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Abstract

Heavy rainfall causes flooding of natural ecosystems as well as farmland, negatively

affecting plant performance. While the responses of the wild model organism Ara-

bidopsis thaliana to such stress conditions is well understood, little is known about

the responses of its relative, the important oil crop plant Brassica napus. For the first

time, we analyzed the molecular response of Brassica napus seedlings to full submer-

gence in a natural light–dark cycle. We used two cultivars in this study, a European

hybrid cultivar and an Asian flood-tolerant cultivar. Despite their genomic differ-

ences, those genotypes showed no major differences in their responses to submer-

gence. The molecular responses to submergence included the induction of defense-

and hormone-related pathways and the repression of biosynthetic processes. Fur-

thermore, RNAseq revealed a strong carbohydrate-starvation response under sub-

mergence in daylight, which corresponded with a fast depletion of sugars.

Consequently, both B. napus cultivars exhibited a strong growth repression under

water, but there was no indication of a low-oxygen response. The ability of the

European hybrid cultivar to form a short-lived leaf gas film neither increased under-

water net photosynthesis, underwater dark respiration nor growth during submer-

gence. Due to the high sensitivity of both cultivars, the analysis of other cultivars or

related species with higher submergence tolerance is required in order to improve

flood tolerance of this crop species. One major target could be the improvement of

underwater photosynthesis efficiency in order to enhance submergence survival.

1 | INTRODUCTION

During their lifetime, plants are exposed to many different environ-

mental conditions. Changes in light quality and quantity, temperature

and water availability frequently occur in nature, and as sessile

organisms plants have to adapt to these changing conditions. Also,

crop cultures are exposed to these variable conditions, and drastic

modifications in their environment might cause substantial losses in

yield, affecting food productivity and food quality. Due to the pro-

gressing climate change, the frequency and duration of extreme

weather events increase, including periods of high- and low water

availability (e.g., Blöschl et al., 2019; Kundzewicz et al., 2014; Pekel
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et al., 2016; Trenberth et al., 2014). Low water availability over longer

periods, often accompanied by high temperatures, leads to drought

stress. The other extreme, large amounts of precipitation over a short

time period, causes flooding stress. Flooding can be divided into two

contrasting situations, (1) only the soil is flooded and hence only the

root system is affected, the so-called waterlogging stress and (2) the

whole plant is submerged (Sasidharan et al., 2017). Full submergence

is often more severe than waterlogging, since also leaves and their

photosynthetic processes are directly impaired.

The most obvious challenge in flooded environments is the slow

gas diffusion compared to aerial conditions (Armstrong, 1980). The

availability of oxygen and carbon dioxide can quickly become limiting

when metabolism is high, which is the case in most living tissues (van

Dongen & Licausi, 2015). Although plants produce oxygen through

photosynthesis, they are also dependent on mitochondrial respiration

and its oxygen requirement. Underground organs solely produce

energy by glycolysis and mitochondrial respiration, which is also the

case in all plant parts during the night.

Two types of survival strategies have been observed to tolerate

flooding (summarized in van Veen et al., 2014; Voesenek & Bailey-

Serres, 2015): (1) Several plant species avoid oxygen deficiency by

multiple mechanisms that favor gas transport, such as development of

adventitious roots, formation of aerenchyma in roots and leaves, gas

films on leaves as well as elongational growth to restore contact to

oxygen-rich air (summarized in Voesenek & Bailey-Serres, 2015; Mus-

troph et al., 2018; Yamauchi et al., 2018). This strategy is commonly

referred to as the low-oxygen escape strategy. (2) Other plant species

follow the so-called low-oxygen quiescence strategy, where growth

and development are inhibited until floods recede. In this strategy,

plants have evolved mechanisms to acclimate their metabolism to

low-oxygen availability. This is achieved through the induction of fer-

mentation processes, mainly lactic acid and ethanolic fermentation,

and through down-regulation of energy-consuming processes like

translation and growth (summarized in van Dongen & Licausi, 2015;

Voesenek & Bailey-Serres, 2015). Modifications in gene expression

under oxygen deficiency have been especially well studied in the

model species Arabidopsis thaliana (e.g., Lee & Bailey-Serres, 2019;

Mustroph et al., 2009; van Veen et al., 2016; Yeung et al., 2018).

