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Abstract

A widespread industrial application of centrifugal fans has been found in literature. The centrifugal

fans have been widely adopted by domestic, industrial applications and electronic industries due to

their large capacity of mass flow and their compactness. It has pointed out that many machines

having a moderate efficiency and low aero-acoustic performances are still in operation and could

certainly be improved by making use of todays technology. Prediction of noise generated by cen-

trifugal fans is much more complex, and it is a multi-physics problem. An integrated approach

has to be considered for estimating aerodynamic forces, acoustic analogies and aero-acoustics sim-

ulation. Prediction of fan noise at design stage helps to select quieter fan and operate at higher

efficiency. Fan curve is an initial step in selecting a fan for a given system. However, many times

it is not easily available. A methodology has been developed to estimate fan curve using com-

putation fluid dynamic simulations (CFD). Present methodology and results have been validated

with results available in the literature. Unsteady flow characteristics and associated aero acoustics

blade tonal noise of a cross-flow fan has been predicted by incompressible flow simulations. The

three-dimensional incompressible Navier Stokes equations in a moving coordinate system has been

solved by an unstructured finite-volume method. Polyhedral meshes and sliding mesh techniques are

utilized to model the interface between rotating and stationary domains. Different turbulent models

have considered in simulations to suggest an appropriate model for centrifugal fans. Equivalent

noise sources have estimated with the computed aerodynamic forces based on the Ffowcs Williams

and Hawkings equation. Wave propagation equations have solved to predict sound radiation. A

centrifugal fan with 12 blades with inlet and outlet ducts, and two different operating speeds have

been considered for the simulation. Acoustic simulations have done in a frequency domain up to

5000 Hz. It could capture until 20 harmonics for 2000 RPM and eight harmonics for 5000 RPM.

The simulated results have analyzed to understand the role of turbulent kinetic energy, vorticity

pattern in noise generation. A parametric study by changing inlet velocity, cut off radius and num-

ber of blades have done. Validation of the present method has been made by comparing fan curve

generated by numerical solution to the general fan curve equations and predicted noise results have

compared with available empirical equations in the literature. Parametric studies have been done to

estimate the sound pressure level as a function of inlet flow rate. This data might help to estimate

of efficient operating conditions for a fan.
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Abbreviations

CFD - Computational Fluid Dynamics

FWH - Ffowcs Williams and Hawkings

VIV - Vortex Induced Vibration

TKE- Turbulent kinetic energy

IT- Incident Turbulence

TBTE-Turbulent Boundary layer / Trailing Edge interaction

TBS- Turbulent boundary layer / Blade Surface interaction (TBS)

FS- Flow Separation

Nomenclature

k - Turbulent kinetic energy

ε- Turbulent dissiption rate

Ploss - Pressure loss

W - overall radiated sound power

u2- Circumferential velocity at impeller’s outer diameter

a- is speed of sound

M - Mach number

V̇ - Volume flow rate

∆pt - Total Pressure rise

η -efficiency

λ - wave length

p2-Mean square pressure difference fluctuation

Ac-correlation area

c-Blade chord

Λ-Turbulent eddies

w-Turbulent velocity fluctuation

U -Local mean velocity

ρ-density

φ-lift curve slope

Q- Volume flow rate

Pd -Pressure drop

C- Correction factor related to efficiency

Kw -Octave Band Sound power level Correction Factor for Fans

K-wave number

ρ0 - constant density

ρ
′

- density fluctuation
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Chapter 1

Introduction

Prediction of noise generated by fan is more complex process. A complete, aerodynamic and aero

acoustic, investigation of the tonal noise of a high rotational speed centrifugal fan is the aim of my

thesis work. The purpose of this work is to understand the nature of noise generated in a fan. An

aero acoustic model based on the Ffowcs Williams and Hawkings equation is used to predict noise

numerically.

When talking about acoustics, most people relate it to music. However, music, joyful sound, is not

the only important aspect in acoustics. Acoustic noise is a major concern of society and industry,

and aerodynamic or flow noise is especially concerning because it is closely related to the level of

comfort of the environments in which people live and work. Common examples of aerodynamic noise

are jet noise and noise generated when the fluid flows over obstacles and cavities. The prediction of

sound generated from fluid flow has always been a difficult subject due to the nonlinearities in the

governing equations. However, flow noise can now be simulated with the help of modern computation

techniques and super computers.

Aerodynamic noise is a result of unsteady gas flow and the interaction of the unsteady gas flow

with the associated structure. The unwanted gas flow and structure interaction may cause serious

problems in industrial products such as the instability of the structures and structure fatigue [4]

. Accordingly, simulating the aerodynamic noise is necessary and at the design stage. However,

due to the nature of turbulent flow and the limitation of computational power, it is not always

feasible to obtain a reliable unsteady (transient) CFD solution for the aerodynamic noise analysis.

The computational effort and time is a major hindrance. Even if there were no time limitation,

any one of the commonly used turbulent models is not capable of solving all scales of turbulence[5].

Therefore, a time-efficient method with acceptable accuracy is needed in order to estimate flow

noise. Several well-known theories such as the theory of Lighthill [6] and the theory of Ffowcs

Williams and Hawkings (FWH) [7] have been successfully applied to aero acoustic problems. The

theory of Lighthill is the foundation of the FWH approach. In Lighthills paper, it has been shown

that aerodynamic sound sources can be modeled as series of monopoles, dipoles, and quadruples

generated by the turbulence in an ideal fluid region surrounded by a large fluid region at rest (i.e.,

velocity field in the fluid is zero).

In Lighthills analogy, no fluid flow and sound wave interaction is considered. A justification of

this assumption has been given in Lighthills original paper. Due to the large difference in energy,
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there is very little feedback from acoustics to the flow. Commercial codes such as STAR CCM+

(CD-adapco) and LMS virtual lab have incorporated the FWH approach in a computational aero

acoustics module. FWH assumes that there are no obstacles between the sound sources and the

receivers [7]. Therefore, the sound radiation problem is inherently a weak part of the simulation,

especially if the sound source is in a waveguide or duct, enclosed, or obstructed in some way.

This thesis examines the combination of the CFD solvers and the boundary element technique

for the prediction of sound radiated from turbulent flow in centrifugal fan.

1.1 Objectives

Objective of is

1. Development of methodology and identification of appropriate model for fan noise prediction.

2. Integration of CFD and acoustic models.

3. The Fan curve estimation including noise prediction.

This study used the commercial code STAR CCM + as CFD solver and LMS VL as the acoustic

wave solver. The sound power generated in process computed and compared to the theoretical or

empirical solutions available in literature.

1.2 Motivation

Sources of noise in common appliances.

1. Household sources: Appliances like food mixer, grinder, vacuum cleaner, washing machine and

dryer, cooler, air conditioners, can be very noisy and injurious to health.

2. Commercial and industrial activities: Printing presses, manufacturing industries, construction

sites, contribute to noise pollutions in large cities.

3. Transportation: aero planes, trains, vehicles on roadthese are constantly making a lot of noise

and people always struggle to cope with them.

