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Abstract

Auxetics are mechanical meta-materials which exhibit negative Poisson’s ratio. In here, first study
is focused on blast resistance of sandwich beams with an auxetic core having re-entrant hexagonal
topology. We implemented the Fleck and Deshpande’s three stage momentum transfer model to
estimate the dynamic structural response of auxetic cored sandwich beams. The mechanical behav-
ior of auxetic core such as normal compressive strength σny and the longitudinal strength σly are
required for the above mentioned three stage modelling of sandwich beams. Hence, the objective
of our study is to investigate the mechanical behaviors of auxetic material for various geometric
configurations using finite element simulations. We performed Monte Carlo study to obtain the
mechanical properties using micro-structural parameters. Using the σny and σly obtained from the
static FE simulations we studies the blast resistance of the auxetic cores. We observed that the
auxetic core outperforms the other conventional core structures. During this process the computa-
tional efforts were high because auxetic has a re-entrant corner so we further continued this study to
develop an enriched element. We have developed an analytical formulation for configurational force
using Ashby’s beam column method. We attempted to enrich a 4-noded rectangular element for an
hourglass structure using the corner singularities based on the concept of extended finite element
methods.
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Chapter 1

Introduction

Materials possessing negative Poisson’s ratio are called auxetics materials. In this introductory
chapter definition of auxetic materials and their historical development have been discussed.

1.1 Poisson’s Ratio

Poisson’s ratio is the negative ratio of transverse strain to axial strain represented as

ν = −εtrans
εaxial

(1.1)

It is named after a French mathematician Siméon Poisson. The axial strain εaxial is along the loading
axis and εtrans is the strain along the transverse direction in the above Eq. 1.1. In conventional
material, when a material is subjected to uni-axial tensile stretch the axial strain εaxial is positive
and the transverse strain εtrans is negative because of the compression experienced in lateral direction
as shown in Fig. 1.1. Hence by the definition of Eq. 1.1 conventional material have positive Poisson’s
ratio. This phenomenon is called Poisson effect and Poisson’s ratio ν is the measure of this effect.

Figure 1.1: Poisson’s effect on a conventional material when load is applied in x direction.

In 1807 Young [9] observed the Poisson effect during one of the lecture on "Natural Philosophy
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and the Mechanical Arts". After few years, in 1827 Poisson [10] obtained a measure using a ratio
called Poisson’s ratio ν defined by Eq. 1.1 and this value is 0.25 based on the molecular interaction
theory. Later in 1859, Kirchhoff [11] obtained Poisson’s ratio for metals using the relation between
Young’s modulus E and shear modulus G as defined in Eq. 1.2.

E

G
= 2(1 + ν) (1.2)

In 1828 Cauchy’s theoretical study showed that only two independent elastic moduli are necessary
for characterizing the elastic behavior of isotopic materials [12], implying that Poisson’s ratio of
material must differ from another. Generally Poisson’s ratio for different material varies from -1 to
0.5.

1.2 Auxetic Materials

In this section auxetic materials and few examples that exhibits negative Poisson’s ratio are discussed.
Followed by the five different landmark of Poisson’s ratio for isotropic solids and the historical
development of auxetic materials.

Auxetic materials are defined as solids that possess negative Poisson’s ratio. It is derived from the
Greek word auxetikos (αυχητικoς), which means "that which tends to increase" [13]. When auxetic
materials are stretched (εaxial < 0) in one direction, they also expands in the direction transverse to
the loading direction (εtrans < 0), as shown in Fig. 1.2(a). It follows that if the load is reversed from
stretching to compression, the material contracts in transverse direction as depicted in Fig. 1.2(b).
Few examples of 2D micro-structural geometries resulting the auxetic behavior are depicted in Fig.
1.3. In these examples some form of rotation takes place at joints for auxetic behavior to manifest.
For example, in case of re-entrant hexagonal auxetic structure hinge formation at re-entrant corner
gives rise to negative Poisson’s ratio.

Figure 1.2: Schematic of negative Poisson’s ratio effect on 2D shape

The negative Poisson’s ratio materials have been studied extensively in last two decades because
of their counter intuitive mechanical response. Physically negative ratio means that they expands
laterally when stretched and contracts laterally when compressed [5]. Studies have shown that
such type of materials exhibits enhanced mechanical properties such as higher fracture toughness
[14, 15], shear modulus [16], indentation resistance [14, 17] and acoustic damping [18] compared to
conventional materials. A negative Poisson’s ratio for a layer permits synclastic curvature shaping
[19]. Synclastic surface is curved along the same side in all direction which means center of curvature
of all membrane is on the same side as shown in Fig. 1.4(b) where as, in case of anticlastic surface,
any two orthogonal curvatures always has opposite signs Fig. 1.4(a). This behavior is the result of the
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Figure 1.3: Geometries exhibiting Auxetic behavior [1]. (a) Re-entrant hexagon (b) Chiral square
symmetric [2] (c) Chiral circular [2] (d) Rotating unit squares [3]

differential contraction caused by the Poisson’s effect [4] . The advantage in case of sandwich panel
is that synclastic curvature of auxetic core [20] allows doubly curved sandwich panel manufacturing
without core buckling.

Figure 1.4: Distortion behavior of surface a) Anticlastic surface b) Synclastic surface [4] .

Significance of Poisson’s ratio at major landmarks [21] is summarized in Tab. 1.1. The first and
well known significance is the volume preservation which is also known as condition of incompressibility,
at ν=0.5. It is also the extreme positive limit for isotropic solids. Poisson’s ratio greater than 0.5
implies the negative volume which is physically not possible. Rubber has a Poisson’s ratio of value
close to 0.5. In case of isotopic solid possessing zero Poisson’s ratio ν=0, from the definition of Eq.
1.1 one can interpret that solid will show very little lateral deformation when compressed or stretched
in axial direction, showing the preservation of cross section area. Mathematically with reference to
Eq. 1.2 for isotropic solids, substitution of ν=-0.5 gives E = G. Where, the Young’s modulus E
and the shear modulus G are two of the most common engineering moduli used there by giving the
condition of moduli preservation. ν= -1 means the same amount of positive strain in lateral direction
when stretched in axial direction and vice versa when compressed in axial direction, signifying the
landmark of shape preservation.
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Table 1.1: Poisson’s ratio significance in isotropic solid [1] .

Poisson’s ratio Physical significance
ν=1 Area preservation
ν=0.5 Volume preservation
ν=0 Preservation of cross section
ν=-0.5 Moduli reservation, E = G
ν=-1 Shape preservation

In 1848, Saint-Venant speculated that in case of anisotropic solids, Poisson’s ratio might be
negative or might be greater than 0.5 [22]. Thermodynamic restrictions on isotropic elastic constitutive
law gives the limit of Poisson’s ratio as −1 ≤ ν ≤ 0.5 [23]. For detailed literature on evolution of
negative Poisson’s ratio one can refer to [1] which is summarized in Tab. 1.2.

Table 1.2: A brief summary of the historical development of auxetic materials

Year Person Discovery

1848 Adhémar Jean Claude Barréde Saint-Venant Suggested ν<0

1920 Woldemar Voigt ν< 0 in single crystals

1927 Augustus Edward Hough Love ν<0 in pyrites

1946 R.F.S. Hearmon ν< 0 in single crystals

1965 Yuan-Cheng Fung −1 ≤ ν ≤ 0.5 for isotropic solids

1969 Poporeka and Balagurov ν< 0 in ferromagnetic films

1970 Landau and Lifshitz Hint on ν<0

1971 Simmons and Wang ν< 0 in single crystals

1979 Bjeletich et al. ν< 0 in composite laminates

1979 Milstein and Huang ν< 0 in FCC crystals

1980 Tsai and Hahn ν< 0 in composite laminates

1981 Kittinger et al. ν<0 in Îś-quartz

1982 Gibson et al. ν< 0 in re-entrant hexagonal honeycombs

1984 Carl T. Herakovich ν< 0 in composite laminate

1985 Robert F. Almgren 3D isotropic structures with ν=-1

1987 Krzysztof Witold Wojciechowski Hexagonal molecules (ν<0)

1987 Roderic S. Lakes Foams (ν<0)

1987 Jaric and Mohanty versus Frenkel and Ladd Debate on ν< 0 in FCC

1988 Sun and Li ν< 0 in composite laminates

1989 Wojciechowski and Branka Hexagonal molecules (ν<0)

1989 Evans and Caddock Foams (ν<0)

1991 Kenneth E. Evans Coined the term "auxetic"

Auxetic materials could be either naturally occurring or man-made. In major cases negative
Poisson’s ratio occurs because of their micro structure. One of the naturally occurring auxetic
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material is silicon dioxide (SiO2) in the structure of α-cristobalite structure [24]. The Poisson’s ratio
of α-cristobalite can reach a negative maximum value of -0.5 in certain directions, where as the
average Poisson’s ratio for its single-phased aggregate was calculated as -0.16 by Yeganeh-Haeri et al.
[24]. These are also called semi-auxetic materials [25] as only some part of it is responsible for the
negative Poisson’s ratio. Based on the α-cristobalite Poisson’s ratio due to it’s structure, Keskar and
Chelikowsky [26] predicted that the most common form of crystalline silica, α-quartz, will also posses
negative Poisson’s ratio. They also investigated the elastic properties of α-cristobalite and other
forms of silica using first-principles computation and classical inter-atomic potential functions [26].

Poisson’s ratio basically depends on the micro-structure of the material, there by auxetics can
also be produced by altering the existing material micro-structures or reproducing a material with
the micro-structure resulting the negative Poisson’s ratio and enhanced mechanical properties. For
example, Lakes [5] suggested the conversion of conventional foams to auxetic foams by permanently
protruding the ribs of each cells inward, thereby resulting in a re-entrant structure. Auxetic foams
can be manufactured by compressing a three dimensional foam in all three perpendicular direction
and then heating it to the temperature above the softening point of the foam material as shown in
Fig. 1.5. A study done by Lakes concludes that a compression factor of value 1.4-4 gives negative
Poisson’s ratio in case of polyester foam. Where as, reticulated metal foams need to be plastically
deformed in all three orthogonal directions at room temperature without any heating [5].

Figure 1.5: Re-entrant unit cell produced by symmetric collapse [5]

By using 3D printing technology, Critchley et al. [6] produced auxetic foam with Poisson’s ratio
as low as -1.18 under tensile load. A magnified image of this 3D printed auxetic microstructure is
shown in Figure 1.6.

