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Outline of The Work

This work is about how to infer from the given knowledge in the form of various rules. This work studies
all the fuzzy inference models that are used widely in almost every application. Moreover, the crux of
this work is SIRM inference model. The outline of the work is as follows:

• Firstly, it introduces all the terms which are going to be used throughout this work. The second
chapter, ’Preliminaries’ consists of definitions and basic concepts that are required to get a thorough
understanding of the work.

• Secondly, it talks about various fuzzy inference methods like Fuzzy Relational Inference (FRIs) :
Compositional Rule Inference (CRI) and Bandler-Kohout Subproduct Inference Method (BKS) ,
Single Input Connected Type Fuzzy Inference Method (SIC method) and Takagi-Sugeno Inference
Method (TSK). In addition to the fuzzy inference models, the third chapter also explains about the
five basic properties, that any FIS is expected to have.

• Thirdly, fourth chapter explains SIRM FIS in detail and also gives the available results about the
equivalence between SIRM FIS and other FISs.

• Fourthly, as we have mentioned, that in this work we are going to investigate about whether
the desirable five basic properties hold true in case of SIRM, in fifth chapter, two properties,
interpolativity and monotonicity have been shown holding true in case of SIRM FIS.

• Lastly, chapter 6 concludes the whole text as in this report.
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Chapter 1

Introduction

Fuzzy sets were introduced in order to extend the notion of classical set theory. They were introduced
to deal with uncertainty and vagueness. Their biggest application was found in fuzzy logic, which is
extension of classical logic. Infact, they gained importance because using them human knowledge can
be implemented in models and applications by transforming the knowledge into rules or conditional
statements consisting of linguistic terms and variables.
Where crisp sets dictate whether an element belongs to the set or not, fuzzy set tells about the extent to
which an element belongs to the set, that extent is termed as membership degree and these membership
degrees are assigned to the elements of the domain by the associated membership function. Thus,
mathematically, while crisp sets can be taken as functions from the domain ,say, X to {0, 1}, fuzzy sets
are functions from to X to [0,1] which gives membership degree to every element in X. Moreover, fuzzy
sets are always defined with respect to the context. That is, while defining fuzzy sets, there is always a
context that experts keep in mind.
For an example, let us consider a classical set, X = [4, 7]. Suppose, we want to get a set of tall people.
If we assume that people with their height between [5.5, 6.2] are tall, then its absurd that people with
height 5.4 ft. won’t be considered as tall, according to the given classical definition of ’tall’. Here is
where classical sets fail and we have to define fuzzy set, ’tall’ which will give membership degree to every
element of the domain. Also, note that, here the fuzzy set ’tall’ is defined for the people, but this fuzzy
set will completely differ, if we are talking about a tall buiding, or it will also differ, in case we specify
the country of which people we are talking about. Because then the context will vary and hence the
definition of fuzzy set.
Now consider a general fuzzy rule,

If x̃ is A then ỹ is B.

and let F(X) and F(Y ) be the set of fuzzy sets on X and Y respectively. Given a fuzzy input, A′, the
corresponding output B′ is obtained through the inference mechanism. Thus, an inference mechanism
can be seen as a function from F(X) to F(Y ). The inference method can be chosen to be any of the
following methods depending on the case or the nature of the problem: For instance, FRIs like CRI,
BKS take and deduce fuzzy sets, whereas, SIRM, TSK and SIC take crisp inputs and give crisp outputs.
However, crisp sets can be fuzzified (either by transforming them to singleton sets or defining membership
functions on the domain) and correspondingly, fuzzy sets also can be defuzzified.
As we said that that fuzzy inference systems (FISs) are nothing but functions, so there are several prop-
erties that one may want this function to satisfy. Hence, out of many properties, there are few desirable
properties that an FIS/function should satisfy, and they are,: 1. Interpolativity 2. Continuity, 3.Mono-
tonicity, 4. Robustness, and 5. Universal Approximation.
Among all the FISs mentioned above, SIRM Inference method is the newest. It has many applications
because of its several advantages over other FISs (that can be explored in further sections). It will be
studied in detail in the coming sections.

1.1 Motivation for Work

Our work is about single Input-Rule Connected FIS (SIRM), which was introduced by Hirota Seki etal.
in their work [Yubazaki et al.(1997)Yubazaki, Yi, and Hirota]. It is the newest inference model and is
gaining popularity because of its efficient performance in applications (Its merits can be read in further
sections). However, the basic properties, mentioned in the previous section, that should hold in case of
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a FIS, are not studied that much in case of SIRMs. So, because of the uses this FIS has, in our work we
are going to study SIRM FIS in detail and will try to investigate whether those hold true in their case
as well.

1.2 Our Approach

The motto behind this work is as follows:

• Study SIRM FIS in detail, and

• Probe whether the basic five properties hold true in case of SIRM FIS or not.

This task can be accomplished using either of the following approaches:

• Investigate each of the properties independently for SIRMs, or

• Check under what conditions on the underlying operations, SIRMs become equivalent to some other
FIS satisfying those properties so that equivalence between the two will ensure that those properties
will hold true in case of SIRM Connected Type FIS as well.



