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Abstract

Characterizing the probability distribution of streamflows in catchments lacking in dis-

charge measurements represents an attractive prospect with consequences for practical

and scientific applications, in particular water resources management. In this paper, a

physically-based analytic model of streamflow dynamics is combined with existing wa-

ter balance models and a geomorphological flow recession model in order to estimate

streamflow probability distributions based on catchment-scale climatic and morphologic

features. Starting from rainfall data, potential evapotranspiration and digital terrain

maps, the model proved capable of capturing the statistics of observed streamflows rea-

sonably well in eleven test catchments (Mean Squared Relative Error equal to 0.13 and

0.06 for the mean discharge and coefficient of variation of daily flows respectively). The

approach developed offers a novel method for estimating water resources availability

based on limited information about climate and landscape.
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1. Introduction1

The probability distribution of streamflows and the associated flow duration curve2

provide information on the availability of water resources in a catchment. This is im-3

portant both for anthropogenic exploitation of flows (e.g. industrial and civil uses or4
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power generation) and the maintenance of functioning ecological processes within the5

riverine environment [Postel and Richter, 2003; Ziva et al., 2012; Hurford et al., 2014;].6

Streamflow probability distributions summarize main features of the flow regime, as well7

as flow dynamics related to different geographical and climatic settings. For this reason,8

they have long been a key tool for water resource management [Vogel and Fennessey,9

1995].10

The absence of dense discharge measurement networks makes the assessment of river11

flow availability challenging. Extensive literature exists on estimation of flow duration12

curves in sparsely gauged and ungauged catchments [Merz and Blöschl, 2004; Blöschl et13

al., 2006; Castellarin et al., 2004; Oudin et al, 2008; Castiglioni et al., 2010; Hrachowitz14

et al., 2013]. Both empirically-based and physically-based approaches are suited to the15

scope. Among the former, statistical models employ discharge time series observed at16

instrumented outlets of neighboring catchments or within identified homogeneous regions17

to predict the flow regime of ungauged basins using the concept of hydrologic similarity18

[Wagener and Wheater, 2006; Castellarin et al., 2007; Ganora et al., 2009]. Physically-19

based approaches, instead, mimic the hydrologic response of the basin to rainfall inputs by20

describing the underlying processes of soil moisture dynamics and rainfall-runoff transfor-21

mation [Beven and Kirkby, 1979; Botter et al., 2007; Yokoo and Sivapalan, 2011; Cheng22

et al., 2012; Booker and Woods, 2014]. Such models have the advantage of setting causal23

relationships among climate input, morphological features, and geopedologic attributes24

allowing for an improved understanding of the physical processes that control the water25

cycle [Wagener et al, 2007; Gupta et al., 2008; Hrachowitz et al., 2013].26

Many studies have highlighted the relationship between channel network structure27

and hydrologic response of the catchment [Rinaldo, 1991; Rinaldo et al., 1995; Rodriguez-28

Iturbe et al., 2009; Biswal and Marani, 2010; Mutzner et al., 2013; Gosey and Kirchner,29

2014]. In particular, geomorphological interpretations of recession dynamics have been30

proposed, which have been used to infer geomorphic signatures of the hydrologic response31

[Harman et al., 2009; Biswal and Marani 2014]. Given the wide availability of high32

resolution Digital Elevation Models (DEM), the link between geomorphological attributes33

of the landscape and flow properties is particularly interesting for improving our ability34

to describe flow regimes in poorly gauged areas.35
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Landscape properties and catchment morphology have also been recognized as ma-36

jor determinants of vegetation patterns, water use efficiency and hydrologic partitioning37

[Troch et al., 2009; Rodriguez-Iturbe et al., 2009; Voepel et al., 2011; Thompson et al.,38

2011a]. The understanding of the major drivers of the water balance has a long history,39

which is rooted in pioneering works by Thornwaite [1948], Longbein [1949] and Budyko40

[1974] who first demonstrated the dependence of hydrologic partitioning on climate fea-41

tures, as well as on the competition between available soil water and available energy for42

vaporization. More recent works have highlighted that the seasonality and stochasticity43

of rainfall, vegetation features, and landscape properties are also important for attaining44

reliable predictions of water balance [Milly, 1994; Porporato et al., 2004; Donohue et45

al., 2007; Zhang et al., 2008]. Despite the inherent difficulty in incorporating the ef-46

fects of soil, vegetation and climate heterogeneity into low dimensional catchment-scale47

formulations, our understanding of the spatio-temporal variability of hydrologic parti-48

tioning between streamflow and evapotranspiration has improved significantly in recent49

years [Sivapalan et al., 2001; Thompson et al., 2011b; Zanardo et al., 2012]. These ad-50

vances can provide important clues for the prediction of water resources in rivers and for51

forecasting of their response to climate change [Destouni et al., 2013].52

In this study, we present and exemplify a physically-based framework capable of53

predicting the flow regime in the absence of discharge data. The framework is grounded54

in the stochastic analytic model developed by Botter et al. [2007]. This is a mechanistic55

approach where the dynamics of daily streamflows are linked to a spatially-integrated56

soil water balance forced by intermittent rainfall. This paper adopts the version of the57

model in which the hydrologic response of the catchment is assumed to be non-linear58

[Botter et al., 2009; Ceola et al., 2010]. The four physically-based parameters that59

define the flow duration curve are estimated based on climatic (rainfall and potential60

evapotranspiration) and geomorphological data (Digital Elevation Maps), integrating61

established water balance models [Budyko, 1974; Milly, 1994; Porporato et al., 2004;62

Sivapalan et al., 2011] with a geomorphic recession flow model [Biswal and Marani, 2010].63

The framework is meant to mimic conditions that are typical of sparsely gauged areas64

and exploit a set of gauged catchments and a lumped regional approach for estimating65

the water balance based on climate data. Moreover, the model explicitly incorporates66
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the geomorphic relationship between the river network structure and recession properties67

of flows.68

This paper is organized as follows: section 2 provides a summary of the hydro-climatic69

data, the selection criteria for the study catchments, and the essential information about70

these catchments. In section 3, we introduce the analytical model for the probability71

density function of streamflows and define the relevant model parameters. Section 472

outlines the method proposed for the parameter estimation in the absence of discharge73

data. In particular, the performance of different water balance models were tested for the74

estimation of the frequency of flow producing events. The ranking of the water balance75

models and the results of predicting the streamflow regimes are discussed in section 5.76

