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Abstract

In recent years, Software Transactional Memory systems (STMs) have garnered significant in-
terest as an elegant alternative for addressing concurrency issues in memory. STM systems take op-
timistic approach. Multiple transactions are allowed to execute concurrently. On completion, each
transaction is validated and if any inconsistency is observed it is aborted. Otherwise it is allowed to
commit.

In databases a class of histories called as conflict-serializability (CSR) based on the notion of
conflicts have been identified, whose membership can be efficiently verified. As a result, CSR is the
commonly used correctness criterion in databases In fact all known single-version schedulers known
for databases are a subset of CSR. Similarly, using the notion of conflicts, a correctness criterion,
conflict-opacity (co-opacity) which is a sub-class of can be designed whose membership can be
verified in polynomial time. Using the verification mechanism, an efficient STM implementation
can be designed that is permissive w.r.t co-opacity. Further, many STM implementations have been
developed that using the notion of conflicts.

By storing multiple versions for each transaction object, multi-version STMs provide more con-
currency than single-version STMs. But the main drawback of co-opacity is that it does not admit
histories that are uses multiple versions. This has motivated us to develop a new conflict notions for
multi-version STMs. In this paper, we present a new conflict notion multi-version conflict. Using
this conflict notion, we identify a new subclass of opacity, mvc-opacity that admits multi-versioned
histories and whose membership can be verified in polynomial time. We show that co-opacity is a
proper subset of this class.

An important requirement that arises while building a multi-version STM system is to decide
“on the spot” or schedule online among the various versions available, which version should a trans-
action read from? Unfortunately this notion of online scheduling can sometimes lead to unnecessary
aborts of transactions if not done carefully. To capture the notion of online scheduling which avoid
unnecessary aborts in STMs, we have identified a new concept ols-permissiveness and is defined
w.r.t a correctness-criterion, similar to permissiveness. We show that it is impossible for a STM sys-
tem that is permissive w.r.t opacity to such avoid un-necessary aborts i.e. satisfy ols-permissiveness
w.r.t opacity. We show this result is true for mvc-opacity as well.

1 Introduction

In recent years, Software Transactional Memory systems (STMs) [10, 23] have garnered significant
interest as an elegant alternative for addressing concurrency issues in memory. STM systems take op-
timistic approach. Multiple transactions are allowed to execute concurrently. On completion, each
∗A preliminary version of this work was presented at WTTM 2013 and published in [14]
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transaction is validated and if any inconsistency is observed it is aborted. Otherwise it is allowed to
commit.

An important requirement of STM systems is to precisely identify the criterion as to when a trans-
action should be aborted/committed. Commonly accepted correctness-criterion for STM systems is
opacity proposed by Guerraoui, and Kapalka [7]. Opacity requires all the transactions including aborted
to appear to execute sequentially in an order that agrees with the order of non-overlapping transactions.
Unlike the correctness criterion for traditional databases serializability [19], opacity ensures that even
aborted transactions read consistent values.

Another important requirement of STM system is to ensure that transactions do not abort unneces-
sarily. This referred to as the progress condition. It would be ideal to abort a transaction only when it
does not violate correctness requirement (such as opacity). However it was observed in [2] that many
STM systems developed so far spuriously abort transactions even when not required. A permissive STM
[6] does not abort a transaction unless committing of it violates the correctness-criterion.

With the increase in concurrency, more transactions may conflict and abort, especially in presence
many long-running transactions which can have a very bad impact on performance [3]. Perelman et al
[21] observe that read-only transactions play a significant role in various types of applications. But long
read-only transactions could be aborted multiple times in many of the current STM systems [11, 4]. In
fact Perelman et al [21] show that many STM systems waste 80% their time in aborts due to read-only
transactions.

It was observed that by storing multiple versions of each object, multi-version STMs can ensure that
more read operations succeed, i.e., not return abort. History H1 shown in Figure 1 illustrates this idea.
H1 : r1(x, 0)w2(x, 10)w2(y, 10)c2r1(y, 0)c1 . In this history the read on y by T1 returns 0 instead of

the previous closest write of 10 by T2. This is possible by having multiple versions for y. As a result,
this history is opaque with the equivalent correct execution being T1T2. Had there not been multiple
versions, r2(y) would have been forced to read the only available version which is 10. This value would
make the read cause r2(y) to not be consistent (opaque) and hence abort.

r1(x, 0)
T1

T2

w2(x, 10) w2(y, 10)

C1

r1(y, 0)

C2

Figure 1: Pictorial representation of a History H1

Checking for membership of multi-version view-serializability (MVSR) [25, chap. 3], the correctness
criterion for databases, has been proved to be NP-Complete [20]. We believe that the membership of
opacity, similar to MVSR, can not be efficiently verified.

In databases a sub-class of MVSR, conflict-serializability (CSR) [25, chap. 3] has been identified,
whose membership can be efficiently verified. As a result, CSR is the commonly used correctness
criterion in databases since it can be efficiently verified. In fact all known single-version schedulers
known for databases are a subset of CSR. Similarly, using the notion of conflicts, a sub-class of opacity,
conflict-opacity (co-opacity) can be designed whose membership can be verified in polynomial time.
Further, using the verification mechanism, an efficient STM implementation can be designed that is
permissive w.r.t co-opacity [17]. Further, many STM implementations have been developed that using
the idea of CSR[3, 24].

By storing multiple versions for each transaction object, multi-version STMs provide more concur-
rency than single-version STMs. But the main drawback of co-opacity is that it does not admit histories
that are uses multiple versions. In other words, the set of histories exported by any STM implementation
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that uses multiple versions is not a subset of co-opacity. Thus it can be seen that the co-opacity does not
take advantage of the concurrency provided by using multiple versions.

This has motivated us to develop a new conflict notions for multi-version STMs. In this paper,
we present a new conflict notion mv-conflict. Using this conflict notion, we identify a new subclass
of opacity, mvc-opacity whose membership can be verified in polynomial time. We further show that
co-opacityis a proper subset of this class. Further, the conflict notion developed is applicable on non-
sequential histories as well unlike traditional conflicts.

In this paper, although we employed this conflict notion on opacity to develop the sub-class mvc-opacity,
we believe that this conflict notion is generic enough to be applicable on other correctness-criterion such
as local opacity [17], virtual worlds consistency [12] etc.

An important question that arises while building a multi-version STM system using the proposed
mv-conflict notion: among the various versions available, which version should a transaction read from?
The question was first analyzed in the context of database systems [9, 20]. A transactional system (either
Database or STM) must decide “on the spot” or schedule online which version a transaction can read
from based on the past history.

Unfortunately this notion of online scheduling can sometimes lead to unnecessary aborts of trans-
actions. For instance, suppose a transaction Ti requests a read on transaction object x. Let the STM
system has option of returning a value for x from among two versions, say v1 and v2. Suppose that the
STM sytsem returns a version v2. It is possible that this read can cause another Tj to abort in later to
maintain correctness. But this abort of T1 could have been avoided if the system returned v1 instead.
This concept is better illustrated in Section 4 where we show the difficulties with online scheduling.