70 % of worlds noise is due to rotating bodies and 60% of that is due to fan and still there is

no robust methodology which can predict tonal and broadband noise. Noise induced by flow over

obstacles and flow inside rotating body are common engineering problem. In most instances, vor-

tex - turbulence is the major culprit. Of course, vortex induced vibration (VIV) is well known to

cause serious engineering failures (such as structure fatigue). Accordingly, it will be beneficial to use

simulation, engineers can make modifications to a design in a virtual environment and avert serious

aero acoustic problems.
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An outline of the thesis chapters :

• Chapter 2 gives a literature review of previous work done in developing CFD and acoustic

models.

• Chapter 3 is about acoustic sources.

• Chapter 4 is about numerical modelling and fan performance.

• Chapter 5 is about parametric study.

• Chapter 6 concludes results.

7



Chapter 2

Literature survey

2.1 CFD Literature survey

A number of previous projects have been done using different CFD model to simulate rotating

bodies.

Pericleous and Patel(1986) developed a mathematical model for simulation of tangential and axial

agitators in chemical reactors. Impellers were represented as a quadratic source of momentum in the

tangential and/or axial directions (depending on the type of impeller); while the other geometries,

such as the baffles, were represented as sinks of momentum. The lift and drag coefficients from

experimental data of the blade cross-sectional airfoil profiles were used to calculate the blade forces.

The momentum contributions from these forces were then introduced as appropriate momentum

sources and sinks in the Navier-Stokes equations and solved using a control volume formulation.

Good agreement was found, but the model showed some inadequacy in modelling turbulence.

Pelletier and Schetz (1986) and Schetz et al. (1988) investigated the three dimensional flow in close

vicinity of a propeller. Turbulence modelling was achieved through a generalization of an integrated

turbulent-kinetic-energy model. The general purpose finite element fluid dynamics program FIDAP

was used to program the turbulence model. Good agreement was found in comparison with wind

tunnel measurements for the prediction of velocity and pressure profiles along the radial axis.

Thiart and von Backstrm (1993) developed an actuator disk model for a low solidity/low hub-to-tip

ratio axial flow fan. The Navier-Stokes equations were solved with the aid of a k−ε turbulent model

and the SIMPLEN method.

Van Staden (1996) integrated a fan performance model into a CFD model for the performance

prediction of a complete air-cooled condenser. Experimental fan performance curves were used to

obtain the momentum source term of the fan in the axial direction, which was added to the Navier-

Stokes equation as a source term in the CFD model. Good agreement was found with experimental

data at ideal conditions, but for non-ideal conditions (such as distorted in flow) the model required

the fan performance curves at these adverse conditions.

Kelecy (2000) predicted the fan performance of a four-bladed axial flow propeller over a range of

flow rates and compared the results with wind tunnel data. The blade has a rotational speed of

2000 rpm and a diameter of 0.11 m. The rotating reference frame method of commercially available

software FLUENT was used to simulate the rotation of the 1
4

th
axisymmetric fan model. The flow
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equations were solved in rotating frame. A zero velocity was imposed on blade surfaces and shaft,

while the outer walls of the tunnel were rotated at specified speed in the opposite direction when

viewed from stationary reference frame.

A complete three-dimensional CFD model was used by Ramasubramanian et al. (2008) to analyses

the fiber diffusion process in the manufacturing of wet-laid nonwovens. The three-bladed impeller

and baffles were modelled in commercially available software FLUENT by using the MIXSIM user

interface and incorporating the multiple reference frame model. This meant that for the impeller

a rotating reference frame was used and for the baffles and tank, a stationary reference frame was

used. The impeller has a diameter of 0.2 m and rotates at 350 rpm. A standard k − ε turbulence

model was used for the flow solution. Simulation results was compared to experimental work on a

mixing tank with baffles and an impeller located at center of the tank. The author found the model

useful to predict the location, sources and mechanism behind the formation rope and defects.

A complete three dimensional centrifugal fan performance study given in reference [8].Author have

created experimental fan curve and validated with fan curve generated from numerical solution.

Parametric study of centrifugal fan performances showed that increase in the number of blades

increases the flow coefficient accompanied by an increase in power coefficient. Increase in the number

of blades increases the flow coefficient and efficiency due to better flow guidance and reduced losses.

2.2 Acoustic Literature survey

A good amount of literature is available to predict aerodynamic noise produced by rotating blades in

low Mach number, low to medium speed axial and centrifugal flow fans with an emphasis on broad

band noise. Following LOWSON[9] classified noise prediction methods into three groups:

• Class I: Predictions giving an estimate of overall level as a simple algebraic function of basic

machine parameters

• Class II: Predictions based on separate consideration of the various mechanisms causing fan

noise, using selected fan parameters

• Class III: Predictions utilizing full information about the noise mechanisms related to a de-

tailed description of geometry and aerodynamics, e.g. they require computation of local blade

element velocities and angles of attack.

The objective of current thesis work to develop class III prediction methodology for centrifugal fan.

Noise generation due to the fluctuating forces on the fan blades is only considered in the current

research work. The most important mechanisms are

• periodically unsteady blade force due to inflow distortions (spatially nonunion inflow, unsteady

inflow)
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• stochastically unsteady blade forces due to incident turbulence (IT), turbulent boundary layer

/ trailing edge interaction (TBTE), turbulent boundary layer / blade surface interaction (TBS)

and flow separation (FS).

2.3 Prediction Methods

2.3.1 Class I

According to REGENSCHEIT [10] the overall radiated sound power W of a fan is proportional to

the aerodynamic losses Ploss in the fan and a measure for the flow velocity in the fan

W ∝ Ploss.
(u2
a

)m
Where u2 is the circumferential velocity at the impeller’s outer diameter D2, a,is the speed of

sound, and m is Mach number exponent which has to be determined experimentally but is assumed

to be constant for a given type of fan (centrifugal, axial, etc.). If the losses are expressed by the

overall performance data of the fan ( flow rate V̇ , total pressure rise∆pt and efficiency η ) one obtains

W ∝

[
V̇

η
− V̇∆pt

]
.
(u2
a

)m
=

[
V̇∆pt

(
1

η
− 1

)]
.
(u2
a

)m
2.3.2 Class II

SHARLAND’s method [11] is fundamental for many later studies on fan noise and therefore de-

scribed briefly. His starting point is a flow containing rigid surface under the assumption of acoustic

compactness (characteristic dimensions of the surface <<λ) which radiates into the free field due to

pressure fluctuations over the surface:

W =
ω2

12πρa3

∫ ∫
S

p2Ac dx1 dx2

Where p2 is mean square pressure difference fluctuation , thought of as a local lift fluctuation per

unit area a (thus the integration is over only one side of the closed surface S), Ac the correlation

area. From that SHARLAND derives working equations for the three noise mechanism IT, TBTE

and TBS; e.g for IT under the assumptions that

• the blade chord c is much smaller than the size of the approaching turbulent eddies Λ

• the turbulent velocity fluctuation w normal to the surface is much smaller than the local mean

velocity U parallel to the surface

and with lift curve slope φ such that CL = φwU , here φ = 0.9π and correlation area Ac = U2

ω2 (from

former turbulence investigation ) he obtains

W =
ρ

48πa3

∫
H

φ2U4w2C dx2
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The entire method requires the local mean velocity U parallel to the blade surface and the velocity

fluctuations of the incidence turbulence w2 as aerodynamic input parameters. However, due to the

assumptions and simplifications this method does not yield any frequency information of the radiated

sound power these models which are based on as single surface in a flow be applied to a rotating

fan rotor , As shown by MORFEY et al. [12] the sound spectrum of a rotating broad band source

is unaffected by its rotation, i.e. by the Doppler shift. Duct walls, intake bells and other reflecting

surfaces may not influence the overall radiated power as long as their representative dimensions are

comparable with, or greater than,λ/4, i.e. if the acoustic radiation is at relatively high frequency

[13]. Further, assuming mutually incoherent radiation from each blade, the sound power has just to

be multiplied by the number of blades on the rotor.