Chapter 2

Preliminaries

Definition 2.0.1. Given a domain X, a fuzzy set A is characterised by its membership function,
µA : X → [0, 1]. Then, the fuzzy set will be written as A = {(x, µA(x)) | x ∈ X}.

A is said to be normal if there exists an x ∈ X such that µA(x) = 1 , else its called as subnormal fuzzy set.

Support, Kernal, Height and ceiling of A are denoted by Supp A, Ker A, Hgt A, Ceil A respectively and
are defined as follows :

• Supp A = Cl{x ∈ X 3 µA(x) > 0}. (where Cl(*) denotes closure of * and * can be any set.)

• Ker A = {x ∈ X 3 µA(x) = 1}.

• Hgt A = sup{µA(x) 3 x ∈ X}.

• Ceil A= {x ∈ X 3 µA(x) = HgtA}.

• A is said to be bounded if Supp A is a bounded set.
Note that for a normal fuzzy set Ker A = Ceil A and Hgt A = 1.

Definition 2.0.2. Fuzzifier: A fuzzifier is an important part of the fuzzy logic system. It converts the
crisp value to a fuzzy set. Hence, its a function from a crisp set, X to the set of fuzzy sets on X, F(X).
i.e., φ : X → F(X) . The most common fuzzifier that is used widely is singleton fuzzy set,

φ : X → F(X)

defined as
φ(x) = Ax ∈ F(X) ,

where, Ax : X → [0, 1] is defined as

Ax(x′) =

{
1, if x = x′ ,

0, if x 6= x′ .

Defuzzifier: Antonym to fuzzifier, a defuzzifier converts the fuzzy set to a crisp value. Hence, it is a
function from the set of fuzzy sets on X, F(X) to a crisp set, X . For e.g., Mean of maxima method for
defuzzification of a fuzzy set A is given as,

y =

∑
ceilAA(x)∑

ceilA x
, if

∑
ceilA

x 6= 0

Definition 2.0.3. Fuzzy Partitions: Let P be a finite collection of fuzzy sets of X, i.e, P = {Ak}nk=1 ⊆
F(X) . P is said to form a fuzzy partition on X if

X ⊆
n⋃

i=1

Supp(Ai)

Fuzzy partition is said to be :

13
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• consistent, if whenever for some i , Ai(x) = 1, then Aj(x) = 0, for i 6= j

• Ruspini if
n∑

i=1

Ai(x) = 1 for every x ∈ X .

Definition 2.0.4. t-norms and s-norms: A t-norm operator denoted as t(x, y) is a function mapping
from [0, 1]× [0, 1] to [0, 1] that satisfies the following conditions for any w, x, y, z ∈ [0, 1] :

• t(0, 0) = 0, t(x, 1) = t(1, x) = x , (boundary conditions)

• t(x, y) ≤ t(z, w) if x ≤ z and y ≤ w , (Monotonic in both the variables)

• t(x, y) = t(y, x) , (Commutative)

• t(x, t(y, z)) = t(t(x, y), z) . (Associative)

An s-norm or t-conorm denoted as s(x, y) is a function mapping from [0, 1]× [0, 1] to [0,1] that satisfies
the following conditions for any w, x, y, z ∈ [0, 1] :

• s(1, 1) = 1, s(x, 0) = s(0, x) = x , (boundary conditions)

• s(x, y) ≤ s(z, w) if x ≤ zandy ≤ w , (Monotonic in both the variables)

• s(x, y) = s(y, x) , (Commutative)

• s(x, s(y, z)) = s(s(x, y), z) . (Associative)

Definition 2.0.5. Fuzzy Implication :A function I : [0, 1]× [0, 1]→ [0, 1] is called a fuzzy implication
if it satisfies, for all x, x1, x2, y, y1, y2 ∈ [0, 1], the following conditions:

• if x1 ≤ x2, then I(x1, y) ≥ I(x2, y), i.e., I(, y) is decreasing ,

• if y1 ≤ y2, then I(x, y1) ≤ I(x, y2), i.e., I(x, ) is increasing ,

• I(0, 0) = 1, I(1, 1) = 1, I(1, 0) = 0 .

A fuzzy implication I : [0, 1]× [0, 1]→ [0, 1] is said to

• satisfy the left neutrality property, if

I(1, y) = y, y ∈ [0, 1] .

• satisfy the ordering property, if

I(x, y) = 1⇐⇒ x ≤ y .

• be a positive fuzzy implication if I(x, y) > 0, for all x, y ∈ (0, 1].

Definition 2.0.6. Fuzzy Relation : Let X and Y be the domain and codomain of the fuzzy inference
mechanism, i.e, consider a rule, If x′ is A then y′ is B , A ∈ F(X) and Y ∈ F(Y ). Then, a fuzzy relation
is the subset of X×Y . A fuzzy relation is nothing but a fuzzy set only, i.e., A fuzzy relation R is a function

R : X × Y → [0, 1]

Definition 2.0.7. Rulebase : Whole of the fuzzy theory developed as a science to implement human
knowledge and somehow work with it. This human knowledge, in any sort of application, is captured in
the form of conditional statements/propositions or if-then statements, for example,

IF temperature is HIGH, THEN, fanspeed is HIGH.

