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Abstract 

 

The synthesis parameters such as pH, concentration, precipitating agents, surfactant etc., determine 

the single phase formation of Bismuth ferrite [BiFeO3 (BFO)] nanoparticles via wet chemical route. 

By tuning the above processing conditions, different particle sizes and shape (morphology) can be 

synthesized which tailors the properties such as magnetic, optical etc.Single phase BFO 

nanoparticles were prepared through co-precipitation method using different precipitating agents 

such as ammonium hydroxide (NH4OH) and tetra methyl ammonium hydroxide (TMAOH). The 

effect of precipitating agents on crystallite size, morphology, phase evolution and magnetic 

properties at constant pH were studied using XRD, FESEM, PPMS, and RAMAN. Single phase 

BFO was obtained in both cases by calcination at 650
°
C. Variation in the crystallite size using 

different precipitating agents (118 nm and 75 nm for NH4OH and TMAOH respectively) was 

observed. Similarly, size obtained from FESEM shows 196±115nm and 207±50nm for NH4OH and 

TMAOH respectively indicating that the actual particles are polycrystalline. Samples calcined at 

lower temperatures also showed varying fractions of impurity phases with the precipitating agents. 

The effect of surfactant on BFO nanoparticles shows reduction in crystallite size of 16nm and 

particle size of 59±15nm which further altered the magnetic nature of BFO nanoparticles from 

antiferromagnetic to a weak ferromagnetic.Further we also studied the effect of template and sol-gel 

processing conditions on BFO Nanofoams synthesized by sol-gel method. Resultant material was 

single phase BFO along with minor impurities. We found that there is no change in the crystallite 

size for BFO from 0.16M to 1M of metal ion concentrations, but primary particles have plate like 

morphology rather than rhombohedral morphology. Also, there is a change in porosity i.e. porosity 

decreases from 0.16M to 1M. Therefore the template is playing a role in crystallization process of 

the material when the concentration of the metal ion is high. Hence it is necessary to know the effect 

of the above processing conditions in the formation of pure phase BFO. 
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Nomenclature 

BFO (BiFeO3) - Bismuth ferrite 

NaOH - Sodium hydroxide 

NH4OH - Ammonium hydroxide 

TMAOH - Tetra methyl ammonium hydroxide 

CTAB - Cetyltrimethylammonium bromide  

KOH – Potassium hydroxide 

LiOH – Lithium hydroxide 

PPMS – Physical property measurement system 

TN – Neel transition temperature 

TC – Curie temperature 

XRD - X-ray diffraction 

FESEM – Field emission scanning electron microscope 

TEM – Transmission electron microscope 

Oe – Oersted 

NCA - Nano channel alumina 

AAO - Anodic aluminum oxide   

ZFC – Zero field cooling 

FC – Field cooling 

M-H – Magnetization versus Magnetic field 

M-T - Magnetization versus Temperature 

FP – Filter paper 

FM – Ferromagnetic 

TB - Blocking temperature 
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1 

Chapter 1 

 

Introduction 
 

1.1 Multiferroics: 

Existence of more than one ferroic orders namely ferro/anti-ferroelectric, ferro/antiferromagnetic and 

ferroelastic in the same material is termed as multiferroicity [1]. Multiferroics has attracted 

researchers for the past few years to understand the fundamental mechanism of magneto electric 

coupling both in single phase and composite materials. Single phase compounds (BiFeO3, BiMnO3, 

YCrO3 etc.) are rare due to contradiction between conventional mechanisms of ferroelectricity 

(cation-off centering – requires empty d orbitals of transition element) and ferromagnetism ( requires 

partially filled d-orbitals of transition element) [1]. Ferroelectricity and magnetism coexist in single 

phase compounds when two different atoms are present in the system; where one atom is responsible 

to form electrical dipole moments and other carry the magnetic moment. Bismuth ferrite (BiFeO3) is a 

well-known single phase compound, where Bi
3+

 ions leads to ferroelectric ordering and Fe
3+

 induces 

magnetic ordering respectively. Figure 1.1 shows the possible coupling between different order 

parameters.  

 

Fig 1.1: Schematic Representation of coupling between different ordered parameters [2] 
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1.2. Classification of Multiferroics: 

Table -1.1: Classification of the Materials based on the mechanism of ferroelectricity [3] 

 

Multiferroics can be classified into 2 types 

 (a): Type-I: Type-I multiferroics are the materials in which the sources of ferroelectricity and 

magnetism are different and appear quite independent of one another. 

(b): Type-II: These are the materials in which ferroelectricity is induced by the magnetism. 

Ferroelectricity due to lone pair of electrons: 

 In materials like BiFeO3, BiMnO3 etc., Bi
3+

 plays a major role in the origin of ferroelectricity. 

Bi
3+

 contains a stereo chemically active outer 6s
2 

lone pair of electrons. The existence of 6s 
2 

(lone 

pair) favours in breaking the inversion symmetry by driving Bi
+3

 towards oxygen and which results in 

ferroelectricity. 

 

Fig 1.2: Origin of polarization in BiFeO3 [4] 

Multiferroics Mechanism of inversion 

symmetry breaking 

Materials 

Type-I Polarization of 6s
2
 lone pair 

Geometrically driven   

ferroelectricity 

Charge ordered(CO) 

insulators 

E.g.BiFeO3 or BiMnO3 

E.g.YMnO3 

 

E.g.LuFe2O4,Fe3O4 

Type-II Magnetic ordering E.g. TbMnO3 
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Geometrically driven ferroelectricity: 

 In materials such as YMnO3, ferroelectricity occurs due to tilting of the rigid MnO5 trigonal 

prism. Such tilting results in loss of inversion symmetry and thus leads to ferroelectricity. 

                                                              

Fig 1.3: Origin of polarization in YMnO3.[4] 

Ferroelectricity due to charge ordering: This type of ferroelectricity is generally observed in 

transition metal ions with different valence (charge). 

 

Fig 1.4: Ferroelectricity due to charge ordering [4] 

E.g. Charge ordering (CO) in magnetite (Fe3O4): The crystal structure of Fe3O4 is inverse spinel 

structure with two distinct iron positions. The iron B sites contain two-third of the iron ions, with 

equal number of Fe
3+

 and Fe
2+

.These are present inside oxygen octahedral. The iron A sites contain 

the other one-third of the Fe ions and are not considered for the charge ordering. The Verwey metal-

insulator transition occurs at T12 =120K is related to charge ordering of two types of charges with the 

alternation of the formal Fe
2+

 and Fe
3+

 valence states. Beside this site centered CO, there is also a 

strong modulation of Fe-Fe distances which results in polarization. Hence the coexistence of bond-

centered and charge-centered charge ordering is the mechanism for ferroelectricity in magnetite [5].  

