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Abstract—In Compressed Sensing (CS), the matrices that
satisfy the Restricted Isometry Property (RIP) play an important
role. But it is known that the RIP properties of a matrix Φ and
its ‘weighted matrix’ GΦ (G being a non-singular matrix) vary
drastically in terms of RIP constant. In this paper, we consider the
opposite question: Given a matrix Φ, can we find a non-singular
matrix G such that GΦ has compliance with RIP? We show that,
under some conditions, a class of non-singular matrices (G) exists
such that GΦ has RIP-compliance with better RIP constant. We
also provide a relationship between the Unique Representation
Property (URP) and Restricted Isometry Property (RIP), and a
direct relationship between RIP and sparsest solution of a linear
system of equations.

Key words: Compressed Sensing, RIP, l1−minimization,
non-RIP.

I. INTRODUCTION

Recent developments at the intersection of algebra and
optimization theory, by the name of Compressed Sensing
(CS), aim at providing sparse descriptions to linear systems.
These developments are found to have tremendous potential
for several applications [2],[14]. Sparse representations of a
function are a powerful analytic tool in many application areas
such as image/signal processing and numerical computation
[15] , to name a few. The need for the sparse representation
arises from the fact that several real life applications demand
the representation of data in terms of as few basis (frame)
type elements as possible. The elements or the columns of
the associated matrix Φ are called atoms and the matrix so
generated by them is called the dictionary. The developments
of CS Theory depend typically on sparsity and incoherence
[15]. Sparsity expresses the idea that the information rate of a
continuous time data may be much smaller than suggested by
its bandwidth, or that a discrete-time data depends on a number
of degrees of freedom which is comparably much smaller than
its (finite) length. On the other hand, incoherence extends the
duality between the time and frequency contents of data.

The matrices that satisfy the Restricted Isometry Property
(RIP) provide sparse representation to certain classes of data.
Though a sufficient condition, the compliance of RIP has
become important concept in the field of CS Theory. Surpris-
ingly, it has been shown [3] that an RIP compliant matrix Φ
results in GΦ (for some invertible matrix G) in such a way that
RIP constant of GΦ is bad compared to that of Φ. Motivated

by this observation, in the present work, we attempt to provide
existence of a class of non-singular matrices G such that GΦ
has better RIP constant.
The main contributions of the present work are summarized
below:
• characterization of the class of RIP matrices
• establishment of relationship between Unique Represen-

tation Property (URP) and Restricted Isometry property
(RIP)

• improvement of RIP constant
The paper is organized in several sections. In section 2, we
provide basics of CS theory. In sections 3 and 4, we provide
motivation and equivalence class of RIP matrices respectively.
In section 5, we discuss on the improvement of RIP constant.
While in sections 6 and 7, we establish the relationship
between URP and RIP, and a comparison with the result based
on coherence respectively. In the last two sections, we discuss
our future work and conclusion respectively.

II. BASICS OF COMPRESSED SENSING

The objective of Compressed Sensing (CS) is to recover
x ∈ RM from a few of its linear measurements y ∈ Rm
through a stable and efficient reconstruction process via the
concept of sparsity. From the measurement vector y and the
sensing mechanism, one gets a system y = Φx, where Φ is
an m × M (m < M) matrix. Now given the pair (y,Φ),
the problem of recovering x can be formulated as finding the
sparsest solution (solution containing most number of zero
entries) of linear system of equations y = Φx. Sparsity is
measured by ‖ · ‖0 norm and ‖x‖0 := |{j ∈ {1, 2, . . . ,M} :
xj 6= 0}|. Now finding the sparsest solution can be formulated
as the following minimization problem, generally denoted as
a P0 problem:

P0 : min
x
‖x‖0 subject to Φx = y.

This P0 problem is a combinatorial minimization problem and
is known to be NP-hard [2]. One may use greedy methods and
convex relaxation of P0 problem to recover k−sparse signal
x (‖x‖0 ≤ k). The convex relaxation of P0 problem can be
posed as P1 problem [4] [6], which is defined as follows:

P1 : min
x
‖x‖1 subject to Φx = y.
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The Orthogonal Matching Pursuit (OMP) algorithm and and
l1−minimization (also called basis pursuit) are two widely
studied CS reconstruction algorithms [7].