In 2005 He et. al. [27] produced a polymeric auxetic material in the form of liquid crystalline
polymer (LCP). As schematic in Fig. 1.7(a) shows, initially the molecular rods are attached to the
polymeric chain and oriented in the direction of molecular chain. When polymeric chain is stretched
uni-axially the molecular rods re-orient them-self in the lateral direction depicting the negative
Poisson effect as shown in Fig. 1.7(b). They have also synthesized a polymeric chains consisting of
para-quaterphenyl rods that are transversely attached to the polymer’s main chain which also results
in negative Poisson’s ratio.
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Figure 1.6: Auxetic foam by 3D printing Critchley et al. [6]

Figure 1.7: liquid crystalline polymer (LCP) (a) undeformed, and (b) deformed states [1]

1.3 Re-entrant Honeycomb Auxetics

In lightweight structural applications sandwich panels are one of the important composite structures
being used. For the majority of applications only flat sandwich panel with honeycomb core is being
fabricated. In fact studies have shown that fabrication of curved sandwich panels with conventional
regular honeycomb core leads to local collapse and buckling of core. However by making suitable
changes in the honeycomb geometry, curved sandwich panels can be manufactured [20]. It is possible
due to negative Poisson’s ratio of core allowing to form a synclastic surface as discussed in Sec. 1.2.
The resulting structure from conventional regular hexagonal honeycomb having negative Poisson’s
ratio is called re-entrant hexagonal auxetic.

Two dimensional honeycombs with regular hexagonal cells exhibits a Poisson’s ratio of +1 in
the honeycomb plane. Regular hexagon have angle of 120 ◦ between it’s consecutive interior walls.
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Whereas, re-entrant honeycomb is made up of hexagons that are shaped like a bow as shown in
Fig. 1.8. The Poisson’s ratio of re-entrant hexagonal auxetic depends upon it’s re-entrant angle and
other geometrical parameters [28]. When the unit cell of re-entrant hexagonal auxetic is stretched
in such a way that two vertices of bows are being pulled apart then whole structure expands in
every direction [29]. The unit cell geometry of re-entrant honeycomb has sizeable influence on its
mechanical properties [29]. Young’s modulus and Poisson’s ratio of these type of honeycomb can be
predicted based on their deformation mechanisms [5, 30, 31, 32]. The re-entrant hexagonal auxetics
have been studied thoroughly in last one decade [33, 34]. The composite material composed of regular
layer of aluminum and re-entrant auxetic has a significant increase in their Young’s modulus [35].
Fabrication of re-entrant foams involving compression followed by heat treatment is discussed by

Figure 1.8: Schematic of re-entrant hexagonal auxetic

Friis et. al. [36]. In the later article authors furthers concludes that re-entrant transformation of
metal foam involves plastic hinge formation and plastic buckling of ribs. However this fabrication
methods had shortcoming including long term instability of structure and severe surface creasing [37]
and those were further modified by Chan and Evans in 1997.

The unit cell of a re-entrant honeycomb is shown in Fig. 2.3 and deformation mechanism of
regular hexagon honeycomb and re-entrant honeycomb can be visualized with the help of Fig. 1.9(a)
and Fig. 1.9(b), respectively. It is clear from Fig. 1.9 that unlike regular hexagonal honeycomb,
re-entrant hexagonal honeycomb expands laterally even when it is pulled in axial direction depicting
negative Poisson’s ratio from the definition in Eq. 1.1.

1.4 Blast and Plane Shock-wave Propagation

Blast is the detonation of an explosive material. Due to blast the energy stored in the explosives are
released at a very high rate. Typically, explosive material are stored in a casing or a shell which are
made from steel-walled artillery to a glass bottle. The explosive material inside the shells could be
any type of high explosives such as TNT or Semtex. Blast causes damage to things in proximity
through several different means, these can be enlisted as the blast wave, shock waves, fragmentation,
heat and the blast wind as shown in Fig. 1.10.

Blast wave is the wave of highly compressed air generated just after the explosion which travels
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Figure 1.9: Deformation mechanism of honeycomb cores: (a) Re-entrant hexagon (b) Regular
hexagon.

Figure 1.10: Phenomenons involved in the energy release due to an explosion.

faster than the speed of sound but dissipates in matter of milliseconds over a small distance. Blast
wave transfers the primary impact of the shock-waves. Shock-waves carries the energy generated in
the explosion and transfers it to the structures coming on the way. For example, in case of water
blast, detonation of a high explosive charge converts the solid explosive material into gaseous reaction
products. The enormous pressure generated by this reaction gets transmitted to the surrounding by
a spherical shock-wave travelling at a sonic speed. Detailed summary of this shock wave phenomenon
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is given by Swisdak [38] and Cole [39]. Shock-waves are modelled as 2D planer waves. Shock-wave
propagation is shown in Fig. 1.11 where the last wave striking the structure is assumed to be planar
wave. Primary shock-wave pressure magnitude variation starting from peak pressure Po with respect
to time exponentially, is given by Eq. 1.3.

p(t) = poe
−t
θ (1.3)

Where, po is the peak pressure and θ is the decay constant of the shock wave. The magnitude of the
shock wave peak pressure po and decay constant θ depend upon the mass m and type of explosive
material and the distance r between the object and the location of explosion. A simple power-law
scaling is supported by experimental data for these parameters in the form given below,

Parameters = K

(
m1/3

r

)α
(1.4)

Where m is the mass of explosive in kilograms and r is the distance in meters. K and α are
constants. For example, for an underwater TNT explosion peak pressure can be taken from Swisdak
[38].

po = 52.4

(
m1/3

r

)1.13

(in MPa) (1.5)

where as the decay constant is given by

θ = 0.084m1/3

(
m1/3

r

)−0.23
(in ms) (1.6)

Similarly, pressure wave parameters for few more materials can be directly taken from Table 2 of
Swisdak [38].

In case of blast wave in air, a primary shock wave generated due to detonation of explosive travels
at near sonic speed with an exponential pressure-time history at any fixed location from the explosive.
The time constant θ for the pulse is similar in magnitude to that of in water, but the peak pressure
is of lower magnitude [40].

Figure 1.11: Shockwave propagation in water
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1.5 Sandwich Beams

Sandwich beams are widely used in light structured applications. They are preferred over monolithic
beams because of their higher strength to weight ratio. Strategically important vehicles needs to
be lighter and faster which automatically turns the preference towards sandwich beams. Sandwich
beams are comprised of mainly three parts, namely front face sheet, core material and rear face sheet
as shown in Fig. 1.12.

Figure 1.12: Sandwich beam

Among these major parts mainly core material governs the mechanical behavior of sandwich
beams. In recent years a number of micro-architectured materials have been developed to use as
the cores of sandwich beams and panels including pyramidal cores, diamond-celled lattice materials,
metal foams, hexagonal-honeycombs and square-honeycombs cores. Geometry of some of them is
shown in Fig. 1.13. Cores materials are periodic cellular materials having 20% or less of their volume
occupied by parent material [40].

Figure 1.13: Sandwich beam core topologies [1].

Fleck and Deshpande [8], in 2004 proposed an analytical method based on momentum transfer
model to study the blast resistance of sandwich beams. This analytical model requires the normal
compressive strength σny and longitudinal strength σly to obtain the blast resistance of the sandwich
structures. The normal compressive strength and longitudinal strength for various conventional core
topologies are given in the Tab. 1.3.

However, there are only limited studies were done till date on the compressive strength of the
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Table 1.3: Conventional sandwich beam core properties [8]

Core Design σny/σy σly/σy

Pyramidal core 0.5ρ̄ 0
Metal foam core 0.3ρ̄3/2 0.3ρ̄3/2

Hexagonal honeycomb core ρ̄ 0
Square honeycomb core ρ̄ 0.5ρ̄
Diamond-celled core 0.5ρ̄ ρ̄
Ideal core ρ̄ ρ̄

auxetic cores. Miller et. al. [41] estimated the normal compressive strength of the re-entrant
auxetic core experimentally. They have observed 13% increase in normal peak stress then the regular
hexagonal honeycomb, that is σny/σy and ρ̄ is related as follows:

σny
σy

= 1.13ρ̄ (1.7)

And in order to characterize the blast resistance of auxetic core based on Fleck and Deshpande
[8] approach one also needs an estimate of the longitudinal compressive strength of the auxetic cores.
However, no such studies were conducted to the authors knowledge. This motivated us to perform
the Monte Carlo simulations to obtain the longitudinal strength of the composites, the detailed
overview is presented in the Sec. 2.1.

1.6 Blast resistance of Sandwich beams

As discussed earlier, sandwich beams play a crucial role in mitigating the impact or blast loading, for
example in defense sectors of Naval and Aerospace industries. In these industrial sectors, structures
with high strength/weight and stiffness/weight ratios plays a vital role due to their demand for light
weight structures. Sandwich beams are composite structures consists of a metallic core sandwiched
between a face and rear sheets as shown in Fig. 1.12. And hence sandwich cores are lighter and meets
the demands in the reducing the weight of those structures. Further, Sandwich beam properties assists
in dispersing the mechanical impulse transmitted into structure and thus protecting components
present behind it.

The behavior of sandwich panels under blast loading have been widely studied in the last two
decades. Fleck and Deshpande [8] have theoretically studied the dynamic response of sandwich beams
under air and underwater blast loading using three stage momentum transfer based model. They
divided the structural response into three sequential steps and then developed performance charts of
the sandwich beams with different core materials in order to find an optimal design.

Experimental studies were performed by several authors [42, 43, 44] on the blast resistance of
sandwich structures. Most of these studies are pertaining to metallic honeycomb core. These studies
observed that by altering the topological parameters of the core to optimum values, the damage of
rear sheet can be reduced. Radford et. al. through their metal foam impact loading experiments [45]
concluded that sandwich panels has ability to resist dynamic loading far more than that of monolithic
metal plates having same areal density. Following to previous work, the behaviors of designable
micro structure core materials have been studied [46, 47] under blast loading. Xu and Hutchinson
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[48] conducted three dimensional finite element simulations for the structural response of sandwich
beams with various cores e.g. squared honeycomb core, pyramidal core and corrugated cores. This
analysis give coherent results with the Fleck and Deshpande’s estimations [8].
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Chapter 2

Blast Resistance of Sandwich Beam
Comprising Auxetic Core

In this chapter we are discussing the methodology to obtain the longitudinal compressive strength
of re-entrant hexagonal auxetic. Later we are implementing the three stage momentum transfer
model to construct the performance chart of blast resistance of sandwich beam comprising re-entrant
hexagonal auxetic core and compare its blast mitigation with the other conventional cores.