A rulebase is nothing but a collection of rules. There can be two types of rules.
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• Single Input Single Output (SISO) Rules : As the name suggests, such rules takes in single input to
process and deduce single output, after inferring. Or, we can say that in a SISO rule, there is only
one fuzzy set in its antecedent as well as its consequent. A general SISO rule look like the following,
however an example of a SISO rule is given above (example of an if-then statement given above),

IFX̃ is A, THEN Ỹ is B.

• Multiple Input Single Output (MISO) Rules : Such rules takes may take more than one inputs to
process and deduce single output, after inferring. We can also say that in a MISO rule, there can be
more than one fuzzy sets in its antecedent, which may have same or different domains . A general
MISO rule look like the following,

IF X̃1 is A1 AND X̃2 is A2 AND ... AND X̃n is An, THEN Ỹ is B .

For example,

IF temperature is HIGH AND humidity is MORE,
THEN fanspeed is VERY HIGH.

A Fuzzy Inference System (FIS), can be seen as a machine, that takes input (crisp/fuzzy), processes
it and gives out the desired output. It consists of:

1. A Fuzzifier (in case it requires fuzzy input and we are giving crisp input),

2. A Fuzzy inference Engine (that forms the core intelligence on how to infer),

3. A Fuzzy if-then rule base (that captures the knowledge of the system),

4. A Defuzzifier (in case we want a crisp output).

Definition 2.0.8. Fuzzy inference system takes care of the processing of the input on the basis of the
given rules. It can be taken as a function defined on a crisp set, say X, to another crisp set , say Y or
on F(X), set of all fuzzy sets on X to F(Y ), set of all fuzzy sets on Y, i.e.,

• f : X → Y (crisp output against crisp input, as in case of SIRM, SIC, TSK), or

• f̃ : F(X)→ F(Y ) (fuzzy outputs are generated against fuzzy inputs, as in case of CRI, BKS)
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Chapter 3

Fuzzy Inference Systems

Given the rulebase and the input , the desired output depends completely on the inference mechanism
chosen. The Fuzzy Inference Method in turn depends on factors like, partition of the domain and
codomain for the inference mapping, aggregating operations, fuzzification and defuzzification techniques,
the t-norms and s-norms employed etc. These factors gave rise to a wide variety of fuzzy inference systems
which we will study in this section.

3.0.1 Fuzzy Relational Inference

As we mentioned above, that fuzzy inference mechanism can be viewed as a mapping. FRI mechanisms
uses a fuzzy relation R to model a given fuzzy rule base. Consider a rule,

If x̃ is A, then ỹ is B. (3.1)

The corresponding output B′ to the input A′ is given by,

B′ = A′@R,

where, R = {((x, y), R(x, y)) , |(x, y) ∈ X × Y }.
On the basis of the composition operator @ and R, FRI’s can be classified into two further inference
mechanisms:

3.0.2 Compositional Rule of Inference

The compositional rule of inference (CRI) that was provided by Zadeh is one of the earliest FRIs. Here,
from the fuzzy IF THEN rule of the form (3.1) , the output B′ corresponding to the input A′ can be
inferred by

B′(y) =
∨
x∈X

(A′(x) ∗R(x, y))

Here,
∨

denotes any s-norm and * denotes any t-norm. We can also infer using a rulebase consisting of
several rules. Let us consider the following rule base

Rule i : If x̃1 is A1
i , x̃2 is A2

i ... xn is An
i then ỹi is Bi ,

where, x̃i’s are the linguistic variables and Ais are the linguistic values or the fuzzy sets in the input
space, ỹis are the linguistic variables and Bis are the linguistic values or the fuzzy sets in the output
space and i = 1, 2, . . . ,m give m number of rules.
Now, consider the Rule i of the rule base given in (2) and take @ equivalent to product and

∨
equivalent

to sum. The degree of fitness of the input vector (x′1, x
′
2, ..., x

′
n) is calculated as:

hi =

j=n∏
j=1

(Aj
i (x
′
j)) (3.2)

Then, the corresponding output fuzzy set for ith rule will be given as: B′i(y) = hi.Bi(y) and the final
output of the rule base will be given by:

B′(y) =

i=m∑
i=1

B′i(y) .

17
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3.0.3 Bandler-Kohout Subproduct Inference Method

For a given fuzzy input A′ ∈ F(X), the fuzzy output B′ ∈ F(Y ) that is obtained by the BK-subproduct
inference mechanism is defined as follows:

B′(y) =
∧
x∈X

(A′(x)→ R(x, y))

where → is a residual implication,
∧

denotes a conjunction operator and R is the fuzzy relation that
models fuzzy rule (3.1).
This is also known as Inf-I composition and the BKS scheme is noted by B′ = A′ / R.