Candes et. al. [5] have introduced the following isometry
condition on matrices Φ and have established its important role
in CS. An m ×M matrix Φ is said to satisfy the Restricted
Isometry Property (RIP) of order k with constant δk (0 <
δk < 1) if for all k−sparse vectors x ∈ RM , we have

(1− δk) ‖x‖22 ≤ ‖Φx‖
2
2 ≤ (1 + δk) ‖x‖22 . (1)

Equivalently, for all k−sparse vectors x ∈ RM with ‖x‖2 = 1,
one may rewrite (1) as

(1− δk) ≤ ‖Φx‖22 ≤ (1 + δk).

The smaller the value of δk is, better the RIP is for that k value.
Roughly speaking, RIP measures the “overall conditioning” of
the set of m×k submatrices of Φ. The following theorem [6],
establishes the equivalence between P0 and P1 problems:

Theorem 2.1: Suppose an m×M matrix Φ has the (2k, δ)
RIP for some δ <

√
2−1, then P0 and P1 have same k−sparse

solution if P0 has k−sparse solution.
The mutual-coherence µ(Φ) of a given matrix Φ is the

largest absolute normalized inner product between different
columns of Φ, that is, µ(Φ) = max1≤ i,j≤M, i6=j

| ΦT
i φj |

‖Φi‖2‖Φj‖2 .
Here, Φk stands for the k-th column in Φ. The following
proposition [2] relates the RIP constant δk and µ.

Proposition 2.2: Suppose that Φ1, . . . ,ΦM are the unit norm
columns of the matrix Φ and have coherence µ. Then Φ
satisfies RIP of order k with constant δk = (k − 1)µ.

One of the important problems in CS theory deals with
constructing CS matrices that satisfy the RIP for the largest
possible range of k. It is known that the widest possible range
of k is of the order m

log( M
m )

[1], [10], [11]. However the only
known matrices that satisfy the RIP for this range are based
on random constructions[1].

There are some attempts towards constructing the determin-
istic CS matrices [10], [12], [13], [14]. For all these methods,
k = O(

√
m). The only known explicit matrix which surpasses

this square root bottleneck bound has been constructed by
Bourgain et. al. in [2].

III. MOTIVATION FOR PRESENT WORK

The Null Space Property (NSP) [16] is another property that
ensures the unique sparse recovery from P1 problem.

Definition 3.1: A matrix Φ ∈ Rm×M is said to satisfy the
Null Space Property (NSP) relative to set S ⊂ {1, 2, . . .M}
if

‖vS‖1 < ‖vSC‖1, ∀ 0 6= v ∈ Null(Φ). (2)

It is said to satisfy NSP of order s if it satisfies the NSP
relative to any subset S ⊂ {1, 2, . . .M} with card(S) ≤ s.
The following theorem [16] states the importance of NSP.

Theorem 3.2: Given a matrix Φ ∈ Rm×M , every s−sparse
vector x ∈ RM is the unique solution of P1 problem with
y = Φx if and only if Φ satisfies the null space property of
order s.

We know that the linear systems of equations Φx = y and
GΦx = Gy, for a non-singular matrix G, have the same set
of solutions. Now as pre-multiplication with a non-singular
matrix G leaves the null space unchanged, the NSP of Φ
and GΦ remains same. But the RIP properties of Φ and GΦ
may vastly differ from each other. In [3], Yin Zhang has
demonstrated this fact showing that one can easily choose G
to make the RIP of GΦ arbitrarily bad, no matter how good
the RIP of Φ is. To see this, let us define,

γk(Φ) =
λkmax
λkmin

, λkmax = max
‖Φx‖2

‖x‖2
, λkmin = min

‖Φx‖2

‖x‖2
.

(3)
In (4), max and min are taken over all k−sparse signals.