In this section the limitation of the proposed framework are elaborated on. Section 677

provides the overall conclusions of this study.78

2. Study Catchments and Hydro-climatic Data79

49 catchments were used in this study in two sets: (i) catchments used for calibration80

of the water balance model (Table 1); (ii) catchments were streamflow distribution was81

predicated using only climate data (calculated based on the calibrated water balance82

model) and morphological data (Table 2). The catchments are distributed relatively83

evenly throughout the United States, east of the Rocky Mountains. The size of the84

basins span between 40 and 2000 km2 and include many different climatic regions. All85

the study catchments are pristine and not impacted by regulation or storage. Figure86

1 shows the spatial distribution of the 49 catchments across the US. The CGIAR av-87

erage annual potential evapotranspiration is shown on the background to represent the88

underlying heterogeneity of climate regimes. The northern catchments (marked with a89

dotted circle) experience relevant snow precipitations during winter. The presence of90

snow significantly impacts the water balance across seasons, in particular by storing wa-91

ter inside the catchment in winter (when precipitation occurs) and releasing the stored92

water in spring (when the snow melting increases the runoff coefficient). Thus, in the93

catchments affected by snow dynamics, results from winter and spring were disregarded94

in the application of water balance models at the seasonal scale.95

Potential Evapotranspiration (PET) data has been acquired through two different96
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data bases: (i) The ‘MODIS global evapotranspiration Project’ (MOD16), available97

from the Montana University (http://www.ntsg.umt.edu), which includes a dataset98

providing PET at 1 km2 resolution for 109 Million km2 global vegetated land areas at99

8-day, monthly and annual time resolution; (ii) The ‘CGIAR-CSI Global-Aridity and100

Global-PET Database’ [Zomer et al., 2007], a freely available global PET database101

( http://www.cgiar-csi.org). This information was integrated into a geographical102

information system (ESRI ArcGis 10.0). The exact location of the discharge gauges103

were determined on a detailed map of the river network of the United States provided104

by the NOAA (info: http://www.nws.noaa.gov/geodata/catalog/hydro/metadata/105

riversub.htm; download: https://www.ncl.ucar.edu/Applications/Data/). The106

contributing catchments and drainage networks upstream of the discharge gauging sta-107

tions were then estimated.108

Daily rainfall records provided by the American National Oceanic and Atmospheric109

Administration (NOAA), and daily discharge records provided by the United States110

Geological Survey (USGS) were used in this study. Available time series typically span111

several decades. A set of pristine catchments, where synchronous rainfall and discharge112

data were available for at least 10 years, was selected. For each streamflow gauging113

station selected in the study, a representative rainfall station (located as close as possible114

to the center of the catchment area) was selected. The reliability of using just one115

rainfall gauge for each catchment was supported by previous studies [see Botter et al.,116

2013], which proved that given the size of the basins (Table 1) selected in this study, the117

spatial variability of daily rainfall statistics is weak, and the use of a single rainfall station118

does not introduce any remarkable bias in the analysis. Finally, spatially averaged value119

of PET was calculated for every catchment and every PET dataset.120

3. Analytical Model of p(Q): Linking Flow Regime to Geomorphoclimatic121

Data122

The river flow regime can be captured and presented through the seasonal probability123

density function (PDF) of daily streamflows. In this work, we employ the analytical124

mechanistic model developed by Botter et al. [2009]. This model is based on a catchment-125

scale soil water balance forced by stochastic rainfall which is modeled (at daily timescales)126
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as a marked Poisson process with frequency λP [T
−1] and exponentially distributed depths127

with average α[L] [Rodriguez-Iturbe et al., 1999; Porporato et al., 2004; Botter et al.,128

2007]. In this framework the dynamics of the specific streamflow Q (per unit catchment129

area) is made up of two components: (i) instantaneous jumps corresponding to rainfall130

events filling the soil water deficit in the root zone. These events take place with frequency131

λ < λP and are also represented by a marked Poisson process; (ii) power law decays in132

between events as implied by a non-linear catchment-scale storage-discharge relationship133

[Brutsaert and Nieber 1997; Porporato and Ridolfi, 2003; Kirchner, 2009; Ceola et al.,134

2010]. Therefore, the temporal dynamics of Q during a given season is described by the135

following relation:136

dQ (t)

dt
= −KQ (t)

a
+ ξQ(t) (1)137

where ξQ(t) represents the stochastic noise (the sequence of state dependent random138

jumps ofQ, associated with those rainfall events which produce streamflow); K[L1−αTα−2]139

and a are the coefficient and exponent of the power law relation that describes the rate of140

decrease of Q during the recession. The steady-state PDF of streamflows can be derived141

from the solution of the master equation associated to equation (1) [Botter et al., 2009]142

as:143

p(Q) = CQ−a exp

(
− Q2−a

αK(2− a)
+

λQ1−a

K(1− a)

)
(2)144

where C is a suitable normalizing constant. Equation (2) expresses the seasonal flow145

regime as a function of four physically-based parameters that embed the geomorphic and146

climate features of the contributing catchment. The original formulation (see eq.(2) of147

Ceola et al. [2010]) includes an atom of probability for Q = 0 for cases where 0 < a < 1.148

Such conditions are rare in real world settings [Biswal and Marani, 2010; Ceola et al.,149

