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Abstract. For a graph H, the H-free Edge Deletion problem asks
whether there exist at most k edges whose deletion from the input graph
G results in a graph without any induced copy of H. We prove that
H-free Edge Deletion is NP-complete if H is a graph with at least
two edges and every component of H is either a tree or a regular graph.
Furthermore, we obtain that these NP-complete problems cannot be solved
in parameterized subexponential time, i.e., in time 2o(k) · |G|O(1), unless
Exponential Time Hypothesis fails.

1 Introduction

Graph modification problems ask whether we can obtain a graph G′ from an
input graph G by at most k number of modifications on G such that G′ satisfies
some properties. Modifications could be any kind of operations on vertices or
edges. For a graph property Π, the Π Edge Deletion problem asks whether
there exist at most k edges whose deletion from the input graph results in a
graph with property Π. Π Edge Completion and Π Edge Editing are
defined similarly, where Completion allows only adding (completing) edges
and Editing allows both completion and deletion. Another graph modification
problem is Π Vertex Deletion, where at most k vertex deletions are allowed.
The focus of this paper is on H-free Edge Deletion. It asks whether there
exist at most k edges whose removal from the input graph G results in a graph
G′ without any induced copy of H. The corresponding Completion problem
H-free Edge Completion is equivalent to H-free Edge Deletion where
H is the complement graph of H. Hence the results we obtain on H-free Edge
Deletion translate to that of H-free Edge Completion.

Graph modifications problems have been studied rigorously from 1970s onward.
Initially, the studies were focused on proving that a modification problem is
NP-complete or solvable in polynomial time. These studies resulted a good yield
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for vertex deletion problems: Lewis and Yannakakis proved [11] that Π Vertex
Deletion is NP-complete if Π is non-trivial and hereditary on induced subgraphs.
In other words, Π Vertex Deletion is NP-complete if Π is defined by a finite
set of forbidden induced subgraphs. Interestingly, researchers could find neither
a dichotomy result similar to that of Π Vertex Deletion nor even a general
hardness result for Π Edge Deletion. This scarcity of general hardness results
for Π Edge Deletion is explicitly mentioned in many papers in the last
four decades. For example, see [16] and [5]. It is a folklore that H-free Edge
Deletion can be solved in polynomial time if H is a graph with at most one
edge. Interestingly, only these H-free Edge Deletion problems are known to
have polynomial time algorithms. To the best of our knowledge, only the following
H-free Edge Deletion problems are known to be NP-complete: The H-free
Edge Deletion problems where H is C` for any fixed ` ≥ 3, claw (K1,3) [16],
P` for any fixed ` ≥ 3 [6], 2K2 [4] and diamond (K4 − e) [14]. In this paper, we
prove that H-free Edge Deletion is NP-complete if H has at least two edges
and every component of H is either a tree or a regular graph. For every such
graph H, to obtain that H-free Edge Deletion is NP-complete, we compose
a series of polynomial time reductions starting from the reductions from either of
the four base problems: P3-free Edge Deletion, P4-free Edge Deletion,
K3-free Edge Deletion and 2K2-free Edge Deletion. We believe that
this technique can be extended to obtain a dichotomy result - H-free Edge
Deletion is NP-complete if and only if H has at least two edges. The evidence
for this belief is discussed in the concluding section.

Another active area of research is to give parameterized lower bounds for
graph modification problems. For example, to prove that a problem cannot be
solved in parameterized subexponential time, i.e., in time 2o(k) · |G|O(1), under
some complexity theoretic assumption. For this, the technique used is a linear
parameterized reduction - a polynomial time reduction where the parameter
blow up is only linear - from a problem which is already known to have no
subexponential parameterized algorithm under the Exponential Time Hypothesis
(ETH). ETH is a widely believed complexity theoretic assumption that 3-SAT
cannot be solved in subexponential time, i.e., in time 2sn, where s is a positive real
number and n is the number of variables in the 3-SAT instance. Sparsification
Lemma [9] states that, under ETH, there exist no algorithm to solve 3-SAT
in time 2o(n+m) · (n+m)O(1), where m is the number of clauses in the 3-SAT
instance. Sparsification Lemma considerably helps to obtain linear parameterized
reductions as it is allowed to have a parameter k such that k = O(m+ n) in the
reduced problem. It is known that the problems mentioned in the last paragraph
(H-free Edge Deletion where H is either C` for any fixed ` ≥ 3, claw (K1,3)
[16], P` for any fixed ` ≥ 3 [6], 2K2 [4] and diamond (K4 − e) [14]) cannot be
solved in parameterized subexponential time, unless ETH fails. To the best of
our knowledge, nothing more is known about the parameterized lower bound
of H-free Edge Deletion problems. Since all the reductions we introduce
here are linear parameterized reductions and the base problems do not admit
parameterized subexponential time algorithms (unless ETH fails), we obtain that
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the H-free Edge Deletion cannot be solved in parameterized subexponential
time if H is a graph with at least two edges and every component of H is either
a tree or a regular graph, unless ETH fails.