Now equating (1 + δ) = λkmax and (1 − δ) = λkmin, we
obtain an explicit expression for the k−th RIP parameter of
Φ as

δk(Φ) =
γk(Φ)− 1

γk(Φ) + 1
. (4)

Without loss of generality, let A = [A1 A2] where A1 ∈
Rm×m is non-singular. Set G = BA−1

1 for some non-singular
B ∈ Rm×m. Then GA = [GA1 GA2] = [B GA2]. Let
B1 ∈ Rm×k consist of the first k columns of B and κ(BT1 B1)
be the condition number of BT1 B1 that is, κ(BT1 B1) = λ1

λk

where λ1 and λk are respectively the maximum and minimum
eigenvalues of BT1 B1. Then κ(BT1 B1) ≤ γk(GΦ) and

δk(GΦ) ≥ κ(BT1 B1)− 1

κ(BT1 B1) + 1
. (5)

Clearly, we can choose B1 so that κ(BT1 B1) is arbitrarily large
and δk(GΦ) is arbitrarily close to one.

For example, for any k ≤ m
2 , if we choose, κ(BT1 B1) ≥ 3

for B1 ∈ Rm×2k, then it follows from (4) that δ2k(GΦ) ≥
0.5 >

√
2− 1.

Our interest, however, is the converse of this point: Starting
with a matrix Φ, can we find the existence of non-singular G
such that GΦ satisfies RIP with better RIP constant?

IV. EQUIVALENCE CLASS OF RIP MATRICES:

The spark of a matrix Φ is the smallest number k′ such
that there exists a set of k′ columns in Φ which are lin-
early dependent [8]. If spark of Φ is k′, then any (k′ − 1)
number of columns of Φ are linearly independent. For a
given matrix Φ, let us define the equivalence class of Φ as
{GΦ : G is non-singular matrix}, which is denoted as EΦ.

Let Φm×M be a matrix such that any k (1 ≤ k < k′)
columns of Φ are linearly independent. So there exist

(
M
k

)
sub-

matrices of size m×k, consisting of k number of columns of
Φ. Let us denote this collection of sub-matrices by Lk. Let us
define Ck to be the minimum among the smallest singular
values of the sub-matrices in Lk and Dk to be maximum
among the largest singular values of the sub-matrices in Lk.

Now let us consider Sk to be {x ∈ RM : ‖x‖0 =
k, ‖x‖2 = 1}. From the definitions of Ck and Dk, the
following inequality holds:

C2
k ≤ ‖Φx‖2 ≤ D2

k ∀x ∈ Sk. (6)



For a non-singular matrix G of size m × m, the following
inequality holds:

σ2
min(G)C2

k ≤ ‖GΦx‖2 ≤ σ2
max(G)D2

k ∀x ∈ Sk, (7)

where σmin(G) and σmax(G) are the smallest and largest
eigen values of G respectively. In order for GΦ to satisfy
RIP, we require the following to hold true:

[σmin(G)Ck]2 ≥ 1− δk and

[σmax(G)Dk]2 ≤ 1 + δk, for some 0 < δk < 1,
(8)

which may be rewritten as

1− δk
C2
k

≤ σ2
min(G) < σ2

max(G) ≤ 1 + δk
D2
k

. (9)

From the fore-going inequalities, it is clear that if Ck and Dk

are known and if (9) holds, then GΦ satisfies RIP of order k

with RIP constant δk, where δk ∈
(
D2

k−C
2
k

D2
k+C2

k
, 1

)
.

In fact the non-singular matrix G may be defined as follows:

G = U . diag

[√
(1− δk)

Ck
, λ1, . . . , λm−2,

√
(1 + δk)

Dk

]
. V T ,

(10)

where diag

[√
(1−δk)

Ck
, λ1, . . . , λm−2,

√
(1+δk)

Dk

]
is a diag-

onal matrices of size m × m with diagonal entries√
(1−δk)

Ck
, λ1, . . . , λm−2,

√
(1+δk)

Dk
with the relation

√
(1−δk)

Ck
≤

λ1 ≤ . . . ≤ λm−2 ≤
√

(1+δk)

Dk
, and U , V are any unitary

matrices of size m ×m. The following theorem summarizes
the ideas discussed in the preceding paragraphs.

