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Abstract 

Atomization of liquid fuel from injector in gas turbine combustors is commonly achieved by means of coflowing gas 

stream. A study of the representative example of this scenario is presented in this paper. An in-house finite volume 

method based code is developed for this purpose. Volume of fluid (VOF) method is used for capturing the interface. 

Geometric multigrid method is employed for solving the pressure poisson equation and it is parallelized on Graphics 

processing unit (GPU) architecture to meet the computational demand required. The solver is validated for standard 

benchmark test cases. The solver is applied to study the effect of gas to liquid velocity ratio on primary atomization of 

liquid sheet. 

 

Introduction 

A wide variety of natural and industrial process contains two or more immiscible fluids which encounter large 

deformations of fluid interface. Common applications which are of interest to scientific community are gas turbines, fuel 

injection in automobiles, spray painting etc. Usually these processes are characterized by liquid jet breakup, atomization 

and subsequently spray formation. Different approaches are followed to achieve efficient atomization in technical 

devices [1]. Two strategies are often observed: First one is injection of high velocity liquid in to a near quiescent gaseous 

environment. Other is injection of low velocity liquid with a coflowing gaseous stream of high velocity. Usually the first 

approach is referred as pressure injection and the second one is referred as air assisted/blast atomization. In both the 

cases, the flow is expected to be highly unsteady and turbulent. Air assisted atomization is commonly encountered in 

gas turbine combustors.  

Performance of a combustion system can be improved by understanding the fuel atomization process. This 

understanding requires the investigation of liquid jet in the near nozzle region (primary atomization zone). Spray is very 

dense in the primary atomization zone and is difficult to characterize by experimentation. Detailed numerical simulation 

is a powerful tool to study the primary atomization zone. Interface capturing methods used for the simulation should 

allow for discrete representation of the interface and also the sharpness of the interface has to be maintained throughout 

the computation. Several approaches are available in the literature to predict interface motion. Volume of Fluid (VOF) 

[2], Front tracking [3] and Level-Set (LS) [4] methods are among the most commonly used strategies. Fuster et al [5] 

have presented different simulations relating to primary atomization using VOF method. Recently Chenadec and Pitsch 

[6] reported numerical simulations of jet breakup resulting from a fully turbulent cylindrical pipe, using VOF method for 

varying density ratios. Desjardins et al [7] have simulated air assisted breakup of both planar and coaxial liquid layers. 

Desjardins et al have used level set based methodology for capturing the interface. Raessi and Pitsch [8] have reported 

breakup of liquid ethanol sheet in presence of shear air. 

A simplified example which represents the phenomena of air blast atomization is taken as the subject of the present 

study. 

VOF method proposed by Aulisa et al [9] is chosen for interface capturing in the current work because of its excellent 

mass conservation properties and ability to handle large interface distortions. Solving these problems numerically 

requires large computational sources. Traditionally computational demand is met by multi core Message Passing 

Interface (MPI) communication. Instead of MPI, the present solver relied on GPU architecture for parallelisation. GPU 

programming is done using Compute Unified Device Architecture (CUDA) by NVIDIA Corporation [10]. There are many 

CFD applications both in compressible and incompressible flows, which makes use of GPU computing. Solving pressure 

poisson equation is the most time consuming part in the incompressible multiphase flow solver. A common approach is 

to accelerate this part of the solver on GPU architecture.  Griebel et al [11], Kuo et al [12] and Kelly [13] have applied 

GPU computing in their own style to study multiphase flows. Subsequent section presents a brief introduction to GPU 

computing. 

 

 



 

Introduction to GPU computing 

In GPU computing, a Graphics Processor Unit is used in conjunction with CPU. It has become a recent trend in high 

performance computing to use GPUs for executing a part of the program in parallel. The reason being its high processing 

power and relatively low cost. Current GPUs are incorporated with hundreds of lightweight cores which can accelerate 

compute intensive applications substantially. The GPUs are efficient for data parallel applications like Computational 

Fluid Dynamics (CFD), as it has a Single Instruction Multiple Data (SIMD) device architecture. 

 

CUDA programming environment 

CUDA Application Programming Interface (API) is a programming model provided by NVIDIA for easy implementation 

on GPUs. CUDA-C contains set of extensions to C programming language and some CUDA accelerated libraries. 

CUDA also supports C++ and FORTRAN languages. In GPU terminology the term host refers to CPU and the term 

device refers to GPU. In general a C program, which is executed by the host calls the GPU to outsource the 

computational routines via a function called kernel. Kernels are designated by __global__ function qualifier, which 

specifies a function that is called by host and executed on device. 