2010; Mutzner et al., 2013] and thus only cases with a > 1 have been considered in this150

study.151

The flow duration curve is expressed by the cumulative distribution function (CDF)152

of Q and can therefore be calculated by integrating equation (2):153

D(Q) =

∫ +∞

Q

p(x)dx (3)154

Closed-form analytical expressions of D(Q) are available only for special cases (e.g.155

a ∈ N). The above model considers streamflows at the daily time scale and fast com-156
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ponents of the hydrologic response are implicitly incorporated in the non-linear storage-157

discharge relationship that drives the soil drainage. The major assumptions underlying158

the analytical formulation shown in equation (2) are: (i) the Poisson distribution of159

flow-producing events; (ii) the exponential distribution of the daily rainfall (and effec-160

tive rainfall) depths; (iii) the lack of inter-event variability of recession features; (iv)161

the spatial homogeneity of climate and landscape properties. Moreover, the interference162

caused by snow accumulation and melting is not explicitly included in the formulation.163

Extensive applications and generalizations of this approach have been published in pre-164

vious studies [Botter et al., 2010, 2013; Ceola et al., 2010; Pumo et al., 2013; Schaefli et165

al., 2013; Mejia et al., 2013; Müller et al., 2014].166

4. Estimating the Parameters of p(Q)167

The PDF of streamflows (equation (2)) relies on four parameters: α, λ, K, and a,168

which incorporate important climatic and geomorphologic features of the catchment.169

The value of α is estimated using climate data gathered within each test catchment.170

a and K are estimated for each test catchment through a geomorphic recession model171

that is applied locally. The value of λ is estimated for each test catchment through172

water balance models that are independently calibrated based on discharge data from 38173

different catchments distributed east of the rocky mountains in the US. These methods174

are explained in detail below.175

4.1. Computation of α176

Mean rainfall depth (α) is estimated by means of daily rainfall data recorded at177

climatic stations within the boundaries of each catchment. In particular, α is calculated178

as the mean precipitation during wet days in the considered season.179

4.2. Computation of λ180

According to the analytical formulation (equation (1) and (2)) the long-term mean181

of Q is defined as < Q >= αλ. Therefore, the frequency of effective rainfall events λ182

is estimated from precipitation using a water balance model as λ = ϕ λp, where λp is183

the frequency of rainfall events (estimated as the relative fraction of rainy days in the184
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seasonal time series) and ϕ =< Q > / < P > is the average seasonal runoff coefficient185

(i.e. the ratio of mean discharge to mean precipitation). ϕ can be estimated by means186

of calibrated water balance models using precipitation and PET data.187

Four existing water balance models were tested and compared by analyzing their abil-188

ity to predict observed runoff coefficients at 38 catchments within the study region (Table189

1). This number was deliberately maximized to test each model under a broad range of190

hydro-climatic conditions and identify the best approach in general within the study area.191

The models include empirical, semi-empirical and physically-based approaches (Table 3192

and reference therein). Each model has a different number of parameters, which were193

calibrated in order to maximize model performances. We assume the spatial variability194

of the water balance within the study region can be explained by the underlying het-195

erogeneity of the precipitation and PET. Hence, model parameters were assumed to be196

spatially homogeneous, so that the calibrated parameters can be exported to other catch-197

ments within the study region, including the eleven test catchments where flow regimes198

are predicted.199

The first model (WB1) represents the widely accepted empirical Budyko curve [Budyko,200

1974 ]. The Budyko curve represents a very simple and effective way to estimate the an-201

nual runoff coefficient, based on rainfall and PET data. The runoff coefficient is estimated202

as a non-linear function of the ‘Dryness Index’ (DI), defined as the ratio between annual203

average potential evapotranspiration and the annual average rainfall (⟨PET ⟩ / ⟨P ⟩). The204

analytical function of the Budyko curve reads:205

ϕ = 1−
[
DI(1− e−DI ) tanh

(
1

DI

)]0.5
(4)206

In this model the only variable involved is DI , which depends on rainfall and potential207

evapotranspiration. In our application rainfall is measured in climatic stations and the208

PET is derived from either the MODIS or the CGIAR dataset. Therefore, there are209

no parameters to be calibrated.210

The second model (WB2) is a physically-based minimalist model, where the catch-211

ment water-storage is seen as a stochastic state variable that governs the water balance212

either point-wise [Rodriguez-Iturbe et al., 2001] or at the catchment scale [Porporato et213

al., 2004; Seltin et al., 2007]. Soil moisture dynamics are interpreted and modeled at214
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daily time scales, by conceptualizing the soil as a reservoir with a finite storage capac-215

ity (equal to nZ, where n is porosity and Z the rooting depth) intermittently filled by216

rainfall events in the form of random pulses with random depth. When soil moisture s217

exceeds a given threshold s1 (an empirical parameter with a value between field capacity218

and complete saturation), the excess rainfall is lost by vertical drainage. Water losses219

occur via evapotranspiration (which is smaller than PET for s < s1 due to water stress),220

drainage and surface runoff (when the soil is saturated). The mean runoff coefficient is221

written as [Porporato et al., 2004]:222

ϕ =
DIγ

γ
DI e−γ

γ (Γ(γ/DI , γ))
(5)223

where, Γ(·, ·) is the lower incomplete Gamma function, DI is the Budyko’s dryness index,224

and γ the maximum soil water storage available to plants normalized to the mean rainfall225

depth (γ = (s1−sw)nZ
α , with sw representing the wilting point). DI is calculated from226

climatic data. Consequently, calibration was performed on the rooting depth. This227

model is particularly suited to be used in association with the streamflow model used in228

this paper, which was originally conceived by coupling WB2 with a simplified hydrologic229

response model [Botter et al., 2007].230

The third model (WB3) [Milly, 1994] is based on the hypothesis that the long-term231

water balance is determined by the local interaction of fluctuating water supply (precip-232

itation) and demand (potential evapotranspiration), mediated by water storage in the233

soil. The partitioning of average annual precipitation into evapotranspiration and runoff234

is assumed to depend on the following factors: dryness index, the mean number of precip-235

itation events per year, the ratio of spatially averaged soil water holding capacity to the236

annual average precipitation, the spatial variability of storage capacity, and seasonality237

of precipitation and PET. The model postulates that in humid areas (DI < 1) the dom-238

inant factor producing runoff is the excess of annual precipitation over annual potential239

evapotranspiration; in arid regions (DI > 1), instead, runoff is largely caused by forcing240

variability over time. The resulting analytical expression of the runoff coefficient reads241
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[Milly, 1994]:242