2.3.3 Empirical Formulae for Sound Power Level Estimation of Fan

Lw = Kw + 10logQ+ 20logPd + C (2.1)

Where

Q = Volume flow rate in CFM.

Pd =Pressure drop in inches of water.

C= Correction factor related to efficiency.

Kw= Octave Band Sound Power Level Correction Factors for Fans.

By using Fan laws mentioned in chapter 4, Lw can be written in following form.

Lw = Kw + 70logD + 50logN + C

Table 2.1 gives Octave Band Sound Power Level Correction Factors for forward and backward curved

centrifugal fan in FPS units. Whereas table 2.2 gives in MKS units.

Q = Volume flow rate in m3/s.

Pd =Pressure drop in Pascal.

C= Correction factor related to efficiency.

Kw= Octave Band Sound Power Level Correction Factors for Fans.

Forward curve centrifugal fan implies both direction of rotation and blade curvature in same direc-

tion.

Table 2.1: Octave Band Sound Power Level Correction factor for Centrifugal Fan(Hz)
Octave band Center frequency (HZ)

Fan type Charectristics 63 125 250 500 1000 2000 4000 8000 BFI
Centrifugal backward curved

Over 36 inch di-
ameter

40 40 39 34 30 23 19 17 3

Centrifugal backward curved
under 36 inch di-
ameter

45 45 43 39 34 28 24 19 3

Centrifugal forward curved
under 36 inch
diameter

53 53 43 36 36 31 26 21 2
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Table 2.2: Octave Band Sound Power Level Correction factor for Centrifugal Fan (Hz) (in MKS
unit)

Kw

63 125 250 500 1000 2000 4000 8000 BFI
98 98 88 81 83 85 71 66 2

Kw values in MKS unit has given in Table 2.2 where as

Table 2.3: Efficiency correction C
Percentage of Peak Static Efficiency dB

90-100 0
85-89 3
75-84 6
65-74 9
55-64 12
50-54 15

Table 2.3 gives value of efficiency correction factor C which depend upon efficiency of given fan.

These formulae do not include effect of number of blades effect of curvature and other specific details

of blades.
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Chapter 3

Acoustic sources

Lighthill [6] identified three categories of sound sources due to flow: monopoles, dipoles, and quadru-

ples. Monopoles results from a fluctuating volume or mass flow. Dipoles can form when there are

fluctuating forces. When fluctuating forces or dipole. Although higher order poles do exist in aero

acoustic problems, they are usually not considered because of their low radiated power.

3.1 Monopole

A monopole radiates sound equally in all directions and is the simplest acoustic source. In aero

acoustics, monopoles normally result from pulsating flow. Examples include tire, and compressor

noise. One example of a monopole source is a pulsating sphere. Likewise, a loudspeaker can be

approximated as a monopole source at low frequencies. The particle velocity of a monopole in the

radial direction is given by[6]

u(r, t) =
Ã

ρ0

(
1 +

1

ikr

)2

ei(ωt−kr) (3.1)

where Ã is the amplitude [kg/s2],k is the wave number, ρ0 is the density of the medium, a is the

speed of sound in the medium, and ω is the angular frequency. If the monopole source has an

infinitely small radius, the volume flow rate can be obtained by taking the limit of the product of

the surface area and the particle velocity when the radius goes to zero which yields

Q̃ =
4πÃ

iωρ0
(3.2)

Therefore, the sound pressure for a simple monopole source at a distance r is given by

p(r, t) = iρ0ω
Q̃

4πr
ei(ωt−kr) (3.3)

3.2 Dipole

A dipole is the superposition of two monopoles that are out of phase as shown in Figure 3.1. In

aero acoustics, dipoles are normally the result of vortex shedding and fluid structure interaction.
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(a) (b)

Figure 3.1: (a)Dipole Obtained by Superposition of two Monopoles (k l�1)(b)Generation of Dipoles
(Reproduced [1])

Examples include flow over a rod or cavity.

The sound pressure at the receiver is obtained by adding the sound pressure generated by the

monopoles at out-of-phase and can be expressed as

p =
ρ0iωQ̃

4π

(
e−ikr1

r1
− e−ikr2

r2

)
eiωt (3.4)

By utilizing the law of cosines, with the limit of l goes to zero, the sound field induced by the simple

dipole can be expressed as

p =
ikFcosθ

4πr

(
1 +

1

ikr

)2

e−i(ωt−kr) (3.5)

where

F = Q̃l

and Q̃ is the volume flow rate and l is the distance between the two out-of-phase monopoles. It

can be seen that dipole sources are induced by forces instead of volume changes in monopoles. In

turbulent flow fields, the fluctuating pressure creates a distribution of dipoles at the surface of the

body breaking the flow [?]. Figure 3.1 gives example of the physical situations that give rise to

dipole sources at low frequencies.

3.3 Quadruples

Similar to the formation of a dipole source, a simple quadruple source can be obtained by the

superposition of two dipole sources of the same strength that are out-of phase. Quadruples arise

from turbulence. One example is the jet stream. Depending on the distribution of the dipoles,

quadruples can be further classified as longitudinal and lateral. Quadruple sources are induced by

fluctuating moments or viscous forces. Figure 3.4 and 3.5 shows sound sources and their analogy.

Monopole source is like person jumping in still water, water waves radiates equally in all direction.

Second case shows dipole behavior two people playing with heavy ball. Whereas third picture in

figure 3.5 where two person fighting with each other depicts quadruple source.
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Figure 3.2: Superposition of dipoles

3.4 Vortex shedding

In aero acoustics, unwanted tones are usually caused by vortex shedding. As seen in Figure 3.5,

vortex induced noise can be found in many locations around a vehicle body. At (a) type locations

such as the windshield base and front hood edge, abrupt changes in body geometry occur. At (b) type

locations such as door gaps, air flows over cavities. At (d) type locations such as the radio antenna,

air flows over a cylinder. Separated flow exists at each of these locations and vortex shedding may

occur depending on the flow conditions. Vortex shedding has been studied since the late 1800s.As

shown in Figure 3.6 When viscous fluid flows over solid objects, a boundary layer of fluid around

the object will develop. These boundary layers can be either laminar or turbulent which can be

determined by local Reynolds numbers. Because of the effects of adverse pressure gradient and the

surface viscous stagnation, the flow at the boundary suffers from constant deceleration. Eventually

the inertial force is unable to overcome the resistance, and a boundary layer will start to separate

from the surface of the object. With the help of the main stream flow, the separated boundary layer

will form a pair of vortices rotating in opposite directions. The two vortices shed off alternately and

a vortex street forms as the separations occur continuously behind the object, such as a circular

cylinder. A relatively steady vortex street formed after a circular cylinder has the following relation