To capture the notion of online scheduling which avoid unnecessary aborts in STMs, we have iden-
tified a new concept ols-permissiveness. It is defined w.r.t a correctness-criterion, similar to permissive-
ness. We show that it is impossible for a STM system that is permissive w.r.t opacity to such avoid un-
necessary aborts i.e. satisfy ols-permissiveness w.r.t opacity. We show this result is true for mvc-opacity
as well. We believe that this impossibility result will generalize to other correctness-criterion such as
LO [17].
Roadmap. We describe our system model in Section 2. In Section 3 we formally define the conflict
notion and describe how to verify its membership in polynomial time using graph characterization. In
Section 4, we describe about the difficulty of online scheduling and associated impossibility results.
In Section 5, we discuss about extending the mv-conflict notion to local-opacity and then give a brief
outline of how to develop a STM system using mvc-opacity. Finally we conclude in Section 6.

2 System Model and Preliminaries

The notions and definitions described in this section follow the definitions of [17, 1]. We assume a
system of n processes (or threads), p1, . . . , pn that access a collection of objects via atomic transactions.
The STM systems is a software library that exports to the processes with the following transactional
operations or methods: (i) tbegin operation, that starts a new transaction. It returns an unique transaction
id; (ii) the write(x, v) operation that updates object x with value v, (iii) the read(x) operation that returns
a value read in x; (iv) tryC() that tries to commit the transaction and returns ok or abort; (iv) tryA() that
aborts the transaction and returns abort. The objects accessed by the read and write operations are called
as transaction objects. For the sake of simplicity, we assume that the values written by all the transactions
are unique. We also assume that the library ensures deferred update semantics, i.e. the write performed
by a transaction Tk on a transaction object x will be visible to other transactions only after the commit
of Tk.

The transactional operations could be non-atomic. To model this, we assume that all these operations
have an invocation and response events. The operations of a transaction consists of the following events:
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tbegin consists of tbegin.inv() which is followed by a tbegin.rsp(i) where i is the id of the transac-
tion. The read by transaction Tk is denoted as readk(x).inv() which is followed by readk(x).rsp(v)
where v is either the current value of x or A. Similarly, the write by transaction Tk is denoted as
writek(x, v).inv() which is followed by writek(x, v).rsp(r) where r denotes the result of the write
operation. It can either be ok or A. The tryC by transaction Tk is denoted as tryCk.inv() which is
followed by tryCk.rsp(r) where r is either ok or A. Similarly, tryA by transaction Tk is denoted as
tryAk.inv() which is followed by tryAk.rsp(A). When A is returned by an operation, it implies that
the transaction Tk is aborted.

In the case where the operations are atomic, then we simplify the notation. tbegin is represented as
tbegink, read as readk(x, v)/readk(x,A), read as writek(x, v)/writek(x,A), tryC as tryCk(ok)/tryCk(A),
tryA as tryAk(A).

When the write, read and tryC() return A, we say that the operation is forcefully aborted. Otherwise,
we say that the operation has successfully executed. For simplicity we also refer to tryCk.rsp(ok)
(tryCk(ok) in case of atomic operations) as ck. Similarly, when a transactional operation returns A, i.e.
readk(x).rsp(A), writek(x, v).rsp(A), tryCk.rsp(A), tryAk.rsp(A) (readk(x,A), writek(x,A),
tryCk(A), tryAk(A) respectively), we denote the event as ak. Along the same lines, we refer to (non-
atomic) read and write operations as rk(x, v), wk(x, v) when the invocation and response events are not
relevant to the context. Sometimes, we also drop the transaction object x and the value v read/written
depending on the context.

For a transaction Tk, we denote all the events (operations in case of sequential histories) of Tk as
evts(Tk). All the transaction objects read by Tk are denoted as rset(Tk) and all the transaction objects
written by it are denoted as wset(Tk).
Histories. A history is a sequence of events, i.e., a sequence of invocations and responses of transac-
tional operations. The collection of events is denoted as evts(H). We denote <H a total order on the
transactional events in H . We identify a history H as tuple 〈evts(H), <H〉. Figure 2 shows history
H2 : w1(x, 5).inv() w2(x, 10).inv() w1(x, 5).rsp(ok) w2(x, 10).rsp(ok) r3(x).inv() tryC1.rsp(ok)
tryC2.rsp(ok) r3(x).rsp(5) . In Figure 2, for simplicity we have not shown inv and rsp events sepa-
rately.

We say a history is sequential if invocation of each transactional operation is immediately followed
by a matching response. For simplicity, we treat each transactional operation as atomic in sequential
histories. The order <H is a total order on the transactional operations in H for sequential histories.
History H1 shown in Figure 1 is a sequential history. We also refer to histories which are not sequential
as non-sequential.

T3

T1

c2T2

w1(x, 5) tryC1(ok) c1

w2(x, 10)

r3(x, 5)

tryC2(ok)

Figure 2: Pictorial representation of a History H2

Let H|Tk denote the sub-history consisting of events of Tk in H . We only consider well-formed
histories here, i.e., (1) each H|Tk consists of a read-only prefix (consisting of read operations only),
followed by a write-only part (consisting of write operations only), possibly completed with a tryC or
tryA operation. In the read-only prefix, each transaction consists of read on a transaction object x only
once. This restriction brings no loss of generality [18]; (2) a thread invoking transactional operations
never invokes another operation before receiving a response from the previous one; it does not invoke
any operation opk after receiving a ck or ak response.
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We denote the set of transactions that appear in H is denoted by txns(H). A transaction Tk ∈
txns(H) is complete in H if H|Tk ends with a response event. In other words, all the operations in
Tk end with a response event. We assume that all the operations in sequential histories are complete.
A transaction Tk ∈ txns(H) is t-complete if H|Tk ends with ak or ck ; otherwise, Tk is t-incomplete.
The history H is t-complete if all transactions in txns(H) are t-complete. The set of committed (resp.,
aborted) transactions in H is denoted by committed(H) (resp., aborted(H)). The set of incomplete or
live transactions in H is denoted by live(H) (live(H) = txns(H)− committed(H)−aborted(H)). In
H2, T3 is live while T1, T2 are committed.

We assume that every history has an initial committed transaction T0 that initializes all the trans-
action objects with 0. We say that two histories, H and H ′ are equivalent, denoted as H ≈ H ′ if
evts(H) = evts(H ′) i.e. all the events in H and H ′ are the same. Note that H could be non-sequential
whereas H ′ could be sequential.
Transaction orders. For two transactions Tk, Tm ∈ txns(H), we say that Tk precedes Tm in the real-
time order of H , denote Tk ≺RT

H Tm, if Tk is t-complete in H and the last event of Tk precedes the first
event of Tm in H . If neither Tk ≺RT

H Tm nor Tm ≺RT
H Tk, then Tk and Tm overlap in H . Consider two

histories h,H ′ that are equivalent to each other, i.e. evts(H) = evts(H ′). We say a history H respects
the real-time order of another history H ′ if all the real-time orders of H ′ are also in H , i.e. ≺RT

H′ ⊆≺RT
H .