The major problem for both strategies is the occurrence of an

energy crisis (Greenway & Armstrong, 2018). The plants are faced

with a challenge so that adaptational responses (1) like elongational

growth are energy-requiring, and alternative metabolic pathways

(2) like glycolysis in combination with fermentation are less efficient in

energy production. Furthermore, under flooding conditions, photosyn-

thesis is restricted due to low light and carbon dioxide availability

(summarized in van Dongen & Licausi, 2015; Voesenek & Bailey-

Serres, 2015), leading to a reduced production of photosynthates.

Flood-tolerant species like Rumex palustris, Zea nicaraguensis, Nas-

turtium officinale or the crops Oryza sativa and Colocasia esculenta can

tolerate flooding for long periods (weeks to months), while most other

crops are highly sensitive to flooding, for example, Zea mays,

Gossypium spec., Glycine max or Brassica napus (summarized in

Voesenek & Bailey-Serres, 2015; Mustroph, 2018). Many researchers

have worked on projects to improve flood tolerance of crop species,

especially on maize, barley, and soybean (summarized in Mustroph,

2018). Despite these efforts, true flood-tolerant crop cultivars have

not been developed yet.

The important oil plant B. napus has rarely been studied in respect

to flood tolerance, and most of those studies have been performed

under waterlogging stress (for example, Voesenek et al., 1999; Zou,

Tan, et al., 2013; Zou et al., 2014; Xu et al., 2015; Zou et al., 2015;

Ploschuk et al., 2018; Wollmer et al., 2018). This tetraploid crop spe-

cies has been established rather recently, and is therefore genetically

relatively narrow (Bus et al., 2011; Chalhoub et al., 2014). Still, many

different cultivars exist that differ in multiple parameters, for example,

flowering time (e.g., Fletcher et al., 2015; Raman et al., 2013), vernali-

zation requirement (e.g., Wang et al., 2011), or seed oil quality and

quantity (e.g., Ecke et al., 1995; Qiu et al., 2006).

It has been shown that differences between cultivars exist in

respect to waterlogging tolerance, mainly in Asian cultivars (e.g., Zou

et al., 2014; Xu et al., 2015, summarized in Mustroph, 2018). How-

ever, the underlying mechanisms of tolerance have not been identi-

fied yet, despite comparative analyses at the transcriptional (Zou

et al., 2015; Zou, Tan, et al., 2013) and proteomic (Xu et al., 2018)

level. These analyses only showed minor differences in gene expres-

sion in response to waterlogging between the two cultivars

Zhongshuang 9 and GH01 (Zou et al., 2015). It was observed that

B. napus, independent of the cultivar, can induce genes coding for

enzymes involved in fermentation in waterlogged roots suggesting

that the metabolism can be acclimated to low oxygen availability.

However, when looking at morphological adaptations to avoid oxygen

deficiency within plant organs, B. napus is not able to form aeren-

chyma as a response to waterlogging (Ploschuk et al., 2018; Voesenek

et al., 1999), and adventitious root formation is probably cultivar-

dependent (Zou et al., 2014), but detailed studies addressing this topic

are still lacking.

Here, we focused on the other flooding variant, full submergence,

which can occur especially at the seedling stage, when B. napus plants

are still small and water levels quickly rise above the short seedlings.

Under these circumstances, avoidance mechanisms of the shoots are

required, that is, elongation growth of stems and/ or petioles or the

formation of leaf gas films. Recently, we identified the molecular

response of the flood-tolerant Brassicaceae N. officinale and identified

it as a species with a submergence escape response (Müller

et al., 2019). The response of the related Brassicaceae B. napus to sub-

mergence has not been investigated yet. Even in the model species

A. thaliana, metabolic, and other molecular adaptations under submer-

gence are less well understood than under oxygen deficiency,

imposed experimentally by nitrogen gassing (Lee et al., 2011; van

Veen et al., 2016).

