
International Journal of Network Security, Vol.18, No.4, PP.699-709, July 2016 699

Collaborative IDS Framework for Cloud

Dinesh Singh1, Dhiren Patel2, Bhavesh Borisaniya2, and Chirag Modi3

(Corresponding author: Dinesh Singh)

Department of Computer Science & Engineering, Indian Institute of Technology, Hyderabad, India1

Department of Computer Engineering, National Institute of Technology, Surat, India2

Department of Computer Science & Engineering, National Institute of Technology Goa, India3

(Email: barehla88@gmail.com)

(Received Apr. 16, 2014; revised and accepted Jan. 16 & Mar. 4, 2015)

Abstract

Cloud computing is used extensively to deliver utility
computing over the Internet. Defending network acces-
sible Cloud resources and services from various threats
and attacks is of great concern. Intrusion Detection Sys-
tem (IDS) has become popular as an important network
security technology to detect cyber-attacks. In this paper,
we propose a novel Collaborative IDS (CIDS) Framework
for cloud. We use Snort to detect the known stealthy
attacks using signature matching. To detect unknown at-
tacks, anomaly detection system (ADS) is built using De-
cision Tree Classifier and Support Vector Machine (SVM).
Alert Correlation and automatic signature generation re-
duce the impact of Denial of Service (DoS) /Distributed
DoS (DDoS) attacks and increase the performance and
accuracy of IDS.

Keywords: Anomaly detection, collaborative IDS, cloud
security, intrusion detection, signature generation

1 Introduction

Users of a cloud request access from a set of web ser-
vices that manage a pool of computing resources (i.e.,
machines, network, storage, operating systems, applica-
tion development environments, application programs).
When granted, a fraction of the resources from the pool
they are dedicated to the requesting user until he or she
releases it. Cloud computing combines several technolo-
gies like distributed computing, grid computing, virtual-
ization, utility computing, network computing etc. Each
of the involving technologies has vulnerabilities that cause
several security and privacy issues. One of the major se-
curity challenges is to defend Cloud network from the at-
tacks like IP spoofing, DNS poisoning, man-in-the-middle
attack, port scanning, insider attack, Denial of Service
(DoS) attack, and Distributed Denial of Service (DDoS)
attack etc. [15].

To deal with such attacks, Intrusion Detection Sys-
tem (IDS) can be used. Intrusion detection is the act of

detecting actions that attempt to compromise the Confi-
dentiality, Integrity or Availability of a system/network.
Security threats are divided into three categories [20]: (1)
breach of confidentiality, (2) failure of authenticity, and
(3) unauthorized denial of service.

Based on the protection objective, IDS are classified
into three categories: Host-based (HIDS), Network-based
(NIDS) and Distributed IDS. Host based IDS collects the
internal activities (like system call) of a host and analyse
for malicious activities. Network based IDS attempts to
discover unauthorized access to a computer network by
analyzing network traffic. Distributed IDS collects the
events from multiple sources and analyzes collectively for
malicious activity. On the basis of detection techniques,
IDSs are divided in two categories [7] viz; Signature based
and Anomaly based. Signature based IDS detects known
attacks through matching signature in pre-stored attack
signature base. Signatures are the well formatted patterns
found in the attack. Thus they are limited to detecting
known attacks. Anomaly based IDS store the behavior of
previous events and construct a model to predict the be-
havior of the incoming events. These systems are able to
detect both known as well as an unknown attack, however
produce high false alarm and high computational cost.
Isolated IDSs are not able to detect coordinated attack
such as DDoS attacks. To detect such kind of attacks, we
need collaborative IDS. A collaborative IDS framework
consists of two main functional units [29]:

1) Detection Unit: A detection unit consists of multiple
detection sensors, where each sensor monitors its own
sub network or hosts separately and then generates
low-level intrusion alerts.

2) Correlation Unit: A correlation unit transforms the
low-level intrusion alerts into a high level intrusion
report of confirmed attacks. There are three alert
correlation approaches:

a. Centralized approaches [29]: Each participating
IDSs has only detection unit, while analysis unit
is at the central server.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Archive of Indian Institute of Technology Hyderabad

https://core.ac.uk/display/38679622?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

International Journal of Network Security, Vol.18, No.4, PP.699-709, July 2016 700

b. Hierarchical approaches [29]: Each IDS has de-
tection unit. The entire system is organized
into a hierarchy of small communication groups.
Each group has its correlation unit that is re-
sponsible for correlation within the group and
its processed data will be sent upward to a node
at a higher level in the hierarchy for further
analysis.

c. Fully distributed approach [29]: Each partici-
pant IDSs has both detection unit and correla-
tion unit and communicates to each other using
some protocol like peer-to-peer.

