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Abstract

This thesis is primarily a presentation of energy stability results obtained in some
standard partial differential equations by means of an integral inequality technique. We
are interested in the problem of stability or instability of different partial differential
equations. Suppose for a given equation we have a solution. It is the stability of that
solution, we wish to investigate. The idea is that, for solution to be stable that must be
stable against any disturbance to which that may be subjected. Damping the disturbance
rapidly is our ultimate goal, for this, energy method is very useful. To show that the
solution is unstable, it is sufficient to find at least one disturbance that grows in amplitude
or remains bounded away from the solution. Linear instability analysis and nonlinear
stability analysis are the main parts. Nonlinear stability we mean that following two
condition are satisfied. Firstly, we can find an arbitrarily small bound on the size of any
perturbation whose initial magnitude is small enough. Secondly, any perturbation whose
initial magnitude is less than some critical value converges to 0 with time.

In Chapters 2 and 3, the linear diffusion equation and additional linear source term
in diffusion equation have been considered respectively. From the diffusion equation, we
have understood that over a infinite region, zero solution is always unconditionally stable
for periodic perturbation disturbance. In Chapter 3, we show that the zero solution to
diffusion equation with additional source term is always unstable for finite spatial region
i.e. over (0, 1). We find the necessary condition for stability by using energy method, for
that, an eigenvalue problem has been derived.

In Chapter 4, we explored the effect of a nonlinear term on the stability of solution
to convection-diffusion equation (ut + uux = uxx + βu2), with some boundary-initial
conditions. The effect of quadratic nonlinear term i.e. βu2 is to destabilize and for the
convective term i.e. uux in certain cases acts to stabilize. To check this, we used energy
method with some standard inequalities. we showed that if ||u0|| < 2β−1, then solution
is stable.

In Chapter 5, we explained basic terminology related to porous media. A nonlinear
stability analysis is performed by using energy method for the thermal convection prob-
lem in a fluid saturated porous medium when the medium is rotating. We show that the
nonlinear stability holds unconditionally. In nonlinear analysis, we find additional infor-
mation about the boundary conditions. Then using energy method for the nondimensional
perturbation governing equation of given problem, we get an eigenvalue problem. After
solving this eigenvalue problem we end up with sharp nonlinear stability threshold.
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1

Introduction

This thesis is primarily a presentation of energy stability results obtained in some
standard partial differential equations by means of an integral inequality technique. We
are interested in the problem of stability or instability of different partial differential
equations. Suppose for a given equation we have a solution. It is the stability of that
solution, we wish to investigate. The idea is that, for solution to be stable that must be
stable against any disturbance to which that may be subjected. Solution is stable means
all the perturbations decay to zero as time passes. Damping the disturbance rapidly is our
ultimate goal, for this, energy method is very useful as it probably guaranties exponential
decay. To show instability for the solution, it is sufficient to find at least one disturbance
that grows in amplitude or remains bounded away from the solution.

1.1 Linear instability analysis

In this section when we talk about stability, we will always mean a linear stability.
Our first job is to linearize our perturbation equations, this allows us to decompose our
perturbation into normal modes, as described below. Consider a particular perturbation.
We say that our steady state is stable with respect to this perturbation if the amplitude
of the perturbation diminishes with time and the steady state is recovered. However, the
perturbation may grow instead and our steady state may never be recovered. In this case
we say that our steady state is unstable with respect to this perturbation. We say that our
steady state is stable only if it is stable with respect to all possible perturbations.
Of course, it would be quite a bad job to have to check all possible perturbations to find
out if our steady solution is stable. Instead we decompose our perturbation into normal
modes. For example, if ui is a velocity perturbation we write

ui(x, t) =
∞∑
k=1

uki (x) exp(σkt)

where σk ∈ C is called the growth rate, or modal frequency. uki is called the mode shape.
The steady solution will be unstable if it is unstable with respect to just one of these
modes. So we look for the most unstable mode.
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Consider a particular mode with growth rate σ. If R(σ) > 0 (where we use R(σ) to
denote the real part of σ) then the perturbation will grow with time and if R(σ) < 0 it
will fade away with time until the steady state is reached again. We will be interested
in finding the condition under which R(σ) = 0. This is known as marginal stability.
If σ ∈ C − R then we say mode is oscillatory. If σ ∈ R then our mode is stationary
and we say that the principle of exchange of stabilities holds. If this is the case then we
can substitute σ = 0 into our equations to find sufficient conditions for marginal linear
instability (since R(σ) = 0 ⇐⇒ σ = 0 in this case).

