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Abstract. X-ray computed tomography (CT) is one of the most widely
used imaging modalities for diagnostic tasks in the clinical application.
As X-ray dosage given to the patient has potential to induce undesirable
clinical consequences, there is a need for reduction in dosage while main-
taining good quality in reconstruction. The present work attempts to
address low-dose tomography via an optimization method. In particular,
we formulate the reconstruction problem in the form of a matrix sys-
tem involving a binary matrix. We then recover the image deploying the
ideas from the emerging field of compressed sensing (CS). Further, we
study empirically the radial and angular sampling parameters that result
in a binary matrix possessing sparse recovery parameters. The experi-
mental results show that the performance of the proposed binary matrix
with reconstruction using TV minimization by Augmented Lagrangian
and ALternating direction ALgorithms (TVAL3) gives comparably bet-
ter results than Wavelet based Orthogonal Matching Pursuit (WOMP)
and the Least Squares solution.

Keywords: Discrete Tomography, Compressive Sensing, WOMP, Bi-
nary Sensing Matrix, TVAL3

1 Introduction

Computed Tomography (CT) is a technique for reconstructing the cross-section
of an object from measurements that are essentially the line integrals of it. The
general image reconstruction in CT is a mathematical process that generates an
image from X-ray projection data acquired at different angles around the object.
As X-rays are harmful to human bodies, the basic objective in CT in medical use
is to obtain high quality images from projection data with as little of radiation
dosage as possible [11], [19]. This objective was realized in several frameworks
([19], [26] and references therein). There is, however, another dimension to the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Archive of Indian Institute of Technology Hyderabad

https://core.ac.uk/display/38679606?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 T. Prasad, P.U. Praveen Kumar, C.S. Sastry, P.V. Jampana

CT reconstruction provided by the notion of sparsity, which is not yet exploited
properly. The emerging theoretical developments, by the name of compressive
sensing (CS) have potential in exploiting inherent sparsity in CT images, and
resulting in low-dose and stable reconstruction methods.

In the recent CS based CT reconstruction methods [5], [26], the property
of CT images being sparse in transform domains such as wavelets, frames was
used and reconstruction based on convex optimization was proposed. Unlike the
existing methods, the present work, however, aims at analyzing the structure
of the underlying matrix. The underlying matrix is binary (with elements being
equal to 0 or 1) and we demonstrate empirically that the row restricted matrix
satisfies sparse recovery properties. As a result, one may be able to determine
the data acquisition geometry (i.e., a particular and restricted set of projec-
tion samples) for low-dose reconstruction. We believe that this analysis helps in
providing theoretical guarantees for faithful CT image reconstruction.

The current work is an attempt towards giving a handle on the data acqui-
sition geometry for low-dose reconstruction in sparsity framework. The paper is
organized as follows: Sections 2, 3 and 4 give an account of related work, brief
introductions to CT imaging and basics of the compressive sensing respectively.
The proposed reconstruction method via binary sensing matrix is presented in
Section 5. The experimental results are discussed in Section 6. Finally, Section
7 gives the concluding remarks.

2 Related Work

In the current literature, CS based techniques are employed to perform CT
image reconstruction from incomplete datasets. CS theory allows a sparse signal
to be accurately reconstructed from samples far less than what is required by
the Shannon/Nyquist sampling theorem [20, 21]. The key to the success of CS
is the sparsity of a signal under study. In general, an object is not sparse and
often times a sparsifying transform can be used to convert it into a domain in
which the signal has a sparse representation. One common sparsifying transform
is the discrete gradient transform (DGT) whose coefficients can be summed up
to form the so-called total variation (TV).

Inspired by CS theory, various TV minimization algorithms were suggested
to solve the few-view, limited-angle, and interior problems. For example, Chen et
al. proposed a prior image constrained compressed sensing (PICCS) algorithm
for dynamic CT application [6]. Yu and Wang proved that a piecewise con-
stant interior region of interest (ROI) can be uniquely reconstructed by a TV
minimizing technique [23, 24]. Xu et al. extended this CS based interior tomog-
raphy formulation into a Statistical Iterative Reconstruction (SIR) framework
[22]. Ritschl et al. proposed an improved TV method within the Adaptive Steep-
est Descent-Projection Onto Convex Sets (ASD-POCS) framework for clinical
applications [18].

