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ABSTRACT
Photo-Acoustic Tomography (PAT) combines ultrasound res-
olution and penetration with endogenous optical contrast of
tissue. Real-time PAT imaging is limited by the number of
parallel data acquisition channels and pulse repetition rate
of the laser. Typical photoacoustic signals afford sparse
representation. Additionally, PAT transducer configurations
exhibit significant intra- and inter- signal correlation. In this
work, we formulate photoacoustic signal recovery in the Dis-
tributed Compressed Sensing (DCS) framework to exploit
this correlation. Reconstruction using the proposed method
achieves better image quality than compressed sensing with
significantly fewer samples. Through our results, we demon-
strate that DCS has the potential to achieve real-time PAT
imaging.

Index Terms— Photo-Acoustic Tomography, Distributed
Compressive Sensing, Joint sparsity

1. INTRODUCTION

Photo-Acoustic Tomography (PAT) has gained importance in
biomedical imaging in the recent years [1], due to its high
spatial resolution and endogenous optical contrast. It is also
capable of deep tissue imaging beyond the optical imaging
limit [2]. In PAT, a non-ionizing pulsed laser source excites
ultrasound waves from the tissue due to thermo-elastic ex-
pansion. Thus, PAT effectively combines ultrasound imag-
ing with optical imaging resulting in high contrast, resolution
and penetration. PAT has attracted many applications in mi-
croscopy, spectroscopy, multiscale imaging, functional and
fluorescent imaging and most of them are in the preclinical
studies [3]. In many applications, high frequency ultrasound
transducers are used to acquire Photo-Acoustic (PA) waves
from tissue surface [3] [4]. The spatial sampling resolution
of these transducers determines image resolution. High res-
olution real-time imaging requires a large number of parallel
transducers and acquisition channels. To reduce cost, many
PAT systems use extensive mechanical scanning and averag-
ing with fewer number of channels. This results in a large
number of laser pulse excitations to scan a small area. For
scanning deeper tissue, high energy laser pulses are required.
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Even if one operates within the ANSI limit (20mJ/cm2), a
large number of laser excitations will adversely affect tissue.
Also, low pulse repetition rate in many tunable lasers also in-
creases scanning time. In this scenario, Compressed Sensing
(CS) is a potential candidate to help real-time PAT imaging.
Under sparsity constraints, CS theory allows us to reduce the
number of samples and transducers suggested by the Nyquist
rate in temporal and spatial domains. CS is widely used in
tomography with applications ranging from Magnetic Reso-
nance Imaging (MRI) [5] to CT and ultrasound imaging. In
their seminal paper, Provost et al. introduced CS to PAT [6]
where they showed that a sparsely represented PAT image can
be reconstructed using CS algorithms. In-vivo experiments
with CS has been demonstrated in both time and frequency
domains [7] [8]. Several variants of CS in PAT have been
studied like reconstruction with partially known support [9],
total variation approach [10], fast alternating direct algorithm
[11], and the case of recovery from multi-view measurements
[12].

In this work, we exploit the rich inter- and intra- signal
correlation that exists among localized transducer time series
to achieve better compression. To the best of our knowledge,
compressed sensing in PAT has not utilized inter signal corre-
lation. We demonstrate how PAT signal recovery can be for-
mulated as a Distributed Compressed Sensing (DCS) prob-
lem to exploit this correlation. Specifically, we use a DCS
model called Joint Sparsity Model (JSM) - II to model and
sense photoacoustic signal. We use the Distributed Com-
pressed Sensing-Simultaneous Orthogonal Matching Pursuit
(DCS-SOMP) algorithm [13] for signal recovery.

PAT and DCS models are briefly introduced in Section
2. The problem formulation and the solution are presented in
Section 3. We also address the problem of optimal transducer
grouping in Section 3. We present and discuss our results in
Section 4.

2. BACKGROUND

In this section, we discuss both PAT and DCS models to en-
able us to formulate our DCS-PAT framework.
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2.1. Photo-Acoustic Imaging

Pulsed laser with pulse width in the range of few nanosec-
ond can excite Photo-Acoustic (PA) signals in tissue. Under
the stress confinement assumption, we can represent the laser
pulse as a delta function in time δ(t), and its spatial compo-
nent illuminates the tissue surface uniformly [2]. The pressure
profile generated by the excitation is given by

P0(r) = ΓA(r), (1)

where Γ = c2β/Cp is a constant called Grüneisen parameter,
that quantifies the efficiency of light to sound conversion. c is
speed of light, β is isobaric volume expansion coefficient, Cp
is specific heat and A(r) is the optical absorption [2]. In PAT,
the PA signals thus generated are acquired by transducers at
location r and time t. The propagation of acoustic wave of
initial pressure P0(r) to pressure P (r, t) at the sensing loca-
tion satisfies the wave equation [14]:(

∇2 − 1

c2
∂2

∂t2

)
P (r, t) = −P0(r)

dδ(t)

dt
. (2)

The solution for the above equation is given by [1]