(a) P3 (b) P4 (c) K3 (d) 2K2

Fig. 1: The four base problems are P3-free Edge Deletion, P4-free Edge
Deletion, K3-free Edge Deletion and 2K2-free Edge Deletion.

Graph modification problems have applications in DNA physical mapping
[2, 7, 8], numerical algebra [13], circuit design [6] and machine learning [1].

Outline of the Paper: Section 2 gives the notations and terminology used in the
paper. It also introduces two constructions which are used for the reductions.
Section 3 proves that for any tree T with at least two edges, T -free Edge
Deletion is NP-complete and cannot be solved in parameterized subexponential
time, unless ETH fails. Section 4 proves that for any connected regular graph R
with at least two edges, R-free Edge Deletion is NP-complete and cannot
be solved in parameterized subexponential time, unless ETH fails. Section 5
combines the results from Sections 3 and 4 to prove that for any graph H with at
least two edges such that every component of H is either a tree or a regular graph,
H-free Edge Deletion is NP-complete and cannot be solved in parameterized
subexponential time, unless ETH fails. As a consequence of the equivalence
between H-free Edge Deletion and H-free Edge Completion, we obtain
the same results for H-free Edge Completion.

2 Preliminaries and Basic Tools

Graphs : We consider simple, finite and undirected graphs. The vertex set and the
edge set of a graph G is denoted by V (G) and E(G) respectively. G is represented
by the tuple (V (G), E(G)). A path of ` vertices is denoted by P`. For a vertex
set V ′ ⊆ V (G), G[V ′] denotes the graph induced by V ′ in G. G− V ′ denotes the
graph obtained by deleting all the vertices in V ′ and the edges incident to them
from G. For an edge set E′ ⊆ E(G), G−E′ denotes the graph (V (G), E(G)\E′).
The diameter of a graph G, denoted by diam(G), is the number of edges in the
longest induced path in G. A regular graph is a graph in which every vertex has
the same degree. An r-regular graph is a graph in which every vertex has degree
r. A dominating set of a graph G is a set of vertices V ′ ⊆ V (G) such that every
vertex in G is either in V ′ or adjacent to at least one vertex in V ′. For a graph
G, the disjoint union of t copies of G is denoted by tG. A component of a graph
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is a maximal connected subgraph. In a graph G, {u, v} is a non-edge if {u, v} is
not an edge in G. We follow [15] for further notations and terminology.

Technique for Proving Parameterized Lower Bounds : Exponential Time Hy-
pothesis (ETH) is the assumption that 3-SAT cannot be solved in time 2sn,
where s is a positive real number and n is the number of variables in the 3-SAT
instance. Sparsification Lemma [9] states that there exists no algorithm running
in time 2o(n+m) · (n+m)O(1), unless ETH fails, where n and m are the number of
variables and the number of clauses respectively of the 3-SAT instance. A linear
parameterized reduction is a polynomial time reduction from a parameterized
problem A to a parameterized problem A′ such that for every instance (G, k) of
A, the reduction gives an instance (G′, k′) of B such that k′ = O(k).

Proposition 1 ([3]). If there is a linear parameterized reduction from a pa-
rameterized problem A to a parameterized problem B and if A does not admit a
parameterized subexponential time algorithm, then B does not admit a parame-
terized subexponential time algorithm.

We refer the book [3] for an excellent exposition on this and other aspects of
parameterized algorithms and complexity.

Proposition 2. The following problems are NP-complete. Furthermore, they
cannot be solved in time 2o(k) · |G|O(1), unless ETH fails.

(i) P3-free Edge Deletion [10]
(ii) P4-free Edge Deletion [4]

(iii) C`-free Edge Deletion for any fixed ` ≥ 3 [16]
(iv) 2K2-free Edge Deletion [4]

In [16], Yannakakis gives a polynomial time reduction from Vertex Cover
to C`-free Edge Deletion, for any fixed ` ≥ 3. If ` 6= 3, the reduction
he gives is a linear parameterized reduction. When ` = 3, the reduction is
not a linear parameterized reduction as it gives an instance with a parameter
k′ = O(|E(G)|+ k), where (G, k) is the Vertex Cover instance, the input to
the reduction. But, we can compose the standard 3-SAT to Vertex Cover
reduction (which is a linear parameterized reduction and gives a graph with
O(n+m) edges - see Theorem 3.3 in [12]) with this reduction to obtain a linear
parameterized reduction from 3-SAT to K3-free Edge Deletion. For any
fixed graph H, the H-free Edge Deletion problem trivially belongs to NP.
Hence, we may state that an H-free Edge Deletion problem is NP-complete
by proving that it is NP-hard.

