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RÉSUMÉ 

L'exploitation forestière dans le premier maillon de la chaîne d'approvisionnement en 
bois et est l’activité responsable de l'extraction et du transport du bois de la forêt vers 
les autres industries. La planification se fait par le biais de la gestion forestière qui, au 
Québec, a une approche écosystémique. Les stratégies de gestion forestière qui sont 
appliquées s'inspirent donc des perturbations naturelles qui se produisent dans chaque 
type de forêt, y compris l'organisation spatiale des récoltes et la pratique de la récolte 
qui suit un gradient nord-sud. Les perturbations naturelles les plus fréquentes dans le 
sud sont caractérisées par de petites brèches créées par les chablis et les chutes d'arbres. 
Le principal agent de perturbation au nord est le feu qui couvre de grandes surfaces du 
territoire.  

L'objectif de cette étude est de comparer les stratégies d'aménagement forestier 
actuelles axées sur l'organisation spatiale de la récolte effectuée dans les différentes 
unités d'aménagement forestier (latitudes) de l'ouest du Québec, en se basant sur une 
méthode de mesure de l'efficacité appelée Data Envelopement Analysis (DEA), et en 
mettant l'accent sur l’efficacité. Les stratégies d'aménagement forestier ont été décrites 
en termes de variables spatiales telles que la superficie, la forme des sites de récolte et 
la dispersion des peuplements récoltés, de variables non spatiales telles que les 
pratiques de récolte (coupe partielle ou coupe à blanc) et le volume récolté par espèce, 
et d'autres variables associées au secteur forestier telles que les kilomètres de routes 
construites, entre autres. L’efficacité du régime de gestion sera évaluée en fonction du 
coût de l'approvisionnement en bois ($/m3). Plus précisément, 1) nous documentons et 
sélectionnons des variables non spatiales et d'autres variables associées (intrants) qui 
affectent l’efficience (par exemple, le coût d'approvisionnement en bois); 2) nous 
identifions les variables spatiales (par exemple, l'indice de forme, la taille des 
parcelles, la juxtaposition) sur la base des empreintes spatiales des pratiques forestières 
sur un an dans un gradient nord-sud; et 3) nous identifions les variables qui affectent 
l’efficience dans le cadre du gradient.  

Les résultats montrent 3 valeurs d'efficacité calculées pour 50 sites de récolte dans l'est 
du Canada. La valeur d'efficacité globale ou agrégée est de 72% avec une variation 
élevée de (±23%), tandis que pour la pure efficacité technique la valeur est de 89% 
(±9%), et pour l'efficacité à l'échelle elle est de 79% (±19%), valeurs similaires à celles 
rapportées dans la littérature pour la province de Québec. Il a été prouvé que les 
variables spatiales sont importantes pour déterminer l'efficacité de la récolte de bois à 
faible coût, parmi les variables évaluées, celles liées aux chemins forestiers (distance 
aux usines et kilomètres de routes construites) et la dispersion (indice de proximité) 
des sites de récolte se sont avérées les plus importantes. D'après nos résultats, nous 
pouvons voir à la fois des sites efficaces et inefficaces dans tout le gradient de données, 
les zones de récolte ne présentant pas un schéma unique en fonction de la latitude dans 
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laquelle elles se trouvent comme le suggère la gestion écosystémique des forêts. Pour 
cette raison, l’efficacité n’est pas déterminée par la localisation de la forêt, mais par 
les variables spatiales associées à chaque site de récolte. Lorsque l'efficacité est divisée 
en fonction des différentes latitudes, il y a une tendance à des valeurs plus élevées dans 
le sud mais avec plus de variation des mesures en fonction de la valeur commerciale 
du bois, de la densification du réseau routier de la zone, et des taxes. Enfin, la méthode 
permet d'identifier des objectifs de réduction dans chacune des variables afin que les 
unités inefficaces atteignent un niveau efficace. Pour la variable des routes construites, 
il y a une réduction de 37%, ce qui représente 2.8 km de moins de nouveaux chemins, 
pour la distance aux usines de transformation de 29% (41 km), et la dispersion (indice 
de proximité) de 21%. 

Mots clés: Fragstats, DEA, indice spatial, efficacité 
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ABSTRACT 

Forest harvesting in the first link of the wood supply chain, which is the sector that is 
responsible for extraction and transportation of wood from the forest for processing by 
other industries. Planning of this activity in the Province of Quebec is conducted 
through forest management that uses an ecosystem-based approach. Forest 
management strategies that are applied are therefore inspired by natural disturbances 
that occur in each type of forest including the spatial organization of harvests and the 
harvesting practice that follows a north-to-south latitudinal gradient. Natural 
disturbance that is more frequent in the south is characterized by small-sized gaps 
created by windthrows and by tree falls. The principal agent of disturbance in the north 
are fires, which cover large areas of the territory.  

The objective of this study is to compare the forest management strategies in the 
different forest management units (latitudes) in western Quebec, focus on the spatial 
organization of the harvest activity through the efficiency, based on a benchmarking 
method of efficiency measure called Data Envelopment Analysis (DEA). The forest 
management strategies were described in terms of spatial variables such as the size 
area, shape of harvested sites and dispersion of harvested stands, and non-spatial 
variables of forest management such as harvest practices (partial cut or clear-cutting) 
and volume harvested per species, and other variables associated with the forest sector 
such as constructed kilometres of roads, among others. The efficiency of the 
management regime will be evaluated according to the wood procurement cost ($/m3). 
Specifically, 1) we document and select non-spatial variables and other associated 
variables (input) that affect efficiency (e.g., wood procurement cost and profit margin) 
2) Identify spatial variables (e.g., shape index, patch size, juxtaposition) based on 
spatial footprints of forest practices over one year within a north-south gradient, and 
3) Identify variables that affect the performance within the gradient.  

The results show 3 efficiency values calculated for 50 harvested sites in eastern 
Canada. The overall or aggregate efficiency is 72% with a high variation of ±23%, for 
the pure technical efficiency is 89% (± 9%) and for the scale efficiency it is 79% 
(±19%). It was proved that spatial variables are important to determine the efficiency 
of harvesting wood at a low cost, among the variables evaluated those related to the 
forest roads (distance to the mills and kilometres constructed roads) and the dispersion 
(proximity index) of the harvested sites showed to be the most important. From our 
results, we show both efficient and inefficient sites in the latitudinal gradient, 
harvesting sites do not present a single pattern depending on the latitude in which they 
are found as suggested by ecosystem forest management. When the efficiency was 
dividing according to the different latitudes, there is a tendency of higher efficiency 
values in the south but with more variation on the commercial value of the wood, the 
higher road density of the zone, and the taxes. Finally, the method allows the 
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identification of reduction targets in each of the variables so that inefficient units could 
reach an efficient level. Globally, a reduction of an average of 2.8 km for road 
construction could increase efficiency by 37%, a reduction of 41 km to the mill by 
29%, and a reduction of the dispersion (proximity index) by 21%. 

Key words: Fragstats, DEA, spatial index, efficiency.   



CHAPTER I  

1 GENERAL INTRODUCTION

 Statement of the Problem 

Forest management is the process of planning and implementing activities for the 

stewardship and use of forests, based upon legal, technical, scientific and social 

regulations to achieve specific environmental, economic, social and cultural objectives 

(FAO, 2018). Forests provide different goods and services for society, such as wood 

products. These goods and services also include biodiversity protection, cycle 

regulation, and recreational opportunities. Twenty percent of Canada’s boreal forests 

lie within the Province of Quebec. These provincial forests, in turn, are 92% publically 

owned, administered and managed by the Government of Quebec through the 

“Sustainable Forest Management Act” (loi sur l'aménagement durable du Territoire 

Forestier, LADTF) (Chapter A 18-1, (Légis Québec, 2013). This law promotes the 

implementation of Ecosystem Forest Management (EFM) that aims to maintain the 

health and resilience of forest ecosystems by focusing on reductions in the differences 

between natural and managed landscapes to maintain ecosystem functions, as well as 

social and economic benefits to society (Gauthier et al., 2008). 

Quebec’s forests display differences in structure and vegetation composition that are 

associated with variation in the physical environment (i.e., soil deposits, slopes, and 

drainage), climate and natural disturbances. Together, these natural conditions have 

created bioclimatic domains that divide the territory and describe the balance between 

climate and potential vegetation (MRN, 2003). In the North, conifers dominate the 

spruce-feather moss domain. In the South, broadleaves dominate the sugar maple 

domain. Mixed wood stands lie between these extremes, and include the balsam fir-

white birch and balsam fir-yellow birch domains (MRN, 2013). Natural disturbance 

regimes in boreal forests consist mainly of catastrophic wildfires and secondary 
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disturbances such as insect outbreaks, windfalls, and forest gap dynamics (MRN, 

2013). In Quebec, these disturbances vary in their extent and intensity along a north-

to-south gradients, following the bioclimatic domains. For example, in the North, the 

fire regime has shorter cycles, and greater frequency, severity and extent. In the South, 

fire cycles are longer with lower severity and smaller areas. Historically, these natural 

disturbances have been the promoters of biodiversity and ecosystems are adapted and 

resilient to them (Gauthier et al., 2008).  

EFM is inspired by natural disturbances and uses the toolbox of available harvesting 

practices to emulate post-disturbance stands and the landscape. EFM further attempts 

to maintain these stands within the limits of their natural variability (Bergeron et al., 

1999). To fulfill both EFM and financial objectives, current forest harvesting practices 

are modulated according to species composition, natural disturbance regimes, and 

wood demand. The interplay between these factors results in different forest 

management strategies, which involve different spatial organizations of the harvest-

blocks within the territory. For example, clear-cut harvesting is implemented most 

commonly in the north to emulate fire disturbance, whereas partial cutting and shelter-

wood cuts are used mainly in the south to emulate windfalls and forest gap dynamics 

(Bergeron et al., 1999). Therefore, forest management strategies will yield different 

efficiencies depending upon spatial variables, such as road construction and 

maintenance, transport distances between cut-blocks and sawmills, size of stands and 

mean cutting area, the spatial distribution of harvested units, and non-spatial variables 

such as silvicultural treatment, timber surveys, machinery, contractor teams, and 

available species.  

Evaluating performance is important for maintaining competitiveness in the current 

environment, and for improving productivity (Drolet et LeBel, 2010). Generally, forest 

harvest performance has been based upon financial results, such as increasing 

productivity, reducing costs per unit and improving profits, or increasing operational 
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and technical efficiency. The use of efficiency indicators helps companies achieve their 

goals, notice faults or shortcomings, and take corrective actions. Wood procurement 

costs and profitability are frequently used as financial indicators in the forest product 

industry. Evaluation of efficiency using benchmarking techniques (Rolstadås, 1995), 

particularly within the forestry sector in Quebec, has focused on pulp and paper 

production and the wood-processing industry, with limited use in the forest harvesting 

industry (Hailu et Veeman, 2003). Indeed, identifying differences in efficiency 

following forest management strategies that are distributed across the bioclimatic 

domains of western Quebec would allow us to establish best management practices that 

are currently being carried out and better understand the influence of spatial variables. 