1.2(b) Type–II: E.g. TbMnO3  

 The magnetic structure of TbMnO3 is the result of the competition between ferromagnetic 

(FM) and the antiferromagnetic (AFM) interactions .This competition arises as the Mn-O-Mn bond 

angle gives rise to the intermediate interactions between anti-ferromagnetic 180
o
 superexchange and 
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ferromagnetic 90
o
 superexchange. At temperature below TN1=40K magnetic structure exits in anti-

ferromagnetic sinusoidal spin density wave (i.e. all the spins point in one direction) and, a transition 

to a non-collinear cycloid spin ordering occurs below TN2=27K .This cycloid spin structure breaks the 

inversion symmetry and allows polarization perpendicular to both the wave vector and the spin 

rotation axis of cycloid [6]. The plane of a magnetic cycloid rotate by 90° if a magnetic field is 

applied, then the polarization P also rotates.  

 

 

Fig 1.5(a) Sinusoidal spin density wave structure and (b) cycoid spin structure of TbMnO3[4] 

 

1.3. Bismuth ferrite (BiFeO3) 

Among the single phase multiferroics systems Bismuth ferrite [BiFeO3 (BFO)] is an extensively 

studied compound due to its high ferroelectric Curie temperature (TC = 1103 K) and antiferromagnetic 

Neel temperature (TN = 643 K). The presence of high temperature phase transitions makes it useful in 

novel device applications such as data storage, sensors, spintronic devices etc. [7]. The crystal 

structure of BFO is distorted rhombohedral perovskite with R3c space group symmetry. The 

schematic of BFO unit cell is shown in figure 1.6, where, Bi
3+

 occupies corners of the unit cell, Fe
3+

 

occupies body-centered position and oxygen occupies face-centered position. The lattice parameters 

BFO are: ar =3.965Å, αr= 89.45
◦
. The unit cell is also described in a hexagonal system with a=b=5.58 

Å and C=13.90 Å [8]. 
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Fig 1.6: Crystal structure of BiFeO3 [9] 

Ferroelectricity in BFO is induced by Bi
+3

. Bi
3+

 contains a stereo chemically active outer 6s
2 

lone pair of electrons. The existence of 6s 
2
(lone pair) favour in breaking the inversion symmetry by 

driving Bi
+3

 towards oxygen which is shown in the figure 1.2 and anti-ferromagnetism is induced by 

Fe
3+

. 

There are several reports which explored the physical properties of BFO both in bulk and thin 

film form. Effect of elemental substitution in bulk BFO and effect of anisotropy on epitaxial thin 

films of BFO has been studied to improve its electrical and magnetic properties. BFO shows G-Type 

anti-ferromagnetic ordering (i.e. Magnetic moments of nearest neighbour Fe
3+

 are aligned antiparallel 

to each other). This G-type antiferromagnetic structure is modulated to a spiral spin structure, which 

has a long period of λ= 64nm [10]. 

 

Fig 1.7: Schematic representation of BiFeO3 cycloid spin structure [10]. 

  Whereas BFO Nanoparticles (of particle size less than 64nm) shows weak ferromagnetic 

nature because of Dzyaloshinskii-Moriya interaction. Hence there will be some net magnetic moment. 

 Recent research has focused more on synthesizing the nanostructures of BFO such as 

nanoparticles; nanorods etc. with reference to their size dependent properties. Generally BFO 

nanoparticles can be synthesized using traditional solid state method and wet chemical method. The 
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main aim for all the synthesis processes is to get single phase BFO with high purity at low 

temperatures and also should be a simple process to make it cost effective for various industrial 

applications [11]. 

 Solid state method [12] requires high temperature to form the required phase. This high 

thermal energy helps to overcome the diffusion barrier and allows the ions to migrate through the 

rigid solid lattice. It often requires heating for several days. In order to prevent these difficulties, wet 

chemical routes are used.  

 Wet chemical route includes sol-gel [13], Hydrothermal [14], combustion [15], co-

precipitation [16] processes etc. Sol-gel and combustion processes may lead to complex solutions and 

toxic reactions because of chemical nature of the precursors used in the synthesis. Hydrothermal 

method requires high pressure and therefore complex equipment is needed to insure the safety during 

hydrothermal reactions. 

 In general co-precipitation method is a cheap and simple method. In this process the metal 

salts are co-precipitated as hydroxides, carbonates, oxalates, formates or citrates [17].These 

precipitates are calcined at appropriate temperatures to yield the final powder. In order to achieve high 

homogeneity, the solubility products of the metal cations must be closer. Homogeneity can be 

achieved by controlling the synthesis parameters such as concentration, temperature, pH, and mode of 

addition of the precipitating agent. Co-precipitation results in atomic scale mixing and hence requires 

lower synthesizing temperature than the above mentioned methods. This leads to smaller particle size 

in the resulting oxide powders. Further control over particle size and shape can achieved through use 

of surface active agents or surfactants. 
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Chapter-2 

 

Literature Review 

 

Synthesis of single phase BFO is the most important part of this research work. It is difficult to 

synthesize phase pure BFO .The impurities may arise from three different causes [18] 

 The evaporation of Bi component occurs during its synthesis, because of the low 

decomposition temperature of bismuth salts; thus Bi2O3 component appears again in the final 

product as an impurity. 

 The chemical valence of Fe ion varies in an oxygen-deficient atmosphere ;the charge defects 

with respect to Fe
2+

 ions produced in the synthesis are usually related to the large leakage 

current in BiFeO3 and 

 The synthesis area of single-phase BFO in the phase diagram of Bi2O3–Fe2O3 is very narrow. 

  

Fig 2.1: Phase diagram of BiFeO3 [19] 

From thermodynamics point of view, two kinds of impurities (Bi2Fe4O9 and Bi25FeO39) are the usual 

substitutions for BiFeO3. 

 In order to synthesize single phase BFO nanoparticles via wet chemical route, the kinetics of 

phase formation should be known; kinetics of phase formation depends largely on physicochemical 

nature of precursors and intermediates. Varying synthesis conditions such as pH, precipitating 

agents, concentration, surfactant etc. can greatly affect homogeneity, reactivity and consequently 

morphology of the product. Therefore, by tuning the above processing conditions, different particle 
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sizes and shapes (morphology) can be synthesized which can alter the properties such as magnetic, 

optical etc. Therefore it is necessary to know the effect of the above processing conditions in the 

formation of pure phase BFO. 

 Zhika Liu et.al, [16] synthesized BFO by chemical co-precipitation method using the starting 

precursors as Bi (NO3)3.5H2O and Fe (NO3)3.9H2O with 1:1 molar ratio dissolved in 2 moles of HNO3 

solution. They used 2M NaOH for precipitation. They have found the diameter of the nanoparticles 

ranges from 150 to 200nm from TEM. 

  

Fig: 2.2.TEM image of BFO Nanoparticles [16]. 

 Later H. Shokrollahi [8] observed a change in the crystallite size of about 36nm by changing 

the precipitating agent to NH4OH with pH -9.3 by same co-precipitation method and showed a weak 

ferromagnetic nature at 300K. 