2.1 Basic Tools

We introduce two constructions which will be used for the polynomial time
reductions in the upcoming sections.
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Construction 1 Let (G′, k,H, V ′) be an input to the construction, where G′

and H are graphs, k is a positive integer and V ′ is a subset of vertices of H.
Label the vertices of H such that every vertex get a unique label. Let the labelling
be `H . For every subgraph (not necessarily induced) C with a vertex set V (C)
and an edge set E(C) in G′ such that C is isomorphic to H[V ′], do the following:

– Give a labelling `C for the vertices in C such that there is an isomorphism f
between C and H[V ′] which maps every vertex v in C to a vertex u in H[V ′]
such that `C(v) = `H(u), i.e., f(v) = u if and only if `C(v) = `H(u).

– Introduce k + 1 sets of vertices V1, V2 . . . Vk+1 each of size |V (H) \ V ′|.
– For each set Vi, introduce an edge set Ei of size |E(H) \E(H[V ′])| among
Vi ∪ V (C) such that there is an isomorphism h between H and (V (C) ∪
Vi, E(C)∪Ei) which preserves f , i.e., for every vertex v ∈ V (C), h(v) = f(v).

This completes the construction. Let the constructed graph be G.

Let C be a copy of H[V ′] in G′. Then, C is called a base in G′. Let {Vi} and
{Ei} be the k + 1 sets of vertices and k + 1 sets of edges respectively which are
introduced in the construction for the base C. Then, each Vi is called a branch
of C and the vertices in Vi are called the branch vertices of C. C is called the
base of Vi for 1 ≤ i ≤ k + 1. The vertex set of G′ in G is denoted by VG′ .

Since H is a fixed graph, the construction runs in polynomial time. In the
construction, for every base C in G′, we introduce new vertices and edges such
that there exist k + 1 copies of H in G and C is the common intersection of
every pair of them. This enforces that every solution of an instance (G, k) of
H-free Edge Deletion is a solution of an instance (G′, k) of H ′-free Edge
Deletion, where H ′ is H[V ′]. This is proved in the following lemma.

Lemma 1. Let G be obtained by Construction 1 on the input (G′, k,H, V ′), where
G′ and H are graphs, k is a positive integer and V ′ ⊆ V (H). Then, if (G, k) is
a yes-instance of H-free Edge Deletion, then (G′, k) is a yes-instance of
H ′-free Edge Deletion, where H ′ is H[V ′].

Proof. Let F be a solution of size at most k of (G, k). For a contradiction, assume
that G′ − F has an induced H ′ with a vertex set U . Hence there is a base C in
G′ isomorphic to H ′ with the vertex set V (C) = U . Since there are k + 1 copies
of H in G, where each pair of copies of H has the intersection C and |F | ≤ k,
deleting F cannot kill all the copies of H associated with C. Since U induces
an H ′ in G′ − F , there exists a branch Vi of C such that U ∪ Vi induces H in
G− F . ut

Now we introduce a simple construction. This construction attaches a clique
of k + 1 vertices to each vertex in the input graph of the construction.

Construction 2 Let (G′, k) be an input to the construction, where G′ is a graph
and k is a positive integer. For every vertex vi in G′, introduce a set of k + 1
vertices Vi and make every pair of vertices in Vi ∪ {vi} adjacent. This completes
the construction. Let the resultant graph be G.

Here, we call all the newly introduced vertices as branch vertices.
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(a) G′ (b) H. The
vertices
in V ′ are
blackened.

(c) Output of Con-
struction 1 with
an input (G′, k =
2, H, V ′).

(d) Output of Con-
struction 2 with an
input (G′, k = 2).

Fig. 2: Examples showing Construction 1 and Construction 2.

3 T -free Edge Deletion

Let T be any tree with at least two edges. We use induction on the diameter
of T to prove that T -free Edge Deletion is NP-complete. The base cases
are when diam(T ) = 2 or 3. To prove the base cases, we use polynomial time
reductions from P3-free Edge Deletion and P4-free Edge Deletion. For
any T with diam(T ) > 3, we give polynomial time reduction from T ′-free Edge
Deletion to T -free Edge Deletion, where T ′ is a subtree of T such that
diam(T ′) = diam(T )− 2. To prove each of the base cases, we apply induction on
the number of leaf vertices. All our reductions are linear parameterized reductions
and hence from the non-existence of parameterized subexponential algorithms
for P3-free Edge Deletion and P4-free Edge Deletion , we obtain that
there exists no parameterized subexponential time algorithm for T -free Edge
Deletion, unless ETH fails.