2.1 Motivation of Study

Blast resistance of sandwich beams have been extensively studied for conventional core topologies as
discussed in Sec. 1.6. However, the blast resistance of sandwich structures with auxetic cores are
not fully understood so far. In a sandwich beam the function of conventional core is to disperse the
impulse and dissipate the energy transferred to the beam. In case of auxetic cores, they come with
additional confinement due to their nature of exhibiting negative Poisson’s ratio. Through this study
we try to understand the auxetic core influence on mitigating the blast or impact loading of the
sandwich beam structures.

The core idea in a sandwich structure is the unity in strength through composites. However in case
of auxetics, confinement effects are observed due to their negative Poisson’s ratio. The manifestation
of lateral confinement is observed in the indentation test. In case of non-auxetic material when an
indentation is made, material flows outwards from the point of indentation. But in case of auxetics
the material flows towards the point of indentation as a consequence of negative Poisson’s ratio they
possess as shown in Fig. 2.1. Out of all possible auxetics, we are selecting a re-entrant hexagonal
structure because it exhibits meta-material properties as discussed in the Sec. 1.2. These are cellular
solids where a representative unit cell homogenization can be used to get the mechanical properties.
We want to study the blast mitigation of sandwich structure with auxetic core and compare with the
other conventional cores. we are using the three stage momentum transfer model as it allows us to
construct performance charts which industries can directly use as per the requirements.
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Figure 2.1: Material flow direction on indentation (a) Non-auxetics material (b) Auxetic materials
[7].

2.2 Introduction

As discussed in Sec. 1.5, sandwich panels are widely used in lightweight structural applications.
Under these applications their properties i.e. high strength to weight ratio and high stiffness to
weight ratio plays an important role [49]. Strategically important vehicles are prone to face impact
loading due to blasts occurring in near proximity. There by, Sandwich structures with high blast
resistance have important role in designing strategically important vehicles. Resistance against blast
of a sandwich panel is governed by the type of core material present in it. Recently a wide number
of micro-architectured sandwich core materials have been developed including hexagonal honeycomb
core [50], pyramidal truss core, tetrahedral truss core [51], Corrugated and diamond ducts [52] etc.
shown in Fig. 1.13.

An analytical model, established [8] by Fleck and Deshpande, is used to estimate the structural
response of sandwich beams based on the core materials properties using momentum transfer based
approach. There dynamic structural response of sandwich beams have been theoretically studied
under air and underwater blast.

The present study aims to implements three stage momentum transfer model on a sandwich
beams comprised of re-entrant honeycomb auxetic core material. Auxetics as explained in Sec. 1.2,
also known as mechanical meta-material, are those material possessing negative Poisson’s ratio [53].
Poisson’s ratio ν is defined in tension as the negative ratio strain in the transverse direction to the
strain in the longitudinal direction. Physically negative ratio means they expands laterally when
stretched and contracts laterally when compressed [5]. Studies have shown that such type of materials
exhibits enhanced mechanical properties such as higher fracture toughness [14, 15] and shear modulus
[16], indentation resistance [14, 17] and also acoustic damping [18] compared to conventional materials.
The advantage in case of sandwich panel is that negative Poisson’s ratio allows synclastic curvature
of plates [20] due to which doubly curved sandwich panels can be easily manufactured without core
buckling.

Auxeticity of a micro-structure is due to its structural configurations [54]. The common auxetic
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materials includes chiral rotating triangles, chiral rotating circles, chiral rotating rectangles, re-
entrant honeycomb [55], Hexachiral lattice etc. We are limiting ourselves to re-entrant hexagonal
type auxetic core in this study. The mechanical behavior of auxetic core such as normal compressive
strength σny and the longitudinal strength σly are required for the above mentioned three stage
modelling of sandwich beams [8]. Obtaining relation of normal compressive strength σny and
longitudinal strength σly with the uni-axial yield strength σy of parent material experimentally
for auxetic core is highly cumbersome. Hence the objective of our study is to investigate the
mechanical behavior of auxetic material for various geometric configuration using finite element
simulations. We obtained the mechanical properties by modelling each cell as representative unit
volume and estimated the longitudinal compressive strength using spatially homogenized equivalent
stress approach. Monte Carlo based finite element simulations for various geometric configurations
are carried out in commercial finite element package ABAQUS and relation between the density and
the mechanical behavior of auxetic core is obtained. Using three stage momentum transfer model,
the non-dimensional transverse displacement w̄ and longitudinal tensile strain εc accumulated in an
auxetic sandwich beam is calculated as a function of blast loading magnitude and the performance
charts are obtained.

2.3 Methodology

In this section we have introduced the methodology to estimate the longitudinal compressive
strength using the finite element analysis and representative unit cell homogenization. Later we have
implemented the three stage momentum transfer model [8] to blast resistance of sandwich beam and
constructed the design charts.

2.3.1 Representative Unit Cell Homogenization

Obtaining the generalized mechanical properties such as the longitudinal strength and normal
compressive strength of the auxetic core is very cumbersome because of the complex shape of
re-entrant hexagon as well as in order to find a generalized properties one has to perform several
experiments. To overcome this difficulty we have done Monte Carlo’s study over a wide range of
topological parameter of re-entrant hexagonal structure and with non-intersection constraint on point
A and point B (See Fig. 2.2) as given in Eq. 2.3.1. Auxetic core has a repetitive cell. And, we want
to represent the behavior of each individual cells. In order to do that we are using first order theories
by homogenization. Representative unit cell is the cell that effectively includes all the sampling of all
micro-structural heterogeneities that exist in overall structure.

Macroscopic equivalent stress obtained by the spatial averaging can be taken as follows.

σeq =
1

V

∫
V

σdV (2.1)

Here we have selected elements critical location for homogenization shown in Fig. 2.3. A spatially
weighted averaging technique have been employed over the representative unit cell in order to achieve
homogenization. Weights of the element is assigned according to its location in the unit cell. For the
cell under study weight of the elements are as given below
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W1 = W3 = W4 = W6 =
W +H/ sin θ

4(W + 2H/ sin θ)
(2.2)

w̄ > 2 cot θ

W2 = W5 =
H/(sin θ + tan θ))

2(W + 2H/ sin θ)
(2.3)

Where W1, W2, W3, W4, W5 and W6 are weights assigned to element 1,2,3,4,5 and 6 respectively
(see Fig. 2.3). Also W , H, t and θ are the geometric parameters as shown in Fig. 2.2.

Figure 2.2: Geometric parameters of representative unit cell

Figure 2.3: Representative unit cell of re-entrant honeycombs. Elements with red boundary have
been chosen for homogenization.

Re-entrant honeycomb is a cellular solid and most important characteristic of a cellular solid is
it’s relative density, ρ∗/ρs(ρ∗, the density of cellular solid divided by parent material density, ρs),
also can be called the packing fraction of the cellular solid [32]. The packing fraction factor of the
representative unit cell of re-entrant honeycomb can be expressed by
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PF = ρ̄ =
2t̄

w̄sin(θ)
+
t̄

2

(
2

w̄ tan θ
− t̄

2w̄ tan θ

)
+
t̄

2

(
2− 2t̄

w̄ sin θ
− t̄

w̄ tan θ

)
(2.4)

Where, w̄, t̄ are non-dimensional geometric parameters defined as

w̄ =
W

H
, t̄ =

t

H
(2.5)

σeq =

n∑
i=1

Wiσi (2.6)

Re-entrant hexagonal structure has many parameters to uniquely define its geometry. Depending upon
the various topological parameters the same relative density can obtained by different combination
of parameters.

2.3.2 Finite Element Modelling

We have done a static compressive analysis of re-entrant honeycomb auxetic structure in commercial
finite element package ABAQUS. In order to find homogenized equivalent properties of re-entrant
hexagon auxetic core we have used weighted averaging technique on a representative unit cell as
explained in the Sec. 2.3. The parent material of the auxetic structure under study is Aluminum
having the following properties

E = 73.7GPa, ν = 0.33, σy = 439.6MPa

Based on the stress pattern over the representative unit cell, elements at critical location have
been selected for the stress homogenization as shown in Fig. 2.3. Monte Carlo simulation over 480
sets of geometrical parameters have been run to establish an essential relation in the given form to
implement the analytical model of dynamic response.

σny = Cρ̄nσy (2.7)

C and n is the unknowns to be find. Packing factor ρ̄ is the function of geometric parameters W , H,
t and θ as explained in Sec. 2.3.

The element we have used in here is the three dimensional 8 noded hexahedral element namely,
C38DR. Mesh size was determined using mesh convergence analysis (Sec. 2.3.3).

2.3.3 Mesh convergence study

In finite element analysis the most overlooked issue that affect the accuracy is mesh convergence. It
refers to the estimation of element size to be used in the analysis to ensure that the results of an
analysis are not affected by further changing the size of the mesh. The degree of requirement of mesh
convergence study depends upon the geometry of model to be analyzed, especially when there is
notch or irregularity present.

The formal method of establishing mesh convergence requires a curve of a critical result parameter
at a specific location, to be plotted against any measure of mesh density. Minimum three convergence
runs are be required to plot a curve which can be used to indicate when convergence is achieved or,
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Figure 2.4: Re-entrant hexagon model Figure 2.5: Loading and Boundary con-
ditions
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Figure 2.6: Re-entrant model mesh with 6 element across the cell rib thickness and zoomed view

how far away the most refined mesh is from full convergence. Typically the result parameter used in
the convergence curve is stress instead of displacement as displacement converges faster than stress.

Here, in this study mesh convergence curve, in Fig. 2.7, includes maximum average stress with
respect to number of element in the thickness direction. The relative percentage error with respect
to 10 elements across the rib varies as given in the Tab. 2.1.

Table 2.1: Mesh convergence in terms of % δ error in maximum stress w.r.t 10 elements across the rib

No. of element % δ error Total no. of elements
2 54.95 213691
4 37.23 441306
5 13.82 683886
6 8.94 988119
7 5.69 1344123
8 4.07 1753509
10 0 2745036

So from mesh convergence study we concluded that 6 element (δ error < 10%) across the rib
thickness would be reasonable to perform the analysis keeping in mind the computational cost would
increase drastically (i.e. the total number of element will increase as given in Tab. 2.1)if we refine
mesh further.
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Figure 2.7: Mesh convergence curve for re-entrant hexagon model

2.3.4 Three Stage Momentum Transfer model

Fleck and Deshpande [8] has proposed the three stage momentum transfer model for estimating the
blast mitigation of sandwich beams underwater blasting. In their analysis they considered shockwave
as a planar wave and obtained magnitude of blast impulse generated due to underwater explosions is
using the power law (Eq. 1.4) as mentioned in the Sec. 1.4.