We are using a centralized approach as the importance
of communication in cloud computing is vital. In compar-
ison to fully distributed and hierarchical approaches, cen-
tralized approach is less scalable, but requires less com-
munication overhead [29].

Shared and distributed resources in the Cloud system
make it difficult to develop a security model for detect-
ing intrusion and ensuring the data security and privacy
in the Cloud. Because of transparency issue, no Cloud
provider allows its customers to implement intrusion de-
tection or security monitoring system extending into the
management services layer providing back channel be-
hind virtualized Cloud instances. IDS technology has
been tested to be capable of working well in some large
scale networks, however, its utilization and deployment in
Cloud Computing is still a challenging task [1].

In this paper, we have proposed a Collaborative IDS
(CIDS) which keeps the knowledge base up-to-date, pro-
duce low communication overhead and able to detect
known and unknown attack with fast detection rate.

The rest of the paper is organized as follows: Sec-
tion 2 discusses related work. Section 3 describes the
theoretical background about classifiers used in our pro-
posed approach. The proposed approach is discussed in
Section 4. Section 5 describes the experimental setup,
evaluation method and results. Section 6 concludes our
research work with references at the end.

2 Related Work

Several IDS have been proposed to-date to detect intru-
sions in the traditional network and in the Cloud network.

Hwang et al. [8, 9] proposed a cooperative anomaly
and intrusion detection system for a distributed network.
The signature-based NIDS (Snort) is cascaded with a cus-
tom designed ADS. These two subsystems join hands to
cover all trafic flow events, initiated by both legitimate
and malicious users. Single connection intrusive attacks
are detected by NIDS at the packet level by signature
matching. Remaining unknown attacks, which cannot be
detected by signature-based NIDS, are passed on to the
ADS. A signature generator bridges the two sub-systems.

Lo et al. [13] proposed a system to reduce the impact
of DOS and DDOS attacks. To provide such ability, IDSs

in the cloud computing regions exchange their alerts with
each other. In the system, each of IDSs has a cooperative
agent used to compute and determine whether to accept
the alerts sent from other IDSs or not. By this way, IDSs
could avoid the same type of attack happening in future.
But this system uses fully distributed alert correlation
system which produces high communication overhead.

Modi et al. [16] proposed a framework to reduce the
impact of DoS and DDoS which integrates a NIDS in the
Cloud infrastructure. They combined Snort and decision
tree (DT) classifier to implement their framework. It aims
to detect network attacks in Cloud, while maintaining
performance and service quality.

Sandar et al. [24] describe a new type of DDoS attack,
called Economic Denial of Sustainability (EDoS) in Cloud
services and proposed a solution framework for detecting
EDoS attack. EDoS attacks are HTTP and XML based
DDoS attack. The EDoS protection framework uses fire-
wall and puzzle server to detect EDoS attack. Here, the
authors demonstrated EDoS attack in the Amazon EC2
Cloud. However, it is not an adequate solution because it
uses only traditional firewalls.

Combining the multiple techniques overcome the lim-
itation of each other. Gaddam et al. [4] proposed a su-
pervised anomaly detection using k-Means clustering and
Decision Tree. A method to cascade k-Means clustering
and the ID3 decision tree learning methods for classifying
anomalous and normal activities in a computer network.
First of all using k-Means, the dataset is partition in k
clusters. Then the decision tree on each cluster refines
the decision boundaries by learning the sub-groups within
the cluster. To obtain a final decision on the classifica-
tion, the decisions of the k-Means and ID3 methods are
combined using two rules: (1) the Nearest-neighbor rule
and (2) the nearest consensus rule. A similar approach
is proposed by Yasami et al. [28] for unsupervised learn-
ing. However, the use of a serial combination of k-Means
and ID3 increase the learning time. Detection on both
Subject to algorithm and rules for final decision has also
increased the detection time as well.