        

Fig: 2.3 (a)TEM image of BFO Nanoparticles and (b) Hysteresis curve of BFO Nanoparticles at 300K[8]. 

 With the same precipitating agent as NH4OH, but by changing the conc to 2.5 M. Hua ke et.al 

[18] synthesized BFO by a modified co-precipitation method. They also reported the synthesis with 

different pH levels such as 9.3, 9.7, 10 and 11 .They found that at lower pH i.e. 9.3, less impurities 
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were observed and average crystallite size from XRD, at 550°C was found to be 38 nm. Weak 

ferromagnetic nature was observed at room temperature. 

 

Fig.2. 4 (a) XRD patterns of the resultant powders prepared at different pH levels (b) M-H loop of BFO 

                                                             Nanoparticles [18]. 

 

  Mirabbos Hojam Berdriev et.al [20] used various alkaline mineralizers such as KOH, NaOH 

and LiOH with concentrations ranging from (0.02 M – 0.15M) and synthesized BFO by 

hydrothermal processing. They used 13.2 M of NH4OH till PH >10 and they maintained 

hydrothermal conditions as180°C for 16 hrs under autogenous pressure. They found that the particle 

size decreases with decreasing cationic radii of basic mineralizers .The cationic radii of KOH (1.38 

Å) > NaOH (1.02 Å) > LiOH (0.75 Å) and the particle sizes are 200 ± 10 nm > 120 ± 5 nm > 64 ± 3 

nm respectively. 

  

Fig: 2.5(a) TEM image of BFO Nanoparticles synthesized using (a) KOH (b) NaOH (c) LiOH [20]. 

 A.Y Kim et.al,[21] used a surfactant such as cetyltrimethylammonium bromide (CTAB) 

having concentration of 0.025M  along with 8 M KOH and synthesized BFO via hydrothermal 

process under autogenous pressure at 200°C for 10 hr . Anti-ferromagnetic behaviour was observed at 

15 KOe. 
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Fig: 2.5. M-H curve of BFO sintered at 650-800
o
C[21] 

 Momata Kisku in his thesis[22], also used two different surfactants such as 1.Triton X (non-

ionic surfactant) and 2.Ammonium lauryl sulphate (ALS -Anionic surfactant) and synthesized BFO 

by solution evaporation method and reported that the crystallite size of BFO using ALS at 550 °C was 

37.35 nm and while using Triton-X was 62.86 nm. 

2.2 Literature review on Template-assisted synthesis of BFO: 

Templating is commonly used for the controlled fabrication of nanostructures such as nanorods, 

nanowires and nanotubes of materials such as polymers, metals, semiconductors and oxides. 

Generally, ordered structure with desired properties can be obtained by using templating techniques. 

The general synthesis procedure involves: first a template is filled or covered with a soft precursor 

material to bring the material into desired form and then through a chemical reaction or physical 

process the products are formed within the template. Later the template is removed to obtain the 

desired product [23] 

In addition to the desired pore, size, size distribution, morphology, template materials must meet 

certain requirements such as 

a. Compatible with the processing conditions 

b. Chemically inert during the synthesis 

c. Easy release of the template. 

 Jie Wei et al [24] synthesized BFO nanotubes by sol-gel method using porous nanochannel 

alumina (NCA) template. Citric acid (C6O7H8) was used as a complexing agent (final concentration of 
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0.01M). The pH was maintained neutral using ammonia and urea of ratio (1:20) and observed a weak 

ferromagnetism at room temperature. 

 

Fig 2.7. (a) SEM image of BFO Nantube array (b) M–H hysteresis loop for the BFO nanotubes measured 

at room temperature.  [24]  

 

 X.Y.Zhang et al [25] also synthesized BFO nanotube with a diameter of about 250nm and 

length of about 6µm by sol-gel method using nanochannel alumina(NCA) template and 2-methoxy 

ethanol (C3H8O2) as a complexing agent (final concentration of 0.3M) 

 

Fig: 2.8: SEM image of BFO nanotube array [25] 

 Later L.A.S de Oliveira et al[26],observed weak ferromagnetic nature by using Anodic 

aluminum oxide (AAO) membrane as template where  oxalic acid (0.2 M) was used as a complexing 

agent. 
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Fig: 2.9 (a) M–H hysteresis loop for the BFO nanotubes measured at different temperatures and (b) SEM 

image of BFO nanotubes [26]. 

The below table shows the summarized form of all synthesis procedures which are discussed in the 

above literature. 

Table-2.1: Summary of all the above synthesis processes 

Synthesis 

process 

Precipitating

/Complexing

agents 

Reaction 

conditions 

Crystallite/particle 

size(nm) 

Magnetic 

properties 

References 

Co-precipitation NaOH 2M conc 150-200(TEM) - [16] 

Co-precipitation NH4OH pH -9.3 36(XRD) Weak 

ferromagnetic 

nature 

[8] 

Co-precipitation NH4OH pH-9.3, 9.7, 

10 and 11 

38(XRD) at pH -9.3 Weak 

ferromagnetic 

nature 

[18] 

Hydrothermal KOH, NaOH 

and LiOH 

(0.02M–0.15 

M) 

200±10(KOH) 

>120±5(NaOH)>64

±3(LiOH)(XRD). 

- [20] 

Hydrothermal KOH and 

CTAB 

8Mand0.025 

M 

650
°
C-5.5µm 

700
°
C-11.9 µm 

Anti-

ferromagnetic 

[21] 

3µm 

3µm 
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800
°
C-10.3 µm 

850
°
C-68µm (SEM) 

nature 

Autocombustion  Glycine 

Triton X and  

ALS 

0.1moles 

0.05moles 

0.05moles 

 

37.35  

62.8(XRD) 

- [22] 

Sol-gel template 

method 

citric acid + 

urea+ NCA 

template 

0.01M + pH-

7 

diameter of about 

180nm. The 

thickness of wall of 

about 

20nm. (TEM) 

Weak 

ferromagnetic 

nature 

[24] 

Sol-gel template 

method 

2-methoxy 

ethanol+ 

NCA 

template 

0.3M+ 

pH=1-2 

 the average wall 

thickness  of  

nanotubes is about 

20 nm(TEM) 

- [25] 

Sol-gel template 

method 

Oxalic acid+ 

AAO 

membrane 

0.2M diameters of about 

65 nm and wall 

thickness of about 

16 nm.(SEM) 

Weak 

ferromagnetic 

nature 

[26] 

 

From the above literature review it was found that the precipitating agents with different reaction 

conditions, such as effect of pH, concentration, surfactant etc. plays an important role in controlling 

the particle size and shape (morphology) etc. of pure phase BFO nanoparticles and which finally 

affects the properties such as magnetic, optical etc. 
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2.3 Objectives: 

The work has been done with the following objectives 

1. To control the crystallite size of bismuth ferrite (BFO) nanoparticles by using two different 

precipitating agents such as ammonium hydroxide(NH4OH) and tetra methyl ammonium 

hydroxide(TMAOH) at constant pH and constant concentration. 