ϕ = 1− (1−DI)
∞∑
j=0

[
1 + jγ(D−1

I − 1)k−1
]−k

DI
j for DI < 1 (6)243

ϕ = 1− (1−D−1
I )

∞∑
j=0

[
1 + (j + 1)γ(1−D−1

I )k−1
]−k

DI
−j for DI > 1 (7)244

where γ represents the normalized soil water storage and DI is the dryness index. Spatial245

heterogeneity of soil properties is accounted for through the shape parameter k of the246

Gamma PDF that describes the spatial distribution of soil storage capacity. In WB3 the247

calibrated parameters were Z and k.248

Model WB4 [L’vovich, 1979; Ponce and Shetty, 1995a, 1995b; Sivapalan et al., 2011]249

is an annual water balance which is performed through a two-stage partitioning: first,250

annual precipitation P is decomposed into quick flow (S) and infiltration (termed catch-251

ment wetting, W ). Subsequently, the resulting wetting is partitioned into slow flow (U)252

and an energy-dependent vaporization component (evaporation plus transpiration ET ).253

This two-stages portioning can be written as P = S + W and W = U + ET . The254

threshold values of P and W that must be exceeded before flow can occur are defined255

as λsWp and λuPET respectively, where λs and λu are empirical parameters. Wp and256

PET are the upper bounds of ⟨W ⟩ and ⟨ET ⟩, which thus represent the potential wetting257

and the potential evapotranspiration of a catchment, respectively. Both the quick-flow258

and slow-flow components need to be combined to yield the total discharge in the stream259

(Q = U + S). The runoff equation is then expressed as [Sivapalan et al., 2011]:260

ϕ =
1 + ⟨̃P ⟩φ

1 + φ+ ⟨̃P ⟩φ
(8)261

where, φ = PET−λuPET
⟨P ⟩−λsWp

and ⟨̃P ⟩ = ⟨P ⟩−λsWp

(1−λs)Wp
.262

This model was calibrated in different ways. Initially the 4 parameters (λs, λu,Wp, PET )263

were calibrated as in the original version of the model. Subsequently, in order to preserve264

the spatial variability of evapotranspiration, the available estimate of PET provided by265

the MODIS and CGIAR datasets (multiplied by a calibrated correction factor ξ) was266

included in the model formulation. Finally, with the goal of keeping the model viable for267

application in catchments where discharge measurements are lacking, the partitioning268

of P into S and W (whose application requires discharge data) was removed, thereby269
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implying that all precipitation is turned into soil wetting. In this way the number of270

parameters to be calibrated is reduced to just one (λu). Given that the latter version271

of the model maximizes model performance across the 38 study catchments, this is the272

calibration method applied to WB4 as discussed in the results section.273

Some of the models presented above are based on hypotheses that only hold at the274

annual time-scale (WB3), or they have been previously applied mainly at the annual275

level (WB1). Because of this reason they are best applicable to estimate annual runoff276

coefficients. To get an estimate of the inter-seasonal variability of streamflow regimes277

during the year, the knowledge of seasonal average runoff coefficients would instead be278

desirable. To this aim, a novel approach has been developed in order to describe the279

inter-seasonal variability of the water balance based on annual estimates.280

The average annual runoff coefficient (ϕa =
⟨Q⟩a
⟨P ⟩a

) can be expressed as a weighted mean281

of the seasonal average runoff coefficients. Accordingly, the seasonal runoff coefficient282

ϕi =
⟨Q⟩i
⟨P ⟩i

can be calculated by multiplying the annual runoff coefficient ϕa by a Seasonal283

Multiplication Factor ψi which expresses the inherent seasonality of the water balance:284

ϕi = ϕaψi (9)285

where ϕa is estimated using one of the four water balance models described above, and286

ψi = ϕi/ϕa is the ratio between seasonal and annual runoff coefficient during the season i.287

Note that the typical subdivision into four seasons, broadly following the calendar dates,288

has been adopted in this paper. Equation (9) expresses the idea that even though the289

annual runoff coefficient may vary significantly among catchments, the seasonal pattern290

may be relatively uniform across a wide range of conditions. Despite some scattering,291

the results obtained in the 38 study catchments corroborate the assumption that ψi are292

quite homogenous (see Figure 2). The values of ψi were thus assumed to be spatially293

uniform and were calibrated based on observed rainfall and streamflow data.294

4.3. Computation of a and K295

The estimation procedure for the recession parameters a and K is rooted in the idea296

that recession properties are strongly related to the morphology of the stream network297

[Biswal and Marani, 2010; Biswal and Nagesh Kumar, 2014; Mutzner et al., 2013; Biswal298

11



and Marani, 2014]. During recessions both the streamflow and the active drainage net-299

work – which represents the fraction of the network that actively contributes to the flow300

at the outlet – decrease over time [Gregory and Walling, 1968; Weyman, 1970; Godsey301

and Kirchner, 2014]. The active drainage network (ADN hereafter) is thus assumed302

to expand and contract following the related streamflow fluctuations. The theoretical303

apparatus on which the method is grounded, as well as the performance of the model304

under various settings are detailed in a series of recent papers about the geomorphic na-305

ture of flow recessions [Biswal and Kumar 2013; Biswal and Marani, 2014 and references306

therein], where the relevant details can be found. In summary, the specific streamflow Q307

is expressed as:308

Q =
q G

A
(10)309

where G is the length of the active drainage network, q is the flow generation rate per310

unit channel length, and A the catchment area. Three simplifying assumptions are then311

introduced:312

� drainage density is spatially uniform;313

� both the flow generation per unit channel length q and the speed at which the ADN314

contracts towards the outlet (c) are constant;315

� the changes of G through time are expressed in terms of the changes of G induced316

by changes of the maximum path length within the ADN, l (which is the maximum317

distance between a point of ADN and the furthest source of the network): dG/dt =318

dG/dl · dl/dt = c dG(l)/dl.319

Under these assumptions, the recession equation dQ/dt = KQa can be rewritten as320