3 Theoretical Background

3.1 Snort

Snort [25], is a well-known open source packet sniffer and
NIDS. It is configurable and freely available for multiple
platforms (i.e. GNU/Linux, Window). The misuse IDS
model used in Snort is based on matching of attack signa-
ture with pre-stored signatures associated with known at-
tacks like the PoD, port-sweep, DoS-nuke, Tear-drop, and
Saint, etc. The detection engine of Snort allows register-
ing, alerting and responding to any known attack. Snort
cannot detect unknown or multi-connection attacks [8, 9].

International Journal of Network Security, Vol.18, No.4, PP.699-709, July 2016 701

Decision Tree Classifier

Decision tree (DT) classifier [6, 16] is a supervised classi-
fication technique. It requires a labelled training dataset
to construct a decision tree. As shown in Figure 1, the
decision tree is a tree structure, where each non leaf node
denotes a test on an attribute, each branch represents an
outcome of the test, and each leaf node holds a class label.

Figure 1: A sample decision tree

To test an unknown network traffic profile tuple (e.g.
X), the attribute values of the X are tested against the
decision tree. A path is traced from the root to a leaf
node; class label of the leaf is the prediction for that tuple
X.

For decision tree classifier, no domain knowledge or
parameter setting is required, and therefore it is appro-
priate for exploratory knowledge discovery. It can han-
dle high dimensional data and the representation of ac-
quired knowledge in tree form is intuitive, and generally
easy to assimilate by humans [16].In general, decision tree
classifiers have good accuracy for categorical data values
but in case of continuous data values it suffers from over-
fitting [22, 27]. However, successful use may depend on
the data used for learning.

3.2 Support Vector Machine

Support Vector Machine (SVM) is based on statistical
learning theory developed by Vapnik [6, 14]. The SVM
approach is very popular for classification and regression
problems because of its good generalization capability and
its superiority in comparison with other machine learning
paradigms. SVM solves the problem of over-fitting and
can easily make a generalized model from the least num-
ber of samples. But their learning time increases rapidly
with an increase in training size. SVMs were originally de-
signed for binary-class classification; hence, it is straight-
forward to use this paradigm in the present problem for
classification between normal and malicious behavior in
the patterns of activity in the audit stream. In fact,
SVMs [12, 14, 17] have been proposed as a powerful tech-
nique for intrusion detection classification. It classifies
data by determining a set of support vectors, which are
members of the set of training inputs that outline a hy-
perplane in feature space.

Let us assume {(x1, y1), ..., (xn, yn)} be a training set
with xi ∈ Rd and yi = {−1,+1} is the corresponding
target class. The basic problem for training an SVM can
be reformulated as:

Maximize : J =

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyj(x
T
i , x) (1)

Subject to

n∑
i=1

αiyi = 0 and αi ≥ 0, i = 1, 2, ..., n

Kernel function is used for computation of dot products
between vectors without explicitly mapping to another
space. Use of a kernel function [18] addressed the curse of
dimensionality and the solution implicitly contains sup-
port vectors that provide a description of the significant
data for classification. Substituting Kernel K(xTi , x) for
in Equation (1) produces a new optimization problem:

Maximize : J =

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjK(xTi , x) (2)

Subject to

n∑
i=1

αiyi = 0 and 0 ≤ αi ≤ C, i = 1, 2, ..., n

where C is soft margin parameter. Solving it for, gives
m support vectors (SV), their respective values of αi and
the value of bias b. These SVs gives a decision function
of the form

f(x) =

m∑
i=1

αiyiK(xTi , x) + b, (3)

where αi are Lagrange multipliers, x is the test tuple and
f(x) = f(−1,+1) is its prediction.

4 Proposed CIDS Framework

As shown in Figure 2, we integrate NIDS module in each
cloud cluster to detect network attacks. Correlation Unit
(CU) is placed in any one cluster. NIDS detects the intru-
sions within a cluster and Correlation Unit provides col-
laboration between all cluster NIDSs. Bully [5] election
algorithm is used to elect one best cluster for placement
of CU on the basis of workload.

4.1 NIDS Architecture

As shown in Figure 3, we use Snort and an Anomaly De-
tection System (ADS) built using Decision Tree classi-
fier and SVM classifier techniques. Snort is used to de-
tect known attacks, whereas ADS predicts that the given
event is malicious or not, by observing previously stored
network events.