2. To study the role of surfactant (cetyltrimethylammoniumbromide) in controlling the 

crystallite size of bismuth ferrite and the effect of size dependence magnetic properties of 

bismuth ferrite nanoparticles. 

3. Synthesis of BFO Nanofoams using Whatman filter paper by sol-gel method and study the 

effect of template and sol-gel processing conditions on resultant BFO nanostructures. 
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Chapter 3 

 

Experimental details 
The objective of this work is mainly focused on the synthesis of phase pure BiFeO3 via wet chemical 

method. We synthesized BFO through co-precipitation method and sol-gel method. This chapter 

describes the synthesis procedures and also the basic principles of X-ray diffraction (XRD), Raman 

spectroscopy, scanning electron microscopy (SEM) and Vibrating sample magnetometer (VSM). 

3.1. Co-precipitation method: 

3.1.1: Synthesis of BFO nanoparticles by using two different precipitating agents such 

as Ammonium hydroxide and Tetra methyl ammonium hydroxide at constant pH: 

Chemicals: Bismuth nitrate penta hydrate [Bi (NO3)3.5H2O, sigma Aldrich >98.0%], Iron (III) 

nitrate nonahydrate [Fe (NO3)3.9H2O, sigma Aldrich >98.0%], Tetra methyl ammonium hydroxide 

(sigma Aldrich, 25 wt %), Ammonium hydroxide (sigma Aldrich, 28-30 wt %) and Nitric acid 

(HNO3, SDFCL, 69-72%), was used for the synthesis of BFO nanoparticles. 

Procedure: Bismuth nitrate penta hydrate and Iron nitrate nonahydrate were used as initial 

precursors. 0.025moles of Bi (NO3)3.5H2O was dissolved in 10 ml of dilute nitric acid and 0.025 

moles of Fe (NO3)3.9H2O was dissolved in 10 ml of deionized water. These solutions were mixed to 

obtain a uniform transparent mixed solution. This mixture was added to the precipitating agents such 

as NH4OH and TMAOH separately with constant stirring. Constant pH of 14 was maintained in this 

process. So 5.92M solution of NH4OH and 2M solution of TMAOH was used in order to maintain the 

constant pH as 14. The solution thus obtained was brown in colour and it was washed successively 

with deionized water till pH-7 was achieved. After washing, the precipitate was dried in hot air oven 

at 60°C. Dried precipitate was ground to fine powder using agate mortor and pestle. 
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The below fig 3.1 shows the flow chat of the synthesis procedure. 

 

 

 

 

 

 

 

 

 

              

                  

 

 

 

 

 

 

Fig 3.1: Synthesis procedure of BFO 
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Calcination: 

Calcination is a heat treatment process in solids in order to bring about thermal decomposition, phase 

transition or removal of a volatile fraction. Calcination process normally takes place at temperature 

below the melting point among the precursors [12]. 

 The above resultant powder were calcined at different temperatures such as 300
°
C, 400

°
C, 

500
°
C, 550

°
C, 600

°
C and 650

°
C for 1 hour with a step size of 5

°
C/ min in a muffle furnace, in order to 

determine the phase evolution. Phase purity was characterized by X-ray diffraction. . This powder 

was further analyzed by SEM and VSM. 

 

 

  

 

 

Fig 3.2: Calcination profile of BFO at 650
o
C. 

3.1.2: Synthesis of BFO nanoparticles at constant pH and constant concentration 

 The above synthesis procedure was repeated at constant concentration of 2M using the three 

precipitating agents such as NaOH, NH4OH and TMAOH. pH -12 was maintained in all the three 

cases. The powers obtained were calcined at 550
°
C for 1hr with a step size of 5

°
C/ min in a muffle 

furnace. 

Calcination profile: 

 

 

 

                             

 

Fig 3.2: Calcination profile of BFO at 550
°
C. 
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3.2. Surfactant assisted synthesis of BFO nanoparticles via Co-precipitation method: 

Chemicals: Bismuth chloride (BiCl3, sigma aldrich >98%), Iron (III) nitrate nonahydrate [Fe 

(NO3)3.9H2O, sigma aldrich, >98.0%], Sodium hydroxide (NaOH, SDFCL INDIA, 96%), Cetyltri 

methylammoniumbromide (CTAB, sigma Aldrich, 99 %.), Hydrochloric acid (HCl SDFCL, 35-38%), 

Methanol (CH3OH, VETEC, 99%). 

Procedure:BiCl3, Fe (NO3)3.9H2O and CTAB were used as precursors.0.0025 moles of BiCl3 were 

dissolved in 8 ml of HCl and 0.0025 moles of Fe(NO3)3.9H2O were dissolved in 3.2 ml of methanol 

so as to make up the final volume of 4 ml. Both the solutions were mixed and to that solution, 0.005 

moles of CTAB which was dissolved in 10 ml of methanol was added. The resultant solution was not 

clear solution but was yellowish white precipitate. To this precipitate 1 gm of NaOH dissolved in 25 

ml of methanol was added drop wise with constant stirring. The solution thus obtained was brown in 

colour and it was washed successively with deionized water till pH-7. After washing, the precipitate 

was dried in hot air oven at 60
°
C. Dried precipitate was ground to fine powder using agate mortor and 

pestle and calcined at 550
°
C for 1 hour with a step size of 5

°
C/ min in a muffle furnace in order to 

determine the phase. Phase purity was characterized by X-ray diffraction. This powder was further 

analyzed using SEM and VSM. 

Calcination profile: 

 

 

 

 

 

 

 

 

Fig 3.3: Calcination profile of BFO at 550
°
C. 
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The flow chart of synthesis procedure is shown in fig: 3.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig: 3.4. Surfactant assisted synthesis of BFO nanoparticles procedure through co-precipitation method 
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3.3. Synthesis of BFO Nanofoams through sol gel template method: 

Chemicals: Bismuth nitrate penta hydrate [Bi (NO3)3.5H2O, sigma Aldrich, >98.0%], Iron (III) 

nitrite nonahydrate [Fe (NO3)3.9H2O, sigma Aldrich, >98.0%], Nitric acid (HNO3, SDFCL, 69-72%), 

Citric acid (C6O7H8 , SISCO Res.Lab pvt Ltd, INDIA, 99.5%), Whatman filter paper (GE Health 

care,50mm dia.UK Ltd). 

Procedure: 0.0025 moles of Bi(NO3)3.5H2O were dissolved in 10 ml of dilute nitric acid and 0.0025 

moles Fe(NO3)3.9H2O were dissolved in 10 ml of deionized water and both the solutions were mixed 

to obtain a uniform transparent solution. To that metal solution, 0.005 moles of citric acid which was 

dissolved in 10 ml of water was added and final solution was stirred for 10-15 min .Thus the final 

volume used was 30ml.(i.e. 0.16M of total metal ion concentration).  