3.1 Takagi-Sugeno Inference Model

Rules in the TS inference method are constituted as

Rule− i : If x1 is A1
i , x2 is A2

i ... xn is An
i then y = fi(x1, x2, ..., xn) (3.3)

where, i ranges between 1 and m, (x1, x2, ..., xn) are variables of the antecedent part, A1
i , A

2
i ...A

n
i are

the antecedent fuzzy sets and fi(x1, x2, ..., xn) is the function in the consequent. The inference result y′

for inputs x′1, x
′
2, ..., x

′
n is given by

y′ =

∑m
i=1 hifi(x

′
1, x
′
2, ..., x

′
n)∑m

i=1 hi

where hi is same as in (3.2) is the degree of the ith rule, and m is the total number of fuzzy rules.

3.2 SIRM Connected-Type Fuzzy Inference Methods

Here, the consequent part of the rule is a constant. The system has n inputs and one output, and each
rule module corresponds to one of the n input items and has only the input item in its antecedent.The
rules of the functional-type SIRMs method are given as follows:

Rules i : {If x̃i is Ai
j then yi = cij}

mi
j=1 (3.4)

where, the Rules-i stands for the ith single input rule module, x̃i corresponding to the ith-input
item is the sole variable of the antecedent part of the Rules-i, and yi is the variable of its consequent
part. Ai

j and cij are, respectively, the fuzzy set and constant of the jth rule of the Rules-i, where
i = 1, 2, ..., n , j = 1, 2, ...,mi , and mi represents the number of rules in the Rules− i.
Given an input {x′k}nk=1 to the rulebase, the ith component of the input vector, that is x′i will be the
input to Rules-i and the inference result y′i of the Rules-i is given as follows:

y′i =

∑mi

i=1 h
i
jc

i
j∑mi

i=1 h
i
j

hij = Ai
j(x
′
i) (3.5)

And the final inference result y′ of the functional-type SIRMs method is given by

y′ =
∑n

i=1 wiy
′
i (3.6)

where wi represents the importance degree of each input item xi , (i = 1, 2, ..., n), that is, the weights
given to each module.

3.3 Single Input Connected Fuzzy Inference Method

Given the same rule base as for SIRM’s method above, the SIC method also sets up rule modules to
each input item. The final inference result of the SIC method is obtained by the weighted average of
the degrees of the antecedent part and consequent part of each rule module. Namely, rule modules and
degree hij of the antecedent part of the SIC method are given as those of SIRMs method. The final
inference result y′ is given as follows by using degrees of antecedent part and consequent part from each
rule module:

y′ =

∑n
i=1

∑mi

j=1 h
i
jy

i
j∑n

i=1

∑mi

j=1 h
i
j

.
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3.4 Simplified Fuzzy Inference Method

The simplified fuzzy inference method is a special case of the TS inference method in which the consequent
part of the TS inference method is replaced to constant. Following is how rules of the simplified fuzzy
inference method are defined:

Rule i : If x̃1 is A1
i , x̃2 is A2

i ... x̃n is Am
i then y = yi.

where, yi is a number and not a fuzzy set. Given the input to the antecedent part, x′1, x
′
2, ..., x

′
n, the

inference y′ will be obtained as follows :

y′ =

∑m
i=1 hiyi∑m
i=1 hi

,

Here also hi is same as in (3.2).

3.5 Fuzzy Singleton-Type Inference Method

Fuzzy singleton-type inference method (or simplified fuzzy inference method with weight) takes the
following fuzzy inference form :

Rule i : If x̃1 is A1
i , x̃2 is A2

i ... x̃n is An
i then y = yi/wi

where the weight wi is a real number such that wi ≥ 0. The consequence y′ to the input vector,
[x′1, x

′
2, ..., x

′
n], by the fuzzy singleton-type inference method is obtained as follows :

y′ =

∑m
i=1 hiwiyi∑m
i=1 hiwi

where hi is calculated same as in (3.2) and the product hiwi of the fitness hi and the weight wi of yi is
regarded as the degree to which yi is obtained.

Uptill now, we have seen , how the formation of rules, the antecedents and consequents, the compo-
sition , the fuzzy relation taken, etc. give rise to so many inference mechanisms. We have read only 7 till
now, which are the most popular ones and are used in most of the applications. In the coming sections,
we will read about SIRMs Connected Fuzzy Inference Method in detail and will also study about the
properties of fuzzy inference systems.