International Journal of Network Security, Vol.18, No.4, PP.699-709, July 2016 702

Figure 3: NIDS architecture

Figure 2: Proposed collaborative IDS framework in cloud

1) Audit Phase. During the audit phase, various (nor-
mal and intrusion) network traffic profiles are gener-
ated and stored. First we capture the normal traffic
and generate network traffic profiles and give them
class label as Normal. To generate malicious traffic,
we perform various attacks and again capture the
traffic and generate network traffic profiles and give
them class label as Intrusion and store into the net-
work traffic profile base. Network profile generation
process is explained in Section 4.3.

2) Learning Phase: In this phase, a model for anomaly
detection system is constructed from the network
traffic profile base. The learning process of Anomaly
Detection is shown in section 4.2.

3) Detection Phase: During the detection phase, we
capture the real time traffic and generate network
traffic profiles on the y and pass these profiles as in-
put to the ADS. ADS generates the alert, if it found
any correlation of the input profile with malicious
profiles.

Incoming network traffic will pass through Snort;
here known attacks are identified through signature
matching. The remaining attacks are detected by ADS.
An alert entry is made in the log, if an unknown attack
is detected. If the frequency of an attack detected by
ADS is crossing a frequency threshold Tf , then we go for
generating a Snort based signature for those connections.
This increases the performance of NIDS as Snort is able

International Journal of Network Security, Vol.18, No.4, PP.699-709, July 2016 703

to detect these frequent attacks in a short time. Once
the signature is generated, we update local knowledge
base as well as send this signature to a central correlation
unit. The central correlation unit receives the signature
sent by all the NIDSs in the Cloud network and make a
decision on the bases of how much part of total NIDSs
send the similar signature.

S > ST where S = No of IDS Support Same Signature
Total No of IDS in the System

and ST = Threshold.

Value of ST will be set by admin (as 0.5 for majority
decision). If S > ST for an attack signature then correla-
tion unit multicasts this signature to all the IDSs. They
receive this signature and update their knowledge base.

Figure 4: A sample model for anomaly detection

4.2 Proposed Anomaly Detection System

We split the training dataset using decision tree and build
the SVM model on each subset. First, we call decision
tree algorithm for attributes having categorical data val-
ues. We select a best attribute on the basis of maximum
information gain and make the root node of the tree to use
this attribute. The branches of this node are the distinct
values of the selected attributes. These branches end on
some other node. Then we split the entire data set into
subsets with respect to each distinct value of selected at-
tribute. We call the decision tree algorithm for each sub
dataset recursively. If at some place, all profiles belong to
a same class label then the leaf node with that class la-
bel is created, if not, then another attribute of categorical
data values is selected to create an internal node like root
node. If at any stage, no attribute with categorical data
values remaining or the information gain of best attribute
chosen is less than the threshold then a model is created
using SVM for the continuous values. The output looks
like as shown in Figure 4. The learning process is shown
in Figure 5.

4.2.1 Learning Algorithm

Algorithm 1 Learning algorithm
D = Set of Network Traffic Profiles used for
training.
C = Set of Class Labels i.e. Intrusion, Normal.
A = Set of Attribute used to represent Network
Connection Profiles.
We divide the attributes into two subsets,
AS = Set of Symbolic (Categorical) value
Attributes (e.g. Protocol, Service, flag etc.).
AN = Set of Numeric (Continuous) value
Attributes (e.g. Srcbyte, Dstbyte, count etc.).
TInfoGain = Minimum Threshold for InfoGain
H = Hyperplane

InfoGain(D) = E(D)−
v∑

i=0

|Di|
|D| E(Di)

where E(D) = −
m∑
i=0

pilog2(pi)

E is the entropy and is the probability of appearance
of Class label.
DecisionTree(D,AS , AN)

1: Begin
2: if (All Samples in D ∈ Ci) then
3: Create Leaf Node with Class Label Ci;
4: end if
5: if (AS = φ) then
6: H ← SVM(D,AN); //construct the SVM model
7: Create Leaf Node with H;
8: end if
9: AS−best ← getBestAttribute(D,AN);

10: if AS−best.InfoGain ≤ TInfoGain then
11: H ← SVM(D,AN);
12: Create Leaf Node with H;
13: end if
14: Root← createNode(AS−best);
15: AS ∈ AS −AS−best;
16: for each value Vi ∈ Domain(AS−best) do
17: Di ← D where (AS−best = Vi);
18: ChildTree← DecisionTree(Di, AS , AN);
19: Root.Child[i] ← ChildTree;
20: Return Root
21: end for
22: End

4.2.2 Testing

To test an unknown profile on ADS, we trace the tree
from root to leaf; if leaf node is a class label then this is
the prediction. If a leaf node is an SVM model then the
prediction is given by this SVM model.