In CUDA computational grid is organised in to number of blocks, which are equal in size and each block consists of 

number of threads. The blocks and grids can be organised in to one, two or three dimensions. The programmer has to 

accordingly map every thread to the actual data structure. Each block in the grid is provided with unique identity and is 

refererred by built in variables blockIdx.x, blockIdx.y, blockIdx.z. Similarly each thread in a block is given a unique 

identity and is identified using builtin variables threadIdx.x, threadIdx.y, threadIdx.z. The size of grid (specified in terms 

of blocks) and the size of block (specified in terms of threads) is passed on to the device via kernel call.  

Tesla C2075 GPU model is used for the present computations. GPU architecture, CUDA memory and optimization 

issues are not presented here in interest of brevity. The reader is referred to CUDA C programming guide [14] by NVIDIA 

corporation. 

 

Governing equations 

The present work considers two-dimensional, incompressible, variable density, isothermal flow of immiscible fluids. 

The mass and momentum conservation equations can be expressed in vector form as 

 

𝛻. v = 0 (1) 

 

𝜌 (
𝜕v

𝜕𝑡
+ v. 𝛻v) = −𝛻𝑝 + 𝛻. [𝜇(𝛻v + 𝛻v𝑇)] + g + 𝐹 (2) 

 

Single set of governing equations (Equation 1 & Equation 2) hold throughout the computational domain. 𝐹 represents 

body force term which includes surface tension force per unit volume and gravity, if present. Surface tension term is 

modelled by Continuum Surface Force (CSF) model by Brackbill et al [15]. The location of the interface is determined 

by using VOF methodology. VOF methods capture the interface using a marker function known as volume fraction 𝐶, 

which is defined as the fraction of the reference fluid occupied in a cell. As each fluid particle conserves its own identity, 

the volume fraction 𝐶 is a property moving with the flow and its material derivative should be zero. 

 

𝜕𝐶

𝜕𝑡
+ v. ∇𝐶 = 0 (3) 

 

From the estimation of volume fraction, the effective density and viscosity in a cell can be obtained as (assuming 

gaseous phase as reference phase) 

 

𝜌 = 𝜌𝑔𝐶 + 𝜌𝑓(1 − 𝐶)   (4) 

𝜇 = 𝜇𝑔𝐶 + 𝜇𝑓(1 − 𝐶)   (5) 

 

The suffix f and g represent the liquid and gas phases respectively. 

 

Numerical methodology 

Finite volume method is used to solve the flow governing equations. Two-dimensional Cartesian, uniform and collocated 

grid is used. VOF method basically consists of two steps namely interface reconstruction and its advection. Interface 

reconstruction is done by Youngs method [16]. For advection, operator split scheme with Eulerian implicit-Lagrangian 



 

explicit method proposed by Aulisa et al [9] is used. This advection scheme has the property of mass conservation up 

to machine accuracy. Navier-Stokes equations are solved by using a projection algorithm namely Simplified Marker and 

Cell (SMAC). First order explicit forward in time discretization is used for time derivative. Convective term is discretized 

using a second order ENO scheme [17]. Space derivatives are discretized using a second order central scheme. To 

avoid pressure velocity decoupling on collocated grid, momentum interpolation scheme given by Rhie and Chow [18] is 

used. Pressure poisson equation is discretized with a second order central difference scheme, which results in linear 

system of equations. In the present solver the system of equations are iteratively solved by Geometric multigrid 

algorithm. Initially serial version (for single cpu core) of the multigrid algorithm was developed and then it was 

parallelised on the GPU architecture to accelerate the computations. The following section briefly discusses the current 

implementation of multigrid algorithm on GPU architecture in CUDA environment. 

 

Pressure poisson equation on GPU 

The pressure poisson equation in the flow solver is ported on to GPU to accelerate the computation. As the remaining 

part of the solver is processed on CPU, the required data is transferred to the device memory from the host memory 

before the GPU execution starts. To achieve high performance, this data transfer between the host and device memory 

is to be minimised. 

V-cycle geometric multigrid is implemented in the present solver. The basic steps in the solution algorithm can be termed 

as smoothing, restriction and prolongation. The computational grid in CUDA is handled by dividing it into two dimensional 

blocks. Each block consists, say m x n number of threads. A thread with a unique thread id is created corresponding to 

every cell center node in the actual computational domain. The residual vector and solution vector are stored 

sequentially in a 1-D array (double). To optimize the algorithm, matrix coefficients are recomputed in every iteration 

instead of storing in an array. This is because GPU invests more transistors to arithmetic operations rather than to 

control flow and memory operations. Iterations are computed from the data in the global memory. The density values 

required at cell face are obtained by taking harmonic mean of corresponding cell centre values. The current multigrid 

algorithm uses Gauss-Siedel (GS) method as smoother. 