P (r, t) =
∂

∂t

[
1

4πc3t

∫
dr’P0(r’)δ

(
t− |r− r’|

c

)]
. (3)

Discretizing the above equation for a circular configuration as
in Fig. 1, it can be expressed as an impulse response matrix
K [7],

K(i,t),(n,m) =
1

2πc
δ

(
t− |rnm − ri|

c

)
. (4)

We use a rectangular grid ofNx×Ny points, rnm is radius of
grid point, ri is ithtransducer location. The time series is mea-
sured with Ns transducers and Nt samples, with sampling in-
terval T . In other words, t = pT , with p = 1, 2, . . . , Nt time
steps. n = 1, 2, ..., Nx and m = 1, 2, ..., Ny are x and y axis
grid indices respectively. The time series of each transducer
can be obtained obtained by

yi,t = K(i,t),(n,m)xn,m, (5)

where x is vectorized initial pressure distribution.

2.2. Distributed Compressed Sensing (DCS)

DCS uses multi-signal ensembles that exploit both intra- and
inter - signal correlation. Duarte et al. [13] presented three
models for joint sparsity of correlated signals – Joint Sparsity
Model (JSM) I, II and III. If the signal is not sparse in itself,
we can obtain a sparse representation in a different basis Ψs

(e.g., Fourier, Wavelet etc.) expressed as

yj = Ψsθj, (6)

Fig. 1. Circular transducer configuration with initial pressure
distribution, computational grid and time series of neighbor-
ing transducers showing correlation.

where yj are correlated signals, j ∈ {1, 2..., J}, θj are sup-
ported on Ω ⊂ {1, 2, 3..., Nt} with |Ω| = S, where S is
signal sparsity. Sensing of a group of J signals is given by

υj = Φjyj. (7)

The sensing matrices Φj are different for individual signals
and are of size M × Nt, where M = cS with oversampling
rate c. For groups with large number of sensors, c = S+1

S
points to the fact that that number of measurement (M ) re-
quired to recover the signals is close to S, the number of non-
sparse terms in the signal.

3. DCS FOR PAT

3.1. Problem formulation

We first empirically demonstrate inter-signal correlation in a
circular transducer configuration for PAT. Fig. 1 shows repre-
sentative time series of 4 neighboring transducers sampling
a generic signal. It is clear from the figure that the mea-
surements made at neighboring transducers are highly cor-
related. The key observation from these measurements is that
the JSM-II model proposed in [13] nicely fits in this setting
where the signals are correlated and have the same support
set. We would like to recall here that the JSM-II model con-
siders a scenario where multiple sensors acquire the same sig-
nal but with different phase shifts and attenuation due to prop-
agation in a medium.

Time series of individual transducers, yj = yi,t are ran-
domly sensed using sensing matrices Φj. With the knowl-
edge of the number of non-zero terms in the signal S, we can
achieve optimal compression by choosing the number of mea-
surements M so as to minimize recovery error. The choice of
M also depends on how many correlated signals are grouped
together during recovery. Once we find this M , our aim is to
find how to recover the signal exactly.
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3.2. Solution

Having formulated the signal compression problem in the
DCS framework, it follows naturally that the solution to
JSM-II applies to this formulation as well. For completeness,
we outline the DCS-SOMP in Algorithm 1 with appropriate
references to our formulation. The readers are referred to [13]
for a detailed description. Once the signal is recovered, the

Step 1 Initialize:
Υj = ΦjΨs

Iteration l = 1,
Orthogonalized coefficient β̂j = 0 ,
Support set Ω̂ = [ ],
Residue rj,0 = υj
Step 2 Support selection
nl = argmin

n=1,2,...,N

∑J
j=1

|〈rj,l−1,Υj,n〉|
‖Υj,n‖2

Ω̂ = [Ω̂ nl]
Step 3 Orthogonalize basis
γj,l = Υn,nl

−
∑l−1
t=0

〈Υj,nl
,γj,t〉

‖rj,t‖22
γj,t

Step 4 Update coefficient
β̂j(l) =

〈rj,l−1,γj,l〉
‖γj,l‖22

rj,l = rj,l−1 − 〈rj,l−1,γj,l〉
‖γj,l‖22

γj,l
Step 5 Convergence check
‖rj,l‖2 > ε‖υj‖2
then l = l + 1continue to step 2, otherwise
convergence satisfied.
Step 6 De-orthogonalize
Apply QR factorization to mutilated basis ΥΩ̂

Υj,Ω̂ = QjRj then θj,Ω̂ = R−1
j β̂j

ŷj = Ψsθ̂j (8)

Vectorize the individual ŷj to get reconstructed
measurement ŷ

Algorithm 1: DCS-SOMP Algorithm

image can be reconstructed using any standard reconstruc-
tion algorithm used in PAT. We use model-based method to
reconstruct the image [7].