As stated already, current work, however, attempts to study the structure of
underlying Radon transform matrix and its compliance with the sparse recovery
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properties. The study helps one answer the question “what is the data-acquisition
geometry such that the sparse recovery properties are satisfied for faithful low-
dose reconstruction.”

Although these TV-based algorithms are successful in a number of cases, the
power of the TV minimization constraint is still limited. First, the TV constraint
is a global requirement, which can not directly reflect structures of an object.
Second, the DGT operation can not distinguish true structures and image noise.
Consequently, images reconstructed with the TV constraint may lose some fine
features and generate a blocky appearance in incomplete and noisy cases. In or-
der to overcome the above limitations, in this paper, we employ TV minimization
by Augmented Lagrangian and ALternating direction ALgorithms (TVAL3) for
reconstruction of tomographic image. This method gives better reconstruction
results compared to the state-of-the-art TV minimization methods. We also ob-
serve that TVAL3 works well for limited number of rays that are acquired from
the CT scanner and the reconstructed image is free from streak artifacts (caused
due to scatter) which is generally observed [14] in the reconstructed image using
traditional filtered backprojection.

3 Introduction to Computed Tomography

The parallel-beam CT scanning system uses an array of equally spaced uni-
directional sources of focused X-ray beams. The basic principle of CT measure-
ment [12] is shown in Fig. 1. The X-ray source, together with primary collima-
tors, provides a fine beam of radiation (ideally an infinitesimally narrow ray)
that passes through the object, the intensity of the beam is then measured by a
detector. The integral attenuation for each ray position τ is given as:

R(τ) = −
∫ rp

r=0

µ(τ, r)dr = log
Im
I0
, (1)

where Im is the intensity measured by the detector and is dependent on the initial
ray intensity I0 (i.e. Im = I0 exp(−

∫ rp
r=0

µ(r)dr)), and r is the radial distance
along the ray from the source at r = 0, limited by the radial distance rp of the
projection plane.

The whole measuring arrangement, including the frame enabling the men-
tioned linear movement, can be rotated as seen in the Fig. 1. This way, we may
obtain a projection for any angle θ of the measurement coordinates (τ, r) with re-
spect to the object coordinates (x, y). It is also possible to obtain the projections
for a continuum of θ, so that Equation (1) can be rewritten as

R(τ, θ) =

∫ xmax

xmin

∫ ymax

ymin

µ(x, y)δ(x cos θ + y sin θ − τ)dxdy, (2)

where the δ-function selects the ray point set, the limits of x and y are given by
the object size. Equation (2) is called Radon transform, in the continuous-space
formulation, obviously, the task of reconstruction of the original image µ(x, y)
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Fig. 1: Principle of measurement of projections basic rectangular arrangement
([12])

from its projection representation R(τ, θ) is the problem of finding the inverse
Radon transform.

To reconstruct CT image, two major categories of methods exist, namely An-
alytical Reconstruction and Iterative Reconstruction. Methods based on Filtered
Backprojection (FBP) are one type of analytical reconstruction. This method is
currently used in clinical CT scanners because of its computational efficiency and
numerical stability [17]. Despite being computationally expensive, iterative re-
construction methods have potential for low-dose reconstruction [25]. One of the
commonly known methods is Algebraic Reconstruction Technique (ART) which
is iterative in nature. There are different variants of ART [13], viz. Simultane-
ous Algebraic Reconstruction Technique (SART) [1], Multiplicative Algebraic
Reconstruction Technique (MART) [2], etc.

4 Compressive Sensing

Compressed sensing is a signal processing technique for efficiently acquiring and
reconstructing a signal, by finding solutions to under-determined linear systems
[8]. Consider a full rank matrix A ∈ Rm×n with m < n then the linear system
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of equations y = Ax where y ∈ Rm and x ∈ Rn has infinitely many solutions.
Among all, the solution with specific property J(x) may be obtained from the
following optimization problem:

(PJ) : min
x
J(x) subject to y = Ax.