A single kernel is designed for the smoothening step. The grid dimension and block dimension can be specified to the 

kernel depending on the level of multigrid. In the original GS method, a new value at a node is computed from four 

connected neighbourhood nodes during each iteration. This task is sequential in nature, as it depends on the sequence 

of execution of the nodes. For the algorithm to run on parallel threads, it is necessary that there are no dependencies 

among the variables on different threads. To resolve the issue related to inter-thread dependencies, the current 

implementation employs Red-Black Gauss-Siedel method [19]. For a second order stencil used to solve 2-D poisson 

equation, two colours (say red and black) are required to generate sets of points that are not related with each other. 

Now each colour can be processed separately and the calculations within a color are done in parallel. Each colour is 

processed sequentially. The threads are mapped to points of one colour at a time. Figure 1 shows coloured domain and 

thread mapping arrangement for a sample domain size of 8X4 interior cells. 

 

  Figure1. Colouring of the domain with CUDA thread mapping arrangement. 



 

In restriction operation, coarse grid at any level is chosen by reducing the finer grid size by a factor of two in each 

direction. So for maximum efficiency of the algorithm, grid sizes of form 2p x 2q is preferred, where p and q are any 

positive integers. Residual value at a node is obtained by weighted average of eight neighbouring cells. Since the order 

of execution of nodes does not matter here, restriction operation is convenient to parallelize. A single kernel is used to 

apply the boundary conditions on all boundaries. For invoking boundary conditions a one dimensional grid is assumed 

and as many threads as boundary points are created. The one dimensional grid for updating boundaries is divided in to 

1-D blocks with each block consisting of 16 threads. It is made sure that threads in one block do not diverge. For the 

summation of elements in a vector, a 1-D grid is created and is divided into 1-D blocks. Sum of all the elements in a 

block is calculated by using shared memory, which is several order faster than global memory. Calculations on GPU 

are done with double precision floating point values. 

 

Validation of the VOF method 

The performance of the implemented VOF algorithm is tested against a standard test case called as Vortex in a box 

test introduced by Rider and Kothe [20]. This test suits well to study the combined performance of reconstruction and 

advection algorithms. 

The test problem considers a unit box as computational domain with two fluid phases present. A circular fluid body 

(phase 1) with radius 0.15 is located with centre (0.5, 0.75) and the rest of the domain is filled with other fluid (phase 2). 

The applied velocity field is determined by the stream function 

𝜓(𝑥, 𝑦, 𝑡) =
1

𝜋
cos (

𝜋𝑡

𝑇
) 𝑠𝑖𝑛2( 𝜋𝑥) 𝑠𝑖𝑛2( 𝜋𝑦) (6) 

  

This solenoidal flow field results in a single vortex that will spin fluid elements and stretching them in to a filament that 

spirals toward vortex center. Due to the temporal cosine term in Equation 6, the fluid has to return to its initial 

configuration after one cycle. The computations are performed on orthogonal and uniform mesh of size 128 x 128. Two 

test cases are chosen based on the time period 𝑇. First case with 𝑇=2 and second case with 𝑇=8. Initial CFL number 

equal to 0.1 is employed for both the cases. Figure 2 shows the interface position at half and full time for 𝑇 =2 test case. 

It can be observed that after the deformation of the interface by the flow, it has regained its original shape after one 

complete cycle. This proves the strength of the VOF scheme employed. Figure 3 shows the interface positions for 𝑇 =8 

test case. Geometrical error 𝐸 is quantified by using the definition    

𝐸 = ∑ ℎ2|𝐶𝑖,𝑗
𝑓

− 𝐶𝑖,𝑗
𝑖 |𝑖,𝑗                                                                                                                                                 (7) 

where ℎ is the side of the cell, superscripts 𝑓 and 𝑖 refers to final and initial positions respectively. Error is quantified in 

Table 1. 

 

 

t=0    t= 𝑇/2           t= 𝑇 

Figure 2. Interface deformation for time period 𝑇 = 2 case. 

 



 

 
 

t=0        t= 𝑇/2                t= 𝑇 

Figure 3. Interface deformation for time period 𝑇 = 8 case. 

Table 1. Error in vortex in a box test. 

Test case Error 

𝑇 = 2 1.08 e-3 

𝑇 = 8 3.56 e-3 

 

Validation of the code 

The developed multiphase flow solver is validated for bubble rise test case presented by Hysing et al [21]. Initial 

configuration and boundary conditions are illustrated in Figure 4. 