[14]:
h

a
= 0.281 (3.6)

where h and a are shown in Figure 3.6 The vortex shedding frequency can be obtained from Equation

fd

U
= 0.198

(
1− 19.7

Re

)
(3.7)

Where

f , Vortex shedding frequency,

d, Diameter of the cylinder,

U , Flow velocity.
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Figure 3.3: Monopole Source,Dipole Source, Quadruple Source

Figure 3.4: Monopole, dipole and quadruple generating waves on the surface of the water around a
boat.[LMS virtual lab manual]

It is important to understand the vortex regimes of fluid flow across obstacles in order to select the

more appropriate laminar or turbulent models. Some turbulence models are only suitable for high

Reynolds number flows while others are suitable for low Reynolds flows. Lienhard [15] categorizes

the flow regimes for different ranges of Reynolds number. When Re < 5, the flow is laminar and

there is no vortex shedding. As the Reynolds number increases, vortices start to appear in the flow

field. When Re is in the range of 5 to 15, a fixed pair of vortices first appears in the wake of the

cylinder. As the Reynolds number increases to about 40, the former fixed pair of vortices becomes

stretched and unstable and as a result, the first periodic driving forces begin. Laminar vortex streets

appear when Reynolds number is in the range of 40 to 150. The vortices are laminar till Reynolds

numbers exceed roughly 150. For Reynolds numbers above 300, the flow will begin to transition from

laminar to turbulent until flow is fully turbulent between roughly 300 and 3105. Another transition

takes place when Reynolds numbers in the range of 1105 and 5105. The exact Reynolds numbers

for these transitions will vary depending on the surface roughness and the free-stream turbulence

level. Although some of the regimes can be further divided into sub categories, the listed regimes

and Reynolds number ranges are sufficient to serve as guidelines for the us to select the turbulence

models in CFD simulation.

3.5 Acoustic Analogy

3.5.1 Lighthill’s analogy

In 1952, a paper named on sound generated aerodynamically, I [6] general theory by Dr. Michael

James Lighthill was published. In this paper, he derived a set of formulas which were later named

after him. Researchers in acoustics often regard the first appearance of his theory as the birth
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Figure 3.5: Locations of Sound Sources on an Automobile Body [2]

Figure 3.6: Vortex Street after a Cylindrical Obstacle

of aero acoustics. Thereafter, aero acoustics has become a branch of acoustics which studies the

sound induced by aerodynamic activities or fluid flow. In 60 years of time, the theory of aero

acoustics has been greatly developed and widely applied in modern engineering fields. The subject

of Lighthills paper is sound generated aerodynamically, a byproduct of an airflow and distinct from

sound produced by vibration of solids. The general problem he discussed in the paper was to estimate

the radiated sound from a given fluctuating fluid flow.

There are two major assumptions.

1. Acoustic propagation of fluctuations in the flow is not considered.

2. Preclusion of the back-reaction of the sound produced on the flow field itself. Therefore, the

effects of solid boundaries are neglected.

However, the back-reaction is only anticipated when there is a resonator (i.e. a cavity) close to

the flow field. Accordingly, his theory is applicable to most engineering problems. Furthermore,
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his theory is confined in its application to subsonic flows, and should not be used to analyze the

transition to supersonic flow. Lighthill examined a limited volume of a fluctuating fluid flow in a

very large volume of fluid. The remainder of the fluid is assumed to be at rest. He then compared

the equations governing the fluctuations of density in the real fluid with a uniform acoustic medium

at rest, which coincides with the real fluid outside the region of flow. A force field is acquired by

calculating the difference between the fluctuating part and the stationary part. This force field is

applied to the acoustic medium and then acoustic metrics can be predicted away from the source

by solving Helmholtz equation. Helmholtz equation can be solved easily if a free field is assumed

or can be solved using numerical simulation. There are two significant advantages in this analogy

as mentioned in his paper. First, since we are not concerned with the back-reaction of the sound

on the flow, it is appropriate to consider the sound as produced by the fluctuating flow after the

manner of a forced oscillation. Secondly, it is best to take the free system, on which the forcing

is considered to occur, as a uniform acoustic medium at rest. Otherwise, it would be necessary

to consider the modifications due to convection with the turbulent flow and wave propagation at

different speeds within the, which would be difficult to handle. Using the method just described, an

equivalent external force field is used to describe the acoustic source generation in the fluid[16].

Aero acoustic analogy

∂2ρ′

∂t2
− c20

∂2ρ′

∂x2

=
∂2

∂xixj
(TijH(f)) +

∂

∂xi
(σ′ijδ(f)

∂f

∂xj
) +

∂

∂t
(ρ0Vsiδ(f)

∂f

∂xi
) (3.8)

Derivation:

Continuity Equation

∂ρ

∂t
+∇ · (ρV ) = 0 (3.9)

Momentum Equation

ρ
DV

Dt
= −∇P + f (3.10)

ρ
∂V

∂t
+ ρV · ∇V = −∇P + f (3.11)

Rearranging Eq.(3.11)
∂(ρV )

∂t
+∇ · (P + ρV V ) = f (3.12)

By taking time derivative of mass conservation and subtracting divergence of the momentum equa-

tion.
∂2ρ

∂t2
+
∂

∂t
(∇ · ρV ) = 0 (3.13)

∇ ·
(
∂ρV

∂t

)
+∇ · (∇ · (P + ρV V )) = ∇ · f (3.14)

∂ρ

∂t
= −∇ · (ρV ) (3.15)
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∂2ρ

∂t2
−∇2(P + ρViVj) = ∇ · f (3.16)

∇ ·
(
∂ρV

∂t

)
= ∇ · (∇ · (P + ρV V )) +∇ · f (3.17)

∂2ρ

∂t2
=

∂2

∂xixj
(P + ρViVj) (3.18)

σij = Pδij − Pij (3.19)

∂2ρ

∂t2
=

∂2

∂xixj
(Pδij − σij + ρViV j) +

∂f

∂xj

Add 1
c20

∂2P ′

∂t2 on both side

∂2ρ

∂t2
+

1

c20

∂2P ′

∂t2
=
∂Pδij
∂xixj

+
1

c20

∂2P ′

∂t2
− ∂2

∂xixj
(σij − ρViV j) +

∂f

∂xi
(3.20)
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1

c20

∂2P ′

∂t2
− ∂2P ′

∂x2i
=

∂2

∂xixj
(ρViV j − σij)−

∂fi
∂xj

+
∂2

∂t2

(
P ′

c20
− ρ
)

(3.21)

Eq.(3.21) shows that general sound can regarded as generated by three source distribution. This

idea is illustrated in figure 3.5 in which we consider waves generated by a boat on the water surface.

• Acoustic quadruple source of strength density Tij .

• This is supplemented by surface distribution of acoustic dipole source of strength density Pijnj

.

• If surface moving volume displacement effect responsible for monopole effect.