4.3 Network Traffic Profile Generation

A packet sniffer (libpcap) is used to capture network
packet frames from the data link layer and to assemble

International Journal of Network Security, Vol.18, No.4, PP.699-709, July 2016 704

Figure 5: Flow chart of learning process of ADS

them as raw packet. The packets are collected for a com-
plete connection. A connection is a sequence of packets
starting and ending at some well-defined times, between
which data flows to and from a source IP address to a
target IP address under some well-defined protocol [11].
For generating a network profile, the network traffic fea-
ture extractor extracts the network features viz; basic,
traffic and content (as in KDD’99 dataset) from the raw
packets [11].

1) Basic Features: It involves all the attributes that are
extracted from a TCP/IP connection, e.g., protocol,
service, size of traffic flow etc.

2) Traffic based Features: These features are computed
within time frame, and divided into two groups viz;
same host features and same service features. Same
host features involve the connections having same
destination host within given time frame (E.g. 2 sec-
onds) and statistics related to protocol, service, flag
error etc. Same service features include the connec-
tions having same services within given time frame
to calculate traffic related statistics.

3) Content based Features: In this category, data por-
tions of the packets are examined. It involves only
a single connection. To detect attacks (E.g. Remote
to local and User to root) that are embedded in the
data portions of the packets, suspicious behavior in
the data portion is looked, e.g., number of failed login
attempts, number of root access.

A Connection is identified as (SrcIP : SrcPort →
DstIP : DstPort Protocol). As as soon as a new connec-
tion starts, we make an entry into Connection cache and
capture all packets sent during communication. When
the connection terminates then we extract basic features
from header part, content features from payload and traf-
fic statistics by comparing this connection with the pre-
viously established connection (during last t seconds).
Where, t is the size of the sliding window.

4.4 Signature Generation

As shown earlier in Figure 3, signature generation is an
independent process running side by side. For frequent
attack, we generate Snort based signature. For this, we
take the payload stream of all occurrences of the attack,
find the longest common subsequence and represent it in
the form of regular expression. On the basis of header
information and regular expression, we write Snort rule
as:

action protocol Source IP : Port→
Destination IP : Port (msg : “Message to display”

pcre : [(< regex > |m < delim >< regex >

< delim >) ismxAEGRUBPHMCOIDKY S] [23].

After generating signature, we verify it on normal con-
nection. If no match found then we accept it. If it gener-
ates more number of false alarms then we discard it.

International Journal of Network Security, Vol.18, No.4, PP.699-709, July 2016 705

Figure 6: Experimental setup

5 Evaluation and Results

5.1 Experimental Setup

We installed eucalyptus 3.2.0 [3] cloud on CentOS 6.3.
Cloud controller is on separate machine. There are N(=
3) cloud clusters. Each cluster contains multiple num-
bers of node controllers with multiple virtual machines
running on each node. NIDS sensors are placed in all
the Node controllers on the virtual bridge (br0) so that it
can capture the internal traffic (i. e. VM-to-VM, VM-to-
User etc.). We place the central database and remaining
part of NIDS on a separate machine connected with the
cluster. Only Node Controllers are allowed to access this
machine. Correlation Unit is there in Cluster-2 as shown
in Figure 6.

We use tcpdump and libpcap [26] sniffer to capture the
packets. To train SVM, we use libsvm [2]. We use RBF
kernel with gamma = 0.125 and C = 2.0. Window size
t = 2 second. ST = 0.5.

For evaluating performance results, we have used pa-
rameters viz; Intrusion Detected, Intrusion Missed, True
Alarms, False Alarms, Accuracy, Learning and Detection
time.

5.2 Results and Discussion

Evaluation of our anomaly detection system is carried on
different datasets viz; KDD99 [11], NSL-KDD [21] and
ITOC [10]. Details of these datasets and experiments are
shown in Table 1 and Table 2.

Figure 7 shows the model generated after learning from
the kddcup10% dataset. The time taken in learning is
46.616 seconds. There are 22 internal nodes, 108 leaf
nodes with class label and 35 SVM models are created
with the maximum height of tree is 4.