In this study, we characterized the general response to full sub-

mergence, including molecular, biochemical, and growth modifica-

tions, in the European hybrid cultivar Avatar that had been used

before in a study under waterlogging stress (Wollmer et al., 2018).

Moreover, we included an Asian semi-winter type, Zhongshuang

9, that had already been characterized in terms of waterlogging
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tolerance (e.g., Xu et al., 2016; Zou et al., 2014; Zou, Cong,

et al., 2013). Our data suggest that rapeseed seedlings use the qui-

escence strategy under water and have to cope with a severe car-

bohydrate starvation, while a hypoxic signature was not seen

during submergence in daylight. Considerable differences in gene

expression were observed between both cultivars, but the overall

responses to submergence were largely independent of the geno-

type. We detected cultivar-specific difference in the ability to form

gas films, but this did not cause differences in the response to sub-

mergence or the survival under stress.

2 | MATERIALS AND METHODS

2.1 | Plant material and submergence treatment

Seeds of Brassica napus cv. Avatar (winter-type) were obtained from

the Bavarian State Research Center for Agriculture. Seeds from

cv. Zhongshuang 9 (semi-winter type) were a gift from Xi-Ling Zou

(Oil Crops Research Institute, Wuhan, China). Seeds were germinated

on moist filter paper for 24 h at 30 �C in the dark. Subsequently, they

were transferred to a sand:soil (1:3) mixture. Plants grew in a growth

chamber under short-day conditions (8/16 h light/dark) at around

23�C and 100 μmol photons m−2 s−1. On the 15th day after imbibi-

tion, 2 h after the start of the photoperiod, plants were fully sub-

merged in tap water (equilibrated to room temperature overnight) in

the normal short-day rhythm. After different treatment durations,

plants were harvested and further analyzed. Control plants were kept

in similar boxes, and were well-watered.

2.2 | Determination of growth and survival rates

To estimate whether plants were able to grow under water, 15-day-

old plants were submerged for 1 or 2 weeks. Before submergence (t0)

and after stress treatment (tx), the hypocotyl length as well as the

length of the first and second petiole were measured with a digital cal-

iper. Growth per day was calculated as tx − t0/number of days.

Survival rates were determined by submerging the plants for

12 up to 19 days. Subsequently, plants were carefully removed from

the water, and re-growth was observed for another 7 days. Each

experiment consisted of eight plants per genotype and time point.

Surviving plants were identified through the ability to form new leaves

within the recovery period.

2.3 | RNA sequencing

For transcriptome analyses, the first true leaf was harvested from

each plant after 24 h of treatment, that is, 2 h after the start of the

photoperiod, and immediately frozen in liquid nitrogen. RNA was

extracted from the ground plant tissue by use of the ISOLATE II RNA

plant kit according to the manual, including a DNAse treatment

(Bioline, Luckenwalde, Germany). Three independent experiments

were performed. RNA was further processed by Eurofins Genomics

Europe Shared Services GmbH (Ebersberg). All steps performed have

been developed and validated by the company and are based on pro-

found experience. Commercially available kits were used with modi-

fied and improved protocols.

Integrity and quantity of the RNA were determined by appropri-

ate methods, that is, measurement of volume and quantity, gel elec-

trophoresis, and fluorimeter measurements. Library preparation

incorporated adaptor sequences and indexing compatible for Illumina

sequencing technology, using proprietary methods of Eurofins Geno-

mics Europe Shared Services GmbH. The cDNA library preparation

was performed following optimized protocols. After first-strand syn-

thesis, the second strand synthesis was performed using dUPT. The

ends of the double-stranded cDNA fragments were repaired and

dATP ligated to the blunt-ended fragments. Next, the sequencing

adapters were ligated to the DNA fragments, and the dUTP containing

the second strand was removed. Determination of size distribution

and quantification of the sequencing library was accomplished with

appropriate methods according to optimized protocols. Sequencing

was performed on the Illumina HiSeq 4000 platform with 150 bp

paired-end mode.