[Biswal and Marani, 2014]:321

N(l)

A
= ρ′

(
G(l)

A

)a
(11)322

where N(l) = dG(l)/dl is the number of links in the network at a distance l from the323

outlet, and ρ′ = Kqa−1/c. Equation (11) states that the recession exponent a can be324

estimated from the morphology of the basin by analyzing the scaling exponent of the325

geomorphic relationship between N(l) and G(l), as shown in Figure 3. These functions326

can be derived from the analysis of digital terrain maps, thereby allowing an objective327
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estimate of the recession exponent from morphological data. This is in turn used for the328

computation of the scaling exponent of the functions G(l) vs. N(l) through leas-squared329

regression.330

In order to estimate the recession coefficient K, we first calculate the temporal mean331

of Equation (10):332

⟨Q⟩ = q ⟨G⟩
A

= q Dd (12)333

which expresses the mean discharge ⟨Q⟩ as the product between the mean drainage334

density (Dd =< G > /A) and flow generation rate per unit channel length (q). Next,335

Equation (12) is equated to the analytical expression of mean specific discharge (⟨Q⟩ =336

αλ) provided by the streamflow model. q can then be expressed as:337

q =
αλ

Dd
(13)338

Combining the definition of ρ′, mentioned before, with Equation (13) leads to:339

K = ρ′cqa−1 = θ(αλ)1−a (14)340

where θ = ρ′c/D1−a
d . Equation (14) expresses that K is inversely related to the mean341

humidity conditions of the contributing catchment (quantified here through αλ), as well342

as to the recession exponent a. Empirical analysis based on observed recessions in multi-343

ple catchments suggests that the value of θ is fairly constant across different catchments344

and seasons. Therefore, here we assume θ to be constant and calculate its value based on345

summer season streamflows in a randomly selected pilot catchment (Williams Basin, US346

where θ = 0.23 d−1). Equation (14) can then be used to predict K based on a, α and λ.347

The analytical expression for streamflow PDFs (Equation (2)) is poorly sensitive to the348

value of K [see Botter et al., 2009]. Therefore, a more accurate method for estimation349

of K is deemed not necessary in this context.350

In the eleven test catchments where the prediction of flow regime was performed, the351

river network was estimated based on 30 m USGS DEMs (obtained from: http://gdex.cr.usgs.gov/gdex/).352

These catchments can be broadly classified as gently sloping (average slope < 5%).353

Therein, the D8 flow direction algorithm [Mark, 1988] was used to obtain the flow direc-354

tion maps, and subsequently, the flow accumulation maps. Flow accumulation threshold355

of 0.09 km2 was then imposed to delineate channel networks for these eleven test catch-356

ments.357
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5. Results and Discussion358

5.1. Water Balance Model Ranking359

For the presentation of the results of water balance models, the following notation360

has been used to uniquely identify each model and the set of possible variants adopted.361

Each water balance model is labeled by a string which is composed of four parts:362

WB1︸ ︷︷ ︸
1

.ET1︸ ︷︷ ︸
2

. A︸︷︷︸
3

(1)︸︷︷︸
4

363

(1) refers to the specific water balance model (Table 3); (2) identifies the potential364

evapotranspiration dataset used in the model calibration: ET1 refers to CGIAR while365

ET2 refers to MODIS; (3) denotes the model time scale: A implies the model has366

been applied at the annual time scale; S implies the model has been applied at the367

seasonal time scale; Sc implies that the model has been applied at the annual time368

scale and then the seasonal water balance has been evaluated by making use of the369

seasonal multiplication factors ψ; (4) specifies the numbers of model parameters used in370

the calibration (when necessary).371

Many of the models considered include the average rooting depth Z as a key param-372

eter. Z drives the maximum soil moisture storage capacity nZ(s1 − sw). Hence, for373

convenience and without any loss of generality, sw, s1 and n are assumed to be constant374

throughout all simulations (and equal to 0.2, 0.5 and 0.35, respectively), while only Z was375

calibrated. Note that different versions of each model were implemented, where either a376

single value of Z or different values of Z for each season were considered.377

With regards to the four water balance models, the deviance of observed vs. modeled378

results is quantified by the Mean Square Error (MSE), defined as MSE = 1/N
N∑
i=1

ϵ2i379

where ϵ is the difference between modeled and observed runoff coefficients, and N is380

the number of cases in which the models are tested. Furthermore, performances of each381

model has been objectively quantified by means of the Akaike Information Criterion382

(AIC) [Akaike, 1973]. The method provides a rigorous way for model selection based on383

the maximization of the log-likelihood function between experimental data and model384

estimates. The goodness of fit of each model is discounted by accounting for the number385

of parameters that are fitted to observations. The formulation of AIC used to rank the386
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different water balance models in this study is as follows:387

AIC = 2N MSE + 2(M + 1), (15)388

where N is the number of independent observations used to evaluate the models andM is389

the number of calibrated parameters. Table 4 summarizes the performances of the water390

balance models applied at the annual time scale and values of calibrated parameters that391

optimize model performance.392

WB1 and WB2 prove quite effective at the annual timescale, especially in association393

with ET1. Overall, WB4 seems to be the best model in order to estimate the average394

annual water balance in the study area. Though, its performance is only slightly better395

than those of WB1 which has no calibrated parameters. It is noteworthy to mention396

that the calibration of the annual models led to reasonable values of Z in all cases397

(500 < Z < 1000), in agreement with previous studies [Allen et al., 1998 ]. In general all398

models perform better when coupled with the ET1 dataset.399

Table 5 summarizes the results of the water balance models applied at the seasonal400

time scale. The performance of WB1 at seasonal scale is not as good as those at annual401

time scale. Even though the absence of parameters is an appealing feature of the Budyko402

approach, WB1 does not seem robust enough to estimate the seasonal water balance in403

the study catchments. The overall performance of the method utilizing annual models404

and the seasonal multiplication factors are comparable (if not superior) to the perfor-405

mance of the same models applied directly at the seasonal timescale. In fact, the observed406

inter-catchment variability of ψi across the study area (in the set of 38 calibration catch-407

ments) is relativity low (Figure 2) despite the broad range of hydro-climatic conditions408

explored. When the seasonal multiplication factors are used, the best performing models409

are WB2 and WB3. Overall, at seasonal time scale, WB2 was found to be the best410

performing model, achieving better performances than all other models, especially when411

the rooting depths Z was separately calibrated for each season.412

The plots in Figure 4 show the scatter-plot of a select number of calibrated models413