3.1 Base Cases

As mentioned above, the base cases are when diam(T ) = 2 or 3. By `(T ), we
denote the number of leaf vertices of T . We call the vertices in T with degree one
as leaf vertices and the vertices with degree more than one as internal vertices.
If diam(T ) = 2 and `(T ) = ` ≥ 2, we denote T by S`, the star graph on ` + 1
vertices. We note that S` with ` ≥ 2 has exactly one internal vertex and ` leaf
vertices.

For every pair of non-negative integers `1 and `2 such that `1 + `2 ≥ 1, we
define a tree denoted by S`1,`2 as follows: the vertex set V of S`1,`2 has `1 + `2 + 2
vertices with two designated adjacent vertices r1 and r2 such that r1 is adjacent
to `1 number of leaf vertices in V \ {r2} and r2 is adjacent to `2 number of leaf
vertices in V \ {r1}. We call such a tree as a twin-star graph. We note that S`1,0

is the star graph S`1+1. Both S`1,`2 and S`2,`1 are isomorphic.
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(a) S6 (b) S5,2

Fig. 3: A star graph and a twin-star graph

Lemma 2. Let ` > 2. Then, S`−1-free Edge Deletion is polynomial time
reducible to S`-free Edge Deletion.

Proof. Let (G′, k) be an instance of S`−1-free Edge Deletion. Apply Con-
struction 2 on (G′, k) to obtain G. We claim that (G′, k) is a yes-instance of
S`−1-free Edge Deletion if and only if (G, k) is a yes-instance of S`-free
Edge Deletion.

Let (G′, k) be a yes-instance of S`−1-free Edge Deletion. Let F ′ be a
solution of size at most k of (G′, k). For a contradiction, assume that G − F ′
has an induced S` with a vertex set U . Let r be the internal vertex of the S`

induced by U in G−F ′. Now there are two cases and in both the cases we obtain
contradictions.

– r is a branch vertex: Since the neighborhood of any branch vertex in G− F ′
is a clique, r cannot be the internal vertex, which is a contradiction.

– r is a vertex in VG′ : Since the branch vertices in the neighborhood of r in
G− F ′ induce a clique, at most one branch neighbor u of r is present in U
(as a leaf vertex). Hence, the remaining leaf vertices of the S` induced by U
in G− F ′ belong to VG′ . This implies that U \ {u} induces S`−1 in G′ − F ′,
which is a contradiction.

Conversely, let (G, k) be a yes-instance of S`-free Edge Deletion. Let F
be a solution of size at most k of (G, k). For a contradiction, assume that G′ −F
has an induced S`−1 with a vertex set U . Let r be the internal vertex of S`−1
induced by U in G′ − F . Since |F | ≤ k and k + 1 branch vertices are adjacent
to r in G, there is at least one branch vertex u adjacent to r in G− F . Hence,
U ∪ {u} induces an S` in G− F , which is a contradiction. ut

Theorem 1. For any ` ≥ 2, S`-free Edge Deletion is NP-complete. Fur-
thermore, S`-free Edge Deletion is not solvable in time 2o(k) · |G|O(1), unless
ETH fails.

Proof. The proof is by induction on `. When ` = 2, S` is the graph P3. Hence,
Proposition 2(i) proves this case. Assume that the statements are true for S`−1-
free Edge Deletion, if `− 1 ≥ 2. Now the statements follow from Lemma 2
and the observation that the reduction used in the proof of Lemma 2 is a linear
parameterized reduction. ut
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We apply a similar technique to prove the NP-completeness and parameterized
lower bound for T -free Edge Deletion when diam(T ) = 3. As explained
before, we denote these graphs by S`1,`2 , the twin-star graph having `1 ≥ 1 leaf
vertices adjacent to an internal vertex r1 and `2 ≥ 1 leaf vertices adjacent to
another internal vertex r2.

Lemma 3. For integers `1 and `2 such that `1, `2 ≥ 1 and `1+`2 ≥ 3, S`1−1,`2−1-
free Edge Deletion is polynomial time reducible to S`1,`2-free Edge Dele-
tion.

Proof. Let (G′, k) be an instance of S`1−1,`2−1-free Edge Deletion. Apply
Construction 2 on (G′, k) to obtain G. We claim that (G′, k) is a yes-instance
of S`1−1,`2−1-free Edge Deletion if and only if (G, k) is a yes-instance of
S`1,`2-free Edge Deletion.

Let (G′, k) be a yes-instance of S`1−1,`2−1-free Edge Deletion. Let F ′ be
a solution of size at most k of (G′, k). For a contradiction, assume that G−F ′ has
an induced copy of S`1,`2 with a vertex set U . Let r1 and r2 be the two internal
vertices of the S`1,`2 induced by U in G− F ′. Now, there are the following cases
and in each case, we obtain a contradiction.