Therefore, business practices that include benchmarking could help improve efficiency 

throughout western Quebec. 

 State of Knowledge  

1.2.1 Spatial organization  

Forest management planning involves the integration of silvicultural treatments, 

economic concepts, and ecological and social objectives that are present in an 

ecosystem. Planning is done hierarchically from coarse to fine scales through space 

and time, divided into strategic, tactical and operational levels. The objective is to 

predict the future amount of harvest, optimize the use of resources, and maintain and 

develop current habitats (Bettinger et al., 2009). Strategic planning focuses upon the 

long-term and the landscape level. The landscape is defined as a spatial mosaic of 

arbitrary boundaries containing different areas that interact functionally (Turner, 1989). 

Tactical and operational planning is conducted over the short-term and at small scales, 

where spatial organization is being integrated into the process. Spatial restrictions are 

necessary for the development of forestry activities, to meet ecological and 

environmental objectives that can only be achieved through spatial monitoring 
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(Baskent, Emin Z. et Keles, 2005). The spatial organization that is defined in the 

planning process determines the structure of the landscape, which refers to the relative 

spatial arrangement of harvested sites and the interconnections between them (Baskent, 

Emin Z. et Jordan, 1995). 

Spatial organization is a key process in the management of environmental, social and 

economic aspects of today's forests (Baskent, Emin Z. et Keles, 2005). Spatial forest 

planning has emerged as the study of patterns and trends in the landscape that is focused 

upon forestry and natural resource management activities (Bettinger et Sessions, 2003). 

The distribution of harvest sites deals with environmental protection areas, habitats of 

species of interest or loss of connectivity, and the influence of profitability for the 

forestry industry. The study of spatial forest planning has recognized economic benefits 

that can be brought to forest businesses (Baskent, Emin Z. et Keles, 2005), such as the 

reduction of road construction and operational costs with logistic controls (Baskent, 

E.Z. et Jordan, 1991; Öhman et Eriksson, 2010) and seasonal effects (D'Amours et al., 

2008). Many optimization programs have been developed to integrate spatial variables 

into the planning process (Favreau et Ristea, 2016; Weintraub et al., 2007). 

Quantifying spatial organization requires a method of describing and representing 

variability in space and time (Gustafson et Crow, 1998). Spatial pattern organization 

can be described and measured at the scale of the minimum management unit or that 

of their relationships in the landscape. The range of measurement indices includes size, 

shape, juxtaposition and distribution of management units (harvest areas, corridors, 

protected areas), minimum and maximum limits of harvesting on- site, adjacency 

(regeneration delay), restrictions, fragmentation, and aggregation and dispersion 

(Baskent, Emin Z. et Keles, 2005). Spatial statistics can be used directly to calculate 

the spatial distribution of cut-blocks (Baskent, Emin Z. et Jordan, 1995). 
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1.2.2  Spatial organization in Quebec 

The Canadian forest industry provides a wide range of social, economic and 

environmental benefits (Mobtaker et al., 2017). Canada has 7.7% of the world's forest 

cover and the Province of Quebec encompasses around 25% of the Canadian forest 

(MFFP, 2017). To manage this resource, the Quebec Ministry of Forests, Wildlife and 

Parks (Ministère des Forêts, de la Faune et des Parcs, MFFP) implemented the 

Sustainable Forest Management Act in 2013 - Chapter A 18-1 - (Légis Québec, 2013). 

This act provides wood supply guarantees that are based upon processing mill capacity 

and available species on each Forest Management Unit (FMU), which represent spatial 

divisions of the territory under management of forest activities. 

The Act establishes the planning process to be carried out through the integrated forest 

management plan. The operational plan includes the spatial forest organization, where 

the areas of forest interventions or harvest blocks are established geographically for 

one to two years with the measures to reduce negative effects of the harvest. Planning 

is performed for potentially harvestable areas by watershed, which represent twice 

what is required for the harvest of the year. With this wide range of options, companies 

make their selections and develop their activities according to their economic and 

transformation requirements. Based upon the plan, the areas that are finally selected 

are presented in the annual forest management activities program (PRAN), with yearly 

details of blocks within the harvest sites, their locations, sizes and shapes, harvesting 

practices, and infrastructure (roads).  

In the context of annual preparation and programming, companies within the territory 

agree upon which available sectors will be harvested in the coming year; the MFFP 

ensures that their selections respect the strategy and harvesting permits that specify 

volume and species requirements. Spatial determination of harvest blocks serves as the 

main resource from which companies create their logistical work-steps. This procedure 
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must include transportation schedules, road construction and maintenance programs, 

and wood flow between forest and the mills. It considers the weather affecting harvest 

operations in terms of accessibility of both roads and harvest areas and makes sure that 

these factors fulfill the demand (Karlsson et al., 2003). After harvesting, companies are 

required to submit a complete annual report that includes all activities that were 

performed in public forests, including harvest sites, silvicultural activities such as 

planting, and infrastructure construction. This report facilitates MFFP monitoring prior 

and following forest activity (Légis Québec, 2013). 

 Ecosystem Management in Quebec 

Forest planning in Quebec, as defined by the new legislation (Chapter A 18-1, Légis 

Québec 2013), has established and ecosystem forest management (EFM) of publicly 

owned forests. This multi-objective approach implements sustainable forest 

management by ensuring responsible stewardship of the territory's resources, ensuring 

the supply of wood to processing companies, and directing forest protection activities. 

The objective is to reduce the differences between natural and managed forests, as 

inspired by the natural dynamics of the forest (Ministère des Forêts de la Faune et des 

Parcs, 2015). Natural disturbances promote biodiversity within ecosystems because 

they change structural and functional resource conditions, thereby allowing 

regeneration and release of suppressed trees (Attiwill, 1994). By knowing the 

disturbance’s characteristics (severity, size, frequency), it is possible to establish the 

natural dynamics of the forest in each region and define the harvesting practices that 

would subsequently imitate  natural spatial patterns, together with the irregular shapes 

and sizes of the disturbances (Bergeron et al., 1999; Gauthier et al., 2008; Latrémouille 

et al., 2013).  

Bioclimatic domains represent a higher level in the hierarchical ecological land 

classification system of western Quebec, which is used as a tool for planning forest 
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operations and management. The bioclimatic domains represent the combination of the 

potential vegetation and physical characteristics of the territory (MRN, 2003). These 

follow a gradient running from North to South, moving from the dominance of 

coniferous species to that of broadleaves, to describe different forest compositions and 

dynamics. 

Natural disturbances and harvesting practices are closely related to the north-to-south 

gradient in Quebec’s bioclimatic domains (Bergeron et al., 1999). Natural disturbances 

can be divided at the stand level in those that affect the forest overstory (e.g., insect 

epidemics, windthrow, and tree falls), which are more common in southern domains, 

and those that affect the tree canopy, soil layers and natural regeneration (e.g., 

catastrophic wildfire), which occur in northern domains. Fire disturbance variability is 

characterized by a combination of size, frequency and severity (Bergeron et al., 2002). 

Harvesting practices differ between bioclimatic domains in western Quebec, as 

described by Moulin (2018), who further noted that clear-cutting is the most common 

harvest practice in the north domain while partial cuts are more commonly found in the 

south domain.  

The spruce-feather moss domain is present in the North and is characterized by mono-

specific coniferous populations of black spruce (Picea mariana [Miller] BSP). 

Together with balsam fir (Abies balsamea [L.] Miller) and jack pine (Pinus banksiana 

Lambert), this species represents 88-94% of stand volume. The fire regime is 

characterized by high frequency and severity and covers extensive areas, making 

wildfire the most common natural disturbance. Hence, the harvest practice that is used 

to imitate it is clear-cutting, which is characterized by agglomerated and greater areas. 

Conditions for clear-cutting harvest areas in the spruce-feather moss domain specify 

agglomerations of areas that are less than or equal to 150 hectares (MRN, 2013). 
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The balsam fir-white birch and balsam fir-yellow birch domains represent the transition 

between the spruce-feather moss forests in the northern zone and the broadleaf forest 

in the temperate zone. These are characterized by mixed forests that are composed of 

birches and poplars, together with black spruce, jack pine and firs, which constitute 

around 60% of stand volume (MRN, 2013). The fire regime in these domains is 

characterized by lower severity and recurrence. Thus, agglomerated, large areas of 

clear-cuts are replaced with harvesting in small and scattered areas. In the balsam fir, 

white or paper birch (Betula papyrifera Marshall), and yellow birch (B. alleghaniensis 

Britton) domains, clear-cuts are created with respective restrictions of 50, 100 and 150 

hectares. These restrictions depend upon the percentage area being harvested (70%, 

90% or 100%), and the species that are present in the stand (mainly conifers). The 

balsam fir-white birch and balsam fir-yellow birch domains could also be affected by 

disturbances, such as wind throw and insect epidemics; therefore, the harvest practice 

that is typically used to imitate these disturbances is partial cutting (MRN, 2003).  

The sugar maple (Acer saccharum Marshall) domain is a mixed forest that exhibits a 

greater diversity of species, a greater presence of broadleaves (57 to 67% occupation) 

and always includes maple species (MRN, 2013). Natural disturbance dynamics are 

dominated by the occurrence of wind throws (minor areas) and single tree falls of old 

individuals, which generate small canopy- gap dynamics in the forest (MRN, 2003; 

Vepakomma et al., 2008). The harvesting practices that have been applied to imitate 

these disturbances are selective and shelter-wood cutting (Légis Québec, 2013). In the 

sugar maple domain, the clear-cuts are created with area restrictions of 25, 50 or 100 

ha, depending upon the percentage area being harvested (70, 90 or 100%) and the 

harvest practice that is being applied. In this domain, more dispersed harvest patches 

are created due the nature of the forest (Gouvernement Québec, 2017). 
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 Performance 

The concept of performance refers to the accomplishment of a task that is measured 

against levels of accuracy, completeness, cost and speed (Shannon, 1998). Given that 

performance is mostly based upon perceptions, it must be defined in terms of setting 

tangible goals, developing key performance indicators, then defining, tracking and 

measuring their suitable metrics, and making managerial adjustments that anticipate 

the expected results (Drolet et LeBel, 2010; Vom Brocke et Rosemann, 2010).  

The importance of measuring performance is identifying possible elements for 

improvement and be competitive. This is especially important in the forest industry in 

Canada because the nation has the largest trades balance at the world level (data from 

2013) yielding $19.3 billion annually. In 2017, the sector accounted for 7.2% of 

national exports (Natural Resources Canada, 2018). In the Province of Quebec, there 

are 287 primary processing companies and nearly 1500 secondary and tertiary 

processing companies, which generate around 90 000 direct jobs in wood products, 

furniture and paper manufacturing, together with printing, forestry and exploitation 

(MFFP, 2017). 