1.2 Nonlinear stability analysis

Here, obviously, we do not linearize our perturbation equation as we did above. Let
v(X, t) be a vector of our perturbation variables with v = 0 corresponding to the steady
state solution. We want to find a function E(v) which is continuous with continuous first
order partial derivatives. Also we ask that it is positive definite, i.e.

E(v = 0) = 0 and E(v) > 0 otherwise.

If dE
dt
≤ −kE, k a positive constant, then E converges rapidly to 0 as t increases and

the steady state solution is stable. This procedure is known as the energy method and
the difficulty is to construct a suitable function E. In this way we determine sufficient
conditions for nonlinear stability. By nonlinear stability we mean that following two
condition are satisfied. Firstly, we can find an arbitrarily small bound on the size of
any perturbation whose initial magnitude is small enough. Secondly, any perturbation
whose initial magnitude is less than some critical value converges to 0 with time. If
we have convergence no matter how large the initial magnitude, we say that we have
unconditional nonlinear stability. We can find a linear instability boundary above which
the steady state is (linearly) unstable and we can find a nonlinear stability boundary below
which we have nonlinear stability. The idea is to choose E carefully so that these two
boundaries are as close together as possible (so that we only have a small region where
we know nothing about stability).
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2

Stability of solution to the Diffusion
equation

Let u be the solution of one dimensional diffusion equation,

ut = uxx, (2.1)

where for now −∞ < x < ∞, t > 0 and we are interested in the behaviour of u with
initial data as given below,

u(x, 0) = u0(x), −∞ < x <∞. (2.2)

2.1 Infinite region case

The zero solution (u ≡ 0) is a solution to (2.1). To check whether zero solution
is stable or unstable, using linear theory, we proceed as follows. Since (2.1) is linear,
consider a perturbation to zero solution to (2.1) of the form

u(x, t) = eσteikx, (2.3)

where k is any real number. Since u is periodic in x, u(x, t) may be written as Fourier
series,

u(x, t) =
∞∑
n=0

Ane
σnteiknx. (2.4)

(2.3) is referred to as Fourier mode. To cause instability only one destabilizing distur-
bance is sufficient. We would pick up the most destabilizing term in (2.4). Hence we
consider (2.3) only. We have,

u(x, t) = eσteikx.
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thus, we get

ut = σeσteikx = σu(x, t),

uxx = i2k2eσteikx = −k2u(x, t),

substituting these in (2.1), we get
σ = −k2.

Since k ∈ R, σ < 0 which means as time goes to infinity perturbation approach to zero.
So there is no unstable mode and all solution of the form (2.3) decay. Therefore the
zero solution to (2.1) is always stable (unconditionally stable) for periodic perturbation
disturbance.

2.2 Spatial region (0,1)

If we consider any subclass of (2.3) then, that will be the solution to (2.1). Suppose
(2.1) holds in the region (0, 1) with boundary conditions as given below,

u(0, t) = u(1, t) = 0 (2.5)

The only difference between infinite region case to (2.1) and above region is that k can
no longer take values in R. All function of x must vanish at x = 0, 1. As all solution
of the form (2.3) are stable, so all solutions of this subclass are stable. Now using the
energy method, we are showing that u ≡ 0 is stable solution to (2.1),(2.5).

Let u be the solution to (2.1), (2.5) which satisfy arbitrary initial condition u0(x). Define
energy function E(t) by

E(t) =
1

2
||u(t)||2. (2.6)

where || . || denotes the norm on L2(0, 1), i.e., ||f ||2 =
∫ 1

0
f 2dx. Differentiate E(t) with

respect to t and using (2.1), we get

dE

dt
=

1

2

d||u(t)||2

dt

=
1

2

∫ 1

0

du2

dt
dx

=
1

2

∫ 1

0

2uut dx

=

∫ 1

0

uuxx dx
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now use of integration by parts yields,∫ 1

0

uuxx dx = u

∫ 1

0

uxx dx−
∫ 1

0

du

dx

(∫ 1

0

uxx dx

)
dx

= uux|10 −
∫ 1

0

u2
x dx

dE

dt
= 0− ||ux||2

hence the energy equation becomes,

dE

dt
+ ||ux||2 = 0

d
(

1
2
||u||2

)
dt

+ ||ux||2 = 0

using the Poincare inequality i.e. (π2||u||2 5 ||ux||2) (Appendix (5.1)) we get,

d||u||2

dt
+ 2π2||u||2 5 0

e2π2td||u||2

dt
+ ||u||2e2π2t2π2 5 0

d
(
e2π2t||u||2

)
dt

5 0

which leads to,

||u||2 5 e−2π2t||u0||2 (2.7)