 A Whatman filter paper of dimensions 25 x 10 cm were used for this synthesis. The papers 

were soaked in the above solution for 10 min. The filter paper filled with the solution was dried in hot 

air oven at 60
°
C. The dried paper shows conversion of sol to gel and it was further calcined at 650

°
C 

for 1 hour. The phase purity was determined by X-ray diffraction. This powder was further analyzed 

using SEM and VSM. The above procedure was carried out with different final volumes of the 

solution such as 20ml (0.25M), 10ml (0.5M) and 5ml (1M). 

   Calcination profile: 

 

 

 

 

 

            

 

 Fig 3.5: Calcination profile of BFO at 650
°
C. 

 

 

0

100

200

300

400

500

600

700

 

 

T
e

m
p

e
ra

tu
re

(o
C

)

Time(hrs)

1hr



21 | P a g e  

 

 

The flow chart of synthesis procedure is shown in fig: 3.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.6: Synthesis procedure of BFO Nanofoams synthesized by sol-gel template method. 

 The reactions [27] of sol-gel synthesis of BFO are shown below. 
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I: Hydrolysis: 

[C6O7H5]
-3 

Bi
3+ 

+ 3OH
-
                     Bi (OH) 3 + [C6O7H5]

-3  
 

II: Condensation:  

Bi (OH) 3 + Fe (OH) 3                     BiFeO3 + 3H2O 

3.4: Characterization techniques: 

3.4.1 X-Ray Diffraction (XRD): 

X-rays can be used to study the crystal structures because the interplanar spacing in a crystal lattice is 

of the same order as that of the wavelength of x-rays.Hence x-ray diffraction technique is used for 

structural analysis of the material. A collimated beam of X-rays is diffracted by the crystalline phases 

in the sample according to Bragg’s Law i.e. when a crystal is bombarded with x-rays of a fixed 

wavelength and at certain angles, intense reflected x-rays are produced when the wavelengths of the 

scattered x-rays interfere constructively. In order for the waves to interfere constructively, the 

differences in the travel path must be equal to integer multiples of the wavelength which is known as 

Bragg’s Law.  

nλ = 2dsinθ……………………………………(3.4) 

    Where λ = wavelength of the X rays  

               d = interplanar spacing  

              n= order of reflection and  

              θ = angle of diffraction. 

The below figure shows the phenomenon of X-ray diffraction. 
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Fig 3.7: Schematic representation of Bragg’s law [28] 

 In the above figure the X-rays are incident on the set of parallel planes ABC and ABC’ with 

an incident angle θ and scattered with the same angle. If these scattered rays forming two parallel 

planes are in phase, then they give the peak   

 Phase identification can be done by matching the XRD pattern with reference patterns of pure 

substances. The reference patterns are known as JCPDS files. It is a collection of single phase X-ray 

powder diffraction patterns in the form of table of characteristic interplanar spacing and 

corresponding relative intensities along with crystallographic properties. From this the information of 

crystal structure, crystallite size, phase purity, lattice parameters etc can be determined. 

 PAN Alytical expert pro X ray diffractometer with copper Kα (λ=1.54Å) radiation was used 

in the present thesis to investigate phase and crystal structure of the materials. 

3.2.2 Scanning electron microscope (SEM): 

Morphology and compositional studies was done using Carl Zeiss Super 40 SEM. The electron beam 

interacts with the material, causing a variety of signals; secondary electrons, backscattered electrons, 

X-rays, photons, etc. each of which may be used to characterize a material with respect to specific 

properties. Secondary electrons are used for surface topography whereas backscattered electrons are 

used for compositional analysis. All the samples were coated with gold sputtering in order to make 

them conductive [29]. 

3.2.3 Raman spectroscopy:  

Raman Spectroscopy is a vibrational spectroscopy which occurs due to inelastic scattering of light 

from the substance. When the light source interacts with a molecule, the molecule excites to the 

virtual energy state where it has short life and comes back to higher or lowers vibrational energy state 
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by scattering. In this process energy transfer can be done between photon and system. If the scattered 

photon has more energy than incident photon then it is called as Anti-stokes scattering (hν0 +h ν1). It 

has high energy and short wavelength. If the scattered photon has less energy than incident photon 

then it is called as stokes scattering (hν0 -h ν1). It has low energy and long wavelength. Raman 

spectrum is a plot of intensity of scattering (Raman) as a function of wavenumber [12].  

The below figure explains the Raman scattering phenomenon.  

 

Fig 3.8: Raman scattering phenomenon [12] 

Laser Micro Raman spectrometer (Bruker, Senterra) was used in the present thesis to obtain Raman 

spectrum. 

3.2.3 Physical property measurement system (PPMS):  

Dynacool from Quantum design PPMS was used in the present thesis to measure magnetic properties 

of BFO. 

 

Working Principle of VSM: 

  

 A vibrating sample magnetometer (VSM) operates on Faraday's Law of Induction, which tells 

us that a change in magnetic field will produce an electric field. This electric field can be measured 

and can tell us information about the changing magnetic field. A VSM is used to measure the 

magnetic behavior of magnetic materials. The sample is kept in a constant magnetic field. If the 

sample is magnetic, this constant magnetic field will magnetize the sample by aligning the magnetic 

domains, or the individual magnetic spins, with the field. The stronger the constant field, the larger 

the magnetization will be. The magnetic dipole moment of the sample will create a magnetic field 

around the sample, sometimes called as magnetic stray field. As the sample is moved up and down, 

this magnetic stray field changes as a function of time and can be sensed by a set of pick-up coils. The 
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alternating magnetic field will cause an electric current in the pick-up coils according to Faraday's 

Law of Induction. This current will be proportional to the magnetization of the sample. The greater 

the magnetization, the greater the induced current. The induction current is amplified by a 

transimpedance amplifier and lock-in amplifier [30]. 

. 
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Chapter-4 

 

Results and discussion: 
 

4.1: Synthesis of BFO nanoparticles by using two different precipitating agents such as 

Ammonium hydroxide and Tetra methyl ammonium hydroxide. 

4.1. 1: 
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Fig: 4.1 XRD Patterns of bismuth ferrite nanoparticles synthesized using Ammonium hydroxide 

 Fig 4.1 shows XRD patterns of BFO nanoparticles synthesized using 6M NH4OH, at constant 

pH -14 and calcined at different temperatures such as 300
°
C, 400

°
C, 500

°
c, 550

°
C, 600

°
C and 

650
°
C.Single phase BFO nanoparticles are obtained at 650

°
C with reference to the JCPDS NO: 

861518. The lattice parameter of (110) is found to be 3.93Å.The crystallite size is calculated using 

Debye- Scherrer formula. 

