is [∂hF ]h=0 = 0. Thus we get the identity
[∂hs]h=0 = −[(∂hp)/p]h=0 = β[∂hH ]h=0, which leads to the
equilibrium FDT Eq. (1).

IV. VELOCITY MFDR USING LANGEVIN EQUATION

Let us consider a Langevin system where the dynamics of
a particle evolves by

v = μf + η, (10)

where v = ẋ is the particle velocity, μ is the mobility, and
f denotes the total force imparted on the particle. The total
force f (x,t) consists of a force due to interaction F (x) and
an external time-dependent force h(t): f (x,t) = F (x) + h(t).
The last term η denotes a thermal noise that obeys 〈η〉 = 0 and
〈η(t)η(0)〉 = 2Dδ(t) with D = μT the equilibrium Einstein
relation. The corresponding FP equation is

∂tp(x,t) = −∂xj (x,t),
(11)

with, j (x,t) = [μf (x,t) − D∂x]p(x,t).

The velocity form of MFDR for a Langevin system was
originally derived by the authors of Ref. [34]. Here we
briefly outline the derivation starting from the Agarwal form.
Equation (11) can be expressed as

∂tp(x,t) = (L0 + h(t)L1)p(x,t),

where L0 = −∂x(μF ) + D∂2
x and L1 = −μ∂x. Thus the

Agarwal term M = −μ(∂xps)/ps, and T M = −D(∂xps)/ps .
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The definition of the steady-state current js leads to the
relation D∂xps = μF (x)ps(x) − js . Defining a local mean
velocity at steady state νs(x) = js/ps(x) we can then rewrite
T M = −D(∂xps)/ps = νs(x) − μF (x). In this relation, using
the Langevin equation at the initial steady state (h = 0), we
get T M = νs − v + η. Thus, the response function

T RA(t2 − t1) = 〈A(t2)[ν(t1) − v(t1) + η(t1)]〉. (12)

Note that in the Langevin equation μh(t) and η(t) have the
same status, and A(x,t) can be regarded as a functional of
noise history. Then it can be shown that [34]

T RA(t2 − t1) = D
δ〈A(t2)〉
δη(t1)

= 1

2
〈A(t2)η(t1)〉. (13)

Thus we can write Eq. (12) as

RA(t2 − t1) = β 〈A(t2) [v(t1) − ν(t1)]〉. (14)

This is the velocity form of MFDR, which for the velocity
response gives

Rv(t2 − t1) = β 〈v(t2)[v(t1) − ν(t1)]〉. (15)

Note that the steady-state average of ν is the same as the mean
velocity

〈νs〉 =
∫ L/2

−L/2
dxps(x)νs(x) = μ〈F 〉 − D[ps]

L/2
−L/2 = 〈vs〉.

(16)

The boundary term [ps]
L/2
−L/2 = 0 either by a periodic boundary

condition [34], or by taking the boundaries to infinity where
the probabilities vanish. If the system is at equilibrium, ν = 0,
and we get back the well-known equilibrium response

Req
v (t2 − t1) = β 〈v(t2)v(t1)〉eq. (17)

Therefore the nonequlibrium MFDR Eq. (15) can be
viewed as the equilibrium FDT with an additive correction
−β〈v(t2)ν(t1)〉.

It is interesting to note that using Eq. (13), we can arrive
at a nonequilibrium MFDR first obtained by the authors of
Ref. [32] for continuous Langevin dynamics and subsequently
shown to be true for discrete spin variables (as well as for
conserved and nonconserved order parameter dynamics) by the
authors of Ref. [33]. Defining the position correlation function
Cx(t2,t1) = 〈x(t2)x(t1)〉 and the corresponding response func-
tion 2T Rx(t2,t1) = 〈x(t2)η(t1)〉 [using Eq. (13)], we get the
modified MFDR

(
∂t1 − ∂t2

)
Cx(t2,t1) = 2T Rx(t2,t1) + A(t2,t1), (18)

where A(t2,t1) = 〈μf (t1)x(t2) − μf (t2)x(t1)〉 is the so-called
asymmetry which vanishes in the presence of time reversal
symmetry. Note that causality demands that the response of
the system at time t2 to a perturbation at time t1, Rx(t2,t1) is
nonzero only when t2 � t1. Incorporating the time translation
invariance and time reversal symmetry restores the equilibrium
FDT T Rx(t2,t1) = ∂t1Cx(t2,t1). Also note that the choice of
the observable V in Ref. [36] as a one-dimensional (1D)

coordinate x, reduces the second term on the right-hand side
(r.h.s) of Eq. (13) in Ref. [36] to 〈(L − L∗)V (s)Q(t)〉 =
〈2(j/ρ)∇xQ(t)〉 = 〈νQ〉. Now setting Q ≡ v (velocity),
leads Eq. (13) in Ref. [36] to Eq. (14) in our paper, the velocity
form of MFDR.