– Either r1 or r2 is a branch vertex: This is not possible as the neighborhood
of every branch vertex induces a clique in G− F ′.

– Both r1 and r2 are in VG′ : Since the branch vertices adjacent to r1 forms a
clique in G− F ′, at most one branch vertex u1 can be a leaf vertex adjacent
to r1 in the S`1,`2 induced by U in G − F ′. Similarly, at most one branch
vertex u2 can be a leaf vertex adjacent to r2 in the S`1,`2 induced by U in
G−F ′. The remaining vertices of U belong to VG′ . Hence U \{u1, u2} induces
S`1−1,`2−1 in G′ − F ′, which is a contradiction.

Conversely, let (G, k) be a yes-instance of S`1,`2-free Edge Deletion. Let
F be a solution of size at most k of (G, k). For a contradiction, assume that
G′ − F has an induced S`1−1,`2−1 with a vertex set U . Since `1 + `2 ≥ 3, there
exists at least one internal vertex, say r1, in the S`1−1,`2−1 induced by U in
G′ − F . If there is no other internal vertex r2 in the S`1,`2−1, then let r2 be any
leaf vertex of the S`1−1,`2−1. Let V1 and V2 be the set of vertices introduced in
the construction such that every vertex in V1 is adjacent to r1 and every vertex
in V2 is adjacent to r2. Since |F | ≤ k there exist a vertex v1 ∈ V1 adjacent to
r1 and a vertex v2 ∈ V2 adjacent to r2 in G− F . Hence U ∪ {v1, v2} induces an
S`1,`2 in G− F , which is a contradiction. ut

Theorem 2. For integers `1 and `2 such that `1, `2 ≥ 0 and `1 + `2 ≥ 1, S`1,`2-
free Edge Deletion is NP-complete and S`1,`2-free Edge Deletion is not
solvable in time 2o(k) · |G|O(1), unless ETH fails.

Proof. The proof is by induction on `1 + `2. The base cases are:

– `1 = 0 (`2 = 0): This is the case when the tree is S`2+1 (S`1+1), the case
handled by Theorem 1.
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– `1 = `2 = 1: Here the tree is a P4 and hence the statements follows from
Proposition 2(ii).

Assume that the statements holds true when `1−1, `2−1 ≥ 0 and (`1−1)+(`2−
1) ≥ 1. Now, the statements follows from Lemma 3 and the observation that the
reduction used in the proof of Lemma 3 is a linear parameterized reduction. ut

3.2 Induction

In the last subsection, we proved the base cases of the inductive proof for the
NP-completeness and parameterized lower bound of T -free Edge Deletion.
The base cases were diam(T ) = 2 (star graph) and diam(T ) = 3 (twin-star graph).
Before concluding the proof, we give a lemma which is much powerful than what
we require and the implications of this lemma will be discussed in the concluding
section.

Lemma 4. Let H be any graph and d be any integer. Let V ′ be the set of all
vertices in H with degree more than d. Let H ′ be H[V ′]. Then, H ′-free Edge
Deletion is polynomial time reducible to H-free Edge Deletion.

Proof. Let (G′, k) be an instance of H ′-free Edge Deletion. Obtain G by
applying Construction 1 on (G′, k,H, V ′). We claim that (G′, k) is a yes-instance
of H ′-free Edge Deletion if and only if (G, k) is a yes-instance of H-free
Edge Deletion.

Let (G′, k) be a yes-instance of H ′-free Edge Deletion. Let F be a solution
of size at most k of (G′, k). For a contradiction, assume that G − F ′ has an
induced H with a vertex set U . Let U ′ be the set of all vertices in U such that
every vertex in U ′ has degree more than d in (G− F ′)[U ]. Since every branch
vertex in G has degree at most d, every vertex in U ′ must be in VG′ . Hence U ′

induces an H ′ in G′ − F ′, which is a contradiction.
Lemma 1 proves the converse. ut

The following corollary is obtained by invoking the above lemma with H = T
and d = 1 and with the observation that the reduction used in lemma is a linear
parameterized reduction.

Corollary 1. Let T be any tree with at least two edges such that diam(T ) > 3. Let
T ′ be obtained from T by deleting all leaf vertices. Then, there exists a polynomial
time reduction, which is a linear parameterized reduction, from T ′-free Edge
Deletion to T -free Edge Deletion.

We conclude this section by the following theorem.