In their analysis, the structural response of sandwich beams subjected to blast loading have been
divided into three subsequent stages. The significance of the three stage division is based on the
observance in three different time periods of these individual stages. The detailed analysis of this
theory can be founds in Fleck and Deshpande [8]and here we are discussing briefly for brevity. The
key mechanisms involved in these three stages is as follows.

Stage I comprises the acceleration of front face sheet to a velocity vo by fluid-structure interaction
problem as a function of impulse transferred by primary shockwave. Stage II is the phase of core
crush, where momentum transfer equalizes the velocities of front face sheet and core. The loss in
energy is assumed to be dissipated by plastic dissipation in compressing the core. The Stage III have
been divided into two phases comprising the dissipation of the kinetic energy acquired from stage I
and stage II. The phase 1 includes the formation of plastic hinges as the beam yields and continues
until the travelling hinges coalesce at the mid-span. In phases 2 they determine the maximum
deflection of vibrating rear face sheet [8].
Stage I : Fluid structure interaction:

Shock wave have been idealized as a planar wave falling normally and uniformly over the top face
sheet. Variation of overall pressure magnitude could be mainly because of incoming pressure wave,
reflection wave and rare-faction wave magnitudes. The net pressure on the front face sheet can be
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given by

P (x, t) = PI + Pr1 + Pr2 = Po[e
(−(t+x/cw)/θ) + e(−(t−x/cw)/θ)] + ρwcwẇ

(
t+

x

cw

)
(2.8)

Where PI , Pr1, Pr2 are incoming pressure wave, reflection wave and rare-faction wave magnitudes
respectively. Here a typical assumption of a blast wave of exponential shape have been made having
Po as the peak pressure and θ as the time decay constant. The origin is taken at the front face sheet
of the sandwich panel. After applying the boundary conditions on the governing equation of motion
of face sheet, deflection with respect to time is given by

w(t) =
2poθ

2

mf (ψ − 1)ψ
[(ψ − 1) + e−ψt/θ − ψe−t/θ] (2.9)

where ψ = ρwcwθ/mf .
Till the instant liquid gets cavitated and the front sheet ceases, the impulse transferred is given by

Itrans = ξI (2.10)

Where, ξ = ψ
−ψ
ψ−1

Velocity vo at the end of stage I is found out using momentum balance in front face sheet.

vo =
Ttrans
mf

(2.11)

Where, mf is the mass of face sheet.
Stage II : Phase of core compression:

In this stage the core gets compressed by the advancement of the front face sheet. The velocity
gained by the impulse transferred decreases because of deceleration by the core while the core and
the rare face sheet accelerates. Fleck and Deshpande [8] have considered a one dimensional model by
slicing through the thickness. The core is treated as rigid and ideally plastic crushable solid having
nominal compressive strength σny up to a nominal densification strength εD. After reaching the
densification limit εD the core is assumed to be rigid.

By momentum conservation gives the common velocity vf of face sheet and core during the core
crushing phase as

(2mf + ρcc)vf = mfvo (2.12)

Where vo is the initial velocity gained by the impulse transferred from stage I, ρc is the core
density. The energy loss Ulost during the core crushing is dissipated by plastic dissipation in core.

Ulost = σnyεcc (2.13)

where, εc is the average compressive strain in the core.
Stage III : Dynamic structural response of sandwich beam
This stage includes plastic bending and stretching because of which the kinetic energy acquired

by beam in stage I and II gets dissipated. The problem under consideration is similar to the classic
problem where dynamic response of a clamped beam has to be found out [8]. Jones and Symmonds
[56] have developed analytical methods for large and small displacements respectively using energy
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Figure 2.8: Threes stages of dynamic response of sandwich beam to impulse (a) Stage-I b) Stage-II
(c) Stage-III

method. The motion of the beam is separated into two phases as per the small displacement analysis
of Symmonds [57]. In Phase I plastic hinges forms at the clamped ends and travels towards the
center of beam as shown in Fig. 2.8(c). Angular momentum conservation is used in Phase I in order
to the find displacement of the mid span at the instant when hinges travelling from both the ends
coalesce at the mid span as the face sheet gets stretched and rotated about the hinge. At the end of
phase I the rare face sheet get completely yielded and can be assumed as string. The equation of
motion depicts the harmonic motion of the beam. Using this equation of motion one can find the
maximum displacement of the rare face sheet which is the ultimate aim of this analytical model [8].
The non-dimensional parameters is used in constructing the generalized design charts. Non-
dimensional geometric parameters are

c̄ ≡ c

L
, h̄ ≡ h

L
(2.14)
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and non-dimensional relative density is

ρ̄ ≡ ρc
ρf

(2.15)

The non-dimensional time response (T̄ ) and impulse (Ī) are given by

T̄ ≡ T

L

√
σfy
ρf

, Ī ≡ I

L
√
ρfσfy

(2.16)

Where c,h and L are topological parameters as shown Fig. 2.9. The detailed formulations by the
Fleck and Deshpande can be found in the Appendix A.

Figure 2.9: Sandwich beam geometry
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Chapter 3

Results and Discussions: Blast
Resistance of Sandwich Beams
Comprising Auxetic Core

In this chapter mechanical properties of re-entrant hexagonal auxetic structure obtained by Monte-
Carlo simulations is discussed. Design charts have been generated by implementing the three stage
momentum transfer for re-entrant hexagonal auxetics.

3.1 Mechanical Properties of Re-entrant Honeycomb

The parametric study over the geometric parameter range gives the mechanical properties of the
re-entrant honeycomb auxetic lattice structure. We get the σeq and σapp output from the finite
element simulation carried in ABAQUS. The σeq at σy is assumed to be σly. The schematic of plot
between ln(

σly
σy

) vs ln ρ̄ is shown in Fig. 3.1.

Figure 3.1: Schematic : Plot between ln(
σly
σy

) vs ln ρ̄
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Figure 3.2: Data points obtained from the Monte Carlo analysis using finite element simulations of
auxetic lattice structure.

σly
σy

= Cρ̄n (3.1)

ln

(
σly
σy

)
= lnC + n ln ρ̄ (3.2)

Plot between ln(
σly
σy

) vs ln ρ̄ is shown in Fig. 3.2.
The constants obtained from the Fig. 3.2 makes the Eq. 3.1 as

σly
σy

= 0.75ρ̄2.18, (3.3)

for an re-entrant hexagonal auxetic lattice structure.

3.2 Performance Charts for Under Water Blast Resistance

In this section performance charts for re-entrant hexagonal honeycomb for an underwater blast have
been constructed. Different parameters for design have been taken into the consideration in order to
provide design charts for all cases.

The relationship developed in Sec. 3.1 for re-entrant honeycomb structure longitudinal compressive
strength σly is used in constructing the performance charts for a sandwich beam using the three stage
momentum transfer based analytical model [8]. Whereas the normal compressive strength σny is
used from the study of Miller et. al. [41]. The three stage momentum transfer model based analysis
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gives the deflection w̄, response time T̄ , the core compression εc and the maximum tensile strain
εm in the sandwich beam in terms of loading parameters (i.e. Blast impulse Ī and fluid structure
interaction parameter ψ̄), beam geometry (c̄ and h̄), and core properties (ρ̄, σny, σly, εD).

We begin with the analyzing the functional dependence of deflection w̄ and response time T̄ on
non-dimensional blast impulse Ī.
A sandwich beam representing parameters c̄=0.1, h̄=0.1 with re-entrant hexagon core ρ̄=0.1 made
of same material as that of face sheet with tensile ductility εY=0.2% is considered. Using the fluid
structure interaction parameter ψ=1.78 which is representative of water blast with time constant
θ = 0.1ms for a 10mm thick face sheet [8] functional dependence of (w̄ & T̄ ) and (εc & εm) is being
plotted in Fig. 3.3 and Fig. 3.4, respectively. Core densification strain for the core is εD=0.5.

In Fig. 3.4, the compressive strain εc in stage II is less than densification εD for Ī<0.049 and
correspondingly in Fig. 3.3, normalized deflection of inner face w̄ varies non-linearly with respect to Ī.
Also, Fig. 3.3 shows that the time response for auxetic cored sandwich beam is independent of impulse
at higher impulse. The reason for it can be observed in Fig. 3.4 where the core compression reaches
the densification limit and then after the core compression is fixed which means that beam behaves
as stretched plastic string at higher impulse. As a result, w̄ also varies linearly after densification
limit has been reached, i.e. Ī>0.049.

Figure 3.3: Normalized time response T̄ and normalized deflection w̄ of inner face of sandwich beam
(c̄=0.1, h̄=0.1) with auxetic core (ρ̄=0.1, ε=0.002, εD=0.5) w.r.t. to normalized impulse Ī for

For simplicity we have assumed the core material same as that of face sheet. Figure 3.5 includes
the design chart for a sandwich beam with axes as design parameters c̄ and h̄ comprising auxetic
core (ρ̄=0.1, ε=0.002) under a non-dimensional impulse Ī = 2X10−3. The face sheet and core is
made of steel and the densification strain εD of the core is taken 0.5 and the tensile ductility is taken
as εY=0.2. From the design chart, contours of w̄ and εc shows that both w̄ and εc increase with
decreasing c̄.

The top left region in Fig. 3.5 is tensile tearing failure region of the sandwich beam with auxetic
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Figure 3.4: Tensile strain εm and tensile strain of beam (c̄=0.1, h̄=0.1) with auxetic core (ρ̄=0.1,
ε=0.002, εD=0.5) w.r.t. to normalized impulse Ī

core. The dependence of fluid structure interaction parameter ψ̄ on this region is shown in Fig. 3.6
with all other parameters taken same as previous. The tensile failure region shift to left with the
decreasing value of ψ̄. It is concluded that with the decreasing value of ψ̄ tensile failure region is less
likely to occur. Comparison between the regular hexagon core and re-entrant hexagonal core is made
in Fig. 3.7 in term of the chances of tensile failure to occur. The behavior of tensile failure region
is same as that of auxetic core but there is always an offset between auxetic core and hexagonal
honeycomb core tensile failure regime. This offset increases as h̄ decrease. This chart elucidate that
for same sandwich beam parameters (c̄ and h̄) auxetic core is less likely to face the tensile failure
than hexagonal honeycomb core at any blast impulse load Ī.