(including the three best performing models) at the seasonal time scale for the 38 calibra-414

tion catchments. On the y-axis the modeled value of the runoff coefficient is shown, while415

the observed value, calculated as the ratio between the average seasonal precipitation and416

runoff, is shown on the x-axis. Despite some scattering, WB1 and WB2 (presented here)417
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exhibit satisfying performances and do not show any systematic biases in estimating the418

seasonal runoff coefficients.419

The performances of all four models at the seasonal time scale, without differentiation420

between the two PET datasets and the different versions of each model implemented,421

are shown in Figure 5. The histograms represent the frequency distribution of ∆AIC422

among the variants of each model and are complemented with the median value of ∆AIC,423

thereby allowing an objective assessment of the overall performances of each approach.424

The histograms highlight how WB2.ET2.S(4) is characterized by the smallest mean value425

of ∆AIC, implying that (on average) it outperforms the other models.426

Lastly, WB2.ET2.S(4) was utilized for predicting the runoff coefficient at 11 test427

catchments. The ability of WB2.ET2.S(4) to describe the seasonal water balance at the428

eleven test catchments is analyzed in Figure 6, which compares observed vs. estimated429

values of the runoff coefficient for all the available seasons. Performance is relatively430

good in most cases, especially in view of the fact that no specific information on observed431

discharge at the test catchments has been used.432

5.2. Prediction of p(Q)433

Streamflow distributions for every season were predicted at 11 catchments, corre-434

sponding to 44 seasonal regimes (Table 2). The catchments are basins with natural435

streamflows, not affected by regulation or significant snow dynamics, and are distributed436

across the study region. It is important to note, this study is aimed at presenting and437

exemplifying the general methodology, and therefore, large-scale application is beyond438

the scope of the paper.439

The parameters of the analytical streamflow PDF were estimated for the eleven test440

catchments using only climate and landscape data as discussed in Section 4. Table 6441

shows the resulting values of α, λ, a and K for each season in the eleven test catchments.442

For comparison, the observed values of λ, a andK were also calculated based on discharge443

data [Biswal and Marani, 2010; Ceola et al., 2010]. The geomorphological estimates of444

a (which are assumed to be independent of season) show a general agreement with the445

median value of the recession exponent calculated based on discharge data with the446

exception of a moderate discrepancy that emerges during summer seasons. Similarly, the447

estimates of λ based on precipitation and PET data show a broad agreement with the448
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corresponding estimates based on discharge data. The geomorphological estimates of K449

instead, are in agreement only in half the cases when compared to the estimated value of450

the recession coefficient based on discharge observation. It is important to note that the451

value of θ is relatively constant across different catchments and seasons in the catchments452

considered here (CV ≈ 0.2), thereby corroborating the reliability of the assumption that453

θ is constant in Equation (14).454

Equation (2) is used to model the ”period-of-record” PDF and CDF curves in the455

eleven test catchments. The agreement between modeled and observed PDFs (and the456

associated CDFs) was evaluated through visual inspection, comparison of modeled and457

observed moments of the PDF, and objectively quantified by computing half the integral458

difference between the analytical and observed flow PDFs [Botter et al., 2013]. The459

accuracy of the model is further analyzed by the Mean Squared Relative Error (MSRE)460

of selected flow statistics (see Table 1 in [Biondi et al., 2012]).461

Figure 7 presents the observed (bars) and modeled (solid line) seasonal streamflow462

PDFs at Daddy creek, US. The analytical model captures the shape of the observed463

probability distribution of flows relatively well in all seasons. Though, the model seems464

to slightly underestimate the high flows, providing lower probability for large events as465

compared to the observations. The ability of the model to catch the change in shape of466

the streamflow distribution across different seasons is particularly valuable. On a seasonal467

time scale, a catchment can produce both erratic and persistent regimes [Botter et al.,468

2013]. In persistent regimes, the humped shape of the PDF indicates larger frequency of469

events contributing to streamflow as compared to the recession time scale with reduced470

flow variability. In contrast, in erratic regimes the monotonically decreasing shape of the471

PDF signifies smaller frequency of flow-producing events and enhanced flow variability.472

In Daddy Creek, there is a shift in streamflow PDF from hump-shaped in spring and473

winter seasons to monotonically decreasing in summer and autumn seasons (Figure 7).474

This is consistent with rainfall and PET patterns across the seasons (see Botter, [2014]).475

The insets of Figure 7 present the observed (circles) and modeled (solid line) CDFs476

of all seasons at Daddy Creek. A logarithmic scale has been used in order to better477

represent the behavior of the curves for large streamflows. The modeled CDFs are478

slightly shifted downward as compared to the observed CDFs. This is as a result of479
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the reduced amount of water available for streamflow generation estimated by the water480

balance model. Nevertheless, the shape of the CDF seems to be reasonably captured in481

most seasons.482

Figure 8 shows the the observed (bars) and modeled (solid line) PDFs for the summer483

season at the five other test catchments. During the summer season an erratic regime484

is observed as a result of low rainfall and enhanced transpiration rates, which imply485

increased frequency of the smallest discharge events. The analytical model reasonably486

captures the shape of the streamflow PDFs in all cases. The associated modeled CDFs487

(The insets of Figure 8) show a similar behavior as discussed above.488

The ability of the model to suitably mirror the observed intra-seasonal streamflow489

variability have been further analyzed through the mean (⟨Q⟩) and coefficient of variation490

of daily discharge (CVQ). Figure 9 shows the seasonal (a) ⟨Q⟩ and (b) CVQ observed at491

all catchments plotted against the corresponding modeled values. The model estimates492

of both (⟨Q⟩) and CVQ have been computed through numerical integration of equation493