Hence, ||u(t)||2 −→ 0 at least exponentially and the zero solution to (2.1),(2.5) is
stable.
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3

Stability of solution to diffusion
equation with a linear source term

Consider the diffusion equation with a linear source term,

ut = uxx + au, (3.1)

where a is a positive constant, with initial data given by

u(x, 0) = u0(x). (3.2)

We are interested in the stability of zero solution to (3.1). When a = 0, it has been shown
in the last section that it is stable always. For this equation having linear source term, we
have to change according to the region unlike last section.

3.1 Spatial Region x ∈ R

Here we use normal mode analysis on the perturbation as follows,

u(x, t) = eσt+ikx

ut = σu(x, t)

uxx = −k2u(x, t)

using this in (3.1), we get

σ = −k2 + a. (3.3)

Since x ∈ R, we have to look among all periodic disturbances, i.e. k ∈ R From (3.3) it is
clear that, whenever σ > 0 we have instability. In other words, k2 < a implies instability.
Since a > 0, we can find some k2 such that k2 < a hold. So in this spatial region, x ∈ R
the zero solution i.e. u = 0 to (3.1) is always unstable for any a (a > 0).
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3.2 Finite Spatial Region

Consider x ∈ (0, 1), u satisfies (3.1), moreover u(0, t) = u(1, t) = 0,∀t > 0. Here
the situation is same as (3.3) except vanishing of solution i.e u = 0 at x = 0, 1. The
solution may be thought of as being periodic over R but must satisfy given condition.
For example,

u(x, t) = eσt sin kx,

now, u = 0 at x = 0, 1 which implies k = nπ, n = ±1,±2, ....... We can look it as half
range Fourier series since cosine term do not satisfy boundary conditions. Therefore for
(3.3)

k2 = n2π2, n = ±1,±2, .....

depending on a our stability criteria changes as follows. We have,

σ = −k2 + a.

Thus, the solutoin will be unstable if σ > 0⇒ k2 < a with k2
min = π2. Hence if a > π2

then solution is unstable. The mode eσt sin kx will grow in this case. For stability σ
should be less than zero. That is possible only if k2 > 0 i.e. a < π2. In this case all
modes decay. Hence solution is stable. If a = π2 the region is called stability instability
boundary, often called neutral stability boundary.

3.3 Stability of solution using energy method

We have boundary-initial value problem,

ut = uxx + au, x ∈ (0, 1), t > 0, (3.4)

u(0, t) = u(1, t) = 0, ∀t = 0,

with the initial condition is, u(x, 0) = u0(x).
To study stability of the zero solution, develop energy method as follows. Multiply both
side of (3.4) with u and integrating over (0, 1), we get∫ 1

0

u
∂u

∂t
dx =

∫ 1

0

u
∂2u

∂x2
dx+ a

∫ 1

0

u2dx

we know,

E(t) =
1

2
||u(t)||2

(
=

1

2

∫ 1

0

u2(x, t)dx

)
.
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Differentiating with respect to t and using (3.4), we get

dE

dt
=

1

2

∫ 1

0

du2(x, t)

dt
dx

=

∫ 1

0

uut dx

=

∫ 1

0

u(uxx + au) dx

=

∫ 1

0

uuxx dx+ a

∫ 1

0

u2 dx

now using integration by parts, on the right side of the above

dE

dt
= −||ux||2 + a||u||2

= −a||ux||2
(

1

a
− ||u||

2

||ux||2

)
, ||ux||2 6= 0

≤ −a||ux||2
(

1

a
−

max

H
||u||2

||ux||2

)
, ‖|ux||2 6= 0 (3.5)

where H is the space of admissible functions over which we look for a maximum,
i.e.

H = {u ∈ C2(0, 1)|u = 0 when x = 0, 1}

Let us define RE by, 1
RE

=
max

H ||u||2
||ux||2 . So we rewrite (3.5) as,

dE

dt
≤ −a||ux||2

(
1

a
− 1

RE

)
,

suppose a < RE =⇒
(

1
a
− 1

RE

)
> 0.