Figure 7: Screen shot of tree model generated after learn-
ing

International Journal of Network Security, Vol.18, No.4, PP.699-709, July 2016 706

Table 1: Details of the dataset

Training Dataset Total Records Intrusive Records Normal Instances No. of Attributes
KDD99 (10%) 4,94,021 3,96,743 97,278 41
KDD99 48,98,432 39,25,650 9,72,781 41
KDD99test (10%) 3,11,029 2,50,436 60,593 41
NSL-KDD 1,48,517 71,462 77,055 41
NSL-KDDtest 22,544 12,832 9,712 41
ITOC 4,00,000 1,67,879 2,32,121 27
ITOCtest 2,31,831 92,848 1,38,983 27

Figure 8: Comparison of learning time

Figure 9: Comparison of detection time

Figure 10: Comparison of accuracy

Figure 11: Comparison of false alarms

International Journal of Network Security, Vol.18, No.4, PP.699-709, July 2016 707

Table 2: Details of experiments

Test No. Training Dataset Test Dataset
Test 1 NSL-KDD NSL-KDDtest
Test 2 KDD99(10%) KDD99
Test 3 KDD99(10%) KDD99test(10%)
Test 4 ITOC ITOCtest

Figures 8, 9, 10, 11 show the behavior of decision tree,
SVM and proposed ADS when we change the size of
training dataset. For this we take training profiles from
KDD99 (10%) and evaluate the KDD99test (10%). Fig-
ure 8 shows that learning time for the proposed ADS is
almost equal to decision tree and much less than SVM.
While as shown in Figure 9 the detection time is less in
comparison to decision tree and SVM. Figure 10 shows
that accuracy is higher than decision tree and SVM, while
producing low false alarms as in Figure 11. Thus it out-
performs both SVM and decision tree in terms of accu-
racy and computation time. Figure 12 shows the results
of all the experiments listed in Tables 3 & 4 and their
weighted average. Results on NSL-KDD (Test1) shows
that 98.35% intrusions are detected, 1.65% intrusions are
missing, 2.97% alarms are false and overall accuracy is
97.38%. Results on KDD99 (Test2) shows that 99.56% in-
trusions are detected, 0.44% intrusions are missing, 8.22%
alarms are false and overall accuracy is 93.05%. Results
on KDD99 (Test3) shows that 99.99% intrusions are de-
tected, 0.01% intrusions are missing, 0.01% alarms are
false and overall accuracy is 99.99%. Results on ITOC
(Test4) shows that 86.84% intrusions are detected, 13.16%
intrusions are missing, 28.34% alarms are false and overall
accuracy is 84.30%. Weighted average results shows that
detection time is 55 microseconds, 99.40% intrusions are
detected, 0.60% intrusions are missing, 1.69% alarms are
false and overall accuracy is 98.92%.

Table 3: Comparison of accuracy and detection rate

Accuracy Detection Rate
(%) (%)

Multi SVM [14] 92.050 -
CT-SVM [12] 69.800 -
Decision Tree [16] 96.710 96.250
FER [16] 75.000 -
SVM [19] - 98.630
Ripper Rule [19] - 98.690
Decision tree [19] - 98.750
DT+SVM 98.92 99.40

6 Conclusions

In proposed CIDS, cascading decision tree and SVM has
improved the detection accuracy and system performance
as they remove the limitation of each other. Use of DT
makes the learning process speedy and split the dataset
into small sub datasets. Use of SVM on each sub dataset
reduce the learning time of SVM and overcome the over-
fitting and reduce the size of decision tree to make the
detection faster. Collaboration between NIDSs prevents
the coordinated attacks against cloud infrastructure and
knowledge base remains up-to-date. We have performed
experiments to detect the accuracy of our proposed ap-
proach with well-known KDD dataset and found encour-
aging results.

References

[1] B. Borisaniya, A. Patel, D. R. Patel, and H. Patel,
“Incorporating honeypot for intrusion detec-tion in
cloud infrastructure,” in Trust Management VI IFIP
Advances in Information and Communication Tech-
nology, pp. 84–96, Surat, India, May 2012.

[2] C. C. Chang and C. J. Lin, “LIBSVM: A library
for support vector machines,” ACM Transactions on
Intelligent Systems and Technology, vol. 2, pp. 27:1–
27:27, 2011.

[3] Eucalyptus, Eucalyptus Website, Sept. 27, 2015.
(http://www.eucalyptus.com)

[4] S. R. Gaddam, V. V. Phoha, and K. S. Balagani, “A
novel method for supervised anomaly detection by
cascading k-means clustering and ID3 decision tree
learning methods,” IEEE Transactions On Knowl-
edge and Data Engineering, vol. 19, no. 3, pp. 345–
354, 2007.