A history H is t-sequential if there are no overlapping transactions in H , i.e., every two transactions
are related by the real-time order.
Correctness Criterion. We denote a collection of histories as correctness-criterion. Typically, all
the histories of a correctness-criterion satisfy some property. Serializability [19] is the well-accepted
correctness-criterion in databases. Several correctness-criteria have been proposed for STMs such as
Opacity [7], Virtual World Consistency [12], Local Opacity [17], TMS [5] etc.
Implementations. A STM implementation provides the processes with functions for implementing read,
write, tryC (and possibly tryA) functions. We denote the set of histories generated by a STM implemen-
tation I as gen(I). We say that an implementation I is correct w.r.t to a correctness-criterion C if all the
histories generated by I are in C i.e. gen(I) ⊆ C.
Progress Conditions. Let C be a correctness-criterion with H in it. Let Ta be an aborted transaction in
H . We say that a history H is permissive w.r.t C if committing Ta, by replacing the abort value returned
by an operation in Ta with some non-abort value, would cause H to violate C. In other words, if Ta is
committed then H will no longer be in C. We denote the set of histories permissive w.r.t C as perm(C).
We say that STM implementation I is permissive [6] w.r.t some correctness-criterion C (such as opacity)
if every history H generated by I is permissive w.r.t C, i.e., gen(I) ⊆ perm(C).

3 New Conflict Notion for Multi-Version Systems

In this section, we define a new conflict notion for multi-version STM systems. First, we describe about
the Opacity [7], a popular correctness-criterion. Then we describe the new conflict notion, multi-version
conflict order.

3.1 Opacity

We define a few notations on histories for describing opacity.
Valid, Legal and Multi-versioned histories. Let H be a non-sequential history and rk(x, v) be a success-
ful read operation (i.e v 6= A) in H . Then rk(x, v), is said to be valid if there is a transaction Tj in H such
that Tj is committed in H , wj(x, v) is in evts(Tj) and the response of rk does not occur before invoca-
tion of tryCj in H . Formally, 〈rk(x, v) is valid⇒ ∃Tj : (rk(x).rsp(v) ≮H tryCj .inv())∧(wj(x, v) ∈
evts(Tj)) ∧ (v 6= A)〉. We say that the commit operation tryCj .rsp(ok) (or cj) is rk’s valWrite and
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formally denote it as H.valWrite(rk). The history H is valid if all its successful read operations are
valid. The notion of validity formalizes deferred update semantics described in Section 2.

In H2, tryC1.rsp(ok) = c1 = H2.valWrite(r3(x, 5)), rk(x).rsp(5) ≮H2 tryC1.inv() and
(w1(x, 5) ∈ evts(T1)). Hence, r3(x, 5) is valid and as a result, H2 is valid as well.

For a sequential history H , the definition of validity of rk(x, v) boils down as follows: a successful
read rk(x, v), is said to be valid if there is a transaction Tj in H that commits before rk and writes v to
x. Formally, 〈rk(x, v) is valid⇒ ∃Tj : (cj <H rk(x, v)) ∧ (wj(x, v) ∈ evts(Tj)) ∧ (v 6= A)〉.

Consider a sequential history H . We define rk(x, v)’s lastWrite as the latest commit event ck such
that ck precedes rk(x, v) in H and x ∈ Wset(Tk) (Tk can also be T0). Formally, we denote it as
H.lastWrite(rk). A successful read operation rk(x, v) (i.e v 6= A), is said to be legal if transaction
Tk (which contains rk’s lastWrite) also writes v onto x. Formally, 〈rk(x, v) is legal ⇒ (v 6= A) ∧
(H.lastWrite(rk(x, v)) = ck) ∧ (wk(x, v) ∈ evts(Tk))〉. The sequential history H is legal if all its
successful read operations are legal. Thus from the definition, we get that if H is legal then it is also
valid.

It can be seen that in H1, c0 = H1.valWrite(r1(x, 0)) = H1.lastWrite(r1(x, 0)). Hence,
r1(x, 0) is legal. But c0 = H1.valWrite(r1(y, 0)) 6= c1 = H1.lastWrite(r1(y, 0)). Thus, r1(y, 0) is
valid but not legal.

We denote a sequential history H as non-single-versioned if it is valid but not legal. If a history H
is non-single-versioned, then there is at least one read, say rk(x) in H that is valid but not legal. The
history H1 is non-single-versioned. This definition can not be generalized to non-sequential histories as
legality is not defined for non-sequential histories.
Opacity. To define the correctness-criterion opacity, we first define completion of a history that is in-
complete. For a history H , we construct the completion of H , opq-completion denoted Ho, as follows
(similar to [1]):

1. for every complete transaction Tk in H that is not t-complete, insert the event sequence:
tryAk.inv() tryAk.rsp(A) after the last event of transaction Tk;

2. for every incomplete operation opk of Tk in H , if opk = readk ∨writek ∨ tryAk, then insert the
response event A somewhere after the invocation of opk;

3. for every incomplete tryCk operation where Tk is in H , insert response event ok or A somewhere
after the invocation of tryCk.

In case of a sequential history H , the completion Ho is constructed by inserting an tryAk(A) (or
ak) after the last operation of transaction Tk, for every transaction Tk in H that is t-incomplete.

A history H is said to be opaque [7, 8] if H is valid and there exists a t-sequential legal history S
such that (1) S is equivalent to Ho and (2) S respects ≺RT

H , i.e ≺RT
H ⊆≺RT

S .
By requiring S being equivalent to Ho, opacity treats all the incomplete transactions as aborted.

The validity requirement on H ensures that write operations of aborted transactions are ignored. This
definition of opacity is closer in spirit to du-opacity [1]. It can be seen that both the histories H1
and H2 are opaque. The opaque equivalent t-sequential history for H1 being T1T2 and the equivalent
t-sequential histories of H2 are T1T3T2, T2T1T3 .

3.2 Motivation for a New Conflict Notion

It is not clear if checking whether a history is opaque or can be performed in polynomial time. Checking
for membership of multi-version view-serializability (MVSR) [25, chap. 3], the correctness criterion for
databases, has been proved to be NP-Complete [20]. We believe that the membership of opacity, similar
to MVSR, can not be efficiently verified.
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In databases a sub-class of MVSR, conflict-serializability (CSR) [25, chap. 3] has been identified,
whose membership can be efficiently verified. As a result, CSR is the commonly used correctness-
criterion in databases since it can be efficiently verified. In fact all known single-version schedulers
known for databases are a subset of CSR. Similarly, using the notion of conflicts, a sub-class of opacity,
conflict-opacity (co-opacity) can be designed whose membership can be verified in polynomial time.
Further, using the verification mechanism, an efficient STM implementation can be designed that is
permissive w.r.t co-opacity [16, 17].