When a person jumps up and down in the boat, he produces an unsteady volume injection and

this generates a monopole wave field around the boat. When two persons on the boat play with a

ball, they will exert a force on the boat each time they throw or catch the ball. Exchanging the ball

results into an oscillating force on the boat. This will make the boat translate and this generates a

dipole wave field. We could say that two individuals fighting with each other is a reasonable model

for a quadruple[13]. This indicates that quadruples are in general much less efficient in producing

waves then monopoles or dipoles. This will indeed appear to be the case. It is often stated that

Lighthill has demonstrated that the sound produced by a free turbulent isentropic flow has the

character of a quadruple. A better way of putting it is that since in such flows there is no net

volume injection due to entropy production nor any external force field, the sound field can at most

be a quadruple field.

3.5.2 Curle’s formulation and Fowcs williams -Hawking formulation

The integral formulation of Lighthills analogy can be generalised for flows in the presence of wall

section ′′S′′ whereas formulation of Ffowcs Williams and Hawkings allows the use of a moving control

surface ′′S(t)′′.

3.5.3 Derivation

Continuity Equation:
∂(ρ− ρ0)

∂t
+
∂(ρui)

∂yi
= 0 (3.22)

Momentum Equation:
∂(ρui)

∂t
+
∂(ρuiuj + Pij)

∂yi
= 0 (3.23)

Where Pij is compressive stress tensor

Replace ρ − ρ0 as ρ̃ Continuity equation valid for entire unbounded region is given with Heaviside

function H(x)

Heaviside function defined as
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H(x)=

{ 0 if x < 0

undefine x = 0

1 if x > 0
Relation between dirac delta function and Heavside function given as

dH

df
= δ(f)

∂(ρ̃H)

∂t
+
∂((ρui)H)

∂yi
= H

[
∂ρ̃

∂t
+
∂(ρui)

∂yi

]
+ ρ̃

∂H

∂t
+ ρui

∂H

∂yi
+ ρ0ui

∂H

∂yi
− ρ0ui

∂H

∂yi
(3.24)

∂H

∂t
+ ρui

∂H

∂yi
= δ(f)

∂f

∂t
+ uiδ(f)

∂f

∂yi

=δ(f)
(
∂f
∂t + ui

∂f
∂yi

)
(3.25)

= δ(f)

[
∂f

∂yi

∂yi
∂t

+ ui
∂f

∂yi

]
(3.26)

= δ(f) [ui − vi]
∂f

∂yi
= δ(f)|∇f |(un − vn) = 0 (3.27)

vi velocity of body and because of no penetration un−vn = 0 where n normal component of the body

∂(ρ̃H)

∂t
+
∂((ρui)H)

∂yi
= ρ0uiδ(f)

∂f

∂yi
= ρ0uiδ(f)|∇f | = ρ0unδ(f)|∇f | (3.28)

Right hand source terms indicate following point

1. First term ∂
∂t [ρ0vn|∇f |δ(f)] is monopole source which also known as thickness noise.

2. Second term ∂
∂yi

[
Pijδ(f) ∂f∂yj

]
is dipole source term which responsible for broadband noise -

Blade vortex interaction noise.

3. Third term ∂2

∂yi∂yj

[
Pij + ρuiuj − c2ρ̃δij

]
is well known lighthill tensor Tij responsible for

quadruple source .

4. Thickness noise : Noise created due to motion of the surface in normal direction each element

can be consider as piston acting on flux with speed vn.

5. Loading noise: Noise created due to pressure distribution on the surface. It includes blade

vortex interaction broadband noise.
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Chapter 4

Numerical Modelling and

Solution

4.0.4 Turbulence Model

Because of the complexity of fluid turbulence, currently there is no single turbulence model

which is valid for all turbulent phenomena. However, the k -ε model is widely used in industry

due to its stability and convergence.

4.0.5 Mathematical Model of Turbulence

The k−ε model is a semi-empirical turbulence model. The initial idea of developing this model

was to improve the mixing-length hypothesis and to avoid prescribing the turbulence length

scale algebraically. There are two equations in this model, the k equation and the ε equation.

k represents turbulence kinetic energy and ε represents the dissipation rate. They can be ob-

tained by solving the following transport equations. [5]

∂(ρk)

∂t
+
∂(ρuik)

∂xi

=
∂

∂xi

[(
µ+

µt
σk

)
∂k

∂xi

]
+ µt

(
∂ui
∂xj

+
∂uj
∂xi

)
∂ui
∂xj
− ρε (4.1)

∂(ρε)

∂t
+ ρuk

∂k

∂xk

=
∂

∂xk

[(
µ+

µt
σε

)
∂ε

∂xk

]
+
c1ε

k
µt

(
∂ui
∂xj

+
∂uj
∂xi

)
∂ui
∂xj
− c2ρ

ε2

k
(4.2)

µt is called turbulent viscosity and defined as

µt = cµρ
ε2

k
(4.3)
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The constants c1,c2,cµσk,σε are respectively 1.44, 1.92, 0.09, 1.0, and 1.3. However, with the given

values, the model is only suitable for high Reynolds flow, which works well if the flow is fully

developed and is sufficiently spaced from wall boundaries. To improve the performance of the model

in the near wall fields, wall functions can be used to model boundary effects.

4.0.6 Large Eddy Simulation

The Large Eddy Simulation (LES) turbulence model is a hybrid approach. In LES, the large motions

are directly computed but the small eddies are usually approximated using a model [5]. It is the

most widely used model in academia, but it is still not popular in industrial applications. One of

the reasons is that the near wall region needs to be represented with an extremely fine mesh not

only in the direction perpendicular to the wall but also parallel with the wall. For this reason, LES

is not recommended with flows with strong wall boundary effects. In other words, the flow should

be irrelevant to the wall boundary layers. Another disadvantage of LES turbulence model is the ex-

cessive computational power needed due to the statically stability requirement. Generally, the LES

solver requires long computation time to reach a stastically stable state. Therefore a substantially

long preparation time is needed for successful run of LES .

The main idea of the LES formulation is to separate the Navier-Stokes equations into two parts, a

filtered part and a residual part. Filtering in LES is a mathematical operation separates a range

of small scales from the Navier-Stokes equations solution. The large scale motions are resolved in

the filtered part while the small scale motions are modeled in the residual part. The large scale

motions are strongly influenced by the geometry and boundary conditions. The small scale motions

are determined by the rate of energy transport from large-scale eddies and viscosity. Well docu-

mented explanations of filtered Navier-Stokes equations can be found in many turbulence modeling

textbooks, and the subgrid-scale (SGS) turbulence model is used to model the near-wall regions.