Considering J(x) as ‖x‖2, one obtains the following pseudo-inverse solution:

x̂ = A†y,

where A† = AT (AAT )−1. This solution is unique as the function ‖x‖2 is strictly
convex, and is not in general sparse.

Definition 1. A vector x ∈ Rn is k-sparse if it has k non-zero co-ordinates.
i.e., ‖x‖0 := |{i|xi 6= 0}| = k < n.

By considering J(x) as ‖x‖0, one may obtain sparse solution from

(P0) : min
x
‖x‖0 subject to y = Ax.

The (P0) problem is a non-convex optimization problem and finding a solution
to it is NP-hard. Since (P0) problem is intractable, several approaches [10] were
proposed to approximate (P0) based on greedy and convex relaxation methods.
Among all greedy methods, Orthogonal Matching Pursuit (OMP) is the most
popular.

With ‖x‖1 in place of ‖x‖0, the convex relaxation problem can be posed as

(P1) : min
x
‖x‖1 subject to y = Ax.

The ‖ ·‖1 norm in (P1) tends to provide sparse solution. One way of establishing
equivalence between both the problems is through coherence parameter which
is defined as follows:

Definition 2. The mutual coherence µA of a matrix A is the largest absolute
inner-product between different normalized columns of A. i.e.,

µA = max
1≤i,j≤m,i 6=j

|aTi aj |
‖ai‖‖aj‖

, where ai is the ith column of A.

For any matrix A of order m×n, the mutual coherence is bounded by
√

n−m
m(n−1) ≤

µA ≤ 1. The lower bound on mutual coherence µA is called Welch bound. The
following Theorem 1 [9] relates the equivalence between P0 and P1 problems via
mutual coherence.

Theorem 1. Let A be an m × n matrix and let 0 6= x ∈ Rn be a solution of
(P0) satisfying

‖x‖0 <
1

2
(1 + (µ(A))−1).

Then x is the unique solution of (P0) and (P1).
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The Restricted Isometry Property (RIP) is another sufficient condition that
ensures the equivalence between P0 and P1 problems.

Definition 3. An m × n matrix A is said to satisfy the Restricted Isometry
Property (RIP) of order k with constant δk ∈ (0, 1) if

(1− δk)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δk)‖x‖22 ∀x ∈ Rn with ‖x‖0 ≤ k. (3)

Theorem 2. [4] Suppose an m × n matrix A satisfies RIP of order 2k with
constant

δ2k <
√

2− 1,

then P0 and P1 have same k-sparse solution if P0 has a k-sparse solution.

5 CS in CT: Proposed Method

In this section, we discuss the structure of underlying Radon matrix and an
empirical analysis of its compliance with RIP, followed by a convex optimization
technique for CT image reconstruction.

5.1 Radon Transform via Binary Matrices

Consider a ray, corresponding to some view θi and radial parameter τj (Fig. 1).
In discrete setting, the Radon measurement may be rewritten as

R(θi, τj) =
∑
l

Ii,j(l)pl, (4)

where Ii,j(l) =

{
1 if (θi, τj) ray hits lth pixel

0 else.

In formulating (4), we consider nearest neighbour interpolation of pixels that
fall in the path of the ray. The number pl stands for the pixel value of lth pixel.

The above equation may rewritten as

R(θi, τj) = [Ii,j(1) . . . Ii,j(N)][p1 . . . pN ]T , (5)

where N is related to the size of the image. For all θi and τj , proceeding this
way, one obtains a matrix system

y = Ax, (6)

where y contains Radon measurements (i.e. R(θi, τj)) in vector form. Accord-
ingly, A is a binary matrix (whose elements are Ii,j(l)) and x is the vector whose
elements pl. The size of A is dictated by the number of radial and angular sam-
pling parameters and the size of the image to be reconstructed. Suppose A is
the matrix corresponding to full set of measurements y, and RA the row restric-
tion of A corresponding to the restricted measurement set Ry (here R may be
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treated as a restriction matrix). In low-dose CT, as we deal with a small set
of projection samples, the system in (6) becomes under-determined, admitting
thereby infinitely many solutions in general. The inherent sparsity present in CT
images (as detailed in Table 1) makes CS a natural choice [17] for recovering the
underlying image.