 Role of precipitating agents in Phase evolution of Bismuth ferrite nanoparticles at constant pH: 
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D = 0.94λ/ β cosθ…………………………………………………………… [4.1] 

Where D = crystallite size 

                λ = wavelength of X-ray radiation (1.54Å) 

                θ = angle of diffraction 

                 β =line width = 

and it is found to be 118nm at 650
°
C 
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 Fig: 4.2 XRD Patterns of bismuth ferrite nanoparticles synthesized by Tetra methyl Ammonium  

      hydroxide (TMAOH). 

 Fig 4.2 shows XRD patterns of BFO nanoparticles synthesized using 2M TMAOH, at 

constant pH -14 and calcined at different temperatures such as 300
°
C,400

°
C,500

°
C,550

°
C,600

°
C and 

650
°
C .Single phase BFO nanoparticles is obtained at 650

°
C with reference to the JCPDS NO:861518. 

The lattice parameter of (110) is found to be 3.93Å. The crystallite size calculated from Debye- 

Scherrer formula is found to be 76nm at 650
°
C.  

)22( ms  
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 Compared to NH4OH, TMAOH is a strong base .At constant pH -14; TMAOH shows smaller 

crystallite size (76nm). This is because TMAOH dissociates faster than NH4OH and releases hydroxyl 

ions faster. As a result, large number of particles are formed during nucleation and hence growth 

occurs slowly. In the case of NH4OH, less number of particles are formed during nucleation as it 

dissociates slowly when compared to TMAOH and growth occurs faster which results in larger 

crystallite size (118nm). The cationic radii of (CH3)4 NH4
+
 is 2.3Å [31].The cationic radii of NH4

+
 is 

1.43 Å. 

 

 

 

 

 

 

 

Fig: 4.3.Schematic representation of (a) BFO nanoparticles with NH4OH and (b) with TMAOH 

The structure of TMAOH is given below: 

 

           Fig: 4.4.Structure of TMAOH. 

 This tetra methyl ammonium cation which is a quaternary ammonium ion can also act as a 

capping agent (surfactant) among the primary particles which is shown in figure 4.3(b) and as a result 

there is a decrease in crystallite size when compared to NH4OH.   

 Varying fractions of impurity phases was also observed with the precipitating agents at lower 

calcination temperatures and the impurity phases were found to be higher in case of TMAOH 
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precipitating agent. This is because of uncontrolled precipitation due to faster nucleation. This 

uncontrolled precipitation makes it inhomogeneous which leads to large amount of impurities. 

 

4.1.2 Morphological studies: 

 

 

 

 

 

 

Fig 4.5(a) shows FESEM image of BFO nanoparticles synthesized using NH4OH and (b) shows FESEM 

image of BFO nanoparticles synthesized using TMAOH. 

Figure 4.5(a) shows FESEM image of BFO nanoparticles synthesized using NH4OH precipitating 

agent and fig 4.5 (b) shows FESEM image of BFO nanoparticles synthesized using TMAOH 

precipitating agent. It is found that the precipitating agent seems to affect the morphology to some 

extent. From FESEM image the average particle size of BFO nanoparticles using ammonium 

hydroxide is found to be 196±115nm  and 207±50nm for tetra methyl ammonium hydroxide  (particle 

size is calculated using Image J software).This shows that the precipitating agent TMAOH is effective 

in controlling the particle sizes than NH4OH. 

4.1.3. Magnetic studies: 

Table: 4.1: Values of magnetization and coercivity at 5K and 300K 

 

Precipitating agent 

 

Crystallite size(nm) at 

650°C 

Remnant magnetization 

(Mr)(emu/g) 

Coercivity 

(Hc)(Oe) 

5K 300K 5K 300K 

NH4OH 118 0.0013 0.0011 149.9 146.16 

TMAOH 76 0.0024 0.0046 253.86 616.91 

 

1 µm 

(a) 

1 µm 

(b) 
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Table: 4.2: M-H curve of BFO nanoparticles synthesized by (a) NH4OH and (b) TMAOH.  

 

 Magnetic measurements of BFO nanoparticles synthesized by co-precipitation method are 

performed using PPMS operating in VSM mode. Table: 4.1 shows values of remnant magnetization 

(which is expressed in emu/g) and coercivity (in Oe) at both 5K and 300K. The values obtained for 

precipitating agent TMAOH is slightly higher because of its small crystallite size than the NH4OH. 

This indicates that the precipitating agent also seems to affect the magnetic properties of BFO 

nanoparticles. 

(a):M-H Measurements of BFO 

nanoparticles synthesized using NH4OH: 

(b): M-H Measurements of BFO 

nanoparticles synthesized using TMAOH 
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 Magnetic measurements was performed at 5K and 300K .Table 4.2 (a) shows linear M-H 

curve at both 5K and 300K.A minor slope change in the curve which is shown in figure 4.6, indicates 

antiferromagnetic behaviour at both 5K and 300K.The coercive fields calculated above after 

correcting the VSM instrument error (error:± 40Oe to ± 60Oe) indicates a weak antiferromagnetic 

behaviour.  

  

 

 

 

 

 

 

 

 

Fig: 4.6 Differential curve of BFO at 5K synthesized by using NH4OH. 

 Table 4.2 (b) also shows linear M-H curve at both 5K and 3K and with a slope change in the 

curve (slope change is larger when compared to the slope change of NH4OH) which is shown in the 

figure 4.7.Hence it is anti-ferromagnetic in nature i.e. BFO nanoparticles synthesized using TMAOH 

exhibits anti-ferromagnetic nature. The loop opening in the curve is may be due to surface defects. 
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 Fig: 4.7: Differential curve of BFO at 5K synthesized by using TMAOH 

M-T measurement of BFO nanoparticles synthesized by co-precipitation method using 

NH4OH and TMAOH: 

 Magnetization is measured in the temperature range of 5-300K with an external magnetic 

field of 1000Oe.In fig 4.8, both FC and ZFC magnetization values decreases with the decrease in 

temperature which is an indication of anti-ferromagnetic nature [32] similar to bulk behaviour. 

Because of homogeneity of the particles in the bulk, the blocking effect is not predominant. As a 

result both FC and ZFC curves coincides.  

(a)                                                                         (b) 

 

 

 

 

 

 

Fig: 4.8: M-T curve of BFO synthesized using (a) NH4OH and (b) TMAOH at 1000Oe  

4.1.4. Raman spectroscopy: 

 

 

 

 

 

 

 

Fig: 4.9 Raman spectra of bismuth ferrite nanoparticles synthesized using (a) NH4OH and (b) TMAOH. 
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Single phase BFO nanoparticles are obtained at 650
o
C in case of both the precipitating agents. The 

raman spectra are shown in the figure 4.6(a) and (b). 

Both the spectra show the 135,133,166,168 265,275,345,470 and 525 modes .According to Aguiar et 

al. [33] 

 Modes such as 265,275,345,470 and 525 are related to the distortions and vibrations of FeO6 

octahedra. 

 Modes such as 135,133,166,168 are related to bismuth occupied within perovskite units. 

Hence raman spectroscopy gives the information regarding the structure. The structure of BFO which 

is analysed using XRD is further confirmed by raman spectroscopy. 
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4.2. Synthesis of BFO nanoparticles at constant pH and constant concentration. 