(
1
a
− 1

RE

)
= c(> 0) say, and putting this in

energy equation (3.5), leads to

dE

dt
≤ −ac||ux||2

by Poincare inequality,

dE

dt
≤ −acπ2||u||2

dE

dt
+ π2acE ≤ 0,

e2π2actdE

dt
+ Ee2π2actπ2ac ≤ 0

d
(
e2π2actE

)
dt

≤ 0

13



integrate above, we get

E(t) ≤ E(0)e−2π2act (3.6)

if a < RE then,

E(t) =
1

2
||u(t)||2 −→ 0 as t −→∞.

This tells us, E(t) −→ 0 as t −→∞ atleast exponentially.

3.3.1 Eigenvalue problem for RE

Now, next question is, what is RE? In the last section, we have defined

1

RE

= max
||u||2

||ux||2

To obtain RE , we are establishing Euler equation for eigenvalue problem. Let I1 =
||u||2, I2 = ||ux||2. The Euler-Lagrange equations are found from,

d

dε

I1(u+ εη)

I2(ux + εηx)

∣∣∣∣
ε=0

= δ

(
I1

I2

)
=

(I2δI1)− (I1δI2)

(I2)2

=
1

I2

(
δI1 − δI2

I1

I2

∣∣∣∣
max

)
=

1

I2

(
δI1 − δI2

1

RE

)
.

Here, I1
I2

will be a stationary value, since δ refer to ‘derivative’ evaluated at ε = 0.
Therefore,

δI1 − δI2
1

RE

= 0. (3.7)

we know,

δI1 =
d

dε

∫ 1

0

(u+ εη)2dx

∣∣∣∣
ε=0

=
d

dε
||I1||2

where η is an arbitrary C2(0, 1) function with η(0) = η(1) = 0, moreover

δI2 =
d

dε

∫ 1

0

(ux + εηx)
2dx

∣∣∣∣
ε=0

=
d

dε
||I2||2

substituting this in (3.7), we get

δI1 − δI2
1

RE

=
d

dε

∫ 1

0

(u+ εη)2 −
(

1

RE

(ux + εηx)
2

)
dx

=
d

dε

∫ 1

0

(u2 + ε2η2 + 2uεη)−
(

1

RE

(ux
2 + ε2ηx

2 + 2uxεxηx)

)
dx

=

∫ 1

0

(2εη2 + 2uη)−
(

1

RE

(2εηx
2 + 2uxηx)

)
dx

14



evaluating at ε = 0 gives,

δI1 − δI2
1

RE

=

∫ 1

0

(2uη)−
(

1

RE

(2uxηx)

)
dx

Let integrate underline part (say S), by using integration by parts and boundary condi-
tions,

S =
1

RE

(
ux

∫ 1

0

ηxdx−
∫ 1

0

(
dux
dx

∫
ηxdx

)
dx

)
S =

1

RE

(∫ 1

0

ηuxxdx

)
substituting the value of S and simplifying, we get∫ 1

0

η

(
u+

1

RE

uxx

)
dx = 0

η is arbitrary, from the fundamental theorem of calculus of variations, we get

uxx + uRE = 0, u(0) = u(1) = 0. (3.8)

This is the Euler equation which enable us to solve eigenvalue problem for RE. (3.8) is
a simple second order differential equation, which has a general solution,

u = Asin(x
√
RE) +Bcos(x

√
RE)

to find A and B, use boundary conditions i.e. u(0) = u(1) = 0

u(0) = Asin(0) +Bcos(0) =⇒ B = 0

so,
u = sin(x

√
RE)

we have takenA = 1 since we are primarily interested inRE not in u, so second condition
show that,

u(1) = 0 =⇒ sin
√
RE = 0 =⇒

√
RE = nπ, n = ±1,±2, ....

for stability we required a < REmin therefore,√
RE = π =⇒ RE = π2 =⇒ a < π2

hence a < π2 provide the stability of zero solution to (3.1), (3.2).
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4

Effect of nonlinear term on stability of
solution

To study the effect of a nonlinear term on the stability of solution to partial differential
equation, we start with Diffusion equation but here with additional term i.e. quadratic
nonlinear term on right hand side and convective nonlinear term on other side. With
same boundary-initial conditions given in (2.1). Therefore the system that we are going
to study is,

ut + uux = uxx + βu2 x ∈ (0, 1), t > 0 (4.1)

u(0, t) = u(1, t) = 0, ∀t ≥ 0

u(x, 0) = u0(x)

where β is a positive constant.

4.1 Nonlinear conditional stability

Linear stability analysis

If we start with this, for u = 0, then since any perturbation is assumed such as
|u|, |ux| << 1 moreover u2, uuxx may be neglected. Then we have only linear sta-
bility analysis of diffusion equation. For this zero solution is always stable as we have
seen in second section.