3.3. Optimal grouping and oversampling strategy

The proposed formulation poses a couple of questions. Given
a set of Ns transducers, what is the optimal number of trans-
ducers J to be grouped, so as to get maximum signal com-
pression? Secondly, for a particular grouping, what should be
the minimum oversampling rate c? Consider the transducer
configuration presented in Fig. 1. The relation between over-
sampling c required and the number of transducers grouped
for perfect reconstruction of photoacoustic signal is shown in
Fig. 2. To test correlation among signals, 128 transducers are
employed and a grouping of J = 2, 4, 8, 16 and 32 are con-

sidered. Number of measurements are varied from 10 to 50.
Most of the time series have a sparsity between 21 and 25. It
is evident from the graph that as more and more transducers
are grouped in JSM, the number of samples required to get
exact reconstruction reduces and approaches sparsity (S) for
large value of J . J = 1 does not exploit correlation and hence
it is equivalent to compressed sensing case. From J = 2 to
16, samples required for exact reconstruction decreases and
become equal to sparsity rate (S = 21) at J = 16. It is in-
teresting to note that at J = 32 and 64 the oversampling rate
increases due to decrease in correlation.

Fig. 2. Probability of exact reconstruction vs. measurement
for different value of transducer grouping (J), averaged over
1000 iterations.

4. RESULTS AND DISCUSSION

We conducted numerical experiments to prove the efficiency
of the proposed algorithm. PAT forward operation is per-
formed using (5), which maps image x to transducer’s time
series y. Both x and y are vectorized and K is obtained us-
ing (4). In all simulations, computational grid size is taken as
20mm × 20mm with a resolution of 64 × 64. Transducers
are considered as point detectors and are arranged in a circu-
lar configuration as shown in Fig. 1 with a radius of 15mm
from the center of grid.

In this setting, we found that correlation between trans-
ducer time series increases as number of transducers increase,
since distance between them reduces. However, optimal
grouping must be performed to exploit the correlation as
shown in Section 3.3. Gaussian and Bernoulli matrices are
known to satisfy Restricted Isometric Property [15] and can
also be implemented in hardware [16]. We used these matri-
ces in our experiments for random sensing (7). PA signals are
then recovered using Algorithm 1. Once the PA signals are
recovered, the image is reconstructed. For image recovery
using compressed sensing we used l1 minimization [6]. Figs.
3 and 4 shows reconstructed image using CS and DCS algo-
rithm with Ns transducers and Nt samples. We used Vein
and Shepp Logan phantoms due to their dissimilar sparsity
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(a) Initial pressure (b) CS 32× 24 (d) DCS 32× 24, J = 4(f) DCS 32× 16, J = 8

(c) CS 48× 24 (e) DCS 48× 24, J = 4 (d) CS 48× 16 (e) DCS 48× 16, J = 8

Fig. 3. Reconstruction of vein phantom using CS and DCS with Ns number of transducer and Nt samples.

(a) Initial pressure (d) CS 64× 32 (b) DCS 64× 32

Fig. 4. Reconstruction of Shepp Logan Phantom using CS and DCS with Ns number transducer and Nt samples.

Method (Ns ×Nt) MSE PSNR SSIM
Vein Phantom

CS 32× 24 0.0024 26.1416 0.8964
DCS 32× 24 0.0017 27.7892 0.9180
DCS 32× 16 0.0016 27.8914 0.9175

CS 48× 32 0.0008 30.8277 0.9625
DCS 48× 24 0.0008 30.8277 0.9625

CS 48× 16 0.0029 25.3257 0.8634
DCS 48× 16 0.0012 29.3295 0.8957

Shepp Logan Phantom
CS 64× 32 0.0029 25.3257 0.8634

DCS 64× 32 0.0012 29.3295 0.8957

Table 1. Comparison of reconstructed image quality, using
Compressed Sensing (CS) and Distributed Compressed Sens-
ing (DCS) method with Ns transducers and Nt time steps

properties. For Shepp Logan phantom we used Numerical
Derivative as sparsifying matrix.

The image quality obtained with CS and DCS is evaluated
using Mean Square Error (MSE), Peak Signal to Noise Ratio

(PSNR) and the Structural Similarity (SSIM) index in Table
1. This clearly shown that DCS achieves a better image qual-
ity than CS with much fewer samples for a fixed number of
transducers. As hypothesized, we were able to exploit inter
signal correlation in photo-acoustic signals and were able to
reconstruct images with fewer samples using the DCS-SOMP
algorithm.

5. CONCLUSIONS AND FUTURE WORKS

We have empirically demonstrated how PAT reconstruction
can be formulated in the DCS framework, to reduce number
of samples used for reconstruction. Using JSM - II, the inter
signal correlation between transducer time series is exploited
for better compression. Our results show that we can achieve
better image quality with far fewer samples than conventional
compressed sensing used in PAT, which depend only on spar-
sity of image. As future work, we intend to formulate a single
step reconstruction algorithm utilizing DCS, which can ex-
ploit inter and intra signal correlation and directly recovers
the image. We also plan to test the framework with real pho-
toacoustic signals generated from tissue.
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