Table 1: (%) Measure of natural sparsity in standard Shepp-Logan Phantom
image. Here ‖x‖0,ε = |{i|xi > ε}| and W represents wavelet transform matrix
based on ‘db8’ [7].

Threshold xε in Spatial domain xWε in Wavelet domain

value (ε) (i.e. xε =
‖x‖0,ε
N2 × 100) (i.e. xWε =

‖Wx‖0,ε
N2 × 100)

10−1 41.68 11.39

10−2 41.82 11.81

10−4 41.82 11.81

5.2 On the RIP Compliance of Radon Matrix

In view of tomographic image possessing natural sparsity, the RIP concept is
potentially useful in designing the data acquisition mechanism. This is because
the sensing matrix provided by the projection set may be designed so that δ2k
is minimized, where k is the expected sparsity of tomographic image, which
determines the number of measurements to be used for faithful recovery. As
the row restricted binary sensing matrix (RA) is not known to satisfy RIP, we
obtain k numerically, such that δ2k <

√
2 − 1 (as in Theorem 2), by looking at

the distribution of the quantity:

σk(α) = ‖RAα‖22, for α ∈ Sn−1, ‖α‖0 ≤ k, (7)

where Sn−1 is unit sphere in Rn. From the values of σk, we estimate δk as detailed
below:

For each k, we considered 1000 vectors, α ∈ Sn−1, such that ‖α‖0 ≤ k. Here
n is related to the size of the image to be reconstructed. From the values of
σ{k,max} and σ{k,min}, we estimate δk from

δk = max{1− σ{k,min}, σ{k,max} − 1}. (8)

We estimated the values of δk for different sparsity (k) levels and for four differ-
ent down-sampling factors (i.e., for different row restriction matrices R generated
with uniform distribution). We observed that k = 21, δ2k <

√
2 − 1 holds for

a matrix of size 2048 × 4096, 1365 × 4096, 1024 × 4096. This observation jus-
tifies that the binary sensing matrix provided by the Radon transform appears
to possess sparse recovery properties, albeit for low sparsity levels (i.e., k is
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small). Though the natural sparsity of CT images (Table 1) does not appear
to match the k values obtained by our RIP analysis, however, in simulations it
was observed that the reconstruction was of good quality even for lower values
of k. Since each row of binary matrix corresponds to a pair of angular and ra-
dial parameters, the resulting set of rows provides a kind of handle on the data
acquisition geometry for faithful reconstruction. To the best of our knowledge,
verifying the RIP-compliance of the matrix of Radon Transform analytically is
an open problem.

5.3 Reconstruction via an Optimization Method

Motivated by the empirical analysis connecting sparsity level in image to be
reconstructed and the number of measurements needed, one may consider the
following optimization technique for recovering x.

min
x
‖x‖TV , subject to y = Ax. (9)

where the TV norm of x is defined as

‖x‖TV = ‖∇x‖1 =
∑
a,b

√
(xa,b − xa−1,b)2 + (xa,b − xa,b−1)2.

6 Experimental Results

We carried out experiments to reconstruct the tomographic image (Shepp-Logan)
by using binary sensing matrix (measurement matrix) and the measurement vec-
tor (projection data). To begin with, we focused on the construction of binary
sensing matrix. For constructing it, we considered the following radial and an-
gular sampling [16].

Radial Sampling

tm = δr(p− (n/2)), (10)

where p = {0, 1, · · · , n− 1}, δr is the length of detector.

Angular Sampling

θl =
q + 0.5

n
π, (11)

where q = {0, 1, · · · , n − 1}. As explained in Section 5, we obtained A with
following property:

A ∈ {0, 1}n×n with entries Ai,j =

{
1 for j ∈ Gi
0 for j /∈ Gi
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the matrix whose entries in the ith row correspond to the detector (sensor)
locations for the ith measurement. And Gi ⊂ {1, · · · , n} corresponds to the set
of all detector locations selected for the i-th measurement.