V. VELOCITY MFDR USING MASTER EQUATION

We now focus on a master equation system where the
time evolution occurs via transitions between discrete states.
Following the authors of Ref. [34], we first derive the discrete
form of the Agarwal term M . Our main contribution in this
section is to express M as an excess velocity, and thus arrive
at a velocity form of MFDR, similar to the Langevin system.

We begin by considering a set of discrete states {n} and write
down the corresponding master equation for the probability
pm(t) of finding the system in a state m at time t

∂tpm(t) =
∑

n

[wnmpn(t) − wmnpm(t)] ≡
∑

n

Lmnpn(t),

(19)

where wmn represents the transition rate from state m to n

and is generally dependent on the external force h. The time
evolution operator

Lmn = wnm − δmn

∑
k

wmk. (20)

If the external force h(t) acting on the system is weak, Taylor
expanding about h = 0, we get

Lmn(h) = (L0)mn + h(t)(L1)mn.

In this relation

(L1)mn = wnmαnm − δmn

∑
k

wmkαmk,

where αmn = [∂h ln wmn]h=0 gives the relative change of
rates. Note that the system is prepared in a NESS at h = 0
characterized by the stationary distribution (pn)s . Then Eq. (6)
can be expressed in the discrete notation as

RA(t2 − t1) =
∑
m,n

Am

[
eL0(t2−t1)p(t1)

]
mn

Mn = 〈A(t2)M(t1)〉,

(21)

where the Agarwal term is

Mm = 1

(pm)s

∑
n

(L1)mn(pn)s

=
∑

n

(pn)s
(pm)s

wnmαnm −
∑

n

wmnαmn. (22)

Now we use the above relation to derive the velocity form of
MFDR. We assume a displacement dmn associated with each
transition from state m to n. This has the property dmn = −dnm

and gives a definition of velocity v(t) = ∑
m δ(t − τm)dm−1,m

[42]. A generalized detailed balance in the presence of the
external force h

wmn(h)

wnm(h)
= wmn(0)

wnm(0)
exp[β h dmn] (23)
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leads to the following useful relation

αmn − αnm = βdmn. (24)

We also utilize the probability current

Jmn = pmwmn − pnwnm = −Jnm. (25)

Then from Eq. (22) we find the velocity form of the Agwarwal
term

Mm =
∑

n

(pn)s
(pm)s

wnmαnm −
∑

n

wmnαmn

=
∑

n

(pn)s
(pm)s

wnm(αmn + βdnm) −
∑

n

wmnαmn

= β
∑

n

(pn)s
(pm)s

wnmdnm −
∑

n

1

(pm)s
(Jmn)sαmn

= β(vm − νm), (26)

where

vm =
∑

n

(pn)s
(pm)s

wnmdnm,βνm =
∑

n

(Jmn)s
(pm)s

αmn. (27)

These relations lead to the velocity form of MFDR

RA(t2 − t1) =
∑
m,n

Am

[
eL0(t2−t1)p(t1)

]
mn

[β(vm − νm)]

= β〈A(t2)[v(t1) − ν(t1)]〉. (28)

Note that Eq. (28) agrees with the results obtained by the
authors of Refs. [7,9]. In particular, the authors of Ref. [9]
used the MFDR expressed in terms of stochastic entropy of
the system s [Eq. (9)] to obtain Eq. (28). They used the total
stochastic entropy stot = s + sm where sm is the stochastic
entropy of the medium and showed

∂hṡm(t) =
∑
m

δ(t − τm)dm−1,m ≡ v(t) =
∑
m

δn(t),mvm,

∂hṡtot(t) = ν(t) =
∑
m

δn(t),mνm, (29)

where vm and νm are given by Eq. (27).
Note the equivalence of Eq. (28) with Eq. (14). Indeed

the analogy of ν described here with the local mean velocity
[j (x,t)/p(x,t)] in the Langevin system becomes even more
clear when we compare the steady-state average 〈νs〉 =∑

m(pm)sνm with 〈vs〉 = ∑
m(pm)svm and find

〈νs〉 = T
∑
mn

Jmnαmn =
∑
mn

(pn)swnmdnm = 〈vs〉. (30)

This relation is the same as Eq. (16) obtained for the Langevin
system.