Performance could be measured using non-efficiency indicators, such as product 

quality or client satisfaction, which are practices that emerged recently to integrate the 

different dimensions of the business. Traditional performance has been measured by 

financial indicators, which often have greater importance at strategic planning levels 

(Gunasekaran et al., 2001). Using financial measures of performance is advantageous 

because they represent elements of evaluation that will help to manage effective and 

efficient operations. Moreover, they are used as a mechanism of control and 

motivation. Efficiency is thus the major objective of any business organization, 

including the logging sector (Austin, 2002). In the forestry sector, the indicators that 

are often used to measure performance are cost per unit measurement, profitability, 
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revenues, wood procurement costs, and net present value (Borges et al., 2017; Holmesa 

et al., 2002). Profits and wood procurement costs are the simplest measures that can be 

directly obtained from the activity. 

Performance can also be measured through the evaluation of efficiency, which assesses 

how revenues in the forest harvesting process are translated into outputs, e.g., tonnes 

of wood that are produced. This method allows us to not only examine performance on 

a cost basis, but also to examine components of the forest activity. Measurements of 

the effectiveness of transforming the inputs of the forest harvesting process into outputs 

translate into a measure that can be used by management to identify factors and 

conditions that positively or negatively affect performance (Drolet et LeBel, 2010; 

LeBel et Stuart, 1998). 

Components of forest harvesting can be divided into two categories, i.e., those that are 

associated with the operational activity of harvesting (non-spatial variables) and those 

that are derived from the spatial patterns of the harvesting units (spatial variables). 

Within the first category, we can include direct variables of harvesting, such as 

machinery, and the silvicultural treatment (thinning, total or partial cutting), 

administrative costs, staff, contractor teams, transport of wood (types of vehicles, 

capacity, fuel), and number of companies and their employees (Béland et al., 2009; 

Groupe Del Degan Massé, 2016).  

The variables that are associated with the spatial organization of harvest sites are 

average size, distribution and agglomeration. How merchantable and economically 

harvestable wood quantities are geographically located relative to one another 

determines their cost of extraction from roadside to mill (Baskent, E.Z. et Jordan, 

1991). The literature reports that widely distributed patches would be more expensive 

(road cost per cubic metre) than those that are geographically concentrated (Baskent, 

E.Z. et Jordan, 1991). Thus, roads are one of the largest and most crucial elements of 
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the harvest activity; literally and figuratively, roads link together all activities on the 

site. The industry is dependent upon an efficient road network to provide access to 

harvest areas. Transportation is a major part of forest operations, constituting up to 40% 

of operational costs (D'Amours et al., 2008). Planning of roads involves both their 

construction and maintenance. The costs depend directly upon the length of roads and 

the average volume of wood conveyed per kilometre of road (Béland et al., 2009). The 

road maintenance costs vary according to the season when the road is used. For the 

winter roads, additional machinery is needed for maintenance and removal of snow, in 

contrast to summer roads. Machinery on summer roads requires constant monitoring to 

reduce its impacts on the soil and, thus, maintenance costs are higher (Grenier et al., 

2010). Due to the different patterns of harvest throughout the bioclimatic domains of 

Quebec, forest companies must create strategies to deal with a given spatial 

organization and to make the business profitable.  

1.4.1 Benchmark method 

For any organization, including forestry companies, continuous improvements in the 

levels of performance will make the company more competitive (Shannon, 1998). 

Comparisons have emerged as an administrative and managerial tool, which allows the 

organization to compare its performance with peers. Thus, the Benchmarking 

technique has arisen. Benchmarking is a process of searching and implementing best 

practices at the best cost, based upon collaboration among several organizations where 

the principle is to identify a point of comparison that is referred to a benchmark 

(Ettorchi -Tardy et al., 2012). This benchmark can be defined as a reference 

measurement standard, which is identified as the best achievement in its class (Lema 

et Price, 1995). Benchmarking is, therefore, a management and evaluation tool where 

a given organization’s practices are compared with those that are used by the best 

representatives of the field in question. This comparison does not have a formalized 

methodology. It is carried out with the specific objective of developing 



12 

 
  

recommendations that would identify and improve good practices, thereby achieving 

greater performance (Pitarelli et Monnier, 2000). The objective of benchmarking 

ensures that the best practices are being applied through an ongoing process of 

planning, analysis, integration, and action. This tool allows proposals to be generated 

that result in concrete actions, creates strategy and policy recommendations, and gives 

managers the ability to operate effectively (Pitarelli et Monnier, 2000). 

There are two core types of benchmarking (Rolstadås, 1995). Benchmarking can be a 

process that is internal to an organization, or an one that arises externally through 

comparison and competition with other organizations (Lema et Price, 1995). Whether 

internal or external, the steps are benchmarking are implemented in terms of focusing 

on process, strategy or performance.  

In the forest industry, a competitive comparison is often used among companies and 

regions. When the best representatives of the field are defined, this establishes a model 

with which the organization can be compared; this model will be the standard for 

determining differences in performance among companies (Bruno, 2008). Within the 

forest sciences, benchmarking has been used in different ways, i.e., to establish 

benchmarks of forest characteristics or to perform analyses of the forest industry. 

Spinelli et al. (2010) inventoried different effects of traditional harvesting systems in 

Mediterranean forests of central and southern Italy to create the benchmark value. 

Hoover et al. (2012) defined benchmark values of carbon that was stored in different 

compartments of old-growth New England forests (United States). Other studies have 

focused upon the pulp and paper industry in comparisons of energy consumption 

(Rogers et al., 2018), or on competitiveness of harvesting costs and operations at a 

global scale (Di Fulvio et al., 2017). 

The different statistical techniques that are used for performing efficiency measures 

and benchmarking comparisons can be either parametric, such as the stochastic frontier 
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approach (LeBel et Stuart, 1998), or nonparametric. Nonparametric analyses have 

fewer restrictions in their underlying assumptions, do not require prejudgments values 

of relative importance of the variables, making them easy to apply. This analysis is 

performed through Data Envelopment Analysis or DEA (Salehirad et Sowlati, 2005). 

1.4.2 Data Envelopment Analysis 

DEA is a tool for managers and has been used in different fields (Hollingsworth, 2013; 

Liang et al., 2018; Macpherson et al., 2013; Quintanilha et Ho, 2006; Zhu et al., 2018). 

A key characteristic that makes DEA appropriate for benchmark activities is that it 

extends the concept of productivity and efficiency to cases with multiple incomes and 

multiple outputs. Inefficiency that is detected and quantified by the analysis is the 

measure of distance from the production frontier of best practices that would be used 

as the benchmark. These estimates permit low-performance values that are based upon 

aggregate information of the activity to be identified. Since this information is 

relatively easy to obtain, the DEA method results in low-cost acquisition of pertinent 

information (Homburg, 2001).  

DEA was first presented by Charnes et al. (1978) as a linear programming method for 

comparing the performance of a set of entities. The entities are referred to as Decision-

Making Units (DMUs), which convert multiple inputs into multiple outputs. Within the 

realm of forest activities, the DMU may represent the contractor team, forestry 

companies or spatial units, such as regions or sectors. The inputs can cover different 

classes of variables, including those that are easy to measure (e.g., number of 

employees, or machinery used) to more complex variables, such as time that is invested 

by employees in a certain activity. The outputs are generally values of volume of wood 

and financial indicators, such as wood procurement costs (Charnes et al., 1978). A line 

is formed in the solution space that connects the most efficient observations, or DMUs. 

This line forms a shell or envelope, which bounds the observations in the data set. The 
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efficiency of observations is then determined by measuring their distance from the best 

practice frontier formed by the line (LeBel et Stuart, 1998). In Figure 1.1, the simplest 

case is exemplified with one input and one output; the line that intersects the DMU2 

unit is the production frontier of best practices that the DEA model establishes through 

comparisons among the observed DMUs. All other DMUs are inefficient because they 

are not at the production boundary; their distances to the production boundary suggest 

where future improvements can be focused and made (Homburg, 2001). 

 

 

Figure 1.1 Data Envelopment Analysis (DEA) case of one input and one output presented by 
Homburg (2001). 

The original model of the DEA assumed a constant return to scale (CRS), meaning that 

each increase in the inputs also generates a proportional increase in the outputs, i.e., 

aggregate efficiency. When variable return to scale (VRS) is assumed, the model 

changes and the measure is called pure technical efficiency, which is defined as the 

ability of a DMU to utilize its limited inputs to produce the desired outputs. This ability 

is influenced by technology and equipment. The ratio of these two efficiencies is scale 

efficiency, which reflects the inefficiency due to the DMU scale of operations and size 

(Salehirad et Sowlati, 2007).   
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The use of DEA is desirable for several reasons. First, DEA is capable of incorporating 

multiple inputs and multiple outputs as a result of linear programming. Second, there 

is no need to assign weights to the different inputs and outputs. Last, the measurement 

units of the different inputs and outputs do not need to be in the same category 

(Mohammad S et al., 2010). Another feature of DEA is its ability to calculate potential 

improvements for inefficient units; DEA constructs efficient targets for inefficient units 

according to the performance of their peers. This is an essential tool for improving 

policymaking and for benchmarking a set of units (Salehirad et Sowlati, 2006).  

In the forest industry sector, DEA is frequently used in surveys of sawmill efficiency 

from Brazil (Macpherson et al., 2009), the United States (Helvoigt et Adams, 2008), 

and Canada (Salehirad et Sowlati, 2005; Upadhyay et al., 2012). Also, DEA has been 

used in the pulp and paper sector (Alfredsson et al., 2016; Hailu et Veeman, 2001; 

Jauhar et al., 2015; Lee, 2005; Rogers et al., 2018). Other studies have shown 

comparisons of the forestry industry across European nations to evaluate the 

performance of the Slovak sector (Kovalčík, 2018), harvesting and marketing activities 

in Iranian forest (Limaei, 2013), and log contractor efficiencies in the southern United 

States (LeBel et Stuart, 1998). In Canada, only one study of the harvest sector using 

DEA analysis was performed at the level of the country. Hailu et al. (2003) had 

examined the logging industry for the period 1977-1995 based upon technical 

efficiency, technical change and productivity growth for six provinces with operations 

in the boreal forest. The scale of the analysis was broad and only road distances were 

the spatial characteristics that were evaluated. Distance exerted a negative effect on 

overall efficiency, indicating that spatial variables could have an important effect on 

the efficiency of the harvest sector. 
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 General objectives  

The objective of this study is to compare actual forest management strategies, focusing

upon the spatial organization of the harvests that are performed in different forest 

management units (latitudes) in western Quebec. The comparison is based upon a 

benchmarking method that focuses on efficiency. The forest management strategies are 

described in terms of spatial variables such as the area and shape of harvested sites and 

dispersion of harvested stands, together with non-spatial variables of forest 

management, including harvest practices (partial cut or clear-cutting), wood volume 

harvested per species, and other variables that are associated with the forest sector, such 

as kilometres of constructed roads. Efficiency of the management regime is evaluated 

according to the wood procurement cost ($/m3).  