Nonlinear stability analysis

Here nonlinear terms can not be neglected. The effect of quadratic nonlinear term i.e.
βu2 is to destabilize and for the convective term i.e. uux in certain cases acts to stabilize.
To see the effect of u2 multiply (4.1) by u and integrate over (0, 1)∫ 1

0

uutdx︸ ︷︷ ︸
A

+

∫ 1

0

u2uxdx︸ ︷︷ ︸
B

=

∫ 1

0

uuxxdx︸ ︷︷ ︸
C

+

∫ 1

0

βu3dx︸ ︷︷ ︸
D

(4.2)
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The above integrals can be evaluated easily except D. Where

A =
1

2

∫ 1

0

2uutdx =
1

2

∫ 1

0

du2

dt
dx =

1

2

d

dt
||u||2

B =

∫ 1

0

u2uxdx = 0

C =

∫ 1

0

uuxxdx = −||ux||2

For D, we do not have idea about sign of u(x, t) i.e. either it is positive or negative. So
D may cause an instability. If ||u|| << 1 the solution is always stable. Hence,

D = β

∫ 1

0

u2u dx ≤ β

(∫ 1

0

u4dx

) 1
2
(∫ 1

0

u2dx

) 1
2

(4.3)

by Cauchy-schwarz inequality. Now use of Sobolev embedding inequality (Appendix
(5.2)) gives us, ∫ 1

0

u4dx ≤ 1

4

(∫ 1

0

u2
xdx

)2

using this further simplifying (4.3), we get

D ≤ β

2

(∫ 1

0

u2
xdx

)(∫ 1

0

u2dx

) 1
2

D ≤ β

2
||ux||2||u||

now, (4.2) gives
1

2

d

dt
||u||2 ≤ −||ux||2 +

β

2
||ux||2||u||

1

2

d

dt
||u||2 ≤ −||ux||2

(
1− β

2
||u||

)
(4.4)

assume that,

||u0||2 ≤ 2β−1 ⇒
∫ 1

0

u2
0dx ≤ 4β−2

Then we can say either,
(i) ||u(t)||2 ≤ 2β−1, ∀t > 0 (i.e. perturbation decay as time passes) or
(ii) there exist an η <∞ such that,

||u(η)|| = 2β−1, with

||u(η)|| < 2β−1, on[0, η).

i.e. perturbation remain constant throughout time (instability).
Suppose (ii) holds. Then on [0, η), (1 − β

2
||u|| > 0) put this in (4.4) which gives

us,
1

2

d

dt
||u||2 ≤ − ||ux||2︸ ︷︷ ︸

+ve

(
1− β

2
||u||

)
︸ ︷︷ ︸

+ve
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1

2

d

dt
||u||2 < 0 for 0 ≤ t < η (4.5)

hence,
||u(t)||2 ≤ ||u(0)||2 = ||u0||2 < 4β−2, t ∈ [0, η)

since ||u(t)|| is assumed continuous in t, this means ||u(η)|| 6= 2β−1, a contradiction.
Hence (ii) is false and (i) holds. We are assuming u ∈ C2 in x, u ∈ C1 in t.
Therefore,

||u0|| < 2β−1 =⇒ ||u(t)|| < 2β−1, ∀t ≥ 0.

Further, (4.5) holds ∀t ≥ 0 and hence

||u(t)||2 ≤ ||u0||2 ∀t ≥ 0.

−β
2
||u0||2 ≤ −β

2
||u(t)||2

0 <

(
1− β

2
||u0||2

)
≤

(
1− β

2
||u(t)||2

)
put this into (4.3) then we have,

1

2

d

dt
||u||2 ≤ −||ux||2

(
1− β

2
||u(t)||

)
1

2

d

dt
||u||2 ≤ −||ux||2

(
1− β

2
||u0||

)
once again use Poincare inequality (i.e. ||ux||2 ≥ π2||u||2)

1

2

d

dt
||u(t)||2 ≤ −π2

(
1− β

2
||u0||

)
||u(t)||2

set A = π2
(
1− β

2
||u0||

)
A||u(t)||2 +

1

2

d

dt
||u(t)||2 ≤ 0

e2At2A||u(t)||2 + e2At d

dt
||u(t)||2 ≤ 0

d

dt

(
e2At||u(t)||2

)
≤ 0

||u(t)||2 ≤ e−2At||u0||2

Here, we showed that if ||u0|| < 2β−1, then ||u(t)|| −→ 0 at least exponentially fast. We
have a condition for initial data, hence it known as nonlinear conditional stability.