As already discussed in Section 1, by storing multiple versions for each transaction object, multi-
version STMs provide more concurrency than single-version STMs. But the main drawback of co-opacity
is that it does not admit histories that are non-single-versioned. Thus co-opacity does not take advantage
of the concurrency provided by using multiple versions. Another big drawback being that co-opacity
does not admit histories that are non-sequential. In other words, the set of histories exported by many
STM implementation are not a subset of co-opacity. Hence, proving correctness of these STM systems
is difficult. In the rest of this sub-section, we formally define co-opacity and show the drawbacks. Some
of the definitions and proofs in this section are coming directly from [16, 17].

We define co-opacity using conflict order [25, Chap. 3]. Consider a sequential history H . For two
transactions Tk and Tm in txns(H), we say that Tk precedes Tm in conflict order, denoted Tk ≺CO

H Tm,
(a) (c-c order): ck <H cm and wset(Tk) ∩ wset(Tm) 6= ∅; (b) (c-r order): ck <H rm(x, v), x ∈
wset(Tk) and v 6= A; (c) (r-w order) rk(x, v) <H cm, x ∈ wset(Tm) and v 6= A.

Thus, it can be seen that the conflict order is defined only on operations that have successfully
executed. Further, it can also be seen that this order is defined only for histories that are sequential.

Using conflict order, co-opacity is defined as follows: A sequential history H is said to be conflict
opaque or co-opaque if H is valid and there exists a t-sequential legal history S such that (1) S is
equivalent to Ho and (2) S respects ≺RT

H and ≺CO
H .

From the definitions of conflict order and co-opacity it is clear that these notions are only specific to
sequential histories. Thus, history H2 is not co-opaque. It must be noted that H2 can be generated by
a STM system that maintains only a single version of each transaction object. The asynchronous nature
of thread execution can result in H2 by the STM system.

Having seen a drawback, we will next show that if any sequential history is non-single-versioned,
then it can not be in co-opacity.

Lemma 1 Consider two sequential histories H1 and H2 such that H1 is equivalent to H2. Suppose
H1 respects conflict order of H2, i.e., ≺CO

H1⊆≺CO
H2 . Then, ≺CO

H1=≺CO
H2 .

Proof. Here, we have that≺CO
H1⊆≺CO

H2 . In order to prove≺CO
H1=≺CO

H2 , we have to show that≺CO
H2⊆≺CO

H1 .
We prove this using contradiction. Consider two events p, q belonging to transaction T1, T2 respectively
in H2 such that (p, q) ∈≺CO

H2 but (p, q) /∈≺CO
H1 . Since the events of H2 and H1 are same, these events

are also in H1. This implies that the events p, q are also related by CO in H1. Thus, we have that
either (p, q) ∈≺CO

H1 or (q, p) ∈≺CO
H1 . But from our assumption, we get that the former is not possible.

Hence, we get that (q, p) ∈≺CO
H1⇒ (q, p) ∈≺CO

H2 . But we already have that (p, q) ∈≺CO
H2 . This is a

contradiction. �

Lemma 2 Let H1 and H2 be two sequential histories which are equivalent to each other and their
conflict order are the same, i.e. ≺CO

H1=≺CO
H2 . Then H1 is legal iff H2 is legal.

Proof. It is enough to prove the ‘if’ case, and the ‘only if’ case will follow from symmetry of the
argument. Suppose that H1 is legal. By contradiction, assume that H2 is not legal, i.e., there is a read
operation rj(x, v) (of transaction Tj) in H2 with its lastWrite as ck (of transaction Tk) and Tk writes
u 6= v to x, i.e. wk(x, u) ∈ evts(Tk). Let rj(x, v)’s lastWrite in H1 be ci of Ti. Since H1 is legal, Ti

writes v to x, i.e. wi(x, v) ∈ evts(Ti).
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Since evts(H1) = evts(H2), we get that ci is also in H2, and ck is also in H1. As ≺CO
H1=≺CO

H2 ,
we get ci <H2 rj(x, v) and ck <H1 rj(x, v).

Since ci is the lastWrite of rj(x, v) in H1 we derive that ck <H1 ci and, thus, ck <H2 ci <H2

rj(x, v). But this contradicts the assumption that ck is the lastWrite of rj(x, v) in H2. Hence, H2 is
legal. �

Lemma 3 If a sequential history H is non-single-versioned then H is not in co-opacity. Formally,
〈(His sequential) ∧ (His non-single-versioned) =⇒ (H /∈ co-opacity)〉.

Proof. We prove this using contradiction. Assume that H is non-single-versioned, i.e. H is valid but
not legal. But suppose that H is in co-opacity. Since H is sequential, conflict order can be applied on
it. From the definition of co-opacity, we get that there exists a t-sequential and legal history S such
that ≺CO

H ⊆≺CO
S . From Lemma 1, we get that ≺CO

H =≺CO
S . Combining this with Lemma 2 and the

assumption that H is not legal, we get that S is not legal. But this contradicts out assumption that S
legal. Hence, H is not in co-opacity. �

3.3 Multi-Version Conflict Definition

Having seen the shortcomings of co-opacity, we will see how to overcome them. The main reason for the
shortcoming is because conflict notion has been defined only among the events of sequential histories.
We address this issue here by defining a new conflict notion for non-sequential histories.

To define this notion on any history, we have developed a another definition of completion of any
history H , mvc-completion denoted as Hm. It is same as Ho except for step 3 which is modified as
follows: for every incomplete tryCk operation where Tk is in H , insert response event A somewhere
after the invocation of tryCk. Thus in Hm, all incomplete tryC operations are treated as aborted.

Definition 1 For a history H , we define multi-version conflict order(mvc order), denoted as ≺mvc
H ,

between operations of Hm as follows: (a) commit-commit (c-c) order: ci ≺mvc
H cj if tryCi.rsp(ok) <H

tryCj .rsp(ok) for two committed transaction Ti, Tj and both of them write to x; (b) commit-read (c-
r) order: Let ri(x, v) be a read operation in H with its valWrite as ck (belonging to the committed
transaction Tk). Then for any committed transaction Tj that writes to x, either the response of the Tj’s
commit occurs before Tk or Tk is same as Tj , formally (tryCj .rsp(ok) <H tryCk.rsp(ok)) ∨ (Tj =
Tk), we define cj ≺mvc

H ri. (c) read-commit (r-c) order: Let ri(x, v) be a read operation in H with
its valWrite as ck. Then for any committed transaction Tj that writes to x, if the Tj’s commit response
event occurs after Tk’s commit response event, i.e. (tryCk.rsp(ok) <H tryCj .rsp(ok)), we define
ri ≺mvc

H cj .

Observe that the mvc order is defined on the operations (and not events) of Hm and not H . The set
of conflicts in H2 are: [c-r : (c0, r3), (c1, r3)], [r-c : (r3, c2)], [c-c : (c0, c1), (c0, c2), (c1, c2)]. Here, it
can be observed that tryC2.rsp(ok) occurs before r3(x).rsp(5). Yet, r3 occurs before c2 in the mvc
order.

It is not difficult to extend the mvc order to sequential histories: replace the response of a tryC event
with the corresponding tryC operation and the response of a read event with the corresponding read oper-
ation. The set of conflicts in H1 are: [c-r : (c0, r1(x, 0)), (c0, r1(y))], [r-c : (r1(x), c2), (r1(y), c2)], [c-c :
(c0, c2)].