[5] H. Garcia-Molina, “Elections in a distributed com-
puting system,” IEEE Transactions on Computers,,
vol. 31, no. 1, pp. 48–59, 1982.

[6] J. Han and M. Kamber, Data Mining Concepts and
Techniques (2nd edition), San Francisco, CA: Mor-
gan Kauf-mann Publishers, 2006.

[7] Li C. Huang and M. S. Hwang, “Study of an intrusion
detection system,” Journal of Electronic Science and
Technology, vol. 10, no. 3, pp. 269–275, 2012.

[8] K. Hwang, M. Cai, Y. Chen, and M. Qin, “Hybrid
intrusion detection with weighted signa-ture genera-
tion over anomalous internet episodes,” IEEE Trans-
actions on Dependable and Secure Computing, vol. 4,
no. 1, pp. 41–55, 2007.

[9] K. Hwang, Y. Chen, and H. Liu, “Defending dis-
tributed systems against malicious intrusions and
network anomalies,” in Proceedings of 19th IEEE In-
ternational Symposium on Parallel and Distributed
Processing, Denver, Colorado, Apr. 2005.

[10] ITOC, ITOC, Sept. 27, 2015. (https://www.itoc.
usma.edu/research/dataset/)

International Journal of Network Security, Vol.18, No.4, PP.699-709, July 2016 708

Table 4: Evaluation results

Intrusion Intrusion True False Accuracy
Detected(%) Missed(%) Alarms(%) Alarms(%) (%)

Test1 98.35 1.65 97.03 2.97 97.383
Test2 99.56 0.44 91.78 8.22 93.050
Test3 99.99 0.01 99.99 0.01 99.988
Test4 86.84 13.16 71.66 28.34 84.30
Wt. Avg. 99.40 0.60 98.31 1.69 98.92

Figure 12: Evaluation results as per Tables 3 & 4 and their weighted average

[11] KDD, KDD Cup 1999 Webpage, Sept. 27, 2015.
(http://kdd.ics.uci.edu/databases/kddcup99/
kddcup99.html)

[12] L. Khan, M. Awad, and B. Thuraisingham, “A new
intrusion detection system using support vector ma-
chines and hierarchical clustering,” The VLDB Jour-
nal, vol. 16, no. 4, pp. 507–521, 2007.

[13] C. C. Lo, C. C. Huang, and J. Ku, “A cooperative
intrusion detection system framework for cloud com-
puting networks,” in 39th International Conference
on Parallel Processing Workshops, pp. 280–284, San
Diego, CA, Sep. 2010.

[14] A. Mewada, P. Gedam, S. Khan, and M. U. Reddy,
“Network intrusion detection using multiclass sup-
port vector machine,” International Conference on
ACCTA, vol. 1, no. 2, pp. 2, 2010.

[15] C. Modi, D. Patel, B. Borisaniya, H. Patel, A. Patel,
and M. Rajarajan, “A survey of intru-sion detection
techniques in cloud,” Journal of Network and Com-
puter Applications, vol. 36, no. 1, pp. 42–57, 2013.

[16] C. Modi, D. Patel, B. Borisanya, A. Patel, and M.
Rajarajan, “A novel framework for intrusion detec-
tion in cloud,” in Proceedings of the Fifth Interna-

tional Conference on Security of Information and
Networks, pp. 67–74, Jaipur, India, Oct. 2012.

[17] S. Mukkamala, G. Janoski, and A. Sung, “Intrusion
detection using neural networks and support vec-
tor machines,” in Proceedings of the International
Joint Conference on Neural Networks, pp. 1702–
1707, Honolulu, HI, May 2002.

[18] An na Wang, Y. Zhao, Y. T. Hou, and Y. L. Li,
“A novel construction of svm compound kernel func-
tion,” in International Conference on Logistics Sys-
tems and Intelligent Management, pp. 1462–1465,
Harbin, Jan. 2010.

[19] R. C. A. Naidu and P. S. Avadhani, “A comparison
of data mining techniques for intrusion detection,” in
IEEE International Conference on Advanced Com-
munication Control and Computing Technologies
(ICACCCT’12), pp. 41–44, Ramanathapuram, Aug.
2012.