For a velocity response Eq. (28) readily leads us to Eq. (15),
already obtained in the context of Langevin dynamics. This
completes one of the main achievements of this paper; the
Agarwal formalism leads to the same form of velocity-
MFDR for discrete master equation and continuum Langevin
dynamics.

VI. EINSTEIN RELATION

Using the velocity MFDR [Eq. (15) we find the mobility in
NESS

μs =
∫ ∞

0
dτRv(τ ) = β

∫ ∞

0
dτ 〈v(τ )[v(0) − ν(0)]〉. (31)

On the other hand, the diffusion constant in an NESS having
mean velocity 〈vs〉 is

Ds =
∫ ∞

0
dτ 〈[v(τ ) − 〈vs〉][v(0) − 〈vs〉]〉. (32)

Thus the mobility μs and diffusion constant Ds at NESS do
not satisfy the equilibrium Einstein relation (i.e., Ds − T μs =
I 
= 0). The difference gives us the modification in the Einstein
relation in terms of the violation integral

I ≡ Ds − T μs =
∫ ∞

0
dτ [〈v(τ )ν(0)〉 − 〈vs〉2]. (33)

Since the form of velocity MFDR for the Langevin equation
[Eq. (14)] and master equation [Eq. (28)] are the same, we get
the same modified Einstein relation for both the cases.

VII. FLASHING RATCHET MODEL
OF MOLECULAR MOTORS

In this section we apply the concepts developed so far in this
paper on a specific realization of the flashing ratchet model of
molecular motors [38–40,43,44]. In particular, we calculate the
velocity MFDR for this model and derive the violation integral
of the corresponding nonequilibrium Einstein relation.

A molecular motor (e.g., kinesin) moves along a polymeric
track (e.g., microtubule in a strongly fluctuating thermal
environment utilizing intrinsic local assymmetry of the track
and chemical energy provided by hydrolysis of Adenosine
triphosphate (ATP) to Adenosine diphosphate (ADP) and a
phosphate). The binding and hydrolyzing of ATP changes the
strength of the interaction of the motor with the polymeric
track [43]. Thus a simple two-state approximation of the
dynamics of motor proteins was proposed [43,44] where the
motor encounters a locally asymmetric but globally periodic
potential whose height switches between a large and a small
value.

We consider a flashing-ratchet model where the system
switches between two states, (1) on state: stochastic motion in
an asymmetric piecewise linear potential, (2) off state: simple
1D diffusion (Fig. 1). The probability distributions in the two
states p1,2(x,t) evolve by [44]

∂tp1 + ∂xj1 = ω2p2 − ω1p1,

∂tp2 + ∂xj2 = −ω2p2 + ω1p1,

where j1 = −D∂xp1 and j2 = −D[p2∂x(W/T ) + ∂xp2], and
ω1,2 denote the transition rates. In the on state, the potential
W (x) is periodic W (x) = W (x + λ) with period λ = (a +
b). Within one period, W (x) = (W0/a)x if 0 � x < a, and
W (x) = (W0/b)(λ − x) if a � x < λ.

We perform molecular dynamics simulations of a particle
moving under the influence of the above-mentioned ratchet
potential in the presence of a Langevin heat bath. We use
stochastic switching between the on and off states with a
constant switching rate ω1 = ω2. From this simulation, in
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FIG. 1. Flashing ratchet model: The potential height switches
between W = 0 (off state) and W0 (on state). The asymmetry of the
potential in the on state is described by the inequality a 
= b. ω1,2

denote transition rates between on and off states.