3.6 Properties of FIS

Up till here, we have seen different fuzzy inference mechanisms. It depends on the situation to be modelled,
which inference mechanism should be used. Given an input to a fuzzy or crisp rule base, why only these
few mechanisms are chosen? How come they became standard? How to judge, whether a mechanism
is efficient or not, or useful or not, or is good enough to implement the information that a modeller
has, and aquire the desired results? Fuzzy inference is a function that takes in input, infers it and gives
the desired output. To answer above raised questions, some properties were defined that are taken as
parameter to determine the efficiency or goodness of an inference mechanism. They are, interpolativity,
continuity, monotonicity, robustness, equivalence between FITA (First infer then aggregate) and FATI
(First aggregate then infer) and universal approximation. We will study each one by one :

3.6.1 Interpolativity

Interpolativity deals with getting the right output corresponding to the given input. To understand it
mathematically, let

• U = U1 × U2 × · · · × Un be the n-dimensional input domain,

• V be the output domain,

• D = {(ᾱk , βk) ∈ U × V}`k=1 be the set of data points given about the system,

• where ᾱk = (αk1, . . . , αkn) ∈ U .

If using the above information, a rule base is constructed, then a fuzzy inference system will be
interpolative if it will infer βk only, corresponding to the input vector, ᾱk = (αk1, . . . , αkn).
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3.7 Continuity

Let us consider a fuzzy rule base as follows:

IF x̃ is Ai THEN ỹ is Bi, for i = 1, . . . , n (3.7)

A fuzzy relation R ∈ F(X × Y ) is said to be a continuous model of fuzzy rules (1) if, for each
i ∈ {1, 2, ..., n} and for each A ∈ F(X), the following inequality holds:∧

y∈Y
(Bi(y)↔ (f@R (y))) ≥

∧
x∈X

(Ai(x)↔ A(x))

How this definition can be interpreted is, distance between any two fuzzy sets in the codomain of inference
mapping is not more than that between the corresponding fuzzy pre-images in the domain. The fuzzy
inference depends upon both , the model of fuzzy rules, R and the inference mechanism, @. So, typically,
we should talk about the continuity of not just a fuzzy relation but the whole FIS. We just mentioned
about the distance between the fuzzy sets. The closeness between the fuzzy sets is computed by the
biresiduum operation ↔. Let us consider a continuous Archimedean t-norm with an additive generator
g : [0, 1]→ [0,+∞]. Then, the biresiduum may be written in the form,

a↔ b = g−1(|g(a)− g(b)|)

where, g−1 : [0,+∞] → [0, 1] is the inverse function, where, g(0) = ∞ and g(0) − g(0) = 0. Hence for a
non-empty X, it is possible to define a metric Dg on F(X) that is generated by g as follows:

Dg(A,B) =
∨
x∈X

(|g(A(x))− g(B(x))|)

With this notion, now we can define the continuity of the inference model as:
For the fuzzy rules (1) and a continuous Archimedean t-norm having a continuous additive generator g.
A fuzzy relation R ∈ F(X × Y ) is a continuous model of the fuzzy rules if and only if

Dg(Bi, f
@
R (A)) ≤ Dg(Ai, A)

for each A ∈ F(X).
The notion of continuity for Non-FRIs has not been evolved yet.

3.8 Robustness

3.8.1 Robustness

Let X be a classical set, and let ∼ be an equivalence relation that is defined on X, i.e., ∼ is reflexive,
symmetric, and transitive. Immediately, ∼ partitions X into equivalence classes. It is well known that an
M ⊆ X belongs to this partition if and only if whenever x ∈M and x ∼ y for some y ∈ X, then y ∈M .
In a sense, the elements of M are indistinguishable and can be represented mathematically as follows:

x ∈M and x ∼ y =⇒ y ∈M .

A fuzzy subset E of the Cartesian product X × X is called a fuzzy equivalence relation on X if the
following properties are satisfied for all x, y, z ∈ X:

• (Reflexivity) E(x, x) = 1,

• (Symmetry) E(x, y) = E(y, x),

• (Transitivity) E(x, z) ≥ E(x, y) ∗ E(y, z).

A fuzzy set µ ∈ F(X) is called extensional with respect to a fuzzy equivalence relation E on X if

µ(x) ∗ E(x, y) ≤ µ(y), x, y ∈ X

If a fuzzy set µ is not extensional with respect to the considered fuzzy equivalence relation E, the smallest
fuzzy set is instead considered, which is extensional with respect to E and contains µ. Let µ ∈ F(X) and
let E be a fuzzy equivalence relation on X. The fuzzy set,

µ̂(x) =
∧
{ν : µ ≤ ν and ν is an extensional with respect to E}

is called the extensional hull of µ.
Note : µ ≤ ν =⇒ µ(x) ≤ ν(x), ∀ x ∈ X



Chapter 4

SIRM Connected-Type FIS

Naoyoshi Yubazaki, Jianqiang Yi and Kaoru Hirota proposed a new fuzzy inference model, SIRMs (Single
Input Rule Modules) Connected Fuzzy Inference Model [Yubazaki et al.(1997)Yubazaki, Yi, and Hirota]
for plural input fuzzy control. For each input item, an importance degree is defined and single input
fuzzy rule module is constructed. The importance degrees control the roles of input items in systems.
Consider, the rule base given by (1), i.e., in case of conventional fuzzy inference model. We can see that
all the input items are put in the antecedent part of each rule. Therefore, the maximum number of fuzzy
rules is equal to the number of all combinations of the membership functions among the different input
items. Designing fuzzy rules in such fashion is possible when the input items are few but it becomes
extremely difficult to establish fuzzy rules when the number of input items increases as every rule is
considering all of them. To encounter this problem of conventional fuzzy inference model, SIRMs method
was proposed with the following representation of the same rule base as (1) :