Theorem 3. Let T be any tree with at least two edges. Then, T -free Edge
Deletion is NP-complete. Furthermore, T -free Edge Deletion is not solvable
in time 2o(k) · |G|O(1), unless ETH fails.
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Proof. We apply induction on the diameter of T . Theorems 1 and 2 prove the
statements when diam(T ) = 2 and 3 respectively. Let the statements be true
when diam(T ) = t for some t ≥ 3. Assume that T has diameter t+ 1. Deleting
all leaf vertices from T gives a graph T ′ with diameter t+ 1− 2 = t− 1 ≥ 2. Now,
by Corollary 1, there is a linear parameterized reduction from T ′-free Edge
Deletion to T -free Edge Deletion. ut

4 R-free Edge Deletion

In this section, we give a direct reduction either from P3-free Edge Deletion or
from K3-free Edge Deletion to R-free Edge Deletion, for any connected
r-regular graph R, where r > 2. The following two observations are used to prove
the reduction which is given in Lemma 7.

Observation 5 Let R be an r-regular graph for some r > 2. Let V ′ ⊆ V (R) be
such that |V ′| = 3. Then, V \ V ′ is a dominating set in R.

Proof. To prove that V \ V ′ is a dominating set of R, we need to prove that for
every vertex v ∈ V (R), either v is in V \ V ′ or v is adjacent to a vertex in V \ V ′.
If v /∈ V \ V ′, then v ∈ V ′. Since |V ′| = 3 and v has degree r ≥ 3, v must have
at least one edge to a vertex in V \ V ′. ut

Observation 6 Let G be a graph and r > 0 be an integer. Let W ⊆ V (G) be
such that every vertex in W has degree r in G and G[W ] is connected. Let R be
any r-regular graph and G has an induced R with a vertex set W ′ containing at
least one vertex in W . Then W ⊆W ′.

Proof. Let W ′′ be W \W ′. For a contradiction, assume that W ′′ is non-empty.
It is given that W ∩W ′ is non-empty. Since G[W ] is connected, there exists a
vertex v ∈ W ′′ such that v is adjacent to a vertex u ∈ W \W ′′. Since u ∈ W ′
and G[W ′] induces an r-regular graph and u has degree r in G, we obtain that
every neighbor of u must be in W ′. This is a contradiction as v is a neighbor of
u and is not in W ′. ut

Lemma 8 will prove that the assumption in the next lemma is true.

Lemma 7. Let R be any connected r-regular graph for any r > 2. Assume
that there exists a set of vertices V ′ ⊆ V (R) such that R[V ′] is a P3 or a K3

and R− V ′ is connected. Let R[V ′] be H ′. Then H ′-free Edge Deletion is
polynomial time reducible to R-free Edge Deletion.

Proof. Let (G′, k) be an instance of H ′-free Edge Deletion. We apply Con-
struction 1 on (G′, k, R, V ′) to obtain G. We claim that (G′, k) is a yes-instance
of H ′-free Edge Deletion if and only if (G, k) is a yes-instance of R-free
Edge Deletion.

Let F ′ be a solution of size at most k of (G′, k). We claim that F ′ is a solution
of (G, k). Let G′′ be G−F ′. Assume that the claim is false. Then, there is a set of
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vertices U ⊆ V (G′′) which induces R and hence there is a set of vertices U ′ ⊆ U
which induces H ′ in G′′ such that G′′[U \U ′] is a connected graph. Since G′−F ′ is
H ′-free, at least one vertex v ∈ U ′ must be from a branch Vj . By the construction,
Vj induces a connected graph in G and hence in G′′. Furthermore, every vertex
in Vj has degree r in G′′. Now, by Observation 6 (invoked with G = G′′, W = Vj
and W ′ = U), every vertex in Vj is in U . By construction, |Vj | = |U | − 3. Hence,
by Observation 5 (invoked with V ′ = U \ Vj), Vj is a dominating set in G′′[U ].
Therefore, U = Vj ∪ Bj where Bj is the set of base vertices of Vj in G. Since
every vertex in Vj has degree r and G′′[U ] induces an r-regular graph, every
edge incident to the vertices in Vj is in G′′[U ], i.e., Ej ⊆ E(G′′[U ]), where Ej

is the edge set introduced along with Vj in Construction 1. Now by an edge
counting argument, E(G′′[Bj ]) must have |E(H ′)| number of edges. Therefore,
since |Bj | = 3, Bj induces H ′ in G′ − F ′, which is a contradiction.

Lemma 1 proves the converse. ut

The following lemma may be of independent interest. The assumption in
Lemma 7 comes as a special case of it.

Lemma 8. Let H be any connected graph with minimum degree d for any d > 2.
Then there exists V ′ ⊆ V (H) such that |V ′| = d, H[V ′] is connected and H \ V ′
is connected.