We conducted experiments for R (row restriction matrix) of several sizes,
viz. 4096 × 4096, 2048 × 4096, 1365 × 4096 and 1024 × 4096, obtained as row
submatrices of full Radon matrix via uniform distribution (i.e. the correspond-
ing number of measurements are 4096, 2048, 1365 and 1024 respectively). Using
solvers viz., WOMP [20], TVAL3 [15] and standard Least Squares, we recon-
structed the tomographic image. The algorithms were numerically implemented
in the MatLab environment on a machine having 4.0 GB RAM and processor
speed of 2.6 GHz. Fig. 2 is the standard Shepp-Logan phantom image which
is used for comparison purpose. From Fig. 3, 4 and 5 one can visually observe
that TVAL3 gives comparably better reconstruction results than standard Least
Squares and WOMP based solvers.

Fig. 2: Standard Shepp-Logan Phantom image.

(a) (b) (c) (d)

Fig. 3: Reconstruction of CT image using Total-Variation Augmented Lagrangian
Method with measurement matrix of 4 different sizes: (a) 4096×4096 (b) 2048×
4096 (c) 1365× 4096 (d) 1024× 4096.

In order to evaluate quantitatively the accuracy of reconstruction results, we
computed Mean Squared Error (MSE) and Peak Signal to Noise Ratio (PSNR)
to measure the similarity between the ground truth and the reconstructed to-
mographic image. MSE is widely used to evaluate image quality, and is defined
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(a) (b) (c) (d)

Fig. 4: Reconstruction of CT image using Least Squares with measurement ma-
trix of 4 different sizes: (a) 4096 × 4096 (b) 2048 × 4096 (c) 1365 × 4096 (d)
1024× 4096.

(a) (b) (c) (d)

Fig. 5: Reconstruction of CT image using WOMP with measurement matrix of
4 different sizes: (a) 4096×4096 (b) 2048×4096 (c) 1365×4096 (d) 1024×4096.

as

MSE =

∑m
i=1

∑n
j=1(xi,j − x̂i,j)2

m× n
, (12)

where xi,j is the pixel value of ground truth image and x̂i,j is the pixel value of
reconstructed image.

The corresponding PSNR value is computed as:

PSNR = 10 ∗ log10

(max(x))2

MSE
. (13)

Table 2 reports MSE and PSNR errors along with the execution time needed by
each of the solvers. The structural similarity (SSIM) index is highly effective way
of measuring the structural similarity between two images [21]. Suppose ρ and
t are local image patches taken from the same location of two images that are
being compared. The local SSIM index measures three similarities of the image
patches: the similarity of luminance l(ρ, t), the similarity of contrast c(ρ, t), and
the similarity of structures s(ρ, t). The local SSIM [21] is defined as

S(ρ, t) = l(ρ, t) · c(ρ, t) · s(ρ, t),

S(ρ, t) =

(
2µρµt + C1

µ2
ρ + µ2

t + C1

)(
2σρσt + C2

σ2
ρ + σ2

t + C2

)(
2σρt + C3

σρσt + C3

)
, (14)
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Table 2: Performance evaluation of reconstructed tomographic image using
solvers viz. TVAL3, Least Squares and WOMP for different dimension of the
binary sensing matrix.
Solvers Dim. of Binary MSE PSNR SSIM Comp.

Sensing Matrix (dB) Time (secs)

Total Variation 4096 × 4096 8.775e-4 30.57 0.9795 7.5676
Augmented Lagrangian 2048 × 4096 1.977e-3 27.04 0.9552 3.8765
(TVAL3) [15] 1365 × 4096 4.112e-3 23.86 0.9060 2.3527

1024 × 4096 5.521e-3 22.58 0.8724 1.9151

Least Squares 4096 × 4096 1.677e-6 57.75 0.9997 24.4377
2048 × 4096 4.607e-3 23.37 0.8634 5.9497
1365 × 4096 1.458e-2 18.36 0.7732 3.1495
1024 × 4096 2.245e-2 16.48 0.7028 2.3498

Wavelet based Orthogonal 4096 × 4096 3.545e-6 54.50 0.9995 3364.82
Matching Pursuit(WOMP) 2048 × 4096 0.0068 21.69 0.7830 2234.57

1365 × 4096 0.0425 13.72 0.4646 565.73
1024 × 4096 0.0615 12.11 0.3810 167.04

where µρ and µt are local means, σρ and σt are local standard deviations, and
σρt is cross-correlation after removing their means. C1, C2 and C3 are stabilizers.
The SSIM score of the entire image is then computed by pooling the SSIM map,
i.e. by simply averaging the SSIM map. SSIM is highly effective for measuring
image quality. Higher SSIM value indicates better image quality.