1.5.1 Specific objectives  

• Documenting and selecting non-spatial variables and other associated variables 

(input) that affect efficiency (e.g., wood procurement costs) 

• Identifying spatial variables (e.g., shape index, patch size, juxtaposition) that 

affect efficiency (e.g., wood procurement costs and profit margins), based upon 

spatial footprints of forest practices over one year along a North-South gradient 

in western Quebec. 

• Creating a correlation matrix to select the most relevant spatial and non-spatial 

variables. 

• Determining relationships between non-spatial and spatial variables to perform 

a benchmarking analysis along the North-South gradient in western Quebec.  

• Identifying practices that affect efficiency in one region along the gradient and 

developing recommendations to generate an action plan that would improve 

performance in another region.  



CHAPTER II 

2 EFFECTS OF SPATIAL BOREAL FOREST HARVESTING PRACTICES ON 

EFFICIENCY THROUGH A BENCHMARKING APPROACH IN EASTERN 

CANADA 

 Abstract 

In eastern Canada, harvesting practices and spatial organization of harvested sites are 

modulated according to ecosystem forest management objectives. We determined how 

spatial organization affects efficiency by evaluating wood procurement costs. A 

comparative analysis of benchmarking was presented using a non-parametric 

technique, i.e., data envelopment analysis (DEA), which allows multiple variable 

analyses of different factors. A database of 50 harvested sites during the periods 2015-

2016 and 2017-2018, located along a North-South latitudinal (46° to 50°) gradient, was 

constructed with variables describing spatial organization (roads and dispersion of 

patches) and operational aspects (wood procurement costs). The evaluated efficiencies 

show high values greater than 70%. Efficient and inefficient units were observed in all 

sites along the latitudinal gradient, where causes of inefficiency were dispersion of the 

patches (proximity index), distance to the mill, and the number of kilometres of built 

roads. Harvesting areas exhibit a wide range of spatial organization patterns. When 

efficiency values were arranged by latitudinal location, northern sites exhibited a lower 

value of overall and scale efficiency due to the nature of the wood value harvested, and 

developed road density of the zone.  

Key words: Fragstats, DEA, spatial index, efficiency.  
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 Introduction 

Forests provide a wide range of social, environmental, and economic benefits to society 

(Mobtaker et al., 2017). Canada has 7.7% of the world's forests and is the world's 

largest exporter of forest products (Natural Resources Canada, 2018). Timber 

harvesting is the first link in the wood supply chain for other branches of the industry 

and is the sector that is responsible for field activities, wood extraction and transport. 

This operation directly affects the cost and supply of raw materials to the wood product 

manufacturing industry (Obi et Visser, 2017b).  

Within a given harvest area, forest management is the process by which the planning 

and implementation of the activity are carried out based upon legal, social, and 

technical regulations (FAO, 2018). In eastern Canada, particularly within the province 

of Quebec, ecosystem-based forest management set into law in 2013 (Légis Québec, 

2013). Quebec contains 25% of Canada’s forests; in turn, 92% of the provincial forest 

areas is in the public domain. Ecosystem forest management (EFM) is an approach that 

aims to maintain the health and resilience of forest ecosystems by focusing upon the 

reduction of gaps between natural and managed landscapes that maintain ecosystem 

functions as well as social and economic benefits to society (Gauthier et al., 2008). To 

meet this aims as well as financial objectives, current forest harvesting practices are 

modulated according to species composition, natural disturbance regimes and timber 

demand (Bergeron et al., 1999). Ecosystem management results in the application of 

different forest management strategies, according to the development of the forest that 

is eventually being harvested. In northern areas, the forest is dominated by conifers, 

specifically black spruce (Picea mariana [Mill] B.S.P.), and while southern forest is 

dominated by broadleaf trees, mainly maple sugar tree (Acer saccharum Marshall). 

Mixed forests lie between these two groups (MRN, 2013). Silvicultural treatment 

depends upon the natural disturbances that characterize each forest type: clear-cutting 

is more common in the north, emulating fire disturbances, while partial- and 
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shelterwood-cutting are mainly used in the south to emulate small-scale disturbances 

typical of this area and forest gap dynamics (Bergeron et al., 1999). 

Spatial organization refers to the arrangement of harvested patches and their 

interconnections, thereby determining the structure of the landscape (Baskent, Emin Z. 

et Jordan, 1995). Spatial organization can be measured using a range of indices. These 

focus on the patches in terms of their average size and shape, and relationships among 

the patches, including inter-patch distance and their degrees of aggregation or 

dispersion (Baskent, Emin Z. et Keles, 2005). 

The distribution of patches within the harvested site must deal with environmental 

concerns, together with their influence on the profitability of the forest industry. Spatial 

planning is recognized for the economic benefits that it can bring to the forest business 

(Baskent, Emin Z. et Keles, 2005), such as reduced road construction and reduced 

operating costs (Baskent, E.Z. et Jordan, 1991; Öhman et Eriksson, 2010). Cost 

reduction is the main objective of any business organization and can used as a financial 

indicator (Austin, 2002). Constant evaluation of financial indicators are required to 

determine how well the industry (in this case, the forest industry) is performing that 

would make it both more competitive in the market and in strategic planning 

(Gunasekaran et al., 2001). Spatial planning is especially important in Quebec, where 

the provincial government is responsible for forest management across a very large 

land surface (about 828,000 km2).  

“Benchmarking” is a management tool that is frequently used to evaluate performance 

and efficiency through comparisons. Benchmarking is an evaluation technique where 

practices implemented by a particular organization are compared with those that are 

used by the best representatives in the field in question, i.e., the Benchmark (Ettorchi -

Tardy et al., 2012). The objective of benchmarking is to ensure that the best practices 

are being applied throughout a process that is undergoing constant change and 
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evaluation (Pitarelli et Monnier, 2000). There are different statistical techniques to 

calculate efficiency measures and to perform benchmarking comparisons, which can 

be parametric (Chen et al., 2020) or non-parametric methods. The most frequently used 

non-parametric method is Data Envelopment Analysis, i.e., DEA. This is a low-cost 

information method (Homburg, 2001). Further, DEA is appropriate for comparisons, 

given that it extends the concept of productivity and efficiency to cases with multiple 

inputs and multiple outputs from different nature. Moreover, it is a linear programming 

method that produces a metric that can be used by management to identify factors and 

conditions that positively or negatively affect efficiency (Drolet et LeBel, 2010; LeBel 

et Stuart, 1998). DEA, allows identifying the opportunities for improvement in the 

process being evaluated and according to the resources being studied, based upon the 

performance of their peers. DEA evaluates a set of entities that are referred to as the 

“decision making units” (DMUs) that perform the same task, after which a comparison 

is made among them to find the best performing unit among those being evaluated. The 

model provides a relative efficiency by assigning a maximum value of 100% to the 

most efficient one (Limaei, 2013). Increasing efficiency must be implemented through 

the use of technologies and management decisions to reach optimum levels of the 

inputs. This a significant tool for improving policymaking (Salehirad et Sowlati, 2006). 

DEA has been used in forestry harvesting sector for performance comparisons among 

countries (Kovalčík, 2018), evaluations of harvesting and marketing activities (Limaei, 

2013), forest resources allocation (Li et al., 2017), and log yards evaluation 

(Trzcianowska et al., 2019). The most cited studies are for contractor’s team activity 

(Bonhomme et LeBel, 2003; LeBel et Stuart, 1998; Obi et Visser, 2017a, 2017b). In 

Canada, a study of the harvest sector using DEA analysis was performed at the level of 

the country by Hailu et Veeman (2003), they examined the logging industry from 1977 

to 1995, based upon technical efficiency, technical change and productivity growth 

among six Canadian provinces with forestry operations in the boreal biome. The scale 

of the analysis was broad and only road distances were evaluated as a spatial variable. 
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These distances exerted a negative effect on overall efficiency. This indicated that 

spatial variables could have an important effect on the efficiency of the harvest sector 

and that could be identified using the DEA analysis.   

In this study, we aim to measure the efficiency of forest harvesting activities based on 

a spatial organization of harvested sites, here in after DMUs, among the latitudinal 

gradient, and the financial and non spatial variables by a non-parametric benchmarking 

approach (DEA). For the purpose of this study the DMUs are define as a cluster of 

several blocks during the planning of the activity, and which can be characterized by 

spatial and managerial variables. We hypothesised that the efficiency of the northern 

harvested site will be higher because the EFM allows larger and aggregate clear-cuts 

that will produce lower operational cost and therefore a better financial result. Based 

on the results we will able to suggest potential adjustments to increase the efficiency 

of forest activities, especially in the eastern Canadian boreal forest. DEA is a relevant 

approach that could be more widely adopted by forest managers and government 

decision-makers both locally and nationally. 

 Materials and Methods  

The study area encompasses different forest compositions along a North-South 

gradient, covering the latitudes from 46°N to 51°N. With black spruce as the dominant 

conifers in the north, while different broadleaf species, including maple sugar, 

dominate in the south. The study was located in three administrative regions of Quebec: 

Abitibi-Temiscamingue, Nord-du-Quebec, and Outaouais (Figure 2.1). Within 50 

DMUs between 2015 and 2018 (11,159 ha), spatial and non-spatial variables were 

measured to describe the most representative year of activities in this territory among 

the five-year plan. Specialized plans, such as salvage logging following natural 

disturbances (fires and windthrow sites) were avoided. These 50 DMUs were chosen 
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due to the availability of initial data, ensuring that all latitudes had a minimum number 

for comparisons, DMUs smaller than 100 ha were eliminated.  

 
Figure 2.1 Localization of the DMUs in eastern Canadian boreal forest along a North-South 

gradient (46° to 50°N). Enlarged inset areas 1.a) and 1.b) respectively refer to 
dispersed DMUs and agglomerated DMUs.  

Spatial and non-spatial variables were computed for each DMU. Provincial 

government forestry agency data describing harvest volume and species volume 

potential, wood procurement costs, product values, and spatial characteristics were 

used to construct the database. Fourteen spatial variables (Table 2.1), which quantify 
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the spatial configuration and composition of each DMU, were calculated using the 

spatial pattern analysis program Fragstats version 4.2 (McGarigal, 2015). Distance to 

the closest mill also was calculated, (D'Amours et al., 2008), together with the number 

of road construction (km) that was reported by DMU, due to the importance of hauling 

costs and forest roads. Thirteen non-spatial variables included administration costs, 

harvest costs, product values, taxes, hauling costs, and the total volume that was 

harvested by species groups (conifers and broadleaf) and by treatment (total or partial 

cut) (Cost are detailed in Appendix E).  