Comparison between Re-entrant honeycomb core and pyramidal core can be made by using Fig.
3.9.

Inverse design chart are also important and being used in industries to obtain the parameters
based on the desired output. In Fig.3.8 the inverse design problem of sandwich beam with auxetic core
under water blast have been addressed. Core parameters are ρ̄=0.1,εY=0.2 and εD=0.5. Contours
of blast impulse Ī is plotted for a pre-specified deflection w̄=0.1 and ψ̄ = 2X10−3. The axes are
sandwich beam parameters c̄ and h̄. The contours of non-dimensional mass M̄ is included in the
chart in order to consider the mass as well while designing the sandwich beam for maximum blast
impulse to be sustained. The design chart reveals that for a given mass M̄ the geometry in which
face sheet thickness in negligible with respect to the core thickness maximizes the impulse. This
observation supports the Taylor results which says that Ītrans −→0 as thickness of face sheet h̄ −→0.

The maximum blast impulse sustained by the optimal geometries of five different cores have been
plotted in Fig. 3.9. The constrain in the analysis is the given over non-dimensional mass M̄ . Where
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Figure 3.5: Design chart including contours of w̄ and εc for a sandwich beam with an auxetic core of
parameters ρ̄=0.1, 0.002,ε=0.5, subjected to a water blast (Ī = 10−2 and ψ̄ = 2e3)

Figure 3.6: The tensile failure regime variation with respect to non-dimensional fluid structure
interaction parameter ψ̄ for sandwich beam with auxetic core (ρ̄=0.1, εy=0.002, εD=0.5) under
Ī = 10−2.

M̄ is defined as given in Eq. 3.4 and M is the mass per unit width of the sandwich beam.

M̄ =
M

ρfL2
= 2(2h̄c̄+ c̄ρ̄) (3.4)

From Fig. 3.9 it can be concluded that auxetic outperform all other conventional core topologies
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Figure 3.7: Comparison between re-entrant hexagonal auxetic core and Hexagonal core in terms of
variation tensile failure regime with respect to non-dimensional fluid structure interaction parameter
ψ̄

Figure 3.8: Inverse design chart for a sandwich beam, with a re-entrant hexagonal auxetic core (ρ̄=0.1,
εy=0.002, εD=0.5, subjected to a water blast. The beam deflection is w̄=0.1 and the fluid-structure
interaction parameter is taken as ψ = 2X10−3. Contours of T̄and M̄ are displayed. The dotted lines
trace the paths of selected values of h

L

except the ideal core.
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Figure 3.9: Comparison between major sandwich beam cores including re-entrant auxetic core in
terms of maximum blast impulse sustained by optimal design of their respective sandwich beams
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Chapter 4

Mechanics of Re-entrant Hexagonal
Honeycomb

4.1 Introduction

Polymer, metal and ceramic honeycombs are used in variety of applications. Polymer and metal
honeycombs are used as the cores of sandwich panels as an energy absorbing component in several
application. For any material used as load bearing structure, an understanding of their mechanical
behavior is important. Previous study on blast resistance of sandwich beams comprising re-entrant
auxetic (Chapter 2) showed that re-entrant hexagonal auxetic core outperforms major conventional
cores. Furthermore, studying 2D re-entrant hexagonal would help in understanding the mechanics of
much more complex three dimensional auxetic foams.

The basic mechanics can be visualized from Fig. 1.9. Fig. 4.1 shows the re-entrant hexagonal
honeycomb. We would like to understand its response when the load is applied in the plane X1 −X2.
When a re-entrant honeycomb is compressed, the cell walls behaves as a beam and start to bend

Figure 4.1: A re-entrant hexagonal cell honeycomb.

due to linear elastic deformation. Beyond a critical strain the cells collapses due to yielding, creep
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or brittle fracture, depending on the nature of the cell wall material. Whenever the opposite cell
walls contact each other, cell collapse ends. As the cells close up, the structure gets densified and its
stiffness increases rapidly. The in-plane stiffness and strength are lowest because the cell walls respond
to external loads by bending, and subsequent buckling, yielding, or fracturing. The out-of-plane (as
shown in Fig. 4.1) stiffness and strength are much larger since they require axial deformation of the
cell walls [32]. In this chapter, we are studying the in-plane response of 2D re-entrant hexagonal
honeycombs.

4.2 In-plane Properties of Re-entrant Hexagon: Uni-axial load-

ing

A unit cell of a hexagonal honeycomb is shown in Fig. 4.2. Regular hexagons (the sides are equal and
the angles are all 120 ◦) with all cell walls of the same thickness possess isotropic in-plane properties
as examined by Lorna et. al. [32]. A regular hexagon structure has two independent elastic moduli
(a Young’s modulus E and a shear modulus G) and a single value of the yield stress, σ. However, for
re-entrant hexagon or when the thickness of the walls regular hexagon is not constant, properties are
anisotropic and the structure has five elastic constants (E1, E2, G12, ν12 and ν21) and two value of
yield stress σY 1 and σY 2. However, there are only four independent elastic constant as reciprocal
theorem (Eq. 4.1) needs to be satisfied.

E1ν12 = E2ν21 (4.1)

Figure 4.2: Re-entrant hexagonal unit cell and its parameters

Re-entrant honeycomb is a cellular solid and single most important characteristic of a cellular
solid is its relative density, ρ∗/ρs(ρ∗, the density of cellular solid divided by parent material density,
ρs). It is also called the packing fraction of the cellular solid [32]. Typically, the mechanical properties
of a cellular solid are related with its packing fraction. The packing fraction of the representative
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unit cell of re-entrant honeycomb can be expressed by simple geometric analysis ρ∗/ρs [58], as given
below :

Relative density (ρ) = volume of solid in unit cell
Volume of unit cell

ρ = ρ∗/ρs =
t
H (WH sin(θ) + 2

2(WH sin(θ)− cos(θ))
(4.2)

Non-dimensional representation of relative density in terms of parameters t, W is;

ρ∗/ρs =
t(W sin(θ) + 2

2(W sin(θ)− cos(θ))
(4.3)

Where,

t = t
H , W = W

H

4.2.1 Linear Elastic Deformation

A re-entrant honeycomb, loaded in the X1 or X2 direction, deforms in a linear-elastic way and its
cell walls bends. The Young’s moduli in each direction are calculated by cellular material theory (i.e.
cell wall bending model) [32] as explained below.
A re-entrant honeycomb loaded in X1 direction deforms as shown in Fig. 4.3 below :

Figure 4.3: Cell deformation by cell wall bending, giving linear-elastic extension and compression of
the honeycomb due to load in X1 direction

As re-entrant cell is symmetric about both X1 and X2 axis, we are considering only the part of
unit cell in second quadrant here.

P1 = σ1(W − l cos(θ)) (4.4)

M1 =
P1l cos(θ)

2
(4.5)

Resultant deflection in the beam is because of force P1 and moment M1 as

δ = δp − δM (4.6)
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Where δp corresponds to deflection due to P1 and δM corresponds to deflection due to M1

δP =
P1l

3 cos(θ)

3EsI
, δM =

P1l
3 cos(θ)

4EsI
(4.7)

Generalized strain ε2 and Young’s modulus E∗2 in X1 are as given in Eq. 4.8 and Eq. 4.9, respectively

ε1 =
δ sin(θ)

l cos(θ)
=
σ1(W − l cos(θ))bl2 cos2 θ

12EsI sin(θ)
(4.8)

The Young’s modulus in X1 direction is E∗1 = σ1

ε1

E∗1 =
σ1
ε1

= (
t

l
)3

sin(θ)Es

(Wl − cos(θ)) cos2 θ
(4.9)

Similarly for loading in X2 direction generalized strain ε2 and Young’s modulus E∗2 in X2 direction
are as given in Eq. 4.10 and Eq. 4.11, respectively

Figure 4.4: Cell deformation by cell wall bending, giving linear-elastic extension and compression of
the honeycomb due to load in X2 direction

ε2 =
σ2(W − l cos(θ))bl3 sin3 θ

12EsI(W − l cos(θ))
(4.10)

E∗2 =
σ2
ε2

= (
t

l
)3

(Wl − cos θ)Es

sin3 θ
(4.11)

The Poisson’s ratios are calculated by taking negative ratio of strain in the normal direction to
the strain in parallel direction with respect to the loading.

ϑ∗12 = −ε2
ε1

(4.12)

ϑ∗12 = − sin2 θ

(Wl − cos θ) cos θ
(4.13)
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Similarly,

ϑ∗21 = −ε1
ε2

(4.14)

ϑ∗21 = −
(Wl − cos θ) cos θ

sin2 θ
(4.15)

Note that, either one of ϑ∗12 and ϑ∗21 also can be find out using reciprocal theorem (Eq. 4.1).
To find the fourth independent component of 2D orthotropic material, namely G12 shear modulus, we
performed a shear deformation analysis on re-entrant hexagonal auxetic cells as shown in Fig. 4.5.

Figure 4.5: Schematic of re-entrant hexagonal auxetic cell under shear deformation (a) Undeformed
configuration (b) Deformed configuration

Considering re-entrant hexagonal auxetic part ABCD in Fig. 4.5. When the re-entrant honeycomb is
sheared; the deflection Us occurs because of bending of beam BD and its rotation about the point B.
Summing moment at B gives us the moment M in beams AB and BC (Eq. 4.16.

2M =
Fw

2
(4.16)

⇒M =
Fw

4
(4.17)

Beams AB and BC simply rotates about point B as they are symmetric about X2 direction, without
any relative deformation. Using a standard solution of problem of beam under pin-pin boundary
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conditions and a moment M applied at both end as shown in Fig. 4.6, we get

φ =
Fwl

24EsI
(4.18)

Figure 4.6: A beam under pin-pin boundary condition and pure bending

Standard deflection expression for problem in Fig. 4.6 is:

φ =
ML

6EI
(4.19)

Where, E is Young’s modulus and I is moment of inertia of beam. The deflection Us of point D with
respect to B is:

Us =
1

2
φw +

F

3EsI

(w
2

)3
(4.20)

Shear strain, γ, is given by:

γ =
2Us

w − l cos θ
(4.21)

⇒ γ =
Fw2

24EsI

(
l + 2w

w − l cos θ

)
(4.22)

Using the shear stress, τ , the G12 for auxetic cell results as:

τ =
F

2lb cos θ
(4.23)

G =
τ

γ
(4.24)

G12 =

(
t

l

)3 Es
(
w
l − cos θ

)(
w
l

)2 (
1 + 2w

l

)
sin θ

(4.25)

4.2.2 Plastic Collapse

Honeycombs made of metals and few polymers, collapses plastically when the bending moment in
the cell walls reaches the fully plastic moment. A stress-strain curve with a plateau will be generated
both in compression and in tension at the plastic collapse stress level σpl. Formulation of plastic
collapse stress for re-entrant hexagonal honeycomb cell is given below.
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Figure 4.7: Plastic hinge formation when load is applied in X1 direction

From Fig. 4.7 force P , and moment M , is given as expressions in Eq. 4.26 and Eq. 4.27,
respectively.