Theorem 4.1: Suppose Φ is an m × M matrix such that
all of its k-column subsets are linearly independent. Let 0 <
Ck ≤ Dk < ∞ be such that C2

k ≤ ‖Φx‖2 ≤ D2
k, ∀ x ∈ Sk,

then there exists a class of non-singular matrices (G) of the
form as in (10) such that the matrix GΦ satisfies RIP of order

k with RIP constant δk, where δk ∈
(
D2

k−C
2
k

D2
k+C2

k
, 1

)
.

Remark 4.2: In view of (6), if one considers rescaling Φ

by a factor 1
D2

k
, then the RIP constant becomes

(
D2

k−C
2
k

D2
k

)
,

which is greater than
(
D2

k−C
2
k

D2
k+C2

k

)
.

Remark 4.3: An example of Φ, wherein all k-column
subsets are linearly independent, is Vandermonde matrix. Con-
sequently, a class of RIP compliant matrices can be generated
from the Vandermonde matrix.

V. IMPROVEMENT ON RIP CONSTANT (δk):

In this section, we discuss the issue of improvement upon
the RIP constant (δk). Let us assume that the following
inequality holds true on Ck and Dk for some δ′k ∈ (0, 1)

(1− δ′k) ≤ C2
k ≤ ‖Φx‖2 ≤ D2

k ≤ (1 + δ′k) ∀x ∈ Sk, (11)

which means that Φ satisfies RIP of order k with RIP constant
δ′k. It is also true that

1− C2
k ≤ δ′k, δ′k ≥ D2

k − 1 (12)

That means δ′k ≥ max{1 − C2
k , D

2
k − 1}. Now question is

by pre-multiplying non-singular matrix G (the structure of G
is given in (11)) with Φ can we improve on RIP constant?
If we take G to be unitary matrix then it is clear that there
is no change in terms of RIP constant. If we wish to show
improvement of RIP constant then we have to show that δk <
δ′k (δk is obtained from (10)). Let us investigate under what
conditions the RIP constant can be improved. Two cases can
arise.

Case-1: 1 − C2
k < D2

k − 1, that is, D2
k + C2

k > 2, Now it
is enough to show under the condition D2

k + C2
k > 2 that the

following inequality holds:(
D2
k − C2

k

D2
k + C2

k

)
< (D2

k − 1). (13)

It can be checked that the above inequality follows easily.
Case-2: 1 − C2

k > D2
k − 1, that is, D2

k + C2
k < 2, Now it

is enough to show under the condition D2
k + C2

k < 2 that the
following inequality holds true:(

D2
k − C2

k

D2
k + C2

k

)
< (1− C2

k). (14)

This inequality can also be verified easily. The above argument
shows that RIP constant δk(< δ′k) is improved after pre-
multiplication of G with Φ.

The theorem summarizes the above arguments
Theorem 5.1: Suppose there exist numbers δ′k ∈ (0, 1), Ck

and Dk such that Φ ∈ Rm×M satisfies the following inequality

(1− δ′k) ≤ C2
k ≤ ‖Φx‖2 ≤ D2

k ≤ (1 + δ′k) ∀ x ∈ Sk, (15)

that is, Φ satisfies RIP of order k with RIP constant δ′k. Then
there exists a non-singular G such that GΦ satisfies RIP of
order k with RIP constant δk(< δ′k).

A. Analysis of equivalence classes

In this section, we analyze further the class of matrices that
can be used to generate RIP compliant matrices. Define two
sets of matrices H1 and H2 as follows:
• H1 = {Φ ∈ Rm×M :

GΦ is RIP of order k for some non-singular G}
• H2 = {Φ ∈ Rm×M :
k-column subsets of Φ are linearly independent}.

Let Φ ∈ H2, then by theorem 4.1, there exists a non-singular
matrix G such that GΦ satisfies RIP of order k. Consequently,
H2 ⊆ H1. On the other-hand, for Φ ∈ H1, there exists a
non-singular matrix G such that GΦ satisfies RIP of order
k, which implies that any k number of columns of GΦ are
linearly independent. Since G is non-singular, any k number
of columns of Φ are linearly independent. Hence, Φ ∈ H2.
Therefore H1 ⊆ H2, and we conclude that H1 = H2.