In Figure 2.2, we show the distribution of the mean area of the patches inside the DMU 

(AREA_MN) with 13 ha, ranges from 3 ha to 35 ha, with an extreme value of 68 ha. 

Total area (Area total) averages 223 ha and varies from 20 ha to 600 ha. The number 

of patches (NP) varies from 2 to 55, with a mean of 22. The density of patches per 

hectare (PD) has a mean value of 11 patches per hectare. The landscape shape index 

(LSI) is dimensionless; if its values are higher, there is greater disaggregation; it varies 

from 2 to 14, with a mean value of 9. Nearest-neighbour (Euclidean) (ENN MN) 

distance varies from 0 to 300 m, with a mean of 89 m. For non-spatial variables, the 

mean value of total volume (Volume) per DMU that was harvested is 27,000 m3 (range: 

1,400 m3 to 67,500 m3). The percentage of conifers (% Conifers) varies from 0 to 

100%; across the DMUs, mean conifer cover is 67%. The percentage of clear-cut area 

(% Clear-cut) also varies from 0 to 100% based upon overall area per DMU, with a 

mean value of 77%. Taxes average $7/m3 (range: $3/m3 - $14/m3). Product values of 

the wood on the DMUs average $64.4/m3 (range: $57.9/m3 - $79.9/m3).  
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Table 2.1 Description of the spatial and non-spatial variables for the study area. 

 Variables  Description 
Inputs   
 Spatial  CODE  
 area 

Indices * 
AREA_MN 
Area Total 
NP 
PD 
LPI (X5) 

Mean area of harvest patches (ha) by DMU. 
Total area of the DMU (ha).  
Number of patches. 
The number of patches in 100 ha; defined as patch density. 
Largest patch in the DMUs, expressed as a percentage and measuring 
dominance. 

 Shape 
index* 

LSI 
SHAPE_MN 

Landscape shape index, a measure of complexity and dispersion in the 
landscape. 
Average shape index of patches; measures complexity of patch shape 
compared to that of a square 

 Indices of 
juxtaposit
io n and 
dispersion 
* 

PROX_CV 
(X4) 
ENN_MN 
CONNEC 
CONTIG_MN 
MESH 
SPLIT 

Coefficient of variation of the proximity index, measures distance between 
patches; if the DMUs are heterogeneous, the variation is high.  
Nearest-neighbour mean (Euclidean) distance; shortest straight-line distance 
between patches. 
Connectivity index, the number of functional unions among patches as a 
percentage; 0% when it is 1 patch and 100% when all patches are connected. 
Mean contiguity index, average of spatial contiguity of cells in patches.  
Mesh index, area of patches to reach the split level, related to index below 
(ha) 
Split index is the number of patches with a constant area that represent the 
level of separation in the landscape. 
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 Variables  Description 
 Distance 

to mill 
Distance to 
mill (X3) 

Distance (km) between the harvest block and mill that consumes most of the 
wood in the zone.  

 Construct
ed roads 

Constructed 
roads (X2) 

Total Road construction kilometres by DMUs.  

 Non-
Spatial 

  

 Bioclimat
ic domain 

Domain The location of the DMUs in the ecological classification reference system of 
Quebec 

 Volume Volume Total volume of harvested wood in cubic metres (m3) 
 Type of 

harvest 
practice 

% Clear-cut Proportion of Clear-cut by DMUs as a percentage 

 Stand 
type 

% Conifers Type of dominant species in the DMUs (coniferous and broadleaf) in 
percentage 

 Wood 
volume 
per 
hectare 
harvest 

Wood volume 
per hectare 
harvest (X1) 

Cubic metres of wood harvested by hectare in each DMU (average) (m3/ha) 

 Wood 
value 

Product value Wood product value presented in the DMUs ($/m3) 

 Taxes Taxes Stumpage cost for public forests ($/m3) 
 Harvested 

cost 
Harvest cost Cost of cubic metre by harvesting activities ($/m3) 

 Cost of 
roads 

Roads cost Construction and maintenance cost of roads used to extract the wood during 
a period ($/m3) 

 Cost of 
transport 

Transportation 
cost 

Hauling cost by cubic metre ($/m3) 

 Profits Profits Financial expected advantage after reducing total wood procurement cost of 
wood’s values ($/m3) 

Output   
 Total 

wood 
procurem
ent cost 

Total Cost Sum of harvest cost, other cost, taxes, cost of roads and cost of transport to 
the mill by DMU ($/m3) 

 Transfor
med total 
wood 
procurem
ent cost  

Y Transformed of the total wood procurement cost transformed was a 
subtraction operation 100 $ - total wood procurement cost ($/m3). 

Note: * more details are available in McGarigal (2015). 
  

Table 2.1 Continuation 
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Figure 2.2 Box plots of variables for the 50 DMUs (for more details, see Table 2.1). The thick 

line represent the median (50th percentile). The square represents the data among 
the 25th and 75th percentile presenting the 50% of data are located in this range. 
The extended lines are the variability outside the upper and lower percentiles. The 
points are extreme values. The example from figure 2.1 is presented as the red 
triangle showing the dispersed DMU (Figure 1a) and the green square the 
agglomerated DMU (Figure 1 b).  



27 

 
  

2.3.1 DEA analysis 

Two measures are available in the DEA. One presented by Charnes, Cooper and 

Rhodes (1978) that assume a constant return to scale (CRS); for each unit increase in 

the inputs, a proportional increase in the outputs is generated. This measure is called 

aggregate or overall efficiency, which represents the ratio of potential work and actual 

work that is integrated into the process of wood procurement activities (Kleiner et 

Powell, 2017). The second is when variable return to scale (VRS) is assumed, which 

means that the response of the outputs could be less than proportional (decreasing 

returns of scale) or greater than proportional (increasing returns of scale) (Boussofiane 

et al., 1991). This measure is called pure technical efficiency, as defined by Banker, 

Charnes and Cooper (1984), as the ability of a DMU to utilize its limited inputs to 

produce the desired outputs under the influence of technology and equipment. The ratio 

between these two efficiencies is the scale efficiency, which reflects the inefficiency 

due to the DMU scale of operations and size, relative unit size, or input transformations 

that are ineffective with respect to attaining the desired outputs (Salehirad et Sowlati, 

2005; Trzcianowska et al., 2019). 

An output-oriented DEA model was used in this study to measure the current relative 

efficiency level. Using available inputs, this efficiency identifies which DMU can 

maximize the output; in other words, which DMU can achieve a better financial 

outcome using current spatial organization. The free version of the spreadsheet-based 

software DEASOLVER LV 8.01 from Saitech Inc available in http://www.saitech-

inc.com, was used for the efficiency assessments. This software also provides input 

targets for inefficient DMUs, represented as slacks of a unit when have input excess. 

Slacks are related to a unit’s capacity to utilize inputs in optimal proportions. 

We examined homogeneity within DMUs to determine whether the following DEA 

assumptions were respected: (1) DMUs are engaged in the same process; (2) the same 
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inputs and outputs are applied to each DMU; and (3) DMUs are operating under the 

same conditions (Haas et Murphy, 2003). The first and second conditions are satisfied, 

but the third is not, given that the DMUs of the sample are from different forests. To 

compensate for non-homogeneity among DMUs, we employ a method that was 

proposed by Sexton, Sleeper and Taggart (1994). This method incorporates regional 

characteristics that measure operating conditions external to the process, such as 

percentage conifers or taxes, which are expected to account for efficiency differences 

that are not attributable to management. The SST method consists of stepwise, multiple 

regression on the initial efficiency scores using variables that describe the regional 

characteristics. Variable outputs are then adjusted using the ratio between the initial 

values against the predicted, after which a second DEA is run to produce a new set of 

efficiency scores. These final scores focus upon the relationship between non-

homogeneity and true efficiency (Haas et Murphy, 2003; Sexton et al., 1994). 

2.3.2  Selection of DEA Variables  

Selection of input and output variables is critical because they are constrained by the 

availability and accuracy of data, the relative independence and correlation of the 

inputs and outputs, the latter relationship’s practical meaning, and fulfilling the 

objective of the study (Yan, 2019). A Pearson correlation matrix (r) was constructed to 

eliminate redundant variables. Inputs that were strongly correlated with the output 

variable were preferable due to their significant influence (Sundberg et Silversides, 

1988); linear regression was performed to evaluate the relationships between the inputs 

and outputs. 

Our selected output variable total wood procurement cost was a transformed, using a 

subtraction operation (100 $ - total wood procurement cost). By managing the variable 

in this way, we have a variable with positive values. DMUs with lower wood 

procurement cost value will have higher positive values of this transformed variable. 
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Reducing costs is one of several important objectives of the forest industry, and it is 

also a common indicator that is often used as a performance measure that leads to 

improving profits (Hailu et Veeman, 2003). DEA evaluations should include the factors 

that globally characterize the production process; in this case, we focus on how spatial 

organization of the DMU affect the efficiency of financial forest activity. The variables 

that were included in this analysis reflect aspects related to spatial organization and 

wood procurement activities. We evaluate the quantity of extracted wood from each 

DMU and spatial distributions among patches within the DMU, which are reflected in 

associated road construction and the distance to the mill.  

From the Pearson correlation matrix, we selected the variables that exhibited moderate 

correlations (r > 0.3) between the input and output variables (Damanik, 2017; Kao et 

al., 1993). These variables were; wood volume per hectare, constructed roads, distance, 

LPI, and PROX CV (Table 2.2) The variables wood volume per hectare (X1) and 

transformed total wood procurement cost (Y) show the strongest correlation (r = 0.53, 

p = 0.0001), if the DMUs have a greater wood volume harvest per hectare, then a higher 

transformed total wood procurement cost would result. Distance (X2) and constructed 

roads (X3) are moderate negatively correlated with transformed total wood 

procurement costs, greater distance and higher road construction costs create a lower 

value of transformed total wood procurement costs. PROX_CV (X4) and LPI (X5) also 

exhibit a moderate negative relationship with the transformed total wood procurement 

costs. The higher the values of PROX CV, the greater the dispersion between patches 

and the lower transformed total wood procurement costs will be. Based upon multiple 

regression, the selected variables explain 58% of the transformed total wood 

procurement costs (Adjusted R2 = 0.58, p < 0.05). The number of final variables that 

were required to run the model follows recommendations, where the number of DMUs 

should be at least twice the number of inputs and outputs (Kao et al., 1993). 
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Table 2.2 Pearson correlation coefficients (p-values) for inputs (X1 = Wood volume 
per hectare [m3/ha], X2 = distance [km], X3 = constructed roads [km], X4 = 
PROX_CV [%], X5 = LPI [%]) and outputs Y = Transformed total wood 
procurement cost ($/m3) among selected DEA variables (see Table 2.1 for 
details). 