(2). In most cases prediction of the analytical model matches the corresponding ob-494

served CVQ (MSRE = 0.06). This points to the models ability to reasonably capture495

the streamflow variability and its inter-seasonal dynamics across different climatic and496

landscape settings. The value of MSRE of mean discharge (< Q >) when all seasons at497

the eleven test catchments are considered is equal to 0.13.498

6. Discussion499

The framework presented here is structurally able to provide a reasonable estimation500

of streamflow regime based on limited information about climate and landscape. How-501

ever, it should be noted that the stochastic streamflow model presented in this paper502

is best suited to describe flow regimes of pristine catchments with a contributing area503

smaller than a few thousand square kilometers, where streamflow dynamics result from504

the interaction between intermittent precipitation inputs and soil drainage. Although505

extensions to different settings (such as snow-dominated, urbanized or seasonally dry506

catchments) have been proposed [Schaefli et al., 2013; Müller et al., 2014; Mejia et al.,507

2014], their predictive power in the absence of discharge measurements must be assessed.508

Moreover, the estimate of the model parameters based on climate and landscape requires509
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the introduction of additional assumptions and parameters that may reduce the accuracy510

of the flow regime predictions. In the set of cases explored here, model performances were511

satisfactory, but more research is recommended to explore the reliability of the approach512

in a wider array of case studies.513

The accuracy of the estimate of a (i.e. the degree of non-linearity of the hydrologic514

response) based on catchment morphology, is constrained by the resolution of DEM,515

the drainage density of the network, and its spatial patterns both within each catchment516

and among different basins [Mutzner et al., 2013]. Moreover, the application to relatively517

flat catchments may be problematic due to lack of accuracy of automatically extracted518

networks and the dominant role played by hydrological features. An accurate estimation519

of the frequency of flow producing events (λ) may be challenging in presence of small-scale520

geologic heterogeneity. Also, the reliability of the water balance estimate is influenced521

by the type of model used. Our results suggest that suitably calibrated physically-522

based models perform better than empirical methods (such as Budyko), but require523

data from nearby sites or large-scale regional studies for their calibration. Where no524

information is available, empirical methods can be utilized, with increased uncertainty525

about the accuracy of the prediction. The estimation of α andK on the other hand is less526

precarious. The value of α is calculated from readily available long-term daily rainfall527

records, with limited uncertainty. The value ofK is dependent on λ, α and a which makes528

the accuracy of its estimation dependent on the deviation of those parameters (Table 6).529

However, sensitivity of the analytical streamflow distribution to the parameter K is530

quite limited, particularly for values of a close to 2 [see Botter et al., 2009]. This implies531

(and our result corroborate) that a rough estimate of the recession coefficient suffices for532

predicting p(Q) with a reasonable accuracy.533

@basudev: please write a a few short sentences on the applicability and performance534

of the model in very arid regions/dry conditions (summer seasons).535

@gianluca: do you think we need to discuss the mass balance topic here? We could536

say that if carryover is negligible the effects are insignificant. When that is not the537

case, the model is not applicable (for example the case of snow dominated catchments538

mentioned previously). If we were to say carry over is negligible in the cases stuied, that539

would upset too many people. Alternatively, we could say we study the seasonal regimes,540
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and that not significant carryover is allowed/considered in the framework.541

7. Conclusion542

A framework is provided that allows for estimating the probability distribution of543

streamflows based on catchment scale climate and geomorphologic data. The approach544

employs a physically-based analytic model of streamflows with four parameters. It was545

shown that these parameters can be estimated in the absence of discharge time series,546

by exploiting climate data (precipitation, potential evapotranspiration) and information547

about the catchment morphology.548

The estimation procedure required the use of additional models, which were taken549

from the existing literature. A geomorphologic flow recession model was utilized to550

estimate parameters describing the recession behavior of the hydrograph, based on the551

topology of the stream network. A water balance model was used to predict the frequency552

of flow producing rainfall events. As the latter proves particularly important to predict553

the flow regime at a station, four existing water balance models were tested using rainfall554

and discharge data from 38 US catchments, characterized by diverse hydro-climatological555

characteristics. The best performing model (according to the Akaike selection criterion)556

was then used for the prediction of seasonal streamflow regimes in a disjointed set of557

catchments within the considered study area.558

The results demonstrated that the model is capable of capturing the statistics of559

streamflows reasonably well in most of the cases analyzed. The largest deviations from560

observations were associated to reduced performance of the water balance models, that561

at times failed to accurately reproduce the observed seasonal runoff coefficients.562

Our results suggest that the method has the potential for estimating the probability563

density function of river flows based on limited (and widely available) information on564

climate and landscape. The framework has implications for a wide range of practical and565

scientific applications such as water resources management, ecological studies and flood566

risk assessment. Further efforts are needed to investigate the performance of the model567

in a wider array of catchments, and to test the applicability of the method in data-scarce568

regions. This is the objective of ongoing research.569
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Table 3: Water balance models.

Code Relevant References Type
Number of

parameters

WB1 Budyko, 1974 Empirical 0

WB2 Porporato et al., 2004 Physically-based 1-4

WB3 P.C.D. Milly, 1994 Physically-based 2

WB4 Sivapalan et al., 2011 Functional 4

Table 4: Ranking of water balance models applied at the annual time scale.

Rank Model ∆ AIC MSE Number of parameters Parameters

1 WB4.ET1.A 0.0 0.0079 1 λu = 0.2

2 WB4.ET2.A 8.0 0.0097 1 λu = 0.2

3 WB1.ET1.A 11.6 0.0112 0 -

4 WB2.ET1.A 16.6 0.0121 1 Z = 420mm

5 WB2.ET2.A 26.8 0.0157 1 Z = 300mm

6 WB3.ET1.A 29.8 0.0161 2 Z = 900mm, k = 0.525

7 WB1.ET2.A 36.9 0.0214 0 -

8 WB3.ET2.A 38.8 0.0203 2 Z = 700mm, k = 0.525
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Table 6: Estimated value of model parameters for all seasons at the eleven test catchments.