Fig. 2, we plot the velocity-response function kBT Rv(τ ) and
the related steady-state correlations 〈v(τ )v(0)〉, 〈v(τ )ν(0)〉
[Eq. (15)]. The parameter values we use are enlisted in Fig. 2
and are typical of microtubule associated molecular motors
[45]. At long time, both 〈v(τ )v(0)〉 and 〈v(τ )ν(0)〉 decorrelate
to 〈vs〉2. We utilize the correlation functions to determine the
mobility μs , diffusion constant Ds , and the violation integral
I = Ds − kBT μs (see Fig. 2).

We calculate the dependence of the steady-state mobility
kBT μs , diffusion constant Ds , and the violation integral I on
the asymmetry parameter α = a/λ (Fig. 3) where α = 1/2
denotes the symmetric ratchet. This calculation leads us to
the curious result that all three quantities have a minimum at
α = 1/2. The steady-state diffusion constant Ds in the flashing
ratchet is always suppressed (Ds < D), and moves closer to
the free diffusion D for the most asymmetric ratchet. Note
that the violation integral quantifies the difference between

FIG. 2. (Color online) Velocity correlations and response: veloc-
ity response kBT Rv(τ ), correlation function of the velocity with the
local mean velocity 〈v(τ )ν(0)〉, and velocity autocorrelation function
〈v(τ )v(0)〉 as a function of time. The parameter values used to
obtain these curves are λ = 8 nm, a/λ = 0.1, D = 0.009 μm2 s−1,
kBT = 4.2 pN nm, W0 = 18.85 kBT , and simulation time step δt =
1.8 × 10−6 s. The transition rates are chosen to be equal with
w1 = w2 = 3536 s−1. With these parameter values we find Ds =
0.0084 μm2 s−1, kBT μs = 0.0057 μm2 s−1, and the violation integral
I = 0.0027 μm2 s−1. The mean velocity in a steady state is 〈vs〉 =
2.04 μm/s.

FIG. 3. (Color online) Flashing ratchet: diffusion constant Ds ,
mobility kBT μs , and violation integral I as a function of asymmetry
parameter α = a/λ. All the other parameter values are the same as in
Fig. 2.

NESS and equilibrium, with equilibrium requiring I = 0. The
symmetric ratchet does not generate a unidirectional motion,
but the switching between the on and off states keeps the
system out of equilibrium. Thus, though the violation integral
reaches its minimum at α = 1/2 it remains I 
= 0. Setting
the switching rates ω1,ω2 = 0 would restore equilibrium with
I = 0. The dependence of I on various models and parameter
values at different NESS is yet to be fully understood.

While the calculation of all the other quantities from
our simulations are straightforward, ν(t) demands a special
mention. The local mean velocity ν(x) is the stochastic
particle velocity v averaged over the subset of trajectories
passing through x. At a steady state, this definition is the
same as νs(x) = js/ps(x) where the mean current is constant
everywhere: js = ρ〈vs〉 with 〈vs〉 the mean velocity at steady
state and ρ = 1/λ the mean density. In calculating 〈v(τ )ν(0)〉,
the local mean velocity at time t is obtained by identifying the
value of ν(x) corresponding to the position x visited by the
particle at that instant.

VIII. SUMMARY

We have presented a unified derivation of MFDRs at NESS
using the Agarwal formalism. Thus all the various versions of
MFDR that we derived in this paper are intrinsically equivalent
to each other. We showed that the response function around
any NESS can be expressed as a correlation between the
observable and a variable conjugate to the external force with
respect to the system’s stochastic entropy production. For both
a continuum Langevin and a discrete master equation system,
we have shown that the nonequilibrium form of FDT involving
velocity response can be expressed as an equilibrium one and
an additive correction. The correction in both these cases
is a correlation function of the velocity with a local mean
velocity. The resulting modification of the Einstein’s relation
gives the violation in terms of a time integral over this additive
correction.
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Using molecular dynamics simulations in the presence of
a Langevin heat bath, we studied a flashing ratchet model
within this framework and obtained the response function and
velocity correlations in the steady state. We showed that the
violation integral varies nonmonotonically with the asymmetry
parameter of the ratchet and reaches a nonzero minimum
for the case of a symmetric ratchet. We plan to extend our
study to other models of molecular motors [40], stochastic
particle-pumps [46,47], polymer translocation dynamics [48],
and dynamics of self-propelled particles [49].
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