18



5

Nonlinear stability in Rotating Porous
Convection (RPC)

The study of natural convection in a rotating porous media is motivated by it’s ap-
plications in engineering. Among the applications, food process industry, chemical in-
dustry, solidification and centrifugal casting of metal and rotating machinery, are few to
quote.

The equations governing the flow and heat transfer in a porous medium can be obtain
via an averaging procedure of the Navier-Stokes and energy equation over a representa-
tive elementary volume (REV). A set of new parameters is introduce such as porosity
(ratio of pore volume to the volume of porous matrix), permeability (a measure of the
ability of a porous material to allow fluids to pass through it). Standard notation are
used throughout, together with the Einstein summation convection for repeated indices.
Standard vector or tensor notation is also used wherever necessary. For example,

ux ≡
∂u

∂x
≡ u,x, ui,t ≡

∂ui
∂t
, ui,i ≡

∂ui
∂xi
≡

3∑
i=1

∂ui
∂xi

,

ujui,j ≡ uj
∂ui
∂xj
≡

3∑
j=1

uj
∂ui
∂xj

, i = 1, 2 or 3.

Note that, ujui,j ≡ (u · ∇)u and ui,i ≡ div u.

εijk a set of 27 numbers ε111, ε112,...

εijk = 0 if any 2 indices are same
εijk = +1 if (ijk) are (123) in cyclic order(3 cases)
εijk = −1 if (ijk) are (213) in cyclic order(3 cases)
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5.1 Description of problem

Let the porous medium occupy the horizontal layer, where gravity acting in the
negative z direction. The layer is rotating about z-axis, then the nonlinear equation for
convection in a saturated porous medium, derived from Vadasz(1998a) as,

1

V a

∂ui
∂t

= − ∂π
∂xi

+Rθki − T (k× u)i − ui, (5.1)

∂ui
∂xi

= 0, (5.2)

∂θ

∂t
+ ui

∂θ

∂xi
= Rw + ∆θ. (5.3)

Domain of above governing system is {(x, y) ∈ R2} × {z ∈ (0, 1)} × {t > 0}, where
k = (0, 0, 1); ui, π and θ are representing deviation to the velocity, pressure and tempera-
ture fields, here u = (u, v, w), ∆ is a Laplace operator. R, T and V a are non-dimensional
numbers and R2 is Rayleigh number, T 2 is Taylor number (measuring rate of rotation of
layer) and V a = φPr/Da is the Vadasz number. Here φ is the porosity, Pr is the prandtl
number and Da is Darcy the number. The Darcy number represent ration of permeability
to depth of layer i.e Da = k/H2. Permeability(k) is a measure of the ability of a porous
media to transmit fluids. Vadasz(1998a) pointed out that there is no loss in ignoring the
acceleration term in (5.1) , i.e V a −→∞. Boundary conditions are,

w(x, t) = 0, θ(x, t) = 0, z = 0, 1 (5.4)

and assume ui, θ, π satisfy a plane tiling periodic boundary condition in x and y.
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5.2 Stability analysis of RPC

Consider that the three-dimensional disturbance occupies a cell V in the porous
layer. Let ||.|| and (., .) represent the norm and inner product on L2(V ). According to
Vadasz(1998a) V a −→∞, rewriting the governing equation for this problem,

ui + T (k× u)i = − ∂π
∂xi

+Rθki, (5.5)

∂ui
∂xi

= 0, (5.6)

∂θ

∂t
+ ui

∂θ

∂xi
= Rw + ∆θ. (5.7)

Now we take curl of equation (5.5) and curl curl of equation (5.5), to get

ωi = T
∂ui
∂z

+R(θ,yδi1 − θ,xδi2), (5.8)

∆ui + T
∂ωi
∂z

= R[ki∆
∗θ − θ,xzδi1 − θ,yzδi2], (5.9)

respectively, where ωi is the vorticity and ∆∗ = ∂2/∂x2 +∂2/∂y2. Vorticity is curl of the
velocity field and is hence a measure of local rotation of the fluid.
Now use the energy method to study nonlinear stability. Multiply equation (5.5) by ui
and integrating over V, we get

||u||2 = R(θ, w). (5.10)

It is clear that the effect of rotation is lost and so any nonlinear analysis which incor-
porates the stability effect of rotation will need more than the usual kinetic energy ap-
proach.