Catchment Name Season

Estimated from Climate

and Geomorphologic Data

Estimated from Discharge

Data

α[cm] λ[ 1d ] K[ cm
(1−a)

d(2−a)
] a[−] λ[ 1d ] K[ cm

(1−a)

d(2−a)
] a[−]

Youghiogheny River (A) Spring 0.73 0.19 0.84 1.65 0.45 0.45 1.68

Summer 0.89 0.07 1.48 1.65 0.13 1.09 1.75

Autumn 0.74 0.09 1.30 1.65 0.15 1.27 1.90

Winter 0.63 0.35 0.62 1.65 0.50 0.57 1.84

Daddy Creek (B) Spring 1.08 0.18 0.87 1.81 0.26 0.61 1.73

Summer 1.02 0.06 2.31 1.81 0.05 1.05 1.44

Autumn 1.04 0.07 1.91 1.81 0.07 1.42 1.67

Winter 0.95 0.26 0.71 1.81 0.31 0.71 1.89

Big Piney Creek (C) Spring 1.61 0.16 1.16 2.19 0.17 0.45 1.57

Summer 1.17 0.03 9.75 2.19 0.04 0.92 1.54

Autumn 1.79 0.10 1.99 2.19 0.04 1.25 1.71

Winter 1.31 0.14 1.68 2.19 0.14 0.57 1.71

Sand Run River (D) Spring 0.72 0.18 1.85 2.02 0.38 0.76 1.73

Summer 0.95 0.07 3.79 2.02 0.09 1.43 1.52

Autumn 0.76 0.08 3.84 2.02 0.12 1.86 1.76

Winter 0.56 0.35 1.19 2.02 0.51 0.93 1.86

Bourbeuse River (E) Spring 0.99 0.14 1.40 1.90 0.17 2.01 1.76

Summer 1.17 0.04 1.20 1.90 0.05 1.98 1.47

Autumn 1.11 0.05 3.81 1.90 0.05 2.78 1.76

Winter 0.72 0.09 2.77 1.90 0.16 2.16 1.86

Brush Creek (F) Spring 1.03 0.15 1.74 2.10 0.2 2.91 1.96

Summer 1.17 0.05 5.20 2.10 0.05 3.95 1.63

Autumn 1.00 0.05 5.89 2.10 0.05 8.41 1.92

Winter 0.84 0.18 1.86 2.10 0.20 2.63 1.87

Dutch Creek (G) Spring 1.51 0.14 1.36 2.15 0.14 1.07 1.78

Summer 1.33 0.04 7.47 2.15 0.02 1.11 1.47

Autumn 1.57 0.06 3.41 2.15 0.03 1.46 1.67

Winter 1.26 0.13 1.80 2.15 0.12 0.96 1.76

Kiamichi River (H) Spring 1.45 0.17 0.74 1.85 0.22 0.49 1.58

Summer 1.21 0.04 2.86 1.85 0.06 0.56 1.26

Autumn 1.56 0.11 1.05 1.85 0.09 0.76 1.51

Winter 1.14 0.17 0.93 1.85 0.23 0.47 1.67

Mill Creek (I) Spring 1.18 0.14 3.28 2.50 0.23 0.85 2.22

Summer 1.10 0.06 12.06 2.50 0.10 1.19 2.00

Autumn 1.30 0.07 8.00 2.50 0.10 2.92 2.23

Winter 1.10 0.22 1.84 2.50 0.29 0.82 2.14

Sipsey Fork (J) Spring 1.58 0.16 0.77 1.90 0.17 0.75 1.84

Summer 1.28 0.06 2.21 1.90 0.04 3.10 1.85

Autumn 1.47 0.08 1.49 1.90 0.04 5.46 2.03

Winter 1.47 0.22 0.63 1.90 0.20 0.77 1.89

Johns Creek (K) Spring 0.82 0.16 2.96 2.25 0.21 0.59 1.58

Summer 0.96 0.06 8.53 2.25 0.05 1.34 1.53

Autumn 0.87 0.07 7.90 2.25 0.08 0.42 1.54

Winter 0.60 0.24 2.55 2.25 0.30 0.31 1.20
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Figure 1: Spatial distribution of the 38 catchments used for the calibration of the water balance models

and 11 test catchments (A through K) used for the prediction of the flow regime. On the background the

CGIAR average annual potential evapotranspiration is shown to represent the underlying heterogeneity

of climate regimes. The approximate size of each catchment is also depicted. The catchments marked

with a dotted circle experience relevant snow precipitations during winter.
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Figure 2: Seasonal multiplication factors for the four seasons: Spring (March, April, May), Summer

(June, July, August), Autumn (September, October, November), Winter (December, January, February).

The box plot shows the 25%, 50% and 75% quantiles as well as the entire range of observed values across

the 38 study catchments.
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Figure 4: Scatter-plots of observed vs. estimated runoff coefficients by a select number of calibrated

models at the seasonal time scale. The value of MSE is also included.
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WB2.ET2.S(4) water balance model.
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Figure 7: Observed (circles and bars) and modeled (solid line) PDFs and CDFs for (a) spring, (b)

summer, (c) autumn and (d) winter at Daddy Creek, US. The integral difference between modeled and

observed PDFs is equal to (a) 0.220, (b) 0.212, (c) 0.203, and (d) 0.163.
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Figure 8: Observed (bars) and modeled (solid line) PDFs for summer season at (a) Youghiogheny River,

US, (b) Sand Run River, US, (c) and Piney River, US, (d) Sipsey Fork, US, (e) Bourbeuse River, US.

The integral difference between modeled and observed PDFs is equal to (a) 0.190, (b) 0.232, (c) 0.048,

(d) 0.225, and (e) 0.314. The insets show the associated observed (circles) and modeled (solid line) CDFs

for each plots.
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Figure 9: Observed vs. modeled (a) ⟨Q⟩ and (b) CVQ for all seasons at the eleven considered test

catchments. The dashed line represents the 45 degree line (perfect fit). The MSRE value associated

with each variable is also mentioned in the figure.
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