We say that a history H ′ satisfies the mvc order of a history H , ≺mvc
H , denoted as H ′ `≺mvc

H if:
(1) H ′ is equivalent to Hm; (2) Consider two operations opi, opj in H . Let ei, ej be the corresponding
response events of these operations. Then, opi ≺mvc

H opj implies ei <H′ ej . If H,H ′ are sequential,
then op and e would be the same.
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Note that for any sequential history H that is non-single-versioned, H does not satisfy its own mvc
order≺mvc

H . For instance the non-single-versioned order in history H1 consists of the pair: (r1(y, 0), c2).
But c2 occurs before r1(y, 0) in H1. We formally prove this property using the following lemmas.

Lemma 4 Consider a valid history H . Let H ′ be a sequential history (which could be same as H). If
H ′ satisfies ≺mvc

H then H ′ is legal. Formally, 〈(H is valid) ∧ (H ′ is sequential) ∧ (H ′ `≺mvc
H ) =⇒

(H ′ is legal)〉.

Proof. Assume that H ′ is not legal. Hence there exists a read operation, say ri(x, v), in evts(H ′) that is
not legal. This implies that lastWrite of ri is not the same as its valWrite. Let cl = H ′.lastWrite(ri) 6=
H ′.valWrite(ri) = cv. Let wl(x, u) ∈ evts(Tl) and wv(x, v) ∈ evts(Tv) where {Tl, Tv, Ti} ∈
txns(H ′). As H is valid, we have that tryCv.rsp(ok) <H ri(x).rsp(v). Since H ′ `≺mvc

H , we have
that evts(H) = evts(H ′). Thus {Tl, Tv, Ti} are also in txns(H).

There are two cases w.r.t ordering of events in H:

• tryCl.rsp(ok) <H tryCv.rsp(ok): From the definition of mvc order, we get that tryCl.rsp(ok) ≺mvc
H

tryCv.rsp(ok). Since H ′ satisfies ≺mvc
H and is sequential, we get that cl <H′ cv <H′ ri.

• tryCv.rsp(ok) <H tryCl.rsp(ok): Again, from the definition of mvc order, we get that ri(x).rsp(v)
≺mvc

H tryCl.rsp(ok). Since H ′ satisfies ≺mvc
H and is sequential, we get that cv <H′ ri <H′ cl.

In both cases, it can be seen that cl is not the previous closest commit operation to ri in H ′. Hence,
we have a contradiction which implies H ′ is legal. �

Using this lemma, we get the following corollary,

Corollary 5 Consider a valid history H . Let H ′ be a non-single-versioned history equivalent to H
(which could be same as H). Then, H ′ does not satisfy≺mvc

H . Formally, 〈(H ′ is non-single-versioned)∧
(H is valid) ∧ (H ′ ≈ H) =⇒ (H ′ 0≺mvc

H )〉.

Proof. We are given that H is valid, H and H ′ are equivalent to each other. Since H ′ is non-single-
versioned, we get that H ′ is sequential but not legal. Combining all these with the contrapositive of
Lemma 4, we get that H ′ 0≺mvc

H . �

Now, we show that if a history is legal, then it satisfies it own mv-conflict order.

Lemma 6 Consider a legal history H . Then, H satisfies its own mv-conflict order ≺mvc
H . Formally,

〈(H is legal) =⇒ (H `≺mvc
H )〉.

Proof. We are given that H is legal. From the definition of legality, we get that S is sequential. We
will prove this lemma using contradiction. Suppose, H does not satisfy its own mv-conflict order i.e.
(H 0≺mvc

H ). Consider two operations, say pi (belonging to transaction Ti) and qj (belonging to trans-
action Tj) in evts(H). From our assumption of contradiction, we get that (pi ≺mvc

H qj) but (pi ≮H qj).
This implies that (qj <H pi) since all the operations are totally ordered in H (which is sequential). Let
us consider the various cases of mv-conflict between pi and qj :

• pi = ci, qj = cj (c-c order): From mv-conflict definition, we get that ci ≺mvc
H cj implies that

ci <H cj .

• pi = ci, qj = rj (c-r order): Let the valWrite of rj in H be cv belonging to transaction Tv. From
mv-conflict definition, we get that either ci <H cv <H rj or ci = cv <H rj . In either case, we
have that ci <H rj .

9



• pi = ri, qj = cj (r-c order): Similar to the above case, Let the valWrite of ri in H be cv belonging
to transaction Tv. From mv-conflict definition, we have two option: (i) cv <H ci <H rj or (ii)
cv <H rj <H ci. Since H is legal, option (i) is not possible (unless cv = ci). This leaves us with
option (ii), rj <H ci.

Thus in all the three cases, we get that (pi <H qj) which implies that H satisfies ≺mvc
H . �

We now prove an interesting property about satisfaction relation.

Lemma 7 Consider a valid history H and a sequential history S. If, S satisfies H’s mv-conflict order
≺mvc

H then S also respects H’s mv-conflict order. Formally, 〈(H is valid)∧(S is sequential)∧(S `≺mvc
H

) =⇒ (≺mvc
H ⊆≺mvc

S )〉.

Proof. We are given that H is valid, S is sequential and satisfies H’s mv-conflict order ≺mvc
H . Thus,

from Lemma 4 we get that S is legal. From Lemma 6, we get that S satisfies its own mv-conflict order
≺mvc

H , i.e. S `≺mvc
S .

Now, we prove this lemma using contradiction. Suppose, S satisfies ≺mvc
H but S does not respect

mv-conflict order of H , i.e. ≺mvc
H *≺mvc

S . This implies that there exists two operations, pi, qj in H and
S such that pi precedes qj in H’s mvc order but not in S’s mvc order. We have that,

(pi ≺mvc
H qj) ∧ (pi ⊀mvc

S qj)
S`≺mvc

S−−−−−−→
satisfy def’n

(pi ≺mvc
H qj) ∧ (pi ≮S qj)

S`≺mvc
H−−−−−→ (pi <S qj) ∧ (pi ≮S qj).

This implies a contradiction. Hence, we have that S respects mv-conflict order of H . �

3.4 Multi-Version Conflict Opacity

We now illustrate the usefulness of the conflict notion by defining another subset of opacity mvc-opacity
which is a superset of co-opacity. We formally define it as follows (along the same lines as co-opacity):

Definition 2 A history H is said to be multi-version conflict opaque or mvc-opaque if H is valid and
there exists a t-sequential history S such that (1) S is equivalent to Hm, i.e. S ≈ Hm; (2) S respects
≺RT

H , i.e. ≺RT
H ⊆≺RT

S and S satisfies ≺mvc
H , i.e. S `≺RT

H .

It can be seen that both the histories H1 and H2 are mvc-opaque. The mvc equivalent t-sequential
history for H1 being T1T2 and the equivalent t-sequential history for H2 being T1T3T2.