Proof. Let H be the set of all connected graphs with d number of vertices.
Since the minimum degree of H is d, there exists at least one H ′ ∈ H as an
induced subgraph of H. For a contradiction, assume that for every V ′ ⊆ V (H)
which induces any H ′ ∈ H in H, H \ V ′ is disconnected. Consider a set of
vertices V ′ ⊆ V (H) which induces any H ′ ∈ H in H such that H \ V ′ leaves
a component with maximum number of vertices. Let the t > 1 components of
H \ V ′ be composed of set of vertices V1, V2 . . . Vt. Without loss of generality,
assume that H[V1] is a component with maximum number of vertices. Every
other component has at most d− 1 vertices. Otherwise, there will be a connected
induced subgraph of d vertices in that component deleting which we get a larger
component composed of V1 ∪ V ′. Consider Vj for any j such that 2 ≤ j ≤ t. We
know that |Vj | ≤ d− 1. Hence, the degree of any vertex v ∈ Vj is at most d− 2
in H[Vj ]. Since the minimum degree of H is d, there is at least 2 edges from v
to V ′. Let the neighbourhood of v in V ′ be V ′′. If none of the vertices in V ′′

is adjacent to V1, then v and any of its d − 1 neighbours induces a connected
graph deleting which gives a larger component. If one of the vertices in V ′′ is
adjacent to V1, excluding that we get d− 1 neighbours of v which along with v
induces a connected subgraph deleting which gives a larger component. This is a
contradiction. ut

Corollary 2. Let H be a connected graph with minimum degree 3. Then there
exists an induced P3 or K3 with vertex set V ′ in H such that H \V ′ is connected.

We conclude this section by the following theorem.
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Theorem 4. Let R be a connected regular graph with at least two edges. Then, R-
free Edge Deletion is NP-complete. Furthermore, R-free Edge Deletion
is not solvable in time 2o(k) · |G|O(1), unless ETH fails.

Proof. Let R be an r-regular graph. Since R is connected and has at least 2 edges,
r > 1. If r = 2 then R is a cycle and the statements follow from Proposition 2(iii).
Assume that r ≥ 3. By Corollary 2, there exists a P3 or K3 with a vertex set V ′

in R such that R− V ′ is connected. Now the statements follow from Lemma 7,
Proposition 2(i), Proposition 2(iii) and the observation that the reduction used
in the proof of Lemma 7 is a linear parameterized reduction. ut

The complement graph of every regular graph with at least two non-edges is
a regular graph with at least two edges. Thus, we obtain the following corollary.

Corollary 3. Let R be a regular graph with at least two non-edges. Then, R-free
Edge Completion is NP-complete. Furthermore, R-free Edge Completion
is not solvable in time 2o(k) · |G|O(1), unless ETH fails.

5 Handling Disconnected Graphs

We have seen in Sections 3 and 4 that for any tree or connected regular graph H
with at least two edges, H-free Edge Deletion is NP-complete and does not
admit parameterized subexponential time algorithm unless ETH fails. In this
section, we extend these results to any H with at least two edges such that every
component of H is either a tree or a regular graph.

Lemma 9. Let H be a graph with t ≥ 1 components. Let H1 be a component of H
with maximum number of vertices. Let H ′ be the disjoint union of all components
of H isomorphic to H1. Then, there is a linear parameterized reduction from
H ′-free Edge Deletion to H-free Edge Deletion.

Proof. Let V ′ ⊆ V (H) be the vertex set which induces H ′ in H. Let (G′, k) be an
instance of H ′-free Edge Deletion. We apply Construction 1 on (G′, k,H, V ′)
to obtain G. We claim that (G′, k) is a yes-instance of H ′-free Edge Deletion
if and only if (G, k) is a yes-instance of H-free Edge Deletion.

Let F ′ be a solution of size at most k of (G′, k). For a contradiction, assume
that G− F ′ has an induced H with a vertex set U . Hence there is a vertex set
U ′ ⊆ U such that U ′ induces H ′ in G− F ′. It is straight forward to verify that
a branch vertex can never be part of an induced H ′ in G− F ′. Hence U ′ does
not contain branch vertices and hence U ′ induces an H ′ in G′ − F ′, which is a
contradiction. Lemma 1 proves the converse. ut

The following lemma handles the case of disjoint union of isomorphic connected
graphs.

Lemma 10. Let H be any connected graph. For any two integers t, s such that
t ≥ s ≥ 1, there is a linear parameterized reduction from sH-free Edge
Deletion to tH-free Edge Deletion.
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Proof. The proof is by induction on t. The base case when t = s is trivial.
Assume that the statement is true for t− 1, if t− 1 ≥ s. Now, we give a linear
parameterized reduction from (t−1)H-free Edge Deletion to tH-free Edge
Deletion.