5.3 Linearized analysis

If ui = eσtui(x), with a similar time representation for velocity and temperature
field, our task is to show that σ ∈ R. By observation of equation (5.5) to (5.9) we can say
that the linearized perturbation satisfy the equations,

σθ = Rw + ∆θ, (5.11)
ω3 = Tw,z, (5.12)

∆w + T
∂ω

∂z
= R∆∗θ, (5.13)

subjected to, θ = w = 0 on z = 0, 1.
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5.3.1 Proof of σ ∈ R

For time being assume that the σ, ui, θ are complex. Now take ∆∗ of equation (5.11),
multiplying by the conjugate θ∗ of θ and integrating over V to get,

σ||∇∗θ||2 = R(∇∗w,∇∗θ∗)− ||∇∗∇θ||2, (5.14)

where || . || is norm* on the complex Hilbert space L2(V ) (*note: consider this norm for
this proof only) and ∇∗ ≡ (∂/∂x, ∂/∂y, 0). Similarly for equation (5.13), multiply it by
conjugate w∗ of w, integrate over V and using (5.12), we obtain

0 = R(∇∗θ,∇∗w∗)− ||∇w||2 − T 2||w,z||2.

Let ||∇w||2 + T 2||w,z||2 = C(say).

0 = R(∇∗θ,∇∗w∗)− C (5.15)

Add (5.14) and (5.15) to get

σ||∇∗θ||2 = R[(∇∗θ,∇∗w∗) + (∇∗w,∇∗θ∗)]− ||∇∗∇θ||2 − C. (5.16)

Since σ is complex (σ = σr + iσi), the imaginary part of immediate above equation
is

σi||∇∗θ||2 = 0. (5.17)

Hence σ ∈ R.

5.4 Nonlinear stability analysis

We required further information about the boundary condition. To this end, note
that

ωi = εijkuk,j ≡ (w,y − v,z, u,z − w,x, v,x − u,y). (5.18)

From (5.8) we have,

ω1 = Tu,z +Rθ,y, ω2 = Tv,z +Rθ,x. (5.19)

To find ω1 & ω2 on the boundary, we are using θ ≡ 0, w ≡ 0 on (z = 0, 1), we find

ω1 = −v,z and ω1 = Tu,z onz = 0, 1, (5.20)
ω2 = u,z and ω2 = Tv,z onz = 0, 1. (5.21)

These equations clearly show that

u,z = v,z = 0 on z = 0, 1, (5.22)
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and finally we get

ω1 = ω2 = 0 on z = 0, 1. (5.23)

Now take a look for ω3, from (5.8) we have

ω3 = T
∂w

∂z
, (5.24)

and so

T
∂2w

∂z2
= v,xz − u,yz, (5.25)

and hence from (5.22), we have

w,zz = 0 on z = 0, 1. (5.26)

On boundary(z = 0, 1) w ≡ θ ≡ 0, from (5.7) we can directly get

w,zz = 0 on z = 0, 1. (5.27)

Let us set w(m) = ∂mw/∂zm, from (5.7) we derive

θ
(2n)
,t +

2n∑
r=0

2nCr[u
(r)θ(2n−r)

,x + v(r)θ(2n−r)
,y + w(r)θ(2n+1−r)] = Rw(2n) + ∆∗θ(2n) + θ(2n+2).(5.28)

Again using the boundary conditions θ ≡ 0 and w ≡ 0 together with the (5.26), (5.27)
we get

θ(4) = 0 on z = 0, 1. (5.29)

Now differentiate (5.19) with respect to z an even number of times; ω1 and ω2 with
respect to z an odd number of times, repeating the process leads to (5.20) and (5.21), to
get

ω1,zz = −v,zzz and ω1,zz = Tu,zzz on z = 0, 1,

ω2,zz = u,zzz and ω2,zz = Tv,zzz on z = 0, 1.

This gives
u(3) ≡ v(3) ≡ 0 on z = 0, 1;

then, from (5.24) and (5.25), to

w(4) = 0 on z = 0, 1. (5.30)

This process is repeated to derive the boundary conditions

w(2n) = 0, θ(2n) = 0, z = 0, 1, n = 0, 1, .... (5.31)
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5.4.1 Energy method and eigen value problem of RPC

Let us rewrite energy equation and take, curl and curlcurl of (5.5)

∂θ

∂t
+ ui

∂θ

∂xi
= Rw + ∆θ (5.32)

ωi = T
∂ui
∂z

+R(θ,yδi1 − θ,xδi2), (5.33)

∆ui + T
∂ωi
∂z

= R[ki∆
∗θ − θ,xzδi1 − θ,yzδi2], (5.34)