4.2.1: Structural analysis by X-Ray diffraction: 
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Fig.4.10: XRD patterns of BFO nanoparticles calcined at 550
°
C by using(a)2M-NaOH(b)2M-

NH4OHand(c)2M-TMAOH  

 Figure: 4.10 shows the XRD patterns of BFO nanoparticles synthesized and calcined at 550
°
C 

by co-precipitation method. In this method both the pH and concentration are kept constant in order to 

determine the role of precipitating agent. The pH-12 and 2M concentration is maintained. The 

crystallite size is calculated from XRD using Debye- Scherrer formula. 

Table-4.3: BFO nanoparticles at constant pH and concentration 

Precipitating 

agent 

pH Concentration Crystallite 

size(nm) 

NaOH 12 2M 37 

NH4OH 12 2M 48 

TMAOH 12 2M 48 
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Table-4.3 shows that the crystallite size of BFO nanoparticles synthesized using 2M NaOH is 

less compared to BFO nanoparticles synthesized using 2M NH4OH and 2M TMAOH.This is because 

NaOH is stronger base when compared to TMAOH. NaOH dissociates faster than TMAOH and 

NH4OH and releases hydroxyl ions faster. As a result, large number of particles are formed during 

nucleation and growth occurs slower. The impurity phases Bi24Fe2O39, Bi2O3, Fe2O3 and Bi2Fe4O9   are 

present in case of NaOH precipitating agent. This is because of uncontrolled precipitation due to 

faster nucleation. This uncontrolled precipitation makes it inhomogeneous which leads to large 

amount of impurities. 
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Chapter-5 

 

Results and discussion of surfactant 

assisted synthesis of BFO nanoparticles. 

 

5.1 Surfactant: 

In this synthesis cetyltrimethylammoniumbromide (CTAB) is used as a surfactant. CTAB is a cationic 

surfactant and its molecular formula isC19H42BrN. It is a molecule with tri methyl ammonium, as a 

head group and long chain of alkyl group as a tail portion as shown in Figure 5.1  

 

Fig.5.1 Molecular Structure of CTAB [34] 

The critical micelle concentration of CTAB is 0.9-1.0mM.Above this concentration CTAB forms 

micelles which is shown in fig.5.2. 

 

 

 

 

Fig.5.2 Structure of micelle. 

Micelle has outer water soluble hydrophilic head and inner water insoluble hydrophobic tail.  
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5.2. Structural analysis by X-Ray Diffraction: 
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Fig.5.3XRD pattern of BFO nanoparticles synthesized using CTAB (surfactant) and calcined at 550
o
C for 

1hr 

 Figure.5.3 shows the xrd pattern of BFO nanoparticles synthesized using CTAB and calcined 

at 550
°
C for 1hr.Two impurity phases are seen such as Bi2Fe4O9 and Bi24Fe2O39.The crystallite size 

from Debye-scherrer formula is calculated as 16nm.Compared to crystallite size found in earlier 

experiments, the crystallite size obtained in this case is much smaller. This can be explained using the 

below figure.5.4. 

 

          

 

 

 

Fig.5.4 Mechanism of CTAB in preventing agglomeration of nanoparticles. 
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 Surfactants are surface-active agents.When surfactant (CTAB) is added to the nanoparticles; 

it attaches with its head to the nanoparticles and prevents agglomeration among the primary particles 

by acting as a capping agent. Hence particles without agglomeration are obtained which is shown in 

fig5.4 

 In this experiment, smaller crystallite size of BFO was found when CTAB is added. CTAB 

attaches to BFO nanoparticle with its hydrophilic head which is positively charged and forms an outer 

shell around BFO nanoparticle. The electrostatic force between positively charged outer shells 

prevents BFO particles from agglomerating. 

5.3. Morphological studies: 

 

Fig 5.5 FESEM image of BFO nanoparticles synthesized using CTAB surfactant. 

 Figure: 5.5 shows FESEM image of BFO nanoparticles calcined at 550
°
C using CTAB 

Surfactant. It shows smaller particles with average particle size of 59±15nm calculated using Image J 

software. This shows that CTAB surfactant plays an important role in preventing the agglomeration of 

BFO particles by acting as a capping agent 

5.4. Magnetic studies: 

 The magnetic properties of BFO nanoparticles calcined at 550
°
C using CTAB is performed 

using PPMS operated in VSM mode. Magnetic measurements were performed at 5K and 300K which 

is shown in fig 5.6 .M-H curve is hysteresis but not linear indicating weak ferromagnetism. The 

periodic spiral spin structure which is shown in figure 1.7 is suppressed due to Dzyaloshinskii-Moriya 

interaction [34] .This suppression results in enhancement of magnetism and therefore M-H curve 

shows weak ferromagnetic curve. In this case the crystallite size is 16nm, which is less than 64nm; 

hence it shows weak ferromagnetic nature. 

300nm 

300nm 

300nm 
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M-H measurements of BFO nanoparticles synthesized by co-precipitation method using 

CTAB 

(a)                                                                                            (b) 

 

  

 

 

 

 

Fig 5.6 M-H curves at (a) 5K and (b) 300K 

Table.5.1: Values of magnetization and coercivity. 

 

Precipitating agent+ 

Surfactant 

 

Average crystallite 

size(nm) 

Remnant 

magnetization(Mr) 

(emu/g) 

Coercivity 

(Hc)(Oe) 

5K 300K 5K 300K 

NaOH+ CTAB 16 0.177 0.2635 2255.05 212.3 

  

 Table 5.1 shows the values of remnant magnetization and the coercive field at both 5K and 

300K.The coercivity value and remnant magnetization value is high at 5K.This is because of the 

increase in the magnetic ordering at lower temperature and also the presence of impurity phase 

Bi2Fe4O9.The impurity Bi2Fe4O9 shows magnetic nature below 273K. 
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M-T measurement of BFO nanoparticles synthesized by co-precipitation method using 

CTAB 

 

 

 

 

 

 

 

Fig 5.7 M-T curve at 1000Oe  

 Magnetization is measured in the temperature range of 5-300K with an external magnetic 

field of 1000Oe.The effect of divergence between ZFC and FC is associated with the blocking effects. 

TS (i.e. the temperature where the ZFC and FC starts to bifurcate) is higher for smaller particle then 

the larger particle [35]. In nanoparticles at temperature T < TB (the temperature where the 

magnetization drops is known as blocking temperature) the magnetic moment is blocked due to the 

higher interactions of nanoparticle clusters because of increase in surface-volume ratio. This causes 

the difference in FC and ZFC magnetization. The crystallite size in this case is16nm therefore it 

shows large bifurcation. ZFC shows sudden drop in magnetization below 100K, indicating blocking 

effects, however spin-glass type of a transition is expected to appear around 10K for bulk BFO 

samples, which is not observed prominently in the case of nanoparticles, probably due to the cluster 

formation of particles [36]. 
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Chapter-6 

 

Results and discussion of BFO Nanofoams 

synthesized by sol-gel Template method. 