Using the SGS model, the SGS stress can be found using τij − 1
3τkk = −2µtS̄ij

where µt represent the SGS turbulent viscosity and S̄ij is the rate of strain tensor for the resolved

scale defined by :

S̄ij =
1

2

(
∂ūi
∂xj

+
∂ūj
∂xi

)
(4.4)

4.0.7 Acoustic Numerical Solution

There are two major types of numerical methods in acoustics: the boundary element method (BEM)

and finite element method (FEM). Although noise control engineering primarily depends on mea-

surement and experience, numerical methods have been used to predict noise in the early design

stage as a means to lower the cost of design by increasing design efficiency . Normally, acoustic

FEM is used to solve interior problems, but nowadays FEM can be used to solve acoustic radiation

problems with the advent of infinite elements[3]. The Helmholtz equation is the governing equation

for linear acoustics and can be expressed as

∇2p+K2p = 0 (4.5)

Where p is the sound pressure and K is the wavenumber.
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4.0.8 Fan curve and fan laws

To evaluate a fan with respect to its ability to transport an air volume, fan curves are used. To

make things clearer one can think about a circuit, where the fan is the source that produces the

pressure difference ∆P = P1 − P0 to overcome the resistance of the system. Instead of a current an

airflow rate Q = m3

s is circulating. The illustration of this analogy is shown in Figure 4.1(a). The

BS 848 standards (1980) defines the fan static pressure rise as the static pressure at the outlet minus

the total pressure at the inlet. Figure 4.1(b) shows general fan curve, x-axis ordinate represent

(a) (b)

Figure 4.1: (a) Electrical analogy for fan curve [3](b)typical fan curve

volume flow rate and y-axis represent static pressure difference. The fan curve is the black dark

line which cuts the coordinate system twice. The cut with the x-axis gives the maximum airflow

through the fan. Here the fan is at maximum kinetic energy. The cut with the y-axis denotes the

shut-off point. The fan curve can be created if a prototype is available and is therefore provided by

the fan manufacturer. The fan curve can also be computed by using CFD analysis. This is done

in this thesis. Figure 4.2(a) shows fan curve generated from CFD data. Whereas Figure 4.2(b)

shows normalized fan curve. By using curve fitting technique pressure rise at shut off point can be

calculated. Centrifugal fans generally fallow parabolic curve.
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(a) (b)

Figure 4.2: (a)fan curve from CFD solution for centrifugal fan(b)Normalized fan curve for centrifugal
fan

A guideline for effects of different variable changes between geometrically similar fans is provided

by fan laws. Such laws have a solid theoretical background and have also been determined experi-

mentally By looking at two geometrically similar fans with constant speed and air density one can

conclude parameter influences. The two different diameters,D1 and D2, can be related with other

parameters in the following way:

P1

P2
=

(
D1

D2

)2

Q1

Q2
=

(
D1

D2

)3

P denotes the pressure and Q is the airflow through the different fans. The first law can be easily

explained in terms of airflow rate and the centrifugal force. It grows in radial direction with the

square of the distance to the rotation axis. This force is then balanced with the pressure, which is

zero close to the rotation axis and increases in outwards direction.

∂P

∂r
= ρrω2

After integration we can calculate pressure rise at shut off point. Sample calculation:

∆Pmax =
ρr20ω

2

2
=

1.27×
(
0.15
2

)2 × ( 200060

)2
2

= 156.679 Pa

Table 4.1 shows very small difference in numerical and theoretical shut off point calculation .These

results shows validation of numerical model.

Non dimensional aerodynamics performance parameter defined in term of φr and ψst. φr is non-

dimensional volume flow coefficient and ψst is static pressure rise coefficient defined as

φr =
Q

π2d2bn
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Table 4.1: Comparison of numerical results with theoretical values at shutoff point

RPM Theoretical ∆Pmax Numerical ∆Pmax %Error

2000 156.679 154.92 1.12

5000 979.24 936.58 4.35

3000 69.635 67.189 3.51

ψts =
2∆Pts
π2d2ρn2

respectively where d is diameter ,b is width of blade,n is number of rotation per second and Q is

volume flow rate .

Sample calculation:

φr =
Q

π2d2bn
=

0.035

1.27× π2 × 0.152 × 0.1× 33.33
= 0.037

ψts =
2∆Pts
π2d2ρn2

=
2× 141.63

π2 × 0.152 × 1.27× 33.332
= 0.904

Table 4.2 and 4.3 gives non-dimensional value for fan curve at 2000 RPM and 5000 RPM advan-

Table 4.2: Simulated centrifugal fan curve data at speed of 2000 rpm

∆Pst(Pa) Q(m3/s) ψst φr

141.630 0.035 0.904 0.037

134.52 0.063 0.859 0.067

117.686 0.077 0.751 0.081

94.830 0.091 0.605 0.096

63.330 0.105 0.404 0.111

21.955 0.119 0.140 0.119

8.2015 0.126 0.140 0.126

tage of non-dimensionalized fan curve is that it can applicable for any geometrically similar fan.
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Table 4.3: Simulated centrifugal fan curve data at speed of 5000 rpm

∆Pst(Pa) Q(m3/s) ψst φr

985.383 0.035 1.007 0.018

963.562 0.049 0.984 0.026

940.402 0.063 0.961 0.034

914.048 0.07 0.934 0.037

875.526 0.084 0.894 0.045

849.088 0.105 0.867 0.056

744.584 0.14 0.761 0.075

353.244 0.21 0.361 0.113

6.491 0.245 0.006 0.132

4.1 Fan noise simulation approach

4.1.1 Computational Aero acoustics

Usually in an aero acoustic problem, there are four aspects to consider: the sound wave and the

acoustic medium, sources, and the receiver. The medium in aero acoustic problems is air or a

gas mixture. The sources are the pressure fluctuations due to vortex shedding and turbulence.

The receiver can be microphones (or field points in a simulation) or, in reality, the human ears.

There are three primary aero acoustic simulation approaches: computational aero acoustics (CAA),

CFD-sound propagation solver coupling, and broadband noise source models. The aero acoustic

simulation in a CFD-sound propagation solver coupling process is based on variables such as the

pressure and density fields computed by a CFD solver during transient flow simulation. Figure 9

shows the solution process of this solver coupling approach. The aero acoustic solver will read in the

transient CFD solution data and compute the aero acoustic sources in the time domain. Acoustic

simulation can be done either in frequency domain or time domain based on problem. The current

problem considered to be in frequency domain. Then a Fast Fourier Transform is conducted in

order to obtain the source data in the frequency domain. After the frequency domain sources are

computed, an acoustic simulation can be performed
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Figure 4.3: CFD-Sound Propagation Solver coupling solution process

4.1.2 Geometry

Centrifugal fan CAD model created in commercial software SOLIDWORKS[17] as shown in Figure

4.4 . Figure 4.5 is horizontal sectional view. Fan consist of 12 blades. Inlet showed by red color

whereas outlet showed by orange color. Horizontal section view in Figure 4.5 gives dimension and this

section used to analyses results in rest of the thesis. Yellow region showed in figure 4.4 transparent

view is rotating part. There is 20 mm minimum clearance between blades and external body.

Figure 4.4: CAD Model of centrifugal fan with inlet and outlet duct configuration.
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Figure 4.5: Horizontal slice of geometry

4.1.3 Grid Independent study

Advantages of polyhedral mesh:

Polyhedral meshes offer the same automatic meshing benefits as tetrahedral meshes, being easy and

efficient to build, while overcoming their disadvantages such as limited stretching and poor gradient

approximation. A major advantage of polyhedral cells is that they have many neighbors (typically

of the order of 10), so gradients can be much better approximated (using linear shape functions and

the information from nearest neighbors only) compared with tetrahedral cells.