P = σ(W − l cos(θ))b (4.26)

M =
Pl cos(θ)

2
(4.27)

Plastic moment Mp for a beam is given as Eq. 4.28.

Mp =
bt2

4
σys (4.28)

During a plastic rotation φ of the four plastic hinges A, B, C, and H the plastic work done at the
hinges can be obtained by an upper bound of work done in Eq. 4.29.

4Mp ≥ 2σ(W − l cos(θ))l cos(θ) (4.29)

where Mp is the fully plastic moment of the cell wall in bending. From Eq. 4.28and Eq.4.29, we
get

σpl
σys

=
t
2

2

(
1

2(Wl − cos(θ)) cos(θ)

)
(4.30)

where, σpl is the plastic collapse strength, σys is the yield strength of parent material.
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4.3 Corner Singularity of Re-entrant Wedge

Re-entrant angle in the auxetic structure gives rise to singularity at the tip. Here in this study we
have speculate that singularity would be same as the standard infinite wedge problem. Williams
developed a method of exploring the nature of the stress field near this singularity by defining a set
of polar coordinates centered on the corner and expanding the stress field as an asymptotic series in
powers of r.

We are concerned only with the stress components in the notch at very small values of r and
hence we imagine looking at the corner through a strong microscope, so that we see the wedge of
Figure 4.8 with ’loading at infinity’.

φ = rn+2f(θ) (4.31)

φ = rn+2{A1 cos(n+ 2)θ +A2 cosnθ +A3 sin(n+ 2)θ +A4 sinnθ} (4.32)

Figure 4.8: The semi-infinite notch

In William’s notation, we replace n by (λ-1) in Eq. 4.32, Obtaining the stress function

φ = rλ+1{A1 cos(λ+ 1)θ +A2 cos(λ− 1)θ +A3 sin(λ+ 1)θ +A4 sin(λ− 1)θ} (4.33)

Which lead to stress components as

σrr = rλ−1{−A1λ(λ− 1) cos(λ+ 1)θ −A2λ(λ− 3) cos(λ− 1)θ (4.34)

−A3λ(λ+ 1) sin(λ+ 1)θ −A4λ(λ− 3) sin(λ− 1)θ}

σrθ = rλ−1{A1λ(λ+ 1) sin(λ+ 1)θ +A2λ(λ− 1) sin(λ− 1)θ (4.35)

−A3λ(λ+ 1) cos(λ+ 1)θ −A4λ(λ− 1) cos(λ− 1)θ}

σθθ = rλ−1{A1λ(λ+ 1) cos(λ+ 1)θ +A2λ(λ+ 1) cos(λ− 1)θ (4.36)

+A3λ(λ+ 1) sin(λ+ 1)θ +A4λ(λ+ 1) sin(λ− 1)θ}
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For this solution to satisfy the traction-free boundary conditions

σrθ = σθθ = 0; θ = ±α (4.37)

λ[A1(λ+1) sin(λ+1)α+A2(λ−1) sin(λ−1)α−A3(λ+1) cos(λ+1)α−A4(λ−1) cos(λ−1)α] = 0 (4.38)

λ[−A1(λ+1) sin(λ+1)α−A2(λ−1) sin(λ−1)α−A3(λ+1) cos(λ+1)α−A4(λ−1) cos(λ−1)α] = 0

(4.39)

λ[A1(λ+1) cos(λ+1)α+A2(λ+1) cos(λ−1)α+A3(λ+1) sin(λ+1)α+A4(λ+1) sin(λ−1)α] = 0 (4.40)

λ[A1(λ+1) cos(λ+1)α+A2(λ+1) cos(λ−1)α−A3(λ+1) sin(λ+1)α−A4(λ+1) sin(λ−1)α] = 0 (4.41)

Since all the equations have a λ multiplier, λ= 0 must be an eigenvalue for all wedge angles. Non-
trivial solution exists for the above homogeneous equation at only certain eigen values, λ. Simplifying
equations 4.38 – 4.41 we get

A1(λ+ 1) sin(λ+ 1)α+A2(λ− 1) sin(λ− 1)α = 0 (4.42)

A1(λ+ 1) cos(λ+ 1)α+A2(λ+ 1) cos(λ− 1)α = 0 (4.43)

A3(λ+ 1) cos(λ+ 1)α+A4(λ− 1)sin(λ− 1)α = 0 (4.44)

A3(λ+ 1)sin(λ+ 1)α+A4(λ+ 1)sin(λ− 1)α = 0 (4.45)

Above equation leads two independent matrix equations as given below[
(λ+ 1) sin(λ+ 1)α (λ− 1) sin(λ− 1)α

(λ− 1) cos(λ+ 1)α (λ− 1) cos(λ− 1)α

]{
A1

A2

}
= 0 (4.46)

[
(λ+ 1) cos(λ+ 1)α (λ− 1) cos(λ− 1)α

(λ+ 1) sin(λ+ 1)α (λ+ 1) sin(λ− 1)α

]{
A3

A4

}
= 0 (4.47)

For a non-trivial solution of symmetric terms A1 and A2 which corresponds to Mode-I, the
determinant of co-efficient matrix (4.46) must be zero. The characteristic equation using the
non-trivial solution condition is

λ sin 2α+ sin(2λα) = 0 (4.48)
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Similarly characteristic equation for non-trivial solution of antisymmetric terms A3 and A4

corresponding to Mode-II is
λ sin 2α− sin(2λα) = 0 (4.49)

4.4 Direct stiffness methods using frame element

In this section, we employs direct stiffness matrix method on re-entrant hexagon auxetic element
using frame element.
A frame element is formulated to model a straight bar of any arbitrary cross-section, which can
deform not only in the axial direction but also in the directions perpendicular to the axis of the bar.
The bar is capable of carrying both axial and transverse forces, as well as moments there for has
three degree of freedoms. A frame element possess the properties of both truss and beam elements.
In fact the frame structure can be found in most of our real world structural problems. There are not
many structures that deforms and carry loadings purely in axial directions or purely in transverse
directions.

Here, we consider the re-entrant hexagon element as a frame structure divided into frame elements
connected by nodes. Each element has two nodes and of beam element length le. The elements and
nodes are numbered separately in a convenient manner as shown in Fig. 4.9. In a planar frame
element, there are three degrees of freedom (DOFs) at one node in its local coordinate system namely,
axial deflection in the x direction, u; deflection in the y direction, v; and the rotation in the x− y
plane with respect to z-axis, θ.

Figure 4.9: Re-entrant hexagon auxetic element node numbering

Equations for a frame element in local coordinates as shown in Fig. can be given as followings.
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Element frame displacement vector is taken as

de =



d1

d2

d3

d4

d5

d6


=



u1

v1

θ1

u2

v2

θ2


(4.50)

Where, u1, v1, θ1 are displacement component of node 1 and u2, v2, θ2 are displacement component
of node 2. Stiffness matrix of a frame element kFrame is a combination of stiffness matrix of truss
kTruss and stiffness matrix of a beam kBeam as shown in Eq. 4.51.

KFrame = KTruss +KBeam (4.51)

The stiffness matrix of truss element after extending it to corresponding order of DOFs in 6x6 frame
element stiffness matrix is given as

Ktruss
e =



AE
L 0 0 −AEL 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−AEL 0 0 AE
L 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(4.52)

Similarly, the stiffness matrix of beam element after extending to corresponding order of DOFs in
6X6 frame element stiffness matrix is given as

Kbeam
e =



0 0 0 0 0 0

0 12EI
L3

6EI
L2 0 − 12EI

L3
6EI
L2

0 6EI
L2

4EI
L 0 − 6EI

L2
2EI
L

0 0 0 0 0 0

0 − 12EI
L3 − 6EI

L2 0 12EI
L3 − 6EI

L2

0 6EI
L2

2EI
L 0 − 6EI

L2
4EI
L


(4.53)

The two matrices in Eq. 4.52 and 4.53 are now superimposed together to obtain the stiffness matrix
for the frame element:

Kframe
e =



AE
L 0 0 −AEL 0 0

0 12EI
L3

6EI
L2 0 − 12EI

L3
6EI
L2

0 6EI
L2

4EI
L 0 − 6EI

L2
2EI
L

−AEL 0 0 AE
L 0 0

0 − 12EI
L3 − 6EI

L2 0 12EI
L3 − 6EI

L2

0 6EI
L2

2EI
L 0 − 6EI

L2
4EI
L


(4.54)

To assemble the individual frame element in global coordinates, coordination transformation 4.55
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is used

T =



lx mx 0 0 0 0

ly my 0 0 0 0

0 0 1 0 0 0

0 0 0 lx mx 0

0 0 0 ly my 0

0 0 0 0 0 1


(4.55)

Where lx, mx, ly, my are direction cosines of local coordinates system w.r.t. global coordinates,
given as

lx =
Xj −Xi

le
= cos θ,mx =

Yj − Yi
le

ly = cos θ = − sin θ =
Yj − Yi
le

my = cos θ =
Xj −Xi

le
(4.56)

4.5 Configuration Forces in Re-entrant Hexagonal Auxetic

Classical Newtonian forces describes the response of a body to deformation using balance laws of
linear and angular momentum. Configurational forces are additionally needed to understand the
phenomenon associated with material itself. Importance of these forces clarified more after the work
of Eshelby [59] on lattice defects and force on singularities [60]. Configurational forces are essentially
driving for to move a defect. In re-entrant hexagonal auxetic cell, the re-entrant angle acts as a
defect and we speculate that there would be always a pseudo force Q, acting on the re-entrant corner
to take back the re-entrant cell to the equilibrium.