Remark 5.2: According to the Theorem 2.1 we ideally want
δ2k <

√
2− 1, which implies that Ck and Dk have to satisfy

(D2
2k−C

2
2k)

(D2
2k+C2

2k)
<
√

2− 1, or equivalently (
√

2− 1)D2
2k < C2

2k.
The following theorem reiterates the equivalence between

P0 and P1 problems in terms of Ck and Dk.



Theorem 5.3: Suppose Φ is an m ×M matrix, whose any
2k column subset is linearly independent, such that C2k > 0
and D2k > 0 with the relation (

√
2 − 1)D2

2k < C2
2k and

C2
2k ≤ ‖Φx‖2 ≤ D2

2k, ∀ x ∈ S2k, then there exists a non-
singular matrix G such that GΦ satisfies RIP of order 2k with
RIP constant δ2k(<

√
2− 1).

VI. RELATIONSHIP BETWEEN URP AND RIP:

A property termed the unique representation property (URP)
[8], [9] of Φ is the key to understanding the behavior of the
solution obtained from (P0) problem.

Definition 6.1: A full rank matrix Φ is said to have URP of
order k if any k columns of Φ are linearly independent.

It has been shown in [8], [9] that the URP of order 2k is both
a necessary and a sufficient condition for uniquely recovering
the sparest solution from P0 problem, which is summarized
as follows:

Theorem 6.2: An arbitrary k-sparse signal x can be uniquely
recovered from y = Φx as a solution to P0 problem if and
only if Φ satisfies the URP of order 2k.

Let Φ satisfy URP of order k, that means any k column
subsets of Φ are linearly independent. Now Φ ∈ H2 implies
that Φ ∈ H1, which means there exists a non-singular matrix
G such that GΦ ∈ EΦ satisfies RIP of order k. This interesting
fact gives rise to following theorem:

Theorem 6.3: A full rank matrix satisfies URP of order k
if and only if there exists a non-singular matrix G such that
GΦ ∈ EΦ satisfies RIP of order k.

Above theorem gives a relation between URP and RIP of a
matrix. For a given matrix Φ there exists Ψ ∈ EΦ such that Ψ
satisfies RIP up to order equal to spark(Φ). The next theorem
establishes that RIP is necessary and sufficient condition for
uniquely recovering the sparest solution from P0 problem in
the following sense.

Theorem 6.4: An arbitrary k-sparse signal x can be uniquely
recovered from y = Φx as a solution to P0 problem if and only
if there exists a non-singular matrix G such that GΦ ∈ EΦ

satisfies RIP of order 2k.
Proof: From theorem 6.2, it is clear that Φ satisfies URP of
order 2k. Then by theorem 6.3 the proof follows.
The above theorem provides us with the direct relation be-
tween P0 problem and RIP of Φ.

VII. COMPARISON WITH THE RESULT BASED ON
COHERENCE:

By proposition 2.2, we obtain that the coherence based
argument provides us with RIP of order k < 1 + µ−1

Φ , which
can not cross the square root bottle-neck bound, namely in the
order of

√
m bound. But by the argument presented in section

6, for a given Φ, we are able to provide an existence of Ψ in
its equivalence class such that Ψ satisfies RIP up to the order
equal to spark(Φ) = spark(Ψ), where spark(Φ) ≥ (1 + µ−1

Φ ).
Full spark matrix can provide existence of RIP matrices of
order m.

VIII. FUTURE WORK:

In future we would like to investigate the following ques-
tions:
• when Φ is pre-multiplied with a non-singular matrix G,

what is the relation between the coherence of Φ and the
coherence GΦ.

• can Ck be estimated numerically?

IX. CONCLUDING REMARKS

We have shown that for a matrix Φ whose any k column
subsets are linearly independent, there exists a non-singular
matrix G such that in its equivalence class GΦ becomes an RIP
matrix. We hope that the class of matrices for which Ck and
Dk are known explicitly helps in constructing deterministic
matrices. Our future work will address this issue.
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