Polyhedral cells are especially beneficial for handling re-circulating flows. Tests [STAR CCM+

][18] have shown that, for example, in the cubic lid-driven cavity flow, fewer polyhedral cells are

needed to achieve a specified accuracy than even Cartesian hexahedral cells (which would be expected

to be optimal for rectangular solution domains). This can be explained by the fact that, for a

hexahedral cell, there are three optimal flow directions which lead to the maximum accuracy (normal

to each of the three sets of parallel faces); for a polyhedron with 12 faces, there are six optimal

directions which, together with the larger number of neighboring cells, leads to a more accurate

solution with a lower cell count. Comparisons in many practical tests have verified that, with

polyhedral meshes, approximately four times fewer cells, half the memory, and a tenth to a fifth

of computing time is required to achieve a solution as compared to a tetrahedral mesh with the

same level of accuracy. In addition, convergence properties are much better in computations on

polyhedral meshes, where the default solver parameters usually do not need to be adjusted.

By definition, a mesh-converged solution means, to make the mesh fine in each spatial dimension

and run the simulation again. If the solution for the original and the refined mesh are identical,

or nearly so, the solution can be assumed to be Mesh-converged. Here to study grid independency

three mesh compared with 3mm, 4 mm and 5mm base size as shown in figure 4.7 and 4.8.Meshing

has been done in commercially available software STAR CCM+.

Polyhedral 4 mm base size is operating mesh which is 45.20% coarse and 33.76% finer than 3

mm and 5 mm base size mesh.There are two region in given mesh rotating and stationary. Rotating
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Figure 4.6: 3mm base size Mesh (410847 cells) , 4mm base size Mesh (225121 cells),5mm base size
Mesh (149117 cells) respectively.

(a) (b)

(c)

Figure 4.7: Turbulent kinetic energy results for (a)5mm base size (b)3 mm base size and (c) 4 mm
base size

region mesh is more finer compared to stationary region. Important scalar quantity tangential

velocity, static pressure rise and turbulent kinetic energy listed in table 4.4. Numerical solutions

compared in table 4.4 shows grid independency.
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Table 4.4: Grid Independent study

Base Size Cells Max Vt(m/s) ∆P (Pa) Max
TKE
(Joule)

%Error

5 mm 149117 18.705 146.76 1992.1 3.2 and 5.2

3mm 410847 17.712 142.14 2102.3 Ref

4 mm 225121 18.532 144.465 2160.7 1.6 and 2.7

4.2 Numerical solution

Numerical Modelling: The analysis of CFD problems generally involve three steps:

1. Discretization of the flow domain

2. Setting up and initiating the flow computation

3. Visualizing the results

RANS equation solved with following turbulence model.

1. k − ε turbulent model

2. k − ω turbulent model

3. Spart-alahamas turbulent model

4. LES turbulent model

Acoustic overall power calculation done with these CFD solution and compared in table 4.5.

Table 4.5: Comparison predicted total sound power levels by using different turbulence models in
CFD

Turbulence Model Overall Noise Prediction (dB)

K-ε 105.02

K-ω 105.45

Spart-alahamas 105.92

LES 103.73

From equation 2.1

Lw = Kw + 70logD + 50logN + C

= 85 + 70× log(0.15) + 50× log(
2000

60
) = 103.47dB + C

Results shows LES CFD analysis gives better results than rest of turbulence model. Unsteady

NavierStokes equations solved with MRF mesh considering incompressible, segregated flow with

31



Figure 4.8: Comparison predicted total sound power levels by using different turbulence models in
CFD

implicit scheme. Implicit scheme numerical more stable than explicit scheme but it can’t uncondi-

tionally stable so we need to consider time step which satisfy courant number criteria(CFL no.<1)

In this thesis, it is 2e-5 which satisfy CFL criteria and according to Nyquist criteria can give sound

pressure level up to 25KHz.

Detailed step for CFD analysis mentioned in appendix.

Parameters :

Gas properties:

Density =1.18 kg/m3

Dynamic viscosity =1.85E-5 N-s/m2

CFD Boundary condition :

Inlet Velocity = 11 m/s

Blade rotation = 2000 rpm

Pressure Outlet = atmospheric pressure

Acoustic Boundary condition :

Pressure at inlet and outlet is equal to atmospheric pressure.

Velocity of sound =340 m/s

Figure 4.9 shows Reynolds number and velocity magnitude contour, it indicate wherever velocity

magnitude is high, Reynolds number is also high.

4.2.1 Wave propagation using Boundary Element Method

Unsteady turbulent model solved with large eddy simulation and MRF mesh considering incom-

pressible, segregated flow and implicit scheme. Pressure data on blade surface from CFD analysis
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(a) (b)

Figure 4.9: (a)Reynolds’s number with diameter as characteristic length (b) Velocity vector contour

Figure 4.10: Acoustic pressure autopower contour(dB) at 2000 Hz(rotational speed,2000 RPM)

used to find forces or acoustic source term in nonhomogeneous wave equation. After finding source

term in wave equation, directivity contour plotted in 1m3 cubical field point as showed in Figure

4.10. Figure 4.10 shows monopole like source term at inlet condition. Whereas Figure 4.11 shows

monopole and dipole like behavior at 500 Hz and 1000 Hz respectively. After plotting acoustic power

spectrum, it found that 5th BPF harmonic is dominating. Overall acoustic power level is 103.73 dB

and compared with empirical values as given in Eq (2.1). The values are in close agreement.figure

4.13 shows sectional view acoustic pressure distribution at different section at peak frequency 2000

Hz. After doing acoustic modal analysis it found that it is effect of large bottom circular duct.
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(a) (b)

Figure 4.11: Acoustic pressure autopower contour(dB) at (a)500 Hz and (b)1000 Hz

Figure 4.12: Spectrum of centrifugal fan rotating at speed of 2000 rpm.

Figure 4.13: Acoustic modal analysis
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Chapter 5

Parametric study

As earlier mention, LES turbulence model predict noise close to empirical prediction. so, LES

turbulence model continued for rest of parametric study.

5.1 Variation of Inlet Velocity

As we have seen in Chapter 4, volume flow rate to create Fan curve. To get optimum performance

point (less noisy), acoustic power vs volume flow rate plot have created. Prior to that Velocity,

turbulent kinetic energy, vorticity contour plotted to observe fluid dynamics at rotational speed of

2000 RPM.

(a) (b)

Figure 5.1: (a)Velocity Magnitude Contour (b) Turbulent Kinetic Energy contour for various inlet
velocity condition

As shown in figure 5.1 (a) velocity magnitude is increasing with increasing inlet velocity. Figure

5.2 compare vorticity contour for various inlet velocity condition. It is maximum at cut off in all

contour.

Figure 5.1 shows as turbulent kinetic energy increases leads to increment of total acoustic power.

Intially overall acoustic power decreases and then increases.

Figure 5.3 and Figure 5.4 shows acoustic power at various frequencies and all peaks are associated

35



Figure 5.2: Vorticity Magnitude Contour for various inlet velocity condition

Figure 5.3: Acoustic Power spectrum for various inlet velocity condition (rotationalspeed,2000 RPM)

with harmonics of blade passing frequency. In case of 2000 RPM, blade passing frequency is 400

Hz where as in 5000 RPM case it is 1000 Hz . Similiar parametric study have done for 5000 RPM.