6 .1 Structural analysis by X-Ray Diffraction: 
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Fig.6.1XRD patterns of BFO Nanofoams synthesized by using different concentrations such as 0.16M, 

0.25M, 0.5M and 1M. 

 Figure: 6.1 shows XRD patterns of BFO Nanofoams synthesized at different metal ion 

concentrations such as 0.16M, 0.25M, 0.5M and 1M. The impurities such as Bi2.88Fe6O12, Bi24Fe2O39, 

Bi2O3, Fe2O3 and Bi2Fe4O9   are present. These impurities are found to decrease from dilute solution to 

concentrated solution i.e. from 0.16M to 1M.In dilute solution (0.16M) when the solvent is removed 



42 | P a g e  

 

by drying the filter paper in hot air oven; the sol converts to gel i.e. gelation process takes place 

during drying and which result in inhomogeneity. This inhomogeneity may lead to more impurities. 

Whereas in concentrated solution (1M) gelation process takes place before drying the filter paper and 

which makes it homogenous. This homogeneity may lead to decrease in the percentage of impurities. 

The crystallite size of all the above samples is shown in table 6.1. It shows almost the same crystallite 

size even there is difference in the concentrations. 

Table 6.1: Crystallite size of BFO-FP calcined at 650
°
C 

BFO calcined at 650
°
C  Average crystallite size (nm) 

0.16M 103 

0.25M 102 

0.5M 96 

1M 109 

XRD of BFO Nanofoam of concentration 0.16M: 
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Fig.6.2 XRD pattern of BFO Nanofoam of concentration 0.16M and calcined at 600
°
C. 
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Fig.6.2 shows XRD pattern of BFO Nanofoams synthesized at 0.16M metal ion concentrations, 

calcined at 600
°
C.The impurities such as Bi2.88Fe6O12, Bi24Fe2O39, Bi2O3 and   Fe2O3 are present. 

6.2: Magnetic studies: 

M-H measurements of BFO Nanofoams of 0.16M metal ion concentration synthesized by 

using sol-gel template method: 

Table -6.1 shows values of remnant magnetization (which is expressed in emu/g) and coercivity (in 

Oe) at both 5K and 300K. 

Table: 6.1: Values of magnetization and coercivity at 5K and 300K 

 

Concentration of  

metal ion 

 

Crystallite size(nm) 

at 600
°
C 

Remnant 

magnetization(Mr) 

(emu/g) 

Coercivity 

(Hc)(Oe) 

5K 300K 5K 300K 

0.16M 55 2.142 0.781 668.04 192.01 

  Magnetic measurements were performed for BFO Nanofoams of 0.16M, calcined at 600
°
C. 

Magnetic measurements were done at both 5K and 300K.It shows hysteresis curve but not linear at 

both 5K and 300K, which is shown in figure 6.4.It shows  larger slope change which is shown in 

figure 6.4, indicating weak ferromagnetism. This enhanced magnetization is could be due to the 

presence of Fe2O3 impurity phase [37]  

(a)                                                                                (b) 

 

 

 

 

 

 

 

Fig 6.3 M-H curves of 0.16M concentration of (a) 5K and (b) 300K, calcined at 600
°
C. 
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Fig 6.4: Differential curve of BFO Nanofoam of 0.16M which is calcined at 600
°
C 

M-T measurement of BFO Nanofoams of 0.16M concentration of metal ion synthesized by 

using sol-gel template method: 

 

 

 

 

 

 

 

 

Fig 6.5: M-T curve of BFO Nanofoam of 0.16M which is calcined at 600
°
C 

 Magnetization is measured in the temperature range of 5-300K with an external magnetic 

field of 1000Oe.The effect of divergence between ZFC and FC is associated with the blocking effects. 

TS (i.e. the temperature where the ZFC and FC starts to bifurcate) is higher for smaller particle then 

the larger particle. ZFC shows sudden drop in magnetization below 100K, indicating blocking effects. 
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6.3Morphological studies: 

 Figure: 6.5 shows FESEM images of BFO Nanofoams synthesized by using different 

concentrations of metal ions such as (a) whatman filter paper (b) 0.16M (c) 0.25M and (d) 0.5M. We 

found that there is no change in the crystallite size from 0.16M to 0.5M, but there is a change in 

porosity which is shown in fig 6.6. Porosity decreases from dilute solution (0.16M) to concentration 

solution (0.5M). In the case of dilute solution, the volume is high and the coating of the material on 

the filter paper is thin. So when the material is converting from the amorphous to the crystalline only 

in the parts where the material is present converts to crystallite and other parts are empty with only 

the filter paper. During calcination the filter paper decomposes which leads to the formation of pores. 

Hence the particle shape is not spherical but plate like structure.  

 In the case of concentrated solution (0.5M), the volume is less and hence coating is thick. 

This makes the material homogenously distribute on the filter paper. When the material is converting 

from the amorphous to the crystalline, most of the material converts to crystalline which makes it 

less porous .In this case the template is playing a role in crystallization process of the material. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6.6: FESEM images of BFO Nanofoams (a) whatman filter paper (b) 0.16M (c) 0.25M and (d) 0.5M. 
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Chapter-7 

Summary and Conclusions 

 

In this project work an attempt has been made to understand the kinetics of phase formation of BFO 

via wet chemical route. We studied the effect of synthesis parameters such as pH, concentration, 

precipitating agents, surfactant etc., in determining the single phase formation of BFO and analyzed 

the structural, morphological and physical properties with XRD, Raman spectroscopy, SEM and 

PPMS(operated in VSM mode).By tuning the above conditions, different particle sizes and shape 

(morphology) was synthesized  

 Difference in basicity and concentration of precipitating agents affects crystallite size, 

impurity content and phase evolution of single phase BFO.  

 Stronger base showed smaller crystallite size and large amount of impurities at lower 

calcination temperatures. 

 High concentration of a weak base showed larger crystallite size. 

 Using CTAB as a surfactant lead to significant reduction in crystallite size which suppressed 

the spiral spin structure present in bismuth ferrite. Hence resultant BFO particles showed weak 

ferromagnetic nature. 

 Synthesized BFO Nanofoams using whatman filter paper as a template by sol-gel method. 

Results in no change in the crystallite size from 0.16M to 1M concentrations of metal ion but there is 

a change in porosity.Porosity decreases from dilute solution (0.16M) to concentration solution 

(0.5M).In the case of concentrated solution, the template plays an important role in crystallization 

process of the material. As a result the particles shapes are not spherical but are plate like structure.  

 

Future work: 

1. Synthesis of pure phase BFO Nanofoam and study its magnetic properties. 

2. To study the ferroelectric properties of BFO synthesized by the above methods, since BFO is 

a multiferroic material (ferroelectric- antiferromagnetic)  
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