 

 
 

Figure 4. Initial configuration and boundary conditions for bubble rise test case. 

 

Physical parameters defining the test case are presented in Table 2.  

Table 2. Physical parameters used in bubble rise test case. 

Phase Ρ µ σ 

Liquid 1000 10 24.5 

Gas 100 1  

 



 

The gravitational acceleration 𝑔 employed in the test case was 0.98. Reynolds number and Eotvos number for the 

defined test case are 35 and 10 respectively. Characteristic length scale 𝐿 is equal to 2𝑅. Characteristic velocity scale 

𝑈𝑔 is taken as √2𝑔𝑅. Time scale is defined here as 𝑡 =
𝐿

𝑈𝑔
. 

The serial code simulations were performed on a workstation with Intel Xeon 2.8GHz processor and compiled on Linux 

Redhat C++ compiler (g++). The parallel code simulations are performed on the same workstation with NVIDIA Tesla 

C2075 GPU with nvcc compiler. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Effect of grid resolution on centroid of rising bubble. 

 

Simulations are done on three different grids of sizes 64x128, 128x256 and 256x512. Here grids are chosen to be of 

the size 2mx2n to gain maximum benefit from the multigrid algorithm employed (m and n are integers). To examine grid 

independence, the centroid of the rising bubble is plotted against time for the three grid resolutions. From the Figure 5 

it can be observed that the three curves are almost indistinguishable. Figure 6 shows the interface shape of the rising 

bubble at different instants.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  t=1             t=2       t=3 

Figure 6. Bubble shape at different instants (grid 128 x256). 

Here the solution on128x256 grid with time step size equal to 0.5x10-4 is compared with the grid independent solution 

of FreeLIFE group in Hysing et al [21]. Figure 7(a) and (b) shows the comparison of bubble centroid and mean rise 

velocity respectively. Buoyancy force causes the bubble to rise and the drag force opposes this motion. When all the 

forces acting on the bubble are balanced, rise velocity shall be constant reaching a steady velocity called as terminal 

velocity. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

          (a)                (b) 

    Figure 7. (a) Y-coordinate of bubble center with time.     (b) Average Y-velocity component of bubble with time. (on 128x256 grid) 

                                                           

Figure 6 and Figure 7 show that the solver has captured the bubble motion and also the results agree satisfactorily with 

the reference results. Figure 7(b) shows a slight discrepancy in the rise velocity in comparison with Hysing et al. This 

difference is believed to be resulted from the modelling of surface tension term. Present solver uses standard CSF 

algorithm by Brackbill et al [15]. The curvature calculation from volume fraction and the resulting jump condition at the 

liquid/gas interface results in spurious velocity at the interface which becomes increasingly apparent for surface tension 

dominated problems like the present case. As expected, surface tension effects are strong enough to hold the bubble 

together and no break up occurs. The bubble has ended in ellipsoidal regime. 

 

Performance acceleration with the GPU based solver  

The bubble rise test case presented above is simulated both on a single core cpu solver and gpu based parallelized 

solver, in order to evaluate the performance acceleration. Performance is presented in Table 3 in terms of workunits, 

which is defined as time taken per control volume per iteration as given by the expression below: 

𝑤𝑜𝑟𝑘𝑢𝑛𝑖𝑡 =
𝑇𝑘

𝑁 ×  𝐼𝑘
 

where 𝑁 is the number of control volumes in the domain, 𝑇𝑘 is the time taken by the pressure poisson solver for 𝑘 

number of time steps and the total number of iterations done during the 𝑘 time steps is 𝐼𝑘. 

Table 3. Performance of multigrid solver on gpu (Tested by running for first 30 time steps) 

 

Grid Workunits Speed                      

up cpu             

(xe-7) 

gpu 

(xe-7) 

64x128 3.975 2.718 1.46 

128x256 

256x512 

4.092 

4.113 

1.373 

0.89 

2.98 

4.62 

 

Gas blasted liquid sheet 

The primary atomization of a liquid jet under the influence of co-flowing gas stream is studied. A simplified example 

which represents the scenario of air blast atomization is presented. Computational domain with boundary conditions is 

shown in Figure 8. Flow inside the nozzle is not considered here. The present case considers both liquid to gas density 

ratio and viscosity ratio of 10. This limitation is because the present mathematical formulation shall not hold good at 

high density ratios. Parameters used in the study are listed in Table 4 (all quantities are in SI units). Three different test 

cases are studied, which are defined based on the relative velocity between the liquid and gas phase inlet velocities. 