SIRM-1: {R1
j : if x1 is A1

j , then y1 = c1j}
m1
j=1

....
SIRM-i: {Ri

j : if xi is Ai
j , then yi = cij}

mi
j=1

....
SIRM-n: {Rn

j : if xn is An
j , then yn = cnj }

mn
j=1

where, SIRM-i denotes the ith single input rule module, and Ri
j is the jth rule in the SIRM-i. xi is

the sole variable in the antecedent part and yi is the variable in consequent part of the SIRM-i. Ai
j is

the fuzzy set in the antecedent, while cij is the crisp output value of the variable yi in the consequent

respectively of rule Ri
j in SIRM-i. Also, i ranges from 1 to n, defining n such SIRMs and j ranging

from 1 to mi indexing mi rules in SIRM-i. In case , some inputs are contributing more to the model as
compared to others, then we can even assign weights to SIRMs corresponding to that input. We do not
have this freedom in case of conventional fuzzy inference models.
Inference system performs as follows: Corresponding to each SIRM, output is evaluated by

y′i =

∑mi

i=1 h
i
jc

i
j∑ni

i=1 h
i
j

And then the final inference result y′ of the entire rule base is given by

y′ =

n∑
i=1

wiy
′
i

where wi represents the importance degree of each input item xi , (i = 1, 2, ..., n).
Note: Here, cijs are nothing but constant that depend on input, cij = f(xi).

4.1 Merits of using SIRMs connected Fuzzy Inference Method

As we have seen, that the whole structure of SIRM method is very simple. It has several other attractions
which are stated below :

1. Sharp reduction in the number of fuzzy rules
When in conventional fuzzy models, the total number of rules are given by the number of combina-
tions of the fuzzy sets of all input items, SIRM model has only one variable in the antecedent parts
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of its fuzzy rules. Hence, the number of available fuzzy rules in SIRM fuzzy inference model can be
computed by taking the sum of the numbers of the membership functions of the input items.
Illustration:

• Given:

– 3 antecedent fuzzy set domains

– 5 fuzzy sets on each domain

• Conclusions

– 53 = 125 input-membership function combinations, i.e., rules to capture the knowledge in
some conventional model.

– 5 + 5 + 5 = 15 number of rules in SIRM FIS.

– A drastic fall in the number of rules.

2. Easy design of fuzzy rules
As every SIRM takes in only one input variable, its sufficient to design a fuzzy rule exploring the
relationship between the current input item and the system performance. Consequently, designing
fuzzy rules becomes much easier.

3. Desired results can be obtained by adjusting the importance degree
As said above, SIRM fuzzy inference method gives the freedom of adjusting the importance de-
grees of the input items. We can give more weight to the input variables corresponding to their
contribution in the model, and vice-versa.

4. Efficiency in Inferencing
SIRM fuzzy inference method needs very few fuzzy rules and parameters. This relaxes the demand
on memory. Also, the degree of fitness of the input variable becomes the agreement of the antecedent
part because of existence of only one input variable. Hence, the time required for inferencing gets
reduced considerably.

4.2 Equivalence Between SIRM FIS and Other FIS’s

The second of the two approaches suggested to study the properties on SIRM FIS was to check if SIRM
FIS is equivalent to some other FIS and see if those properties hold true in the ’other’ FIS. This section
comprises of some results about equivalence between fuzzy inference systems and they are as follows:

4.2.1 Equivalence between SIRM and SIC FIS

Assume that the weight wi for Rules-i of the SIRMs method of (12) satisfies the following equation for
any xi :

wi =

∑m1

ji=1 h
1
ji∑n

i=1

∑mi

Ji=1 h
i
ji

Then, the inference results by the SIRMs method and SIC method are equal.
From the following equivalent relations between FISs, we can have SIRM FIS equivalent to other con-
ventional FISs as well:

• The inference results by the simplified fuzzy inference method and SIC method are equal when
the rules of the simplified fuzzy inference method obtained by the SIC method are used, and the
following condition does not depend on the inputs for any i = 1, 2, ..., n :∑m1

ji=1 h
1
ji∑n

i=1

∑mi

Ji=1 h
i
ji

= constant

That is, Given a rule base, as given in 4th section, when simplified inference is implemented on the
following rule base obtained from SIRM rule base,
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If x̃1 is A1
j1 , x̃2 is A2

j2 , . . . , x̃n is An
jn then y =

∑m1

ji=1 h
1
ji∑n

i=1

∑mi

Ji=1 h
i
ji

y1j1 + . . . +

∑mn

ji=1 h
n
ji∑n

i=1

∑mi

Ji=1 h
i
ji

ynjn

then, same outputs will be obtained in both the cases.

Here, ji = 1, . . . ,mi and there will be
∏n

i=1mi such rules.