Consider a history H that is mvc-opaque and let S be the mvc equivalent t-sequential history. Then
from Lemma 7, we get that S satisfies H’s mv-conflict order, i.e. ≺mvc

H ⊆≺mvc
S . Please note that we don’t

restrict S to be legal in the definition. But it turns out that if H is mvc-opaque then S is automatically
legal as shown in Lemma 4. Now, we have the following theorem.

Theorem 8 If a history H is mvc-opaque, then it is also opaque. Formally, 〈(H ∈ mvc-opacity) =⇒
(H ∈ opacity)〉.

Proof. Since H is mvc-opaque, it follows that H is valid and there exists a t-sequential history S such
that (1) S is equivalent to Hm and (2) S respects ≺RT

H and S satisfies ≺mvc
H . Since, S is equivalent to

Hm, it can be seen that S is equivalent to Ho as well. This, in order to prove that H is opaque, it is
sufficient to show that S is legal. As S satisfies ≺mvc

H , from Lemma 4 we get that S is legal. Hence, H
is opaque as well. �

Thus, this lemma shows that mvc-opacity is a subset of opacity. Actually, mvc-opacity is a strict sub-
set of opacity. Consider the history H3 = r1(x, 0)r2(z, 0)r3(z, 0)w1(x, 5)c1r2(x, 5)w2(x, 10)w2(y, 15)
c2r3(x, 5)w3(y, 25)c3. . Figure 3 shows the representation of this history. The set of mv-conflicts in

10



H3 are (ignoring the conflicts with c0): [c-r : (c1, r2(x, 5)), (c1, r3(x, 5))], [r-c : (r3(x, 5), c2)], [c-c :
(c1, c2), (c2, c3)]. It can be verified that H3 is opaque with the equivalent t-sequential history be-
ing T1T3T2. But there is no mvc equivalent t-sequential history. This is because of the conflicts:
(r3(x, 5), c2), (c2, c3). Hence, H3 is not mvc-opaque.

. .
. . . .

. . .T3

w1(x, 5)

w2(x, 10) w2(y, 15)r2(x, 0)
r2(x, 5)

c1

r1(x, 0)

w3(y, 25)w3(y, 25)

c2

c3

T1

T2

r3(z, 0)

Figure 3: Pictorial representation of H3

Next, we will relate the classes co-opacity and mvc-opacity. In the following theorem, we show that
co-opacity is a subset of mvc-opacity.

Theorem 9 If a history H is co-opaque, then it is also mvc-opaque. Formally, 〈(H ∈ co-opacity) =⇒
(H ∈ mvc-opacity)〉.

Proof. Since H is co-opaque, we get that there exists an equivalent legal t-sequential history S that
respects the real-time and conflict orders of H . Thus if we show that S satisfies mvc order of H then H
is mvc-opaque. From the definition of co-opacity, we have that H is sequential.

Since S is legal, it turns out that the conflicts and mv-conflicts are the same. To show this, let us
analyse each conflict order:

• c-c order: If two operations are in c-c conflict, then by definition they are also ordered by the c-c
mvc order.

• c-r order: Consider the two operations, say ck and ri that are in conflict (due to a transaction object
x). Hence, we have that ck <H ri. Let cv = H.valWrite(ri). Since, S is legal, either ck = cv or
ck <H cj . In either case, we get that ck ≺mvc

H ri.

• r-c order: Consider the two operations, say ck and ri that are in conflict (due to a transaction object
x). Hence, we have that ri <H ck. Let cv = H.valWrite(ri). Since, S is legal, cv <H ri <H ck.
Thus in this case also we get that ri ≺mvc

H ck.

Thus in all the three cases, conflicts among the operations in S also result in mv-conflicts among
these operations. Hence, S satisfies the mvc order of H . �

This theorem shows that co-opacity is a subset of mvc-opacity. The history H1 is mvc-opaque
but not in co-opaque. Hence, co-opacity is a strict subset of mvc-opacity. Figure 4 shows the relation
between the various classes.

3.5 Graph Characterization of MVC-Opacity

In this section, we will describe graph characterization of mvc-opacity. This characterization will enable
us to verify its membership in polynomial time.

Given a history H , we construct a multi-version conflict graph, MVCG(H) = (V,E) as follows:
(1) V = txns(H), the set of transactions in H; (2) an edge (Ti, Tj) is added to E whenever
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All Histories

Opacity

MVC−Opacity

CO−Opacity

Figure 4: Relation between the various classes

2.1 real-time edges: If Ti precedes Tj in H;

2.2 mvc order edges: If Ti contains an operation pi and Tj contains pj such that pi ≺mvc
H pj .

The multi-version conflict graph gives us a polynomial time graph characterization for mvc-opacity. We
show it using the following lemma and theorem.

Lemma 10 Consider a legal and t-sequential history S. Then, MVCG(S) is acyclic. Formally,
〈(S is legal) ∧ (S is t-sequential) =⇒ (MVCG(S) is acyclic)〉.

Proof. Since S is t-sequential, we can order all the transactions by their real-time order. We assume
w.l.o.g that all the transactions of S are ordered as T1 <S T2 <S .... <S Tn. Thus, with our assumption
we get that Ti <S Tj implies that i < j.

Now we will show that for any edge (Ti, Tj) in MVCG(S), we get that i < j. The edge (Ti, Tj)
can be one of the following:

• real-time: It follows from this case that Tj started only after the commit of Ti. Hence, we get that
Ti <S Tj and this implies i < j.

• c-c conflict: Here, we have that ci <S cj . Since S is t-sequential, we get that all the events of Ti

occur before all the events of Tj . Hence Ti <S Tj and thus i < j.

• c-r conflict: Here, ci <S rj for a read rj(x, v). Since S is t-sequential, similar to the above case
we get that Ti <S Tj and hence i < j.

• r-c conflict: Here, ri <S cj for a read ri(x, v). Let valWrite of ri be cl. From the definition of
mv-conflict, we have two cases. Either (i) cl <S cj <S ri or (ii) cl <S ri <S cj . Since S is legal,
we get that case (i) is not possible. Otherwise, cj would have been the valWrite of ri. This leaves
only case (ii) which implies that ri <S cj . Since S is t-sequential, similar to the above two cases
we get that Ti <S Tj and hence i < j.

Thus in all the cases, we get that an edge (Ti, Tj) in the MVCG(S) implies that i < j. Hence, a
cycle is not possible in such a graph. �

Theorem 11 A valid history H is mvc-opaque iff MVCG(H) is acyclic.
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Proof. We prove both the directions.
if MVCG(H) is acyclic then H is mvc-opaque: Since MVCG(H) is acyclic, we can perform a

topological sort on MVCG(H). Using the order obtained from the topological sort, we order all the
transactions of Hm to construct a t-sequential history S. Thus from the construction of S, we get that S
is equivalent to Hm.