Same trend found as 2000 RPM.
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Figure 5.4: Acoustic Power for various inlet velocity condition (rotational speed, 5000 RPM)

5.2 Number of Blade Variation

Here two cases considered: .

1. Fan with six blades

2. Fan with twelve blades

There is no particular relation between acoustic power and number of blades, but here acoustic

power increased after reducing the number of blades. Turbulent kinetic energy (TKE) and

vorticity contour plot values are increased as number of blades decreased. It can be observed

from Figure 5.5

(a) (b)

Figure 5.5: (a)TKE contour comparison (b) Vorticity contour comparison

In six blade case blade passing frequency (BPF) 200 Hz and its harmonics are dominating.

Blade passing frequency defined as
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Figure 5.6: Acoustic Power(dB) comparison on cubical field point mesh

BPF =
n×N

60
(5.1)

Where as in 12 blades case, 400 Hz (BPF) and its harmonics are dominating.
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5.3 Cut off radius variation

As we have seen earlier, most of the cases TKE was maximum at cut off radius so to observe

effects of cut off radius on acoustic power this study has been done. Original geometry’s cut

off radius modified in commercial software SOLID WORKS.Modified geometry rescaled and

mehing has been done in commercial available CFD software STAR CCM +. Figure 5.7 shows

modified geometry similarly cut off radius modified to 15 mm , 25 mm and 30 mm.Figure

5.8 shows comparison of turbulent kinetic energy contour for various cut off radius.Figure 5.9

shows comparison of vorticity contour for various cut off radius.Figure 5.8 shows there is no

specific trend for the turbulent kinetic energy initially it is increasing but later it is decreasing,

it is because of initially both (blade tip and cut off radius) clearance and obstruction to flow

increases later clearances increases but obstruction decreases.Similar trend found in term of

vorticity magnitude contour and acoustic total power as showed in figure 5.9 and figure 5.10

respectively.Table 5.1 shows total acoustic power for various cut off radius. As turbulent kinetic

energy initially it is decreasing and then it is increasing.

Figure 5.7: Modified cut off radius geometry

Figure 5.8: Effect of cut off radius on TKE contour.
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Figure 5.9: Effect of cut off radius on vorticity magnitude contour.

Figure 5.10: Acoustic power for various cutoff radius

Table 5.1: Optimum operating condition for 2000 RPM
Cut off radius (mm) Total acoustic power (dB)

05 106.81
15 105.05
25 104.60
30 107.71
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Chapter 6

Conclusion

Developed a methodology for given centrifugal fan. Fan curve prediction and validation has

done and from acoustic power calculation, it can be concluded that the LES turbulence model

can predict tonal noise for given fan. Turbulent kinetic energy and vorticity magnitude shows

a direct relation to overall acoustic power

Parametric study have done.

(a) Variation of inlet velocity: The optimum operating condition can find from Fan curve and

acoustic power curve. Here Table 6.1 and Table 6.2 gives overall acoustic power for various

volume flow rates. From figure 6.1 and 6.2 it can be seen that at 0.77 m3/s for 2000 RPM

and 0.133 m3/s for 5000 RPM fan performance is less noisy.

(b) Variation of blade number: As the number of blades decreases noise increase because of

increment in turbulent kinetic energy and vorticity magnitude.

(c) Variation of cut off radius: In acoustic point of view, there is a tradeoff between curvature

blade clearance and cut off radius.

Thus, given methodology helps to get this operating point without creating prototype, so

proposed method is an appropriate design tool during initial design studies.

Table 6.1: Optimum operating condition for 2000 RPM

Acoustic Power (dB) Volume flow rate

109.98 0.035

105.36 0.063

103.73 0.077

106.06 0.105
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Table 6.2: Optimum operating condition for 5000 RPM

Acoustic Power (dB) Volume flow rate

128.48 0.035

126.53 0.063

126.14 0.077

125.44 0.105

123.79 0.133

131.91 0.210

Figure 6.1: Acoustic power for various volume flow rate for 5000 RPM

Figure 6.2: Acoustic power for various volume flow rate for 2000 RPM

42



References

[1] J. C. Hardin and S. L. Lamkin. Aeroacoustic Computation of Cylinder Wake Flow.

AIAA journal 22, (1984) 51–57.

[2] J. Liu. Simulation of Whistle Noise Using Computational Fluid Dynamics and Acous-

tic Finite Element Simulation .

[3] L. C. Wrobel. The boundary element method, applications in thermo-fluids and acous-

tics, volume 1. John Wiley & Sons, 2002.

[4] F. Bakhtiari-Nejad, A. Rahai, and A. Esfandiari. A structural damage detection

method using static noisy data. Engineering Structures 27, (2005) 1784–1793.

[5] D. C. Wilcox et al. Turbulence modeling for CFD, volume 2. DCW industries La

Canada, CA, 1998.

[6] M. J. Lighthill. On sound generated aerodynamically. II. Turbulence as a source of

sound. In Proceedings of the Royal Society of London A: Mathematical, Physical and

Engineering Sciences, volume 222. The Royal Society, 1954 1–32.

[7] J. F. Williams and D. L. Hawkings. Sound generation by turbulence and surfaces

in arbitrary motion. Philosophical Transactions of the Royal Society of London A:

Mathematical, Physical and Engineering Sciences 264, (1969) 321–342.

[8] O. Singh, R. Khilwani, T. Sreenivasulu, and M. Kannan. Parametric study of cen-

trifugal fan performance: Experiments and numerical simulation. rN 30, (1963) 2.

[9] M. Lowson. The sound field for singularities in motion. In Proceedings of the Royal

Society of London A: Mathematical, Physical and Engineering Sciences, volume 286.

The Royal Society, 1965 559–572.

[10] J. Wiedemann, G. Wickern, B. Ewald, and C. Mattern. Audi aero-acoustic wind

tunnel. Technical Report, SAE Technical Paper 1993.

[11] I. Sharland. Sources of noise in axial flow fans. Journal of Sound and Vibration 1,

(1964) 302–322.

[12] C. Morfey. Acoustic energy in non-uniform flows. Journal of Sound and Vibration 14,

(1971) 159–170.

[13] D. CRIGHTON. Physical acoustics and the method of matched asymptotic expan-

sions. Physical Acoustics V11: Principles and Methods 11, (2012) 69.

[14] G. Birkhoff. Formation of vortex streets. Journal of Applied Physics 24, (1953) 98–103.

[15] J. H. Lienhard. Synopsis of lift, drag, and vortex frequency data for rigid circular

cylinders. Technical Extension Service, Washington State University, 1966.

43



[16] M. Fisher, P. Lush, and M. Harper Bourne. Jet noise. Journal of Sound and Vibration

28, (1973) 563–585.

[17] M. Lombard. Solidworks 2013 bible. John Wiley & Sons, 2013.

[18] M. Peric and S. Ferguson. The advantage of polyhedral meshes. New corporate image

for CD-adapco .

44