To better compare the reconstruction results, we plotted the horizontal inten-
sity profile for the chosen row index (here 32nd row was selected). The continuous
line corresponds to ground truth image and the dashed line (- - -) corresponds
to reconstructed image with different measurement matrices. Fig. 6, 7 and 8 are
the line intensity profiles of TVAL3, Least Squares and WOMP respectively.

7 Conclusions

In the present work, we have formulated the problem of reconstruction of low-
dose tomography in terms of a matrix system involving a binary matrix. With
a view to gaining handle on the data acquisition geometry, we have verified
empirically the compliance of the associated binary matrix with sparse recovery
properties. Our experimental results have demonstrated that the binary matrix
as given by the data acquisition system satisfies RIP for lower sparsity levels.
The reconstructions carried out by three different solvers indicate that TVAL3
gives relatively the reconstruction of better quality. The analytical justification
of sparse recovery properties of the matrix of Radon transform, nevertheless, is
important in proving the efficacy of CS based ideas in CT. Our future efforts
shall attempt to address this issue.
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Fig. 6: Comparison of pixel-intensity profiles of ground truth phantom image
(continuous line) with reconstructed images (dashed line) using TVAL3 with
different dimension of binary sensing matrices: (a) 4096× 4096 (b) 2048× 4096
(c) 1365× 4096 (d) 1024× 4096.
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Fig. 7: Comparison of pixel-intensity profiles of ground truth phantom image
(continuous line) with reconstructed images (dashed line) using Least Squares
with different dimension of binary sensing matrices: (a) 4096× 4096 (b) 2048×
4096 (c) 1365× 4096 (d) 1024× 4096.
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Fig. 8: Comparison of pixel-intensity profiles of ground truth phantom image
(continuous line) with reconstructed images (dashed line) using WOMP with
different dimension of binary sensing matrices: (a) 4096× 4096 (b) 2048× 4096
(c) 1365× 4096 (d) 1024× 4096.
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A Appendix: Wavelet based Orthogonal Matching
Pursuit (WOMP)

The conventional form of orthogonal matching pursuit proposed by Troop et al.
[12] is a greedy method which builds up the support set of the reconstructed
sparse vector iteratively by adding one index to the current support set at each
iteration. The input parameters for the conventional OMP algorithm are the
measurement matrix (binary matrix) and the measurement vector. Here, we
modified the existing OMP algorithm by incorporating the sparsifying trans-
form (i.e. wavelet transform) to further sparsify the binary matrix. We call the
modified algorithm as WOMP, which is given below:

Algorithm

Input Parameters : measurement matrix A, wavelet matrix W, measure-
ment vector b, and the error threshold ε0 Initialization : Initialize k = 0, and
set

– The initial solution (Wx)0 = 0.
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– The initial residual r0 = b− (AWT )(Wx)0 = b.
– The initial solution support S0 = Support{(Wx)0} = φ

Main Iteration : Increment k by 1 and perform the following steps:

– Sweep: Compute the errors ε(j) = minzj ‖(ajwTj )zj − rk−1‖22 for all j using

the optimal choice z∗j = (aTj w
T
j )T rk−1/‖ajwTj ‖22.

– Update Support : Find a minimizer, j0 of ε(j) : ∀j /∈ Sk−1, ε(j0) 6 ε(j),
and update Sk = Sk−1 ∪ {j0}.

– Update Provisional Solution : Compute (Wx)k, the minimizer of ‖(AWT )(Wx)−
b‖22 subject to Support{(Wx)} = Sk

– Update Residual : Compute rk = b− (AWT )(Wx)k.
– Stopping Rule : If ‖rk‖2 < ε0, stop. Otherwise, apply another iteration.

Output: The WOMP solution is (Wx)k obtained after k iterations.
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