  X1 X2 X3 X4 X5 Y1 
X1 1      
X2 0.12 (0.417) 1     
X3 0.05 (0.721) 0.06 (0.695) 1    
X4 0.10 (0.493) 0.11 (0.447) 0.42 (0.0025) 1   
X5 -0.31 (0.029) 0.01 (0.9305) -0.35 (0.012) -0.46 (0.0007) 1  
Y 0.53 

(0.00001) 
-0.37 

(0.0014) -0.26 (0.066) -0.17 (0.232) -0.28 (0.048) 1 

Note: Correlations significant at p = 0.05 are shown in boldface type.  

The distributions of the selected variables for the DEA model are in  

Figure 2.3 wood volume per hectare (X1) ranges from 24 m3/ha for partial cutting to 

200 m3/ha from total clear-cut, with an average of 124 m3. Distance (X2) ranges from 

42 km to 283 km, the highest value belongs to DMU in the north of the study area. 

Constructed roads (X3) range from 0 km to 17.3 km, with an average of 6 km. The 

coefficient of variation for the proximity index (X4) ranges from 0% to 246%, with an 

average of 127%; lower values represent connected patches. LPI (large patch index, 

X5) varies from 2% to 87%, with a mean value of 29%. The spatial variables were 

evaluated with the Anova test to verify if they presented differences between latitudes. 

The results presented in Table 2.3, show that there are no significant differences in 

these variables. 
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Figure 2.3 Boxplots of selected input variables: X1 = Wood volume per hectare (m3/ha), X2 = 

distance (km), X3 = constructed roads (km), X4 = PROX_CV (%), X5 = LPI (%), 

and output total wood procurement cost  (Y) used in the data envelopment analysis 

(DEA). The points show the values from the DMU examples of dispersed DMU 

(Figure 1a), which are presented as red triangles  and agglomerated DMUs (Figure 

1b), which are as green squares. Boxplots follow the description detailed in Figure 

2.2. 

Table 2.3. P values from ANOVA test for the spatial variables among the location of 
the different latitude evaluated. 

Variable  F value P value 
LPI 0.759 0.532 
PROX_CV 1.295 0.287 
distance to mill 0.622 0.605 
constructed roads (km) 1.866 0.149 
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2.3.3  Compensating for Non-Homogeneity 

Before applying the SST method to compensate for non-homogeneity in the DMUs, 

their efficiency scores according to their latitude range of locations divided from 46°- 

47°, 47°- 48°, 48°- 49° and 49° - 51° N, was tested with the Kruskal-Wallis test, a non-

parametric rank-based alternative to ANOVA (Vargha et Delaney, 1998). The 

difference among the four groups was significant (p = 0.025) for aggregate efficiency 

(CCR), with a lower value in the north (51° to 49°N) in contrast with the other tree 

located in the south (from 49° to 46°N). For pure technical efficiency (BCC model), 

there were no differences among DMUs that were located at different latitudes. 

Differences in scale efficiency were significant (p =0.0004) and followed the same 

trend as those for aggregate efficiency.  

The aggregate and scale efficiency values were adjusted to compensate for the non-

homogeneity prior to implementing the SST method. For adjusting the DMUs to the 

same conditions, environment variables that describe regional characteristics external 

to the process were used to explain the differences. From our initial database, the 

variables that differentiate the characteristics between the forests were percentage 

clear-cut, taxes, and percentage conifers that present significant differences tested with 

Kruskal-Wallis ANOVA among DMUs latitudinal locations. The percentage of 

conifers, percentage of clear-cuts, and taxes show a gradient decreasing from north to 

south (Figure 2.4). After testing several models using these three variables, the best 

model that was used to correct the score for the aggregate efficiency (CCR) was a 

model using the percentage of harvested conifers that depended upon the availability 

of these species in the territory and a location variable (latitude), which explains 19% 

of the efficiency score (p = 0.02). The two other variables were strongly correlated with 

the percentage of conifers. A greater percentage of conifers permits more clear-cutting 

(r = 0.66, p < 0.0001) and taxes also depend upon the quantity of conifers, species that 

are more greatly desired by industry and, hence, more valuable (r = 0.62, p < 0.0001) 
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(Cayford, 1990). Since the scale efficiency is the ratio of the aggregate efficiency and 

the pure technique, it was recalculated with the corrected aggregate efficiency values. 

   

 

Figure 2.4. Boxplots of variables (% conifers, % clear-cut and taxes $/m3) used in the 
adjustment of the data envelopment analysis (DEA) by latitude. Dots present the 
mean value. Boxplots follow the description detailed in Figure 2.2. 

Results

Results presented in Figure 2.5 summarize the mean values for the aggregate, pure 

technical and scale efficiencies that were calculated for the 50 DMUs in eastern 

Canada. They reflect efficiencies of the DMUs under the same operational conditions 

after integration of the compensating for Non-Homogeneity.  
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The aggregate or overall efficiency (CCR) has an average (± SD) of 72% ± 23% 

(median: 69%). Thirteen of the 50 (26%) DMUs are complete efficient (100%), while 

inefficient DMUs have values of ranging between 97% and 30%.  

For pure technical efficiency (BCC), the mean (± SD) is 89% ± 9% (median, 89%); 14 

sites (28%) are considered efficient. This efficiency measures the extent to which 

DMUs can decrease the inputs to produce the desired transformed total wood 

procurement cost, but having taken into consideration the equipment and technology 

that are used in the process. Scale efficiency represents the level of efficiency that is 

only due to the scale of operations, i.e., the relationship between aggregate and pure 

technical efficiency. The value of scale efficiency is 79%, with a standard deviation of 

19% (median 78%); 36 of 50 DMUs are operating below optimal scales. This means 

that the source of inefficiency on the size of operations is the ability to transform the 

current inputs (spatial configuration of the DMUs) effectively to a lower transformed 

total wood procurement cost.  

   
Figure 2.5 Efficiency scores of the DMUs that were examined. Black dots present the mean 

value. Boxplots follow the description detailed in Figure 2.2. 
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When we differentiate efficiency values by latitudinal location, they display a tendency 

of lower values for the DMUs that are in the northern area with higher values towards 

the DMUs located in the southern forests. In  

, we present the final values of efficiency. The values for pure technical efficiency 

(BCC) do not differ among locations; they vary from 88% to 92%, with more variation 

for DMUs that are located in the south. After compensating for non-homogeneity in 

aggregate efficiency (CCR), the mean value for aggregate efficiency in the DMUs that 

are located at latitudes above 49°N is 60% (± 25%) compared to the rest of DMUs 

below latitude 49°N where values range between 74% and 75%. Variation is greater 

for DMUs that are located between 47°N and 48°N (± 28 %), where values of efficiency 

have a greater range (100% to 29%). Finally, for scale efficiency, the value for DMUs 

that are above 49°N has a mean value of 68% compared to DMUs below 49°N, where 

the values are around 80%. Figure 2.6 presents average target reductions for the 

complete set of DMUs, based upon inefficient DMUs. Targets were established using 

the BCC model given that it best expresses the use of technology and managerial tools. 

It was estimated that the variable distance to the mill (X2) it's more efficient with lower 

values, 29% less than average, which equates to 41 km (range: 2 km - 243 km). Our 

results suggest that a 37% reduction of the kilometers of constructed roads (X3) would 

allow an optimal efficiency, equivalent to an average decrease of 2.8 km (range: 1 km 

- 13 km). The target reduction level for PROX_CV (X4) is a decrease of 21%, which 

means a final value of 34% for the index (range of diminution: 0.4% - 132%). For LPI, 

the target is 3% on average for dominance by a bigger patch (range: 0.2% - 16%). 
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Figure 2.6 Target projections reductions for each input variable according to DEA analysis. 
Black dots present the mean value. Boxplots follow the description detailed in 
Figure 2.2.  

According to DEA results, constant returns of scale (CRS) are prevalent, with 41 

DMUs operating below this scale, this represent there is not need to increase or lower 

the size and quantity of inputs used in the process. Three DMUs were under decreasing 

returns of scale; the ability to manage inputs decreases if the quantity of inputs 

increases. Six DMUs were observed under increasing returns to scale, where output 

could be maintained at same level by increasing the scale of operations; these do not 

necessarily refer to the size of inputs, but to the use of more inputs (DEA model output-

oriented). 

 Discussion  

The results show high values of efficiency on average in the DMUs studied, the 

harvested sites in eastern Canada, the efficiency expressed in how well the current the 
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spatial configuration allow them to maximize the financial outcome in the context of 

ecosystem management rules. The pure technical efficiency (BCC) have an average of 

89% and a low degree of variation (9%). Because this efficiency describes the intrinsic 

technology of the process, the high value among all the latitudinal location studied 

shows the advantages of the use of technology and management strategies, which help 

reduce differences in the territory.  The overall or aggregate efficiency (CCR) was of 

72% (mean value), which is considered a good value. However, this efficiency has 

greater variation (±23) and the 74% of the DMUs (37/50) are not able to use the 

available inputs in transformed total wood procurement in a cost-efficient manner. The 

reason of that forest industry in eastern Canada creates a year-round balance for 

planning for harvest sites, where access to remote sites is balanced by nearby sites to 

compensate for the disadvantages and extra costs of the former, and the availability of 

mature stands limits the possibility to operate at high efficiency everywhere. From our 

results, we can see both efficient and inefficient sites across the gradient of sites. 

There was no significant difference in spatial variables that were evaluated of the 

different types of DMUs that were examined in the study (Table 2.3). Harvesting areas 

do not exhibit a single pattern that depended upon the latitude and ecosystem in which 

they are found, as have been suggested by EFM. We found areas with concentrated 

patches as dispersed along the north-south gradient, as also small and bigger areas. 

There is no tendency for areas harvested at any specific latitude to share a single pattern 

of spatial organization. 

The spatial variables have great importance in determining the efficiency of forest 

harvesting at lower costs. Despite the great range of variables that were considered, 

those that were related to roads and to the dispersion of the patches were of greatest 

importance. Roads represent almost 40% of procurement costs and are essential for 

providing site access for timber harvesting (Baskent, Emin Z. et Keles, 2005; 

D'Amours et al., 2008). From our data, road costs stem from construction and distance 
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to the mill; indeed, these costs are the major components of the wood procurement cost. 

This was corroborated by LeBel et Stuart (1998), who showed that hauling distance 

was one of the factors that explained efficiency values for contractors in the United 

States. Road construction (km) depends directly upon the distribution and number of 

patches. We obtained a highly positive correlation (r = 0.57, p < 0.0001) between the 

number of patches and the kilometers of constructed roads within the harvested site, 

and also moderate with PROX_CV and LPI (Table 2.2). Efficiency is affected by road 

construction (km) showing a direct relationship with cost (Appendices 2 and 3). 