In this section we derive an expression for configuration force generated in a re-entrant hexagonal
auxetic cell under a compressive load. It implies to the force required to open up the re-entrant angle
completely. The re-entrant hexagonal auxetic unit cell is shown in Fig. 4.10. When this is subjected
to a uniform compression load a pseudo force Q will be generated as given by the expression in Eq.
4.57.

Figure 4.10: Re-entrant hexagonal unit cell
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Q = −∂Π

∂l
(4.57)

Figure 4.11: Configuration force in re-entrant hexagonal auxetic

The relation in Eq. 4.60 given the expression of strain energy π. Where F , P and H are the
force component as shown in free body diagram of rib A-B in Fig. 4.12 and h, l and L are re-entrant
hexagonal auxetic unit cell parameters as shown in Fig. 4.10. Formulation of configuration force Q
with respect to the parameter l is as following

Figure 4.12: Free body diagram of forces in rib A-B

Configuration force generated at the re-entrant corner with respect to configurational parameter l
can be given by

Q = −∂Π

∂l
(4.58)

Where, Q is the configurational force.
Strain energy is given by the Eq. 4.60 as given below

Π =
1

2

σ2

E
V (4.59)
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Π =
1

2

F 2

A2E
AL (4.60)

From free body diagram of a rib as shown in Fig. 4.12 above, we get

P

H
= tan θ;

P

F
= sin θ;

H

F
= cos θ (4.61)

h

l
= tan θ;

h

L
= sin θ;

l

L
= cos θ (4.62)

F 2 = P 2 +H2

= P 2(1 + cot2 θ) (4.63)
dl

L
= − sin θdθ (4.64)

dθ

dl
= −csc θ

L
(4.65)

Q =
LP 2

2AE

d

dθ
(1 + cot2 θ)

dθ

dl

=
LP 2

2AE
2 cot θ(−) csc2 θ

dθ

dl

=
LP 2

AE
cot θ

csc3 θ

L
(4.66)

Q(P, l) =
P 2

AE

l

h

(
L

h

)3

=
P 2

AE

L3l

h4

=
P 2

AE

L3l

(L2 − l2)
2 (4.67)

The configurational force Q is a function of applied load P and the parameter l as through the
formulation in Eq. 4.67. It varies non-linearly with respect to the distance l for a given load P and
quadratically with respect to the load P for a given distance l.
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Chapter 5

Result and Discussions: Mechanics of
Re-entrant Hexagonal Honeycomb

In this chapter the mechanics of re-entrant hexagonal honeycomb have been discussed based on the
methodologies discussed in previous chapter.

5.1 In plane properties of re-entrant hexagonal structure

The generalized material constants calculated in the previous section can be used to obtain the
compliance matrix and can be used in finite element analysis as well. As these generalized material
constants depends upon the cell parameter we have plotted these parameters with respect to the
re-entrant angle for different width to length (Wl ) ratios for a parent material of Young’s modulus
Es = 120MPa.

Figure 5.1: Variation of E1 vs θ for re-entrant hexagon auxetic for different W
l .
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Figure 5.1 includes the plots between generalized average Young’s modulus E1 and re-entrant
angle θ. It shows that as the re-entrant angle goes towards 90 ◦, E1 increase which means that the
slope of generalized stress-strain would increase with the increasing re-entrant angle θ.

Figure 5.2: Variation of E2 vs. θ for re-entrant hexagon auxetic for different W
l

Opposite to E1 5.2, the Young’s modulus in X2 direction the Young’s modulus decreases as θ
increases implying that force required to open up the re-entrant angle would decrease with increasing
θ. This result even supports the study on configuration force balance in Sec. 4.5.

Figure 5.3: Variation of ν12 vs θ for re-entrant hexagon auxetic for different W
l .

The Poisson’s ratio for this structure is negative. As discussed in introductory Sec. 1.1, ther-
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Figure 5.4: Variation of ν21 vs θ for re-entrant hexagon auxetic for different W
l .

Figure 5.5: Variation of G12 vs θ for re-entrant hexagon auxetic for different W
l .

modynamically Poisson’s ratio is restricted −1 ≤ ν ≤ 0.5 for homogeneous isotropic materials. But
structure of cellular solids enhances the Poisson’s ratio, for example as shown in Fig. 5.3. As
re-entrant angle opens up the Poisson’s ratio, ν12, also keeps on increasing. Whereas, ν21 from the
definition is inverse of ν12 that’s why decreases with increasing re-entrant angle.

From Figs. 5.1-5.4, unequal number of data points in the graphs is because of the constraint
applied over the re-entrant cell such that the re-entrant corners does not cross each other.

Equation 4.30 gives the plastic collapse strength in X1 direction. This equation provides the
analytical expression for the first study result where we determined the plastic collapse strength of
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re-entrant hexagonal auxetic using finite element analysis. Typically mechanical behavior of cellular
solid depends upon it’s packing factor, also known as relative density ρ̄. Relative density of re-entrant
hexagonal honeycomb representative unit cell is given in Eq. 4.3 in terms of its non-dimensional
geometrical parameters.

Validation of the auxetic compliance matrix (Eq. 5.1) is done by employing finite element
analysis using the generalized elastic constants found here. A 2D rectangular structure representing a
re-entrant auxetic cell of width to length ratio, wl , equals to unity, thickness to length ratio, tl , equals
to 0.1 and with a re-entrant angle θ = 75 ◦, is modelled with a compressive loading and symmetric
boundary condition across X axis, as shown in Fig. 5.6.

D =


1
E1

−ν21E2
0

−ν12E2

1
E2

0

0 0 1
G12

 (5.1)

Parent material as Aluminum is taken with Young’s modulus of value Es = 120MPa. The element
used in FE modelling is CPS4R, 4-node bilinear plane stress quadrilateral with reduced integration.
The displacement vector in X2 direction obtained through the finite element modelling is as shown
in Fig. 5.7. The direction of displacement vector obtained through finite element modelling is shown

Figure 5.6: Loading and boundary conditions on a representative 2D rectangle (W = 30mm)

in Fig. 5.7.
Figure 5.7 shows that under a compressive loading in axial direction unlike a conventional material

auxetic material contracts in lateral direction. Generalized compliance matrix obtained by CMT
depicts negative Poisson’s ratio behavior.

Variation of these elastic constants with the relative density is summarized in Fig. 5.8 for a
re-entrant angle of 75 ◦ with width, W , equals to the length, l. It is observed that E1 and E2 varies
cubically with relative density ρ̄. Where as, both the Poisson’s ratios ν12 and ν21 are independent of
relative density because they only depends upon the deformations in orthogonal axes as shown in
Fig. 5.8.

In literature typically ρ̄ is related to ratio of thickness to cellular rib length by fixing other
geometrical parameters. For a re-entrant angle θ = 72 ◦ with w̄=1, the plot in Fig. 5.9 compares the
result obtained by analytical expression 4.30 and the result discussed in Sec. 2.3.2, obtained by finite
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Figure 5.7: U2 displacement vectors for a model with boundary conditions given in Fig. 5.6. The red
and blue arrows shows the direction of the displacement.

element based Monte Carlo simulations.

σpl
σys

= Cρn (5.2)

We can find constants C and n by the methodology discussed in Sec. 3.1 using schematic shown in
Fig. 3.1.

ln(
σly
σy

) = lnC + n ln ρ̄ (5.3)

Relation of plastic collapse strength for the re-entrant hexagonal auxetic cell under consideration
as given below

σpl
σys

= 0.467ρ2 (Theoretical) (5.4)

σpl
σys

= 0.407ρ1.75 (FE modelling) (5.5)

Cellular solid typically have low relative density (ρ̄ ≤ 0.2). Analytical expression gives collapse
strength same as FE simulations with acceptable error of maximum 12% for cellular solids.

5.2 Corner Singularity of Re-entrant Wedge

The singularity associated with the wedge angle can be assessed from Fig. 5.10 for symmetric
field whereas for anti-symmetric field the variation is shown in Fig. 5.11 using Eqs. 4.48 and 4.49,
respectively.

Singularity for a re-entrant wedge with re-entrant angle (θ) 75 ◦ for a symmetric field can be
found out either by using plot in Fig. 5.10 or by exclusively solving the implicit Eq. 4.48 by putting
value of α (i.e. 180-θ). RHS function in Eq. 4.48 varies as shown in Fig. w.r.t. singularity λ of
re-entrant corner.

The data cursor point in Fig. 5.12 includes the roots of Eq.. 4.48 for re-entrant wedge. The
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Figure 5.8: Variation of generalized elastic constants w.r.t. cell relative density of re-entrant hexagonal
auxetics

eigenvalue value (λ) is 0.75. As this study was intended to establish re-entrant hexagonal element
for finite element calculations, corner singularity of it is a crucial step to proceed further. Extended
finite element methods can be used to enrich the shape function of a rectangular 4-noded (or higher
number of nodes)element such that it behaves as re-entrant hexagonal element. This method uses
mainly corner singularity and heavy side function. It opens the door of future scope for this research.
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Figure 5.9: Comparison of theoretical plastic collapse strength and plastic collapse strength obtained
by FE analysis

Figure 5.10: Eigenvalue for symmetric field w.r.t. wedge angle in symmetric field

5.3 Direct Stiffness Method using frame element

Coordinates of the nodes for the re-entrant hexagon unit cell with W
h = 1 and θ = 75 ◦ in Fig. 4.9 are
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Figure 5.11: Eigen values for anti-symmetric field w.r.t. wedge angle in anti-symmetric field

Figure 5.12: Eigen values for re-entrant corner (α = 75 ◦) in symmetric field

Node Number X Coordinate Y Coordinate

1 0.2411 0
2 0.5 0.966
3 -0.5 0.966
4 -0.2411 0
5 -0.5 -0.966
6 0.5 -0.966
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Figure 5.13: Re-entrant hexagon auxetic element node numbering

Global stiffness matrix for the re-entrant hexagon for given nodes can be found out by assembling
the stiffness matrix of individual frames. According to Druckers’ stability criteria eigen value of
stiffness must be positive.
Eigen values of the re-entrant hexagon stiffness matrix are as given in the following table

Table 5.1: Eigen values of re-entrant hexagonal element stiffness obtained by direct stiffness method

0.00 0.00 0.00 17.05 23.48 25.82 39.99 59.27 119.99
133.66 149.59 204.02 359.94 359.97 400.68 442.89 500.41 522.82

Eigenvalues in the Tab. 5.1 are semi-positive which means that the re-entrant hexagonal auxetic
(θ = 75 ◦) satisfies Drucker stability criteria which says that "eigenvalues of the elastic stiffness
and compliance matrices must all be greater than zero". The first three zero eigenvalue are because
of the unconstrained structure. The number of zeros for an unconstrained structure would be equal
to the no. of degree of freedom each node possess.