Let (G′, k) be an instance of (t− 1)H-free Edge Deletion. Let G′′ be a
disjoint union of k + 1 copies of H. Make every pair of vertices (vi, vj) adjacent
in G′′ such that vi and vj are part of two different copies of H in G′′. Let the

resultant graph be Ĝ. Let G be the disjoint union of G and Ĝ. We need to prove
that (G′, k) is a yes-instance of (t− 1)H-free Edge Deletion if and only if
(G, k) is a yes-instance of tH-free Edge Deletion.

Let F ′ be a solution of size at most k of (G′, k). It is straight forward to
verify that Ĝ is 2H-free. Hence, if G − F ′ has an induced tH then G′ − F ′

has an induced (t − 1)H, which is a contradiction. Conversely, let (G, k) be a
yes-instance of tH-free Edge Deletion. Let F be a solution of size at most k
of (G, k). For a contradiction, assume that G′ − F has an induced (t− 1)H with
a vertex set U . Since |F | ≤ k, F cannot kill all the induced Hs in Ĝ. Hence, let
U ′ ⊆ V (Ĝ) induces H in G− F ′. Therefore, U ∪ U ′ induces tH in G− F , which
is a contradiction. ut

The following corollary is obtained by invoking Lemma 10 with s = 1.

Corollary 4. Let H be any connected graph. For every integer t ≥ 1, there is
a linear parameterized reduction from H-free Edge Deletion to tH-free
Edge Deletion.

The lemma given below follows from Lemmas 9 Corollary 4.

Lemma 11. Let H be a graph such that H has a component with at least two
edges. Let H1 be a component of H with maximum number of vertices. Then there
is a linear parameterized reduction from H1-free Edge Deletion to H-free
Edge Deletion.

Proof. Let H ′ be the disjoint union of the components of H isomorphic to H1.
By Lemma 9, there is a linear parameterized reduction from H ′-free Edge
Deletion to H-free Edge Deletion. Then, by Corollary 4, there is a linear
parameterized reduction from H1-free Edge Deletion to H ′-free Edge
Deletion. Composing these two reductions will give a linear parameterized
reduction from H1-free Edge Deletion to H-free Edge Deletion. ut

Theorem 5. For every t > 1, tK2-free Edge Deletion is NP-complete.
Furthermore, tK2-free Edge Deletion is not solvable in time 2o(k) · |G|O(1),
unless ETH fails.

Proof. Follows directly from Proposition 2(iv) and Lemma 10. ut

We consolidate the results of this paper in the following theorem.

Theorem 6. Let H be any graph with at least two edges such that every compo-
nent of H is either a tree or a regular graph. Then H-free Edge Deletion
is NP-complete. Furthermore, H-free Edge Deletion is not solvable in time
2o(k) · |G|O(1), unless ETH fails.
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Proof. If H is a tK2 for some t > 1, then the statements follows from Theorem 5.
If H is not tK2 and since H has at least two edges, there exists at least one
component in H with at least two edges. Let H1 be a component of H with
maximum number of vertices. Then, Lemma 11 gives a linear parameterized
reduction from H1-free Edge Deletion to H-free Edge Deletion. Since
H1 is either a tree or a connected regular graph with at least two edges, the
theorem follows from Theorem 3 and Theorem 4. ut

Since H-free Edge Deletion is equivalent to H-free Edge Completion,
we obtain the following corollary.

Corollary 5. Let H be the set of all graphs H with at least two edges such that
every component of H is either a tree or a regular graph. Let H be the set of
graphs such that a graph is in H if and only if its complement is in H. Then,
for every H ∈ H, H-free Edge Completion is NP-complete. Furthermore,
H-free Edge Completion is not solvable in time 2o(k) · |G|O(1), unless ETH
fails.

6 Concluding Remarks

We proved that H-free Edge Deletion is NP-complete if H is a graph with at
least two edges and every component of H is either a tree or a regular graph. We
also proved that, for these graphs H, H-free Edge Deletion cannot be solved
in parameterized subexponential time, unless Exponential Time Hypothesis fails.
The same results apply for H-free Edge Completion.

Assume that we obtain a graph H ′ from H by deleting every vertex with degree
δ(H), the minimum degree of H. Also assume that H ′-free Edge Deletion is
NP-complete. Then by Lemma 4, we obtain that H-free Edge Deletion is
NP-complete. The reduction in Lemma 4 is not useful if H ′ is a graph with at
most one edge, as for this H ′-free Edge Deletion is polynomial time solvable.
Hence we believe that if we can prove the NP-completeness of H ′-free Edge
Deletion where H ′ is a graph in which the set of vertices with degree more
than δ(G) induces a graph with at most one edge, we can prove that H-free
Edge Deletion is NP-complete if and only if H has at least two edges.
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