It can be seen that S respects ≺RT
H . If Ti occurs before Tj in H , then there is an edge between Ti

between Tj in MVCG(H). This edge ensures that Ti occurs before Tj in S as well.
Consider two operations of H , pi (belonging to Ti) and qj (belonging to Tj). If pi ≺mvc

H qj then
there is an edge between Ti and Tj in MVCG(H). This edge ensures that Ti <S Tj . Thus, we get that
pi <S qj . This shows that S satisfies ≺mvc

H .
if H is mvc-opaque then MVCG(H) is acyclic: Since H is mvc-opaque, we get that there exists a
t-sequential, legal history S that is equivalent to H . We also have that S respects the real-time order of
H and satisfies mvc order of H . Combining this with Lemma 7, we get that S respects the mv-conflict
order of H . Formally, (≺RT

H ⊆≺RT
S ) ∧ (≺mvc

H ⊆≺mvc
S ).

Thus, from the graph construction of MVCG(H),MV CG(S), we get that MVCG(H) ⊆MVCG(S).
Since S is legal and t-sequential, from Lemma 10 we get that MVCG(S) is acyclic. This implies that
MVCG(H) is also acyclic since it is a subgraph of MVCG(S). �

Figure 5 shows the multi-version conflict graphs for the histories H1, H2 and H3. In these graphs and
other conflict graphs shown in this paper, we have ignored T0 for simplicity.

T1
T2

Multi-Version Conflict Graph of H1

T2T1

T3

T2T1

T3

Multi-Version Conflict Graph of H2 Multi-Version Conflict Graph of H3

Figure 5: multi-version conflict graphs of H1, H2 and H3

4 Online Scheduling with Multiple Versions

An important question that arises while building a multi-version STM system is among the various
versions available, which version should a transaction read from? The question was first analyzed in the
context of database systems [9, 20]. A transactional system (either Database or STM) must decide “on
the spot” or schedule online which version a transaction can read from based on the past history.

We say a STM implementation I schedules online (i.e. decides on the spot) if every invocation to an
operation that it exports (read, write, tryC, tryA) returns in finite time. We denote I as online schedulable
(OLS) (term inspired from databases). Note that I can make a decision on scheduling based only on the
past history of operations seen so far as it does not have any idea of the future. In other words, all the
methods of I are wait-free.

But unfortunately this notion of online scheduling can sometimes lead to unnecessary aborts of
transactions. We illustrate this idea with an example while considering mvc-opacity as the correctness-
criterion. Consider the sequential history H4 = w1(x, 1)w1(y, v1)w2(x, 2)rk(z, 0)c1w2(z, v2)c2r3(x, ?

1
2).

In this history, r3(x) has the option of reading 1 from T1 or 2 from T2 (denoted as r3(x, ?
1
2)). T3 can

not read x from T0 as it would violate the real-time order requirement between T0, T1 imposed by
mvc-opacity(as well as opacity). Suppose T3 reads 2 for x written by T2. Now consider a sequence of
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events that follow the read operation. Let H5 = w1(x, 1)w1(y, v1)w2(x, 2)rk(z, 0)c1w2(z, v2)rj(b, 0)
c2r3(x, 2)w3(b, v3)wk(b, vk)wj(d, vj). H5 is a possible extension of H4. It can be seen that H4 is
mvc-opaque (with T3 reading 2). But H5 is not as there is a cycle between the transactions T2, T3, Tk in
the multi-version conflict graph.

Suppose T3 had read 1 instead of 2 for x. Now consider the modified history consisting of same ex-
tension of H4 (assuming that the read of T3 did not affect the future events), H6 = w1(x, 1)w1(y, v1)w2(x, 2)rk(z, 0)c1w2(z, v2)rj(b, 0)c2r3(x, 1)w3(b, v3)wk(b, vk)wj(d, vj).
It can be seen that H6 is mvc-opaque. H5 will be mvc-opaque if Tk is aborted. This shows that the
versions read by a transaction can cause other transactions to abort in future. Figure 6 illustrates this
concept.

.
. .

.

. .

.

.T2
c2

T3
c3

Tk

w2(z, v2)

wk(b, vk)

r3(x, ?
1
2) w3(b, v3)

w1(x, 1) w1(y, v1)

T1

c1

ck

T1T1 T2

T3
Tk

T3

T2

Tk

r3(x) reads 2
r3(x) reads 1

rk(z, 0)

w2(x, 2)

Figure 6: Illustration of difficulties with online scheduling

To capture the notion of online scheduling which avoid unnecessary aborts in STMs, we have identi-
fied a new concept ols-permissiveness and is defined w.r.t a correctness-criterion, similar to permissive-
ness.

Let C be a correctness-criterion with a history H being permissive w.r.t C, i.e. H ∈ perm(C).
Then let Ta be an aborted transaction in H . Let ri(x, v) be any successful read operation(i.e. v 6= A) in
H that completed before the abort response of Ta, i.e. (ri(x).rsp(v) <H ra(z).rsp(A)/
tryCa.rsp(A)/tryAa.rsp(A)) (for some ra). Suppose ri(x) read a different value u (A 6= u 6= v)
from among the various versions available (that were created before by update transactions). Then,
committing Ta, by replacing the abort value returned by an operation in Ta with some non-abort value,
would cause H to violate C. In other words, if Ta were to be committed with ri(x) reading u, H will
no longer be in C. We say that H is ols-permissive w.r.t C.

In the above example, H5 is not ols-permissive w.r.t mvc-opacity. We denote the set of histories that
are ols-permissive w.r.t C as ols-perm(C). Along the same lines, we say that STM implementation I is
ols-permissive w.r.t some correctness-criterion C (such as opacity) if every history H generated by I is
ols-permissive w.r.t C, i.e., gen(I) ⊆ ols-perm(C).

It turns out that multiple versions make online scheduling very difficult. In fact we show in the
following sub-section that it is impossible to achieve ols-permissiveness.
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4.1 On Impossibility of ols-permissiveness with multiple versions

As mentioned above, multiple versions make online scheduling very difficult. In this sub-section, we
first show that it is impossible for an OLS implementation I that to be ols-permissive w.r.t mvc-opacity.
Then, we show that it is impossible for I to be ols-permissive w.r.t opacity as well.

To show our result, we consider a centralized adversary A that has complete knowledge of the
working of the implementation I . We assume that the adversary invokes the next method on the imple-
mentation I based on the previous responses. It waits for the response of the previous event before it can
fire the next invocation event. Hence, the histories considered in following sub-section are sequential.
It must be noted that making this assumption does not restrict the generality of the results as sequential
histories are a special case of histories.

Theorem 12 No OLS STM implementation can be ols-permissive w.r.t mvc-opacity.

Proof. Let us suppose that an OLS STM implementation I is ols-permissive w.r.t mvc-opacity. From
the definition of ols-permissiveness, we get that I is also permissive w.r.t mvc-opacity.

Some of the arguments used in this proof are similar to the description in the start of this section.
Consider the sequential history H7 = w1(x, 1)w1(y, v1)w2(x, 2)rk(z, 0)c1w2(z, v2)rj(b, 0)c2r3(x, ?

1
2)

(this history is similar to H4). Assume that the adversaryA invokes same operations on I as this history.
Since I is permissive w.r.t mvc-opacity, it will not unnecessarily return abort to any of these operations.
For the read rk(z), I will return 0 since so far no write to z has taken place. The same argument holds
for rj(b, 0). Thus the output by I is same as H7 until r3(x).