• Let the weight of the fuzzy singleton-type inference method be distributed to the antecedent part
of the SIC method. Then, the SIC method can be transformed to the fuzzy singleton-type inference
method.

• Let the area of the consequent part of the product sumgravity method be distributed to the an-
tecedent part of the SIC method. Then, the SIC method can be transformed into the productsum-
gravity method.
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Chapter 5

Work Done

Our motive was to study the properties like interpolativity, monotonicity, universal Approximation, etc.
on SIRM fuzzy inference model.
In this chapter, we investigate the conditions under which the SIRM FIS is

• Interpolative and

• Monotonic.

The explanation is as follows:

We will show that, given a data set, we can construct an interpolative SIRM rule base.
To formulate it, let us fix some notations first:

• n is the number of dimensions/domains.

• i : {1, . . . , n}

• Ui - the antecedent fuzzy sets domains,

• x̃i - the linguistic variables of the input fuzzy sets.

• V - the sole codomain for the rule base.

• ki - the number of fuzzy sets on the domain Ui

• j : {1, . . . , ki}

• Aj
i - the input fuzzy sets of the jth rule in the ith module

• cji - the constants in the consequents.

Theorem 5.0.1. Let

• U = U1 × U2 × · · · × Un be the n-dimensional input domain,

• V be the output domain,

• D = {(ᾱk , βk) ∈ U × V}`k=1 be the set of data points given about the system,

• where ᾱk = (αk1, . . . , αkn) ∈ U .

Then one can construct a rule base of SIRM such that

• {Ak
i }`k=1 are the normal antecedent fuzzy sets,

• αki
are the points of normality of Ak

i ,

• {Ak
i }`k=1 form a Ruspini Partition on corresponding Ui, and
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The SIRM Rule base whose ith module is given as,

Mi :


If x̃i is A1

i Then y is c1i
...

If x̃i is Al
i Then y = ckl

i

where, cki are the solutions of the following system:

x11 + x12 + · · ·+ x1n = β1

...

x`1 + x`2 + · · ·+ x`n = β`

will be interpolative when the SIRM inference is employed.

Proof. Let us first understand the theorem in two-dimensional case with two fuzzy sets in each domain.

Further suppose that (α1,β1) and (α2,β2) be the two dimensional inputs to the FIS and γ1 and γ2
be the corresponding outputs. Then, from the above theorem we can construct an interpolative SIRM
rulebase, as given below:

M1 :

{
If x̃1 is A1

1 Then y = c11.

If x̃1 is A2
1 Then y = c21.

M2 :

{
If x̃2 is A1

2 Then y = c12.

If x̃2 is A2
2 Then y = c22.

While constructing the rule base, we are given the inputs and the corresponding outputs. We have to
design the fuzzy sets and find the constants in the consequent part , so that the inference system becomes
interpolative.
According to the inference mechanism in case of SIRM FIS,

y′1 =
A1

1(α1)c11 + A2
1(α1)c21

A1
1(α1) + A2

1(α1)

y′2 =
A1

2(β1)c12 + A2
2(β1)c22

A1
2(β1) + A2

2(β1)

Hence, the final output corresponding to (α1, β1) will be evaluated as,

γ1 =
A1

1(α1)c11 + A2
1(α1)c21

A1
1(α1) + A2

1(α1)
+

A1
2(β1)c12 + A2

2(β1)c22
A1

2(β1) + A2
2(β1)

For the sake of simplicity, let us assume that there exists Ruspini partition in the antecedent domains,
so that,

A1
1(α1) + A2

1(α1) = 1

and,

A1
2(β1) + A2

2(β1) = 1.

Therefore,

γ1 = A1
1(α1)c11 + A2

1(α1)c21 + A1
2(β1)c12 + A2

2(β1)c22

Let α1 and β1 be the points of normality of A1
1 and A1

2 respectively. Since we are assuming that its
fuzzy psrtition in the input domains, so A2

1(α1) = 0 and A1
2(β1) = 0. Hence, and giving equal weights

to both the modules,
1

2
, the above expression becomes,

2γ1 = c11 + c12 (5.1)
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Similarly, in case of second output, (α2, β2), we have,

2γ2 = c21 + c22 (5.2)

The system of equations, (12) and (13), can be represented as (in matrix form),

Mc = G

where,

M =

[
1 0 1 0
0 1 0 1

]

x =


x11
x21
x12
x22



G =

[
2γ1
2γ2

]
and has 4 unknowns in two equations with rank [M : G] = 2 ≤ 4 and hence infinitely many solutions.

One such solution is,

c11 = c12 = γ1

c21 = c22 = γ2

Hence, we conclude that given a data set, we can have an interpolative SIRM rule base with constants
in the consequent part of rules as the solutions of the system (12) and (13).

In the similar way, we can generalise the above result to any dimension n.

In n dimentional case, with the given hypothesis, we can have an interpolative SIRM rule base with
constants in its consequents satisfying the system of equations represented as : Mc = G, where,

M =
[
Il Il ... Il

]
where Il is the identity matrix of order l and M will be a l × n matrix having n blocks of order l.