Gas to liquid velocity ratio of 2.5x, 3x and 4x are considered. Table 5 presents three different cases along with their  



 

 

Figure 8. Computational domain with boundary conditions. 

non-dimensional numbers. The parameters chosen corresponds to Reynolds number and Weber number of the order 

of 103. Relative velocity between gas and liquid phases at inlet is taken as characteristic velocity and liquid sheet 

thickness L is the characteristic length. Because of high Reynolds number and weber number, the jet is expected to 

disintegrate soon after injection.  

Table 4. Parameters used. 

Phase ρ µ σ Jet 

thickness 

Liquid 100 1e-4 0.003 1e-4 

Gas 10 1e-5   

Table 5. Dimensionless numbers for different cases. 

Case Liquid velocity 

(m/s) 

Gas velocity 

(m/s) 

Reynolds 

number 

Weber 

number 

A 15 37.5 2250 1688 

B 15 45 3000 3000 

C 15 60 4500 6750 

 

High Weber number is considered so that surface tension does not dominates the flow characteristics. The 

computational domain is 18L x 6L.  

Effect of grid resolution on spray morphology 

 

Figure 9. Spray formation at an instant of t=60 µs for case B- top (grid 1024 x 256), bottom (grid2048 x 512) 

 

 



 

As mentioned by Fuster et al [5], for high Reynolds numbers it is believed that the flow structures in the vortices interact 

with the small droplets which are already generated ,making the simulations extremely sensitive to mesh size. To check 

the effect of grid resolution, simulation of case B is performed on two grids of sizes 1024 x 256 and 2048 x 512. Effect 

of grid resolution on spray morphology is clearly depicted in Figure 9. It is apparent from Figure 9 that coarse grid and 

fine grid results differ in the oscillation trend, wavelength of instabilities on surface of sheet and amplitude growth. Also, 

the ligament formation and atomized droplets vary significantly from coarse mesh to fine mesh. 

All the simulations for the study are presented on grid size 2048 x 512. For all the three cases presented, no inlet 

perturbations are imposed.  

 

 
 

 

Figure 10. Evolution of spray for case A. 

 

 
 

Figure 11. Evolution of spray for case B. 

 

 



 

 
 

Figure 12. Evolution of spray for case C. 

 

Instabilities sets on the surface of the liquid sheet because of the shearing action due to relative velocity between liquid 

sheet and co-flowing gas stream. This is commonly referred as Kelvin-Helmholtz instability. Figures 10 – 12 show the 

evolution of the spray for cases A, B and C respectively. The liquid surface is stretched due to the more rapidly moving 

co-flowing air stream. This results in the formation of thin rims at the tip of the sheet. These rims may then lead to 

formation of droplets. Pinching of minute droplets from the tip of the jet is observed in the very early stages of injection 

for all the cases. Also, ligaments start to appear on the surface of the sheet simultaneously which may either collapse 

on surface of liquid jet or get pinched from the main jet resulting in smaller structures and droplets. Liquid sheet tends 

to have oscillatory motion as it propagates downstream. The simulations have shown an increase in amplitude of 

oscillations with the increase in relative velocity between liquid and gas streams. Also, at high Weber numbers planar 

liquid sheet tends to be more unstable, as it can be seen that the amplitude growth of instabilities is much higher for 

case C than cases A and B. Rigorous pinching of droplets from ligaments is observed in case C, showing that the 

momentum created by coflowing stream has a very high impact on liquid sheet atomization. 

 

Conclusion 

VOF based multiphase flow solver is developed on GPU architecture. Approximate DNS simulations are performed 

based on the validated solver to study the breakup a planar liquid sheet aided by a coflowing gas stream. To meet the 

computational demand the present solver relies on GPU based parallelization. Qualitative results depicting the sheet 

disintegration are presented. Wavy oscillations of the sheet are observed as the flow propagates downstream. It is 

observed that with the increase in relative velocity between liquid sheet and coflowing gas stream, disintegration of 

liquid sheet occurs more closely to the injection region. Ligament formation and small droplets pinched off from the main 

stream were captured because of the fine mesh employed. 

 

Nomenclature 

𝑢    X-component of Velocity [m s-1] 

𝑣    Y-component of velocity [m s-1] 

ρ  Density [Kg m-3] 

µ  Dynamic viscosity [Kg m-1 s-1] 

𝐶  Volume fraction 

𝑝  Pressure [N m-2] 

σ  Surface tension [N m-1]  

𝑅  Radius of bubble 

L  Liquid sheet thickness 

Lx  Length in X-direction 

Ly  Length in Y-direction 

Uliq  Liquid inlet velocity [m s-1] 

Ugas  Gas inlet velocity  [m s-1] 

t  Time  
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