For r3(x), I has the option of returning either 1 or 2. It can not return 0 (written by T0) as it violate
real-time ordering required by mvc-opacity. Suppose I returned 2 for the read r3(x). Now consider an
extension of H7, H8 = w1(x, 1)w1(y, v1)w2(x, 2)rk(z, 0)c1w2(z, v2)rj(b, 0)c2r3(x, 2)w3(b, v3)wk(b, vk)
wj(d, vj). It can be seen that H8 is not mvc-opaque as there is a cycle between the transactions
T2, T3, Tk in the multi-version conflict graph. Suppose A invokes the operations of H8 on I after
the invocation of r3(x). Since H8 is not mvc-opaque, A invokes the next operation only after receiving
the previous response and I is permissive w.r.t mvc-opaque, I would be forced to abort Tk.

Now, consider the case that I had returned 1 for r3(x) instead of 2. The resulting history, H9 =
w1(x, 1)w1(y, v1)w2(x, 2)rk(z, 0)c1w2(z, v2)rj(b, 0)c2r3(x, 1)w3(b, v3)wk(b, vk)wj(d, vj)cjck. It can
be seen that H9 is mvc-opaque with an equivalent t-sequential history being T1TjT3TkT2. Thus, in this
case I would not have to abort any transaction. H9 is in ols-perm(mvc-opacity). Figure 7 illustrates
this scenario.

Next consider another extension of the history H7, H10 = w1(x, 1)w1(y, v1)w2(x, 2)rk(z, 0)c1
w2(z, v2)rj(b, 0)c2r3(x, 1)w3(b, v3)wk(d, vk)wj(z, vj)cjck. It can be seen that, H10 is not mvc-opaque
as there is a cycle between the transactions T2, Tj , T3 in the multi-version conflict graph. Suppose A
invokes the operations of H10 on I . Let I returns 1 for r3(x) (not knowing what operations could be
invoked in future). Then in this case, I would be forced to abort Tj since H10 is not mvc-opaque,
A invokes the next operation only after receiving the previous response and I is permissive w.r.t mvc-
opaque.

On the other hand, suppose I returned 2 for the above sequence of operation invocation by A. The
resulting history is H11 = w1(x, 1)w1(y, v1)w2(x, 2)rk(z, 0)c1w2(z, v2)rj(b, 0)c2r3(x, 2)w3(b, v3)
wk(d, vk)wj(z, vj). It can be seen that this history is mvc-opaque with an equivalent t-sequential history
being T1TkT2TjT3. Hence, in this case I would output this history without aborting any transaction.
H11 is in ols-perm(mvc-opacity). Figure 8 illustrates this scenario.

These examples illustrate that given the sequence of operations in H7, returning either 1 or 2 for
r3(x) by I can possibly cause some transaction in future to abort depending on the sequence of in-
vocations. Whereas reading the other value would have avoided the abort. This is because when I
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received the event r3(x), it has no idea about the future events and is OLS. Hence, I can not be in
ols-perm(mvc-opacity).

The difficulty of online scheduling is not restricted only to mvc-opacity. We now show that the
impossibility extends to opacity as well. In showing this, we use arguments very similar what we have
used to the above proof.

Theorem 13 No OLS STM implementation can be ols-permissive w.r.t opacity.

5 Discussion

5.1 Multi-Version Conflicts on other Correctness Criteria

So far in this paper, we have demonstrated the effectiveness of mvc orders using opacity. This conflict
notion can be applied to other correctness-criterion such as local-opacity (LO) [17] and virtual world
consistency (VWC) [13]. Both these correctness-criteria were defined for sequential histories.

A history H is locally-opaque if the following conditions hold: (1) Let the sub-history Hcom consist
of events from all the committed transactions in H . Then Hcom should be opaque; (2) Let Ta be an
aborted transaction in H . Suppose Ha be a sub-history consisting of all the transactions that committed
before the abort of Ta in H . Then, for each aborted transaction Ta, Ha is opaque.

We say a history H is multi-version conflict local-opaque (MVLO) if for each history H , (1) Hcom

is mvc-opaque; (2) for each aborted transactions Ta, Ha is mvc-opaque.
Further, it can be seen that the impossibility results of Section 4, can be extended to MVLO and LO

as well.
We believe that along the same lines, the multi-version conflict definition can be extended to VWC.

5.2 Outline of a STM System using Multiversion Conflicts

Having developed a conflict definition that accommodates multiple versions, we describe the outline of
a STM system.The main idea behind the algorithm is based on the notion serialization graph testing
[22, 17] that was developed for databases [25]. According to this idea, the STM system maintains a
graph based on the operations that have been executed so far. A new operation is allowed to execute
only if it does not form a cycle in the graph.

But a few important questions arise about the implementation which is typical of any multi-version
system: (a) how many version should the STM system store? (b) which version should a transaction
read from?

The issue of online scheduling was analyzed in Section 4 which partly addresses the question of
which version should a transaction read from. Since whichever version a transaction reads from can
possibly cause another transaction to abort, in our implementation we have decided to read the closest
available version that does not violate mvc-opaque. Using these ideas, we are currently developing a
new algorithm.

To address the question on number of versions maintained, it was shown in [15] that by not main-
taining a limit on the number of versions, greater concurrency can be achieved. So, we do not keep
any limit on the number of versions maintained in the STM system developed. But with this approach
the number of version keep growing over time making the system inefficient. So, a garbage collection
strategy that removes the unwanted versions is to be designed. We are currently working on it.

6 Conclusion

In this paper, we have presented a new conflict notion multi-version conflict. Using this conflict notion,
we developed a new subclass of opacity, mvc-opacity that admits multi-versioned histories and whose
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membership can be verified in polynomial time. We showed that co-opacity, a sub-class of opacity that
is based on traditional conflicts, is a proper subset of this class. Further, the proposed conflict notion
mv-conflict can be applied on non-sequential histories as well unlike traditional conflicts.

To demonstrate the effectiveness of the new conflict notion, we employed opacity, a popular correctness-
criterion. As discussed, we believe that this conflict notion can be easily extended to other correctness-
criterion such as LO and VWC.

An important requirement that arises while building a multi-version STM system using the propose
conflict notion is to decide “on the spot” or schedule online among the various versions available, which
version should a transaction read from? Unfortunately this notion of online scheduling can sometimes
lead to unnecessary aborts of transactions if not done carefully. To capture the notion of online schedul-
ing which avoid unnecessary aborts in STMs, we have identified a new concept ols-permissiveness. We
show that it is impossible for a STM system that is permissive to avoid such un-necessary aborts i.e.
satisfy ols-permissiveness w.r.t opacity. We show this result is true for mvc-opacity as well.

Actually, multi-version conflict notions have been proposed for multi-version databases as well [9].
But in their model of histories, the authors do not specify which version a transaction reads. So it is
not clear how their model will be applicable to STM histories. Moreover, their notion of conflicts were
applicable only for sequential histories.

As a part of the ongoing work, we plan to develop an efficient STM system using the mv-conflicts
and measure the cost of the implementation.
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