Dispersion of the patches is represented by the index PROX_CV; large values mean 

greater variation in the distances between patches, thereby making the areas more 

disperse. Dispersion has a clear relationship with the DMUs that have the lowest 

efficiency values (Appendices 2 and 3). Evidence that aggregating harvesting areas is 

recognized as a means of reducing the costs of road construction and maintenance 

(Mathey et al., 2009; Öhman et Eriksson, 2010). The large patch index represents the 

percentage cover of the large patch that means number patches. This variable shows a 

positive relationship with wood procurement costs; the bigger, the LPI the more 

efficient are the DMUs. As expected, larger areas would translate to lower wood 

procurement cost (Appendices 2 and 3). In Figure 2.1, we present an example of the 

two extreme cases of DMUs. DMU1 (a) has the lowest efficiency values, with an 

aggregate efficiency of 48% and pure technical efficiency of 68%. The variables that 

describe it were the number of 10 km lengths of constructed roads, the distance to the 

mill is 163 km, the LPI is 24%, and the PROX_CV index is 179. DMU 2 (b) has 100% 

for both efficiencies, with a value of 2 km length of constructed roads, the distance to 

the mill is 60 km, the LPI is 70%, and the PROX_CV index is 31.3.  

About 19% of aggregate or overall efficiency is explained in by the variable percentage 

Conifers when we performed the compensation of non-homogeneity with the 

regression of SST method. The variables taxes, % of clear-cut and % of conifers 

express the differences between latitudes and help to explain the efficiency values that 
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have been reported. Percentage Conifers that were harvested depend upon the dominant 

forest type and latitude, with coniferous dominating north, broadleaf dominated the 

south and mixed wood in between. Taxes change depending upon location according 

to regulations set out by the Province of Quebec, where the value depends upon the 

level of infrastructure in the zone and the potential species to be harvested, with higher 

values in areas with more conifers. Further, the percentage of clear-cut is predominant 

in the north where conifers are dominant, and where the application of partial cuts is 

not mandatory is optional (Gouvernement Québec, 2017).  

When we examined efficiencies according to different latitudes, there is a tendency for 

higher efficiency values in the south forest. Yet, it should be noted that efficient DMUs 

occurred in all forest types across the range of latitudes. While mean efficiency is 

higher at lower latitudes, these values were accompanied by a higher degree of 

variation (± SD range: 22% – 28%). Thus, we can find inefficient DMUs among the 

efficient units in these areas, for example disperse DMU (Figure 2.1a) show a lower 

value of efficiency of the complete dataset and is found between 47o and 48°N. 

Southern areas may be more efficient for several reasons. First, the wood extracted 

have greater commercial value and larger diameters (third forestry inventory) 

compared to the latter cuts, which is directly related to the % of conifers at that latitude. 

In the North, the activity is based on extracting greater quantities of wood, but the 

quality of the wood is lower from trees with smaller diameters (average DBH: 16 cm; 

(Pamerleau-Couture et al., 2015) compared to tree further south (average DBH: 28 cm; 

(Angers et al., 2005). Second, the road network is more developed in the south resulting 

in a smaller number of roads being built; northern areas often must open new roads. 

Also, distances to the mill tend to be shorter in the south, which makes them more 

efficient in producing wood with a lower cost. The issues of the volume ratio of wood 

harvested per km of road, which affects the profitability of opening and maintaining 

roads (Gharbi, 2014), is lower in this area. Finally, higher taxes in northern areas also 

give a disadvantage compare to the lower taxes in the southern areas.  
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The advantage of measuring efficiency is the capability of identifying opportunities for 

improvements. Input projections are calculated by the data envelopment analysis 

determine the reduction targets of DMUs with an excess inputs, thereby allowing them 

to reach efficiency based upon the peers being evaluated (DMU). Because we calculate 

two types of efficiency, the reduction of targets using aggregate efficiency (CCR) 

evaluates the process as a whole, which in some cases can reach 77% reduction. Yet, 

reduction targets that are based on CCR are often a result of scale inefficiency. 

Improvements that can be achieved through managerial means are better presented by 

the targets in the BCC model (Trzcianowska et al., 2019). The goal and strategy of the 

forest industry is identifying the possible variables that could be important for 

improving the efficiency of producing wood at a lower the cost (Hansen et al., 2006). 

From Figure 2.6, we can observe the improvements projected by the analysis of the 

variables. The main variable to improve is road construction (km), efforts need to be 

made in reducing 37% fewer kilometers on average. Forestry roads are closely 

monitored and controlled in forest planning. They are thus one of the main topics of 

study facing the forest industry (FP innovations, 2020). Reduction of constructed roads 

can be helped by reducing patch dispersion (PROX_CV), which has been targeted at -

21%, together with the number of kilometres within the harvested sites. Distance to the 

mill is also an important factor to be reduced because it directly influences the cost per 

kilometre of road to maintain and the cost of transport, this could be a point of 

improvement as previously mentioned if there is greater coordination among 

contractors sharing the same territory and considering a short and long term planning 

will lower the wood procurement cost (Béland et al., 2009).  Both targets could be 

addressed from the perspective of the technology if it is impossible to reduce the 

distance or the number of kilometres to build, together with options such as vehicles 

that more fuel-efficient, greater capacity of trucks, and improvement in the materials 

and load capacity of roads.   
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Evidence regarding the nature of returns to scale in the logging industry is mixed. Here, 

we find that our DMUs worked under a constant return of scale (CRS), as has been 

mentioned by Boussofiane et al. (1991). If the unit already operates in the CRS region, 

it usually is not a good idea to change its operating scale, given this alteration would 

decrease scale efficiency. Increasing returns to scale in the logging sector have been 

reported by practicing foresters in a survey of contractors in New Zealand and the 

United States by Stuart et al. (2010). Our study focusses upon the spatial configuration 

of the harvested sites and not on the contractors, we presented a more general view of 

the process. This may explain the disparity between our results and reports in the 

literature.  

The empirical results that are presented in this paper are an estimate of the efficiency 

of the harvest in Quebec according to the spatial organization and based on average 

and official values provided by government agencies. By no means can claim to be 

representative of the forest harvesting industry in Quebec and Canada. Some 

limitations of the study were the quality of available data that could be considered as a 

simplification of reality, and may not represent the complete complexity of the regions, 

because some information may have been excluded from the analysis. We cannot 

extrapolate to regions under different conditions, since the data cover only five 

management units of a single harvest year. The economic values that have been 

estimated here may not express reality because the harvested sites offered by the 

minister are often treating in different managerial ways and not necessarily follow the 

initial limits and the profitability may be calculated on another scale, but nevertheless 

the exercise provides some insight into the advantages of this type of comparative study 

in forestry. The DEA analysis allowed us to include different types of variables and to 

easily understand efficiency, and through the measure of targets projections, how to 

improve the performance.  



42 

 
  

In conclusion, the forest harvest evaluated at the scale of the harvested sites 

demonstrates the importance of spatial variables for determining efficiency values, 

given that they are mainly related to the dispersion of the patches, the roads that have 

been build, and distance of transport from site to mill. Also, we can conclude that 

harvested sites do not represent a single pattern that depends upon the latitude and 

forest composition in which they are found, as has been suggested by EFM directives 

that are currently applied in eastern Canada. 

 



CHAPTER III 

GENERAL CONCLUSION 

The results presented in this study show the relative efficiency of 50 harvested sites in 

eastern Canada measured based on the wood procurement cost and focused on spatial 

characteristics. The spatial variables are kilometres of roads that have been built, 

distance to the mill, a dispersion index (PROX_CV), and a dominance index (LPI). 

Aggregate efficiency of harvested sites is 72% on average (± 23%). which represents 

the overall process. For pure technical efficiency, the value is 89% (± 9%) and it 

considers the technology and machinery that are used in the process. The average scale 

efficiency of 79% (± 19%) shows that the DMUs have margin to increase their 

efficiency especially if the size of the operations increases. The level of efficiency for 

the region is high and is like previous studies that have been conducted in the region. 

Despite the wide variety of initial variables that available for the analysis, our results 

confirmed that variables related to forest roads and dispersion of the patches were the 

most important ones when harvesting at a low wood procurement cost.  

Our initial hypothesis posited that northern areas would be more efficient because, 

following the rules of EFM, the areas should be larger and more agglomerated. Which 

would result in less road construction and shorter distances traveled within the 

harvested site, generating lower costs of timber extraction. Also, the dominant 

treatment in that area is clear-cut, which is less costly than partial cut. The results show 

that there is a great variety of spatial distributions and sizes of the patches to be 

harvested and that these do not belong to a region or forest type in specific. There are 

harvested sites that are dispersed and clustered across the entire North-South gradient 

as well as sites with large and small patch sizes. Therefore, it cannot be concluded from 

the spatial organization data that there is one region that is more efficient than another. 

This study shows that the southern areas tend to have better values in terms of both 
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efficiencies; after homogenization of aggregate efficiency. The differences among 

harvest site latitudes were not significant, but a tendency for lower values was retained 

in the north. Aggregate efficiency is 60% for DMU's that are located above 49°N and 

for DMUs below 49°N latitude, values vary between 74 and 75%. For pure technical 

efficiency, values across locations vary from 88 to 92%. The scale efficiency follows 

the trend of aggregate efficiency with a lower value for DMUs located above 49°N, 

with a value of 68%. Compared to DMUs below this latitude, with a value of around 

80%. Several reasons may explain why southern areas are more efficient. First, they 

extract wood with greater commercial value and of larger diameters, which is inversely 

related to the conifer percentage of the forest type, these forests have a lower proportion 

of conifers and the species that dominate are the broadleaved characterized for greater 

growth in diameters and the wood has more commercial value because have several 

uses as furniture. In the north, the activity is based upon extracting greater quantities 

of wood, but the quality of the wood comes from trees with smaller diameters. Second, 

the road network is more developed in the south, generating a smaller number of roads 

to be built, while northern areas often must open new roads. Also, the distances to the 

mill tend to be shorter in the south latitudes, which makes them more efficient in 

producing wood at a lower cost. Finally, higher taxes in the northern areas prove to be 

a disadvantage compared to southern areas.  

Based upon pure technical efficiency, which indicates the improvements that can be 

achieved through administrative means and the use of technology, the variables that 

would have to be reduced to achieve efficiency are focused on the spatial variables. 

The analysis suggests that the efficiency of the forest operations will increase reducing 

the construction of the roads (optimal target -37%), the dispersion of the forest patches 

and the distance to the mill. Based upon these target reductions, forest managers can 

focus on strategies and decisions to decrease these variables, or technological measures 

that can counteract the negative consequences of not being able to change these 

variables, as has been done in recent years. For example, more durable forest routes, 
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improvement in truck capacity and improvement in the form of transportation would 

be such solutions.  

Comparative studies of benchmarking with the non-parametric methods of DEA 

analysis demonstrate their usefulness when carrying out efficiency studies, as they 

allow us to compare variables of different types and understand the relationships among 

them. The importance of the quality of the data to be used and the definition of the 

variables that are used should be highlighted since they affect the results which are 

relative to the sample being studied. 