[20] R. M. Needham, “Denial of service: an example?,”
Communications of the ACM, vol. 37, no. 11, pp. 42–
46, 1994.

[21] NSL, The NSL-KDD data set, Sept. 27, 2015. (http:
//nsl.cs.unb.ca/NSL-KDD/)

International Journal of Network Security, Vol.18, No.4, PP.699-709, July 2016 709

[22] G. Paliouras and D. S. Bree, “The effect of numeric
features on the scalability of inductive learning pro-
grams,” in Proceedings of the European Conference
in Machine Learning, pp. 218–231, Crete, Greece,
Apr. 1995.

[23] M. Roesch and C. Green, Snort User?s Manual 2.9.3:
The Snort Project, Technical Report 2.9.3, May 2012.

[24] S. V. Sandar and S. Shenai, “Economic denial of sus-
tainability (EDOS) in cloud services using http and
xml based ddos attacks,” International Journal of
Computer Applications, vol. 41, no. 20, pp. 11–16,
2012.

[25] Snort, Snort Website, Sept. 27, 2015. (http://www.
snort.org)

[26] Tcpdump, Tcpdump and libpcap, Sept. 27, 2015.
(http://www.tcpdump.org/)

[27] M. Xu, J. Li Wang, and T. Chen, “Improved deci-
sion tree algorithm: ID3+,” in Intelligent Computing
in Signal Processing and Pattern Recognition Lecture
Notes in Control and Information Sciences, pp. 141–
149, Crete, Greece, Aug. 2006.

[28] V. Yasami, S. Khorsandi, S. P. Mozaffari, and
A. Jalalian, “An unsupervised network anomaly
detection approach by k-means clustering & ID3
algorithms,” in IEEE Symposium on Computers
and Communications, pp. 398–403, Marrakech, July
2008.

[29] C. V. Zhou, C. Leckie, and S. Karunasekera, “A sur-
vey of coordinated attacks and collaborative intru-
sion detection,” Computers & Security, vol. 29, no. 1,
pp. 124–140, 2010.

Dinesh Singh is currently pursuing the Ph.D. degree in
Computer Science and Engineering from Indian Institute
of Technology Hyderabad, India. He received the M.
Tech degree in Computer Engineering from the National
Institute of Technology, Surat, India, in 2013. He
received B. Tech degree from R. D. Engineering College
Ghaziabad, India, in 2010. He joined the Department
of Computer Science and Engineering, Parul Institute
of Engineering and Technology Vadodara, India as an
assistant professor from 2013 to 2014. His research
interests include machine learning, big data analytics,
visual computing, cloud computing, intrusion detection.

Dhiren Patel is currently a professor in Computer En-
gineering Department at NIT Surat, India. He leads Se-
curity and Cloud computing group at NIT Surat. His re-
search interests include Information Security, Cloud Com-
puting & Trust Management, Internet of Things and
Green IT. Prof. Patel has academic and research associa-
tions with IIT Gandhinagar (Visiting Professor/Adjunct
Professor), with University of Denver USA (Visiting Pro-
fessor), with City University London (Visiting Scientist -
Cyber Security), with British Telecom UK (Visiting Re-
searcher - Cloud Security and Trust), and with C-DAC
Mumbai (Research Advisor - Security and Critical Infras-
tructure Protection). He has authored a book on Infor-
mation Security (published by Prentice Hall in 2008) and
numerous research papers.

Bhavesh Borisaniya is currently pursuing PhD from
the Department of Computer Engineering at National In-
stitute of Technology, Surat, India. His research interests
include security in cloud computing and virtualization,
intrusion detection system, and honeypot.

Chirag Modi is currently working in Computer Science
and Engineering at National Institute of Technology Goa.
He holds Ph. D (2010-2014) and M. Tech (2008-2010) in
Computer Engineering from National Institute of Tech-
nology, Surat. Dr. Modi’s research interests include se-
curity, privacy, data mining and cloud computing with
primary focus on intrusion detection in cloud computing
and privacy preserving data mining. Apart from con-
tributing in various internal conferences, workshops and
training programs, Dr. Modi has published many papers
in reputed SCI journals and international conference pro-
ceedings. He is an active researcher in Computer Science
field, and acting as a TPC member, Editor and Reviewer
in many reputed international conferences as well as jour-
nal. In addition, he is frequently delivering an expert talk
at many institutes and also explores many research areas.