So, in this case also the system will have infinitely many solutions with one solution is when all the
constants relating to the k-th rule in every module is equal, i.e.,

cki = βk , ∀i = {1, . . . , n}

Remark 5.0.2. SIRM FIS is very simple to handle as it breaks down the entire rule base into modules
containing SISO rules, which are easy to process. We saw that SIRM will be interpolative, however large
n we take.

Remark 5.0.3. A thing to be noted is that the number of fuzzy sets forming a ruspini partition on the
domain should be equal to the number of the points in the input data. The reason for this is that we want
to construct a rulebase according to the given data set, for which we are trying to find the constants cji s
with the help of the given data set. And we want the input vector, ᾱk = (αk1, . . . , αkn) such that its ith

component αki is the point of normality of some fuzzy set in the domain Ui ∀ i = 1, ..., n. So we want
atleast l (thats the number of points in the dataset) fuzzy sets in each domain and if we will take more
than l fuzzy sets, then the system Mx=G will always be inconsistent.
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Figure 5.1:

5.1 Monotonicity of SIRM FIS

Monotonicity of SIRM FIS has already been talked about by Seki etal in their works [Hirosato Seki and Mizumoto(2010)]
and [Seki and Tay(2012)]. We studied their work critically and observed the following:

• In [Hirosato Seki and Mizumoto(2011)], equivalence between TSK and Functional-Type SIRM FIS
(where consequents of the rules are the functions of the input varialble) has been shown and later in
their work, [Hirosato Seki and Mizumoto(2010)], they proved the monotonicity of Functional-type
SIRM FIS. But there, they have considered the fuzzy sets as given in the figure (5.1) only.

They say that, given two fuzzy sets Ai
1 and Ai

2 (where i denotes the ith domain) forming fuzzy
partition, the inference result obtained by the functional-type SIRMs method is monotonically in-
creasing, if the fuzzy sets form a fuzzy partition, as shown in the above figure, and if the consequent
parts are monotonically increasing.
But, they have not considered the cases wherein both xi and x′i lie on either the left of the intersect-
ing point or on the right of the intersecting point, which consequently make the proof incomplete.

• Seki and Tay in their work, [Seki and Tay(2012)], have again tried to show that SIRM FIS is
monotonic, but this they are proving it independently for SIRM FIS, without comparing it with
any other FIS. But in this work as well, they are missing the above mentioned cases, and proving
the monotoncity of SIRM FIS for a particular case.

In our this work we are giving an aliter to their proofs, perhaps, overcoming the drawbacks of their
proofs.

Theorem 5.1.1. Given monotonic inputs to a monotonic rule base, the corresponding outputs obtained
by inferring from it using SIRM FIS will also be monotonic.

Proof. From 4.2 section, we have results on equivalence between SIRM FIS and SIC FIS and between
SIC and simplified FIS, Product-sum gravity method and Fuzzy singleton FIS.
We also know that TSK model is monotonic from the work by Seki etal. in [Seki and Tay(2012)]. We also
know that simplified fuzzy inference system is a particular case of TSK FIS (In this case, the consequents
are constant functions rather than other general functions ).
So, we have that SIRM FIS is also monotonic.

Using earlier established results, it was very easy to observe the monotonicity of SIRM FIS. We also
have a remark on this which is as follows:

Remark 5.1.2. In all of the above results on equivalence, proved in [Hirosato Seki and Mizumoto(2011)],
seki etal. have assumed the following condition:∑m1

ji=1 h
1
ji∑n

i=1

∑mi

Ji=1 h
i
ji

= constant

and they want this condition to be satisfied independent of the input, which is a very tight condition,
and practically very hard to satisfy. But we see that, if we assume that there is fuzzy partition in the

antecedent fuzzy sets, which almost every application requires, then this constant is nothing but
1

n
, where n

is the number of dimensions. And hence, SIRM FIS will always be equivalent to simplified fuzzy inference
method in case of ruspini partition in the antecedent fuzzy sets and since TSK FIS is monotonic (from
[Seki and Tay(2012)]), we have SIRM FIS also monotonic.



Chapter 6

Summary

The whole work is centered around fuzzy inference models. It gives a brief about all the fuzzy inference
models, that are used in almost all the applications (there are about 6 such models). It explains the
newly introduced SIRM FIS in detail and the equivalence between it and the other FISs. The motivation
for this work came from the fact that SIRM FIS has not been studied much and because of its several
advantages.
This work also explains about the basic desirable properties that every FIS is expected to have and they
are, Interpolativity, Continuity, Monotonicicty, Robustness and Universal Approximation. Then since
very few results are available regarding SIRM FIS having those properties, we tried to investigate if they
hold true in case of SIRM FIS and we concluded that this inference model is interpolative as well as
monotonic. We stated two approaches to prove that. While the first approch helped us to prove former,
the latter got proved using the second.
However, we are yet to see other properties for SIRM FIS.
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