Now multiplying (5.32) by θ and integrating over V to get

1

2

d

dt
||θ||2 = R(w, θ)− ||∇θ||2. (5.35)

Similarly for (5.34), multiply it with w for i = 3 and integrating over V, then simplifying
that using (5.33) with i = 3 reduces to

0 = R(∇∗θ,∇∗w)− ||∇w|| − T 2||w,z||2. (5.36)

Add (5.35) to ξ× (5.36) for a coupling parameter ξ(> 0) to obtain

1

2

d

dt
||θ||2 = RI −D, (5.37)

where I and D are given by

I = (w, θ) + ξ(∇∗θ,∇∗w), D = ξ(||∇w||+ T 2||w,z||2) + ||∇θ||2

Now define RE as per following manner

1

RE

=
max

H
(
I

D

)
(5.38)

where H is the space of all admissible functions over which we look for a maximum.
Now further simplify (5.37) to obtain

1

2

d

dt
||θ||2 ≤ −D

(
RE −R
RE

)
. (5.39)

Consider R < RE , then using Poincare inequality (D ≥ π2||θ||2) which implies that
RHS of (5.39) is negative and after solving it we get ||θ(t)|| → 0 at least exponentially.
Similarly using this result and (5.10) we obtain ||u|| ≤ R||θ||, gives ||u(t)|| → 0 expo-
nentially.

5.5 Eigenvalue problem for RE

What is RE? In the last section, we have defined 1
RE

=
max

H
(
I
D

)
. Solution of this

variation problem gives the nonlinear stability threshold. Using Euler-Lagrange equation
we can derive

π,i = REki(θ − ξ∆∗θ) + 2kiξ(∆w + T 2w,zz), (5.40)
0 = RE(w − ξ∆∗w) + 2∆θ, (5.41)
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where π(x) is a Lagrange multiplier. Now we try to simplify the expression for RE . For
this take curl curl of (5.40) and assume a plane tiling form

w = W (z)g(x, y), θ = Ω(z)g(x, y) where ∆∗g + a2g = 0,

a being a wavenumber, the wavenumber has derived by reasoning from observed facts to
be non-zero(Chandrasekhar 1981). From (5.40) and (5.41) we have following equations
which are satisfied by W and Ω

2ξ[(1 + T 2)D2 − a2]W +RE(1 + ξa2)Ω = 0 (5.42)
2(D2 − a2)Ω +RE(1 + ξa2)W = 0. (5.43)

Using the boundary condition (5.31), we can take W = sinnπz with similar representa-
tion of Ω. Now use this in (5.42) and (5.43) for RE , to get

R2
E =

4ξ[n2π2(1 + T 2) + a2][n2π2 + a2]

(1 + ξa2)2

If we consider above equation as a function of n; then we required the minimum, hence
take n = 1 in above equation, which give

R2
E = 4ξ

[
(π2 + a2)2

(1 + ξa2)2
+
T 2π2(π2 + a2)

(1 + ξa2)2

]
. (5.44)

Set ξ = 1/a2 to obtain

R2
E =

(π2 + a2)2

a2
+
T 2π2(π2 + a2)

a2
. (5.45)

(5.45) show that the nonlinear stability threshold. We could directly select a2 =
√
T 2 + 1 =

1
ξ

in (5.44).
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6

Appendix

The inequalities presented here, are not in the most general forms, but given as per our
necessity. That have been found to be very useful in energy stability theory.

6.1 Poincare inequality

The Poincare inequality allows one to obtain bounds on a function using bounds on its
derivatives. Such bounds are of great importance in the modern, direct methods of the
calculus of variations.
Let V be a cell in three dimension. Suppose for simplicity V is the cell

0 ≤ x < 2a1, 0 ≤ y < 2a2, 0 < z < 1,

and suppose u is a function periodic in x, y of period 2a1, 2a2 respectively, and u = 0 on
z = 0, 1. Then the Poincare inequality may be written,

< u2 > ≤ 1

π2
< ui,jui,j >, (6.1)

where < . > denotes integration over V . In general, the constant, 1
π2 in (5.1), depends

on the geometry and size of the domain V .

6.2 Sobolev inequality

The one of frequent use in energy stability theory is the following. Let Ω be a bounded
domain in R3 with the boundary δΩ. Then for function u with u = 0 on δΩ,(∫

Ω

u6dV

) 1
3

≤ C

∫
Ω

|Ou|2dV,

where the constant C is independent of th domain, in fact C = 2
2
3

3
1
2 π

2
3
.
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