5.4 Configurational Forces in Re-entrant Hexagonal Auxetic

Configurational force in re-entrant hexagon auxetic at re-entrant corner w.r.t. configuration parameter
l varies as shown in Fig. 5.14

As the distance l decreases magnitude of configuration force Q also decreases which imply that the
pseudo force required to open up the re-entrant angle is higher if the distance l is more and decreases
if the distance l decrease. Figure 5.14 shows that the stable configuration would be achieved when
the re-entrant angle completely opens up (i.e. θ = 90 ◦).
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Figure 5.14: Variation of configurational force generated w.r.t. l
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Chapter 6

Conclusion and Future Scope

6.0.1 Key Conclusion

We have conducted two studies in this thesis. The first study is to estimate the blast resistance of
sandwich structures comprising an auxetic core. Second study is to formulate a new enriched auxetic
element by getting familiar with its micro-mechanics.
The first study shows that representative unit cell homogenization can be used for finding the
equivalent longitudinal strength of the the cellular auxetic material. By implementing the three stage
momentum transfer model we can obtain the design charts. These design charts can be used by the
industries for designing the sandwich core panels. We have compared the blast resistance of different
core topologies conventional as well as auxetics. We observed that re-entrant hexagonal auxetic core
topology outperforms the other core topologies of sandwich core. However, in the analysis of auxetics
the re-entrant angle has posed a huge computational requirement. And, this has motivated us to
look for a better element. In second study we have studies the micro-mechanics of auxetics.

In this analysis we targeted to model an hourglass element ( double re-entrant solid element).
In order to do that we found out the corner singularities. Using concept of extended finite element
methods we attempted to enrich the shape function of 4-noded rectangular element with the corner
singularities. We modelled re-entrant hexagonal auxetic using Ashby’s beam column theory and
elastic constant were found out. Plastic moment as function of micro-structural parameters of the
re-entrant hexagonal auxetic was found out analytically using cellular material theory as given in
Eq. 4.29. In next section direct stiffness matrix methods study concludes that re-entrant structure
satisfies Drucker’s stability criteria, implying that the configuration is stable. In the end, using
configurational balance the pseudo force (i.e. configurational force) at the re-entrant corners was
calculated. The variation of this pesudo force Q with the distance l implies that the most stable
configuration is when the re-entrant angle is completely opened up (i.e. θ = 90 ◦).

6.0.2 Future Scope

In the future one can use Eshelby’s equivalent inclusion theory in order to find the stable configuration
and formulate the element. Difficult arises as the geometry of re-entrant hexagonal auxetic cell is
irregular and complex. One can overcome to these difficult by using Schwartz christoffel transformation
to transform re-entrant hexagonal strip to plate with a hole or any other simpler problem.
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Superposition techniques also can be used in future in order to get stress distribution in the
element using corner singularity calculated in this study by William’s asymptotic solution. But
the later technique would give solution for only r dominated region. So again Eshelby’s equivalent
approach could give the full fledge solution here.
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Appendix A

Analytical Three Stage Momentum
Transfer Model

This appendix includes a descriptive discussion about the analytical model for structural response of
a sandwich beam to Blast loading proposed by Fleck and Deshpande [8].

A.1 Model Description

As discussed earlier in Sec. 2.3.4, the structural response of the sandwich beam is split into a
succession of three stages based on the significant time periods observed in these three distinct stages.
The sandwich beam schematic is shown in Fig. A.1.

Figure A.1: Sandwich beam geometry

A.1.1 Stage I: One Dimensional Fluid-Structure Interaction Model.

Shock wave have been idealized as a planar wave falling normally and uniformly over the top face
sheet. Variation of overall pressure magnitude could be mainly because of incoming pressure wave,
reflection wave and rare-faction wave magnitudes. The net pressure on the front face sheet can be
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given by

P (x, t) = PI + Pr1 + Pr2 = Po[e
(−(t+x/cw)/θ) + e(−(t−x/cw)/θ)] + ρwcwẇ(t+

x

cw
) (A.1)

Where PI , Pr1, Pr2 are incoming pressure wave, reflection wave and rare-faction wave magnitudes
respectively. Here a typical assumption of a blast wave of exponential shape have been made having
Po as the peak pressure and θ as the time decay constant. The origin is taken at the front face sheet
of the sandwich panel.

The pressure distribution on the front face sheet (at x=0) from Eq. A.1 is

p(t, x = 0) = 2poe
−t/θ − 2poψ

ψ − 1
[e−t/θ − e−ψt/θ] (A.2)

Cavitation p(t, x = 0)→ 0 occurs in a medium containing dissolved gases at time τc which is called
the cavitation time. From Eq. A.2 we get

τc
θ

=
1

ψ − 1
lnψ (A.3)

and the impulse transferred to the front sheet is taken as

Itrans = ζI (A.4)

where
ζ = ψ−

ψ
ψ−1 (A.5)

and I is the maximum achievable blast impulse, defined as

I =

∞∫
0

2poe
−t/θdt = 2poθ (A.6)

The velocity vo induced in the front face sheet is calculated by the definition of impulse as follows

vo =
Itrans
mf

(A.7)

A.1.2 Stage II: One Dimensional Model of Core Compression Phase

In the second stage, the core gets crushed due to the velocity attained in the front face sheet from
the stage I and consequently, the core and rear face sheet accelerates while the front face sheet gets
decelerated. The core is treated rigid, ideally plastic crushable solid having nominal compressive
strength σny up to a nominal densification strain. The core is treated rigid, after the densification
strain is achieved. The energy and momentum conservation is used in order to determine the value
of core compressive strain εc (≤ εD) and the final velocity, vf , achieved in face and core at the end of
the crushing stage. Momentum conservation in the core core crush phase given that

(2mf + ρcc)vf = mfvo (A.8)
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The ratio of the energy lost Ulost in the core crushing to the initial kinetic energy is given by

Ulost
mfv2o/2

=
1 + ρ̂

2 + ρ̂
(A.9)

where ρ̂ = ρcc
mf

. This energy is lost because of plastic dissipation in the core crushing, we can
represent it as

Ulost = σnyεcc (A.10)

where εc is the compressive strain in the core. Using Eq. A.9 and Eq. A.10, the compressive
strain εc is given as

εc =
εD
2

1 + ρ̂

2 + ρ̂
Î2 (A.11)

where Î is a non-dimensional parameter given as

Î =
Itrans√
mfcσnyεc

(A.12)

If the Ulost is too high such that the compressive strain εc exceeds the densification strain εD then
εc is taken equal to the value of εD and additional dissipation must occur using different mechanisms.
This analysis neglects these additional mechanisms.

A.1.3 Stage III: Dynamic Structural Response of Clamped Sandwich
Beam

At the end of Stage II the rear face sheet achieves a uniform velocity vf as given in Eq. A.8. This
final stage includes the dissipation of kinetic energy acquired in stage I and stage II by beam bending
and longitudinal stretching. This turn out to be a classical problem: What is the dynamic response
of a clamped beam of length 2L made up of rigid ideally plastic material with mass per unit length
m subjected to an initial velocity vf in the transverse direction. This stage is divided in two phases.
Phase I includes the plastic hinge formation in the beam and continues until the hinges coalesce at
the center. In Phase II: the beam behaves as a strings and starts vibrating.

Plastic hinge is formed at the ends in order to remove the indeterminacy of the structure. The
plastic hinges then travels towards the center, towards the ends of the beam as shown in Fig. A.2.
Conservation angular momentum about a fixed end after a time t for the clamped beam gives

(mLvf )
L

2
= m(L− ξ)vf (ξ +

L− ξ
2

) + 2Mot+
1

2
Novf t

2 +

∫
mvfx

2

ξ
dx (A.13)

where x is the axial coordinate from the end of the beam as shown in Fig. A.2(b). From Eq.
A.13, ξ as a function of time t comes as

ξ =

√
3t(vfNot+ 4Mo)

mvf
(A.14)

where Mo and No are plastic moment and plastic force of for the sandwich beam, respectively.
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Figure A.2: Plastic hinges formation in Stage III

Time period of Phase I is the time taken by the plastic hinges to travel from ends to the midspan, i.e.
when ξ = L. Using Eq. A.14, the time period, T1, for the phase I is given as

T1 =
Mo

Novf
[

√
mL2v2fNo

3M2
o

− 2] (A.15)

and the displacement w1 of the mid point can be given as

w1 = vfT1 (A.16)

=⇒ Mo

No
[

√
mL2v2fNo

3M2
o

− 2] (A.17)

In phase II, the beam behaves at a stretched beam and the velocity profile is triangular as sketched
in Fig. A.2(c). Equation of motion for half beam in phase II can is formulated from Fig. A.2(d) as

2Mo +Now = − ẅ
L

L∫
0

mx2dx (A.18)

=⇒ −mL
2

3
ẅ

With initial conditions w(T1) = w1 and ẇ(T1) = vf , the solution of the differential Eq. A.18 is

w(t) =
vf
ω

sin [ω(t− T1)] +

(
2Mo

No
+ w1

)
cos [ω(t− T1)]− 2Mo

No
(A.19)
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where

ω =
1

L

√
3No
m

(A.20)

The beam has an harmonic motion following the Eq. A.19. The maximum deflection wmax of the
mid point at time T is obtained as

wmax =

√
v2f
ω2

+

(
2Mo

No
+ w1

)2

− 2Mo

No
(A.21)

and the time period T is

T = T1 +
1

ω
tan−1

[
Novf

ω(2Mo + w1No)

]
(A.22)

The plastic bending moment of a sandwich beam is given by

Mo = σly
(1− ε)2c(2)

4
+ σfyh [(1− εc + h] (A.23)

whereas, the plastic membrane force No is given as (assuming that it will not be affected by the
degree of core compression)

No = 2σfyh+ σlyc (A.24)

The non-dimensional parameters is used in constructing the generalized design charts. Non-
dimensional geometric parameters are

c̄ ≡ c

L
, h̄ ≡ h

L
(A.25)

and non-dimensional relative density is

ρ̄ ≡ ρc
ρf

(A.26)

The non-dimensional time response (T̄ ) and impulse (Ī) are given by

T̄ ≡ T

L

√
σfy
ρf

, Ī ≡ I

L
√
ρfσfy

(A.27)
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