 



APPENDICES 

Appendix A Efficiency values for each Decision making unit  

DMU's CCR BCC Scale 
efficiency DMU's CCR BCC Scale 

efficiency 
ARNTFIELD 0.56 0.82 0.68 HUBBARD 0.77 0.92 0.83 

ARTHUR 1.00 1.00 1.00 JOS 0.65 1.00 0.65 

BARTON 0.99 1.00 0.99 KALM_SE 1.00 1.00 1.00 

BASSERODE 0.30 0.62 0.48 KESSIK_NORD 0.47 0.79 0.59 

Beaumesnil 1.00 1.00 1.00 LA PAUSE 0.54 0.82 0.66 

BIGAT-EST 0.90 1.00 0.90 LA PAUSE EST 1.00 1.00 1.00 

Bigniba-Nord 1.00 1.00 1.00 LA PAUSE 
NORD 0.79 0.89 0.89 

BLONDEAU 1.00 1.00 1.00 LA PAUSE 
OUEST 1.00 1.00 1.00 

BOISSONAULT 0.43 0.89 0.49 LATULIPE 0.41 0.85 0.48 

CAVELIER 0.36 0.80 0.45 MILLET 0.37 0.78 0.48 

CHERRIER_NE 0.49 0.82 0.60 MINOMING 0.55 0.70 0.79 

COUPAL 0.69 0.85 0.81 MONTBRUN-
EST 0.61 0.88 0.70 

CRAMOLET 0.56 0.91 0.61 PINE 0.96 0.98 0.98 

CRAMOLET_SO 1.00 0.89 1.12 POIRIER 0.87 0.95 0.92 

DASSERAT 0.52 0.85 0.62 POMBERT 1.00 1.00 1.00 

DEGUIRE 1.00 1.00 1.00 Poularies Nord 0.93 1.00 0.93 

Desjardins SO 0.53 0.88 0.60 RAZILLY 0.71 0.91 0.78 

FLAVRIAN 1.00 1.00 1.00 SOUFFLOT 1.00 0.97 1.03 

FRANQUET_NE 0.41 0.84 0.49 SQUARE 0.59 0.78 0.76 

FRANQUET_NO 0.97 0.96 1.01 TELFER 0.88 1.00 0.88 

GIBSON 1.00 1.00 1.00 TRUDEL 0.48 0.73 0.66 

GIRARD 0.73 0.89 0.82 VEZZA 0.44 0.85 0.52 

Grevet 0.44 0.77 0.57 vezza_bmmb 0.52 0.85 0.61 

HOLMES_SUD 0.70 0.91 0.77 VICTOR 0.66 0.88 0.76 

HOWARD 0.64 0.89 0.71 Villars Sud 0.48 0.70 0.69 
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Appendix B CCR efficiency trends for each input variable. 
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Appendix C BCC efficiency trends for each input variable. 
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Appendix D Aggregate, pure technical and scale efficiency values by latitude (degres). 
Black dots present the mean value. Boxplots follow the description detailed in Figure 
2.2. 
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Appendix E Information use for the calculation of wood procurement cost of the 
harvest activity source forest minister (MFFP) per cubic meter:   
1. Harvest cost by method 2. other cost involve in the harvest activity by tarif zone. 3. 
Products value per cubic meter type of product and per species. 4. Taxes by tarif zone, 
quality and species. 5. cost of roads and cost of transport to the mill by DMU ($/m3). 

1. Harvest ($/m3) 

m3 
Stem 

Partial cut 
broadleaves 

low removal  

Partial cut 
broadleaves 

high removal  

Partial cut 
conifers low 

removal  

Partial cut 
conifers high 

removal  
CPRS 

0.05 50.96 $ 45.73 $ 36.78 $ 32.51 $ 28.99 $ 
0.1 42.72 $ 38.77 $ 30.05 $ 26.82 $ 24.17 $ 
0.15 38.87 $ 35.52 $ 26.91 $ 24.16 $ 21.91 $ 
0.2 36.50 $ 33.51 $ 24.97 $ 22.53 $ 20.52 $ 
0.25 34.84 $ 32.11 $ 23.61 $ 21.38 $ 19.55 $ 
0.3 33.59 $ 31.06 $ 22.59 $ 20.52 $ 18.82 $ 
0.35 32.61 $ 30.23 $ 21.79 $ 19.84 $ 18.24 $ 

 

2. Other costs 

Tarif 
zone 

transport 
machine 
($/m3) 

Lodging 
($/m3) 

Measure  
($/m3) 

admin 
($/m3) 

Loading 
($/m3) 

Unloading  
($/m3) 

755 0.98 0.67 0.77 4.55 1.89 1.34 
852 0.98 1.21 0.77 4.55 1.89 1.34 
853 0.98 1.25 0.77 4.55 1.89 1.34 
855 0.98 0.06 0.77 4.55 1.89 1.34 
856 0.98 1.17 0.77 4.55 1.89 1.34 
857 0.98 0.88 0.77 4.55 1.89 1.34 
858 0.98 0.33 0.77 4.55 1.89 1.34 
859 0.98 0.27 0.77 4.55 1.89 1.34 
868 0.98 1.13 0.77 4.55 1.89 1.34 
871 0.98 0.56 0.77 4.55 1.89 1.34 
886 0.98 0.79 0.77 4.55 1.89 1.34 
887 0.98 0.88 0.77 4.55 1.89 1.34 
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3. Products value by Species ($/m3) 

CODE  BOJ BOP CHN ER PE 

Name other 
broadleaves 

Betulla 
alleghaniensis 

Betula 
papyfera Quercus Acer Populus 

Broadleaf 
veneer $ 172.9 $ 192.7 $ 160.4 $ 204.8  $ 105.9 

Pasta $ 61.7 $ 59.1 $ 59.1 $ 65.8 $ 45.5 $ 42.5 
Poles       

Sawing $ 103.0 $ 97.5 $ 84.0 $ 107.0 $ 54.4 $ 75.6 
clapboard       

Panels $ 61.7 $ 59.1 $ 59.1 $ 65.8 $ 45.5 $ 42.5 
CODE PIB PIR PRU THO Sawing SEPM 

Scientific 
name 

Pinus 
strobus Pinus resinosa Tsuga  

canadensis 
Thuja 

occidnetalis 

Ables balsamea, 
Picea sp, Pinus sp 

and Larix sp 

Coniferous 
veneer 

    DBH 18 

Pasta $ 42.0 $ 42.0 $ 38.4 $ 31.2 $ 69.7 
Poles  $ 138.0   DBH 16 

Sawing $ 52.2 $ 51.9 $ 62.3 $ 74.0 $ 64.4 
clapboard    $ 74.3 DBH 14 

Panels $ 32.1 $ 38.0   $ 64.4 
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4. Taxes ($/m3) 

 Tarif zone  
 2016 2018 

Sp Quality 755 852 853 855 856 857 858 859 868 871 886 887 

AUF B 10.4 0.4 0.4 0.4 7.8 8.1 8.6 8.3 8.0 9.4 8.7 8.7 

 C 6.5 0.8 0.8 0.8 1.1 1.1 1.1 1.1 1.1 1.1 0.9 1.4 

 D 2.0 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 

BOJ A 48.2 27.9 27.9 35.1 31.4 31.4 31.4 31.4 31.4 31.4 27.9 27.9 

 B 18.0 13.9 13.9 13.9 12.2 13.1 13.5 13.2 12.6 13.4 13.9 13.9 

 C 9.9 3.0 3.5 3.3 1.7 1.7 1.7 1.7 1.7 1.7 1.4 2.3 

BOP  A 39.4 28.1 28.6 28.9 29.3 29.9 30.1 29.3 27.8 30.3 26.7 28.3 

 B 9.1 6.7 6.7 6.7 5.6 6.2 6.4 6.2 4.1 6.5 4.8 6.5 

 C 2.0 0.7 0.7 0.7 0.5 0.5 0.5 0.5 0.5 0.5 0.7 0.7 

CHN A 55.4 31.6 31.6 40.3 34.9 34.9 34.9 34.9 34.9 34.9 31.6 31.6 

 B 20.4 15.3 15.3 15.5 17.8 18.6 19.5 19.1 15.2 18.0 15.3 15.3 

 C 10.7 3.6 4.2 3.9 2.4 2.4 2.4 2.4 2.4 2.4 1.7 2.7 

ER A 56.2 39.5 39.5 39.5 40.1 37.8 37.4 41.0 34.2 34.2 30.1 30.1 

 B 15.4 12.5 12.5 12.5 15.2 16.1 16.4 15.6 13.9 16.8 9.4 11.4 

 C 6.3 4.6 4.3 4.6 2.2 2.2 2.2 2.2 2.2 2.2 4.6 4.6 

PIB G 38.2 21.0 17.9 19.9 10.7 10.7 10.7 10.7 10.7 10.7 11.7 12.2 

 H 18.3 9.1 7.9 8.5 3.9 3.9 3.9 3.9 3.9 3.9 7.1 6.7 

 I 10.2 2.2 2.2 2.2 1.7 1.7 1.7 1.7 1.7 1.7 2.2 2.2 

PIR F 46.1 43.1 37.8 41.2 29.9 28.6 29.9 28.3 15.1 15.9 25.1 24.5 

 G 31.3 18.6 16.3 17.8 10.3 10.3 10.3 10.3 10.3 10.3 11.7 12.2 

 H 14.9 5.6 4.7 5.1 3.8 3.8 3.8 3.8 3.8 3.8 5.1 5.6 

 I 10.1 2.2 2.2 2.2 1.7 1.7 1.7 1.7 1.7 1.7 2.2 2.2 

SEPM B 14.2 4.6 6.1 10.2 8.6 13.3 15.2 15.6 14.9 19.9 13.9 17.0 

 C 1.9 1.4 1.4 1.4 1.7 2.7 3.6 3.9 3.4 6.3 4.5 7.3 

HEG  2.1 8.7 8.7 8.7 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 

PE B 1.3 1.9 2.2 2.0 0.5 1.3 1.3 2.3 0.5 0.5 0.8 0.9 

THO B 6.3 2.4 1.9 2.1 0.9 1.4 1.6 1.4 0.9 0.9 1.6 1.6 

  C 2.8 1.0 1.0 1.0 0.6 0.6 0.6 0.6 0.6 0.6 1.0 1.2 
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5. Cost of roads and cost of transport to the mill by DMU ($/m3) 

  $/km  
Type of work and road summer winter maintenance  

Construction class 3 36,000    
 Construction class 4/5 20,000 10,000 1,000  

Refraction 3,000      
  

Road class  
Speed 

without 
charge  

Speed 
with 

charge  
Rolling rate 

Volume 
transport 
per truck 

Asphalt 85 75 

100 $/kmh 42 ton 
1 65 60 
2 50 40 
3 40 30 

4/5 30 20 
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