Fastq files were used for transcript quantification by use of

Kallisto (Bray et al., 2016), with 30 bootstrap samples. The reference

genome built v5 from Genoscope was used (http://www.genoscope.

cns.fr/brassicanapus/), which included 101040 transcripts. The quan-

tification yielded tpm values (transcripts per million) as well as counts.

For the cv. Avatar, 79% of the reads could be mapped to the refer-

ence transcriptome, while for cv. Zhongshuang 9, only 73–75% of

reads could be mapped (Table S1). Lowly expressed genes were

removed by using a cut-off of tpm < 12 (sum over 48 samples, 12 sam-

ples from this experiment, and another set of 36 samples from an

experiment with waterlogging which will be presented elsewhere). A

total of 63569 expressed transcripts were retained through this

procedure.

The selection of differentially expressed genes, gene ontology

(GO) term enrichments as well as gene annotations was performed as

described in detail in a study on N. officinale (Müller et al., 2019). Data

have been deposited at the Gene Expression Omnibus database under

the accession GSE140828.

2.4 | RT-qPCR analysis

Aliquots of the RNA subjected to next-generation sequencing were

used for cDNA synthesis through RevertAid Reverse Transcriptase

(Thermo Fisher Scientific). RT-qPCR was performed in a 10 μl reaction

with SsoAdvancedTM Universal SYBR Green Supermix and the CFX

ConnectTM Real-Time PCR Detection System (Bio-Rad, Feldkirchen,

Germany). Gene-specific primers are listed in Table S2. Relative

mRNA levels were calculated by the 2−ΔCT × 1000 method and nor-

malized to three reference transcripts (BnaVIP2, BnaPRPP, BnaSWN,

for gene IDs and primers, see Table S2).
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2.5 | Measurement of carbohydrate levels and
ADH activities

For measurements of the carbohydrate content, the first true leaf was

harvested after different durations of submergence, and of

corresponding untreated plants. The plant material was immediately

frozen in liquid nitrogen and stored at −80�C until processing. After

grinding the plant material in liquid nitrogen, soluble carbohydrates as

well as starch were extracted and measured as previously described

(Riber et al., 2015). Adenylate levels were determined as described in

Mustroph et al. (2006). To determine alcohol dehydrogenase (ADH)

activities, the first true leaf was harvested after 24 h of submergence

treatment. Enzymes were extracted and ADH activities were mea-

sured as described in Gasch et al. (2016).

2.6 | Measurement of gas film parameters

Fifteen-day-old plants of both genotypes were completely submerged

in 50 l tanks with artificial floodwater prepared according to Smart

and Barko (1985) with a final alkalinity of 2.0 mmol l−1 H+ equivalents.

Four experimental replicates were established in four separate tanks

with O2 and CO2 in the floodwater maintained at air-equilibrium by

purging with atmospheric air. The water temperature was maintained

at 23�C and light was provided by fluorescent tubes at a photon flux

of 150 μmol photons m−2 s−1 in an 8 h light/16 h dark cycle. At the

time of submergence, the plants had developed the first set of leaves

in addition to the cotyledons. Controls in air were maintained at iden-

tical light and temperature conditions.

Leaf surface wettability was assessed by measuring the contact

angle of a water droplet of approximately 5 mm3 on the leaf surface

(Brewer & Smith, 1997), held flat using double-sided tape. Droplets

were applied to the adaxial leaf surface using a custom-made syringe,

and photos were taken at ×90 magnification using a horizontally posi-

tioned digital microscope camera (Dino-Lite AM4013MZTL, IDCP) and

the contact angle was determined by image analysis in ImageJ

(Schneider et al., 2012). The wettability of the leaf surfaces could be

divided into four classes defined by their contact angle according to

Koch and Barthlott (2009): Superhydrophilic (Contact angle <10�),

hydrophilic (contact angle 10�-90�), hydrophobic (contact angle 90�–

150�) and superhydrophobic (contact angle >150�). This classification is

relevant as only superhydrophobic surfaces retain a gas film when sub-

merged in water (Shirtcliffe et al., 2005).

Gas film volume was measured by determining buoyancy of leaf

segments (area of 150–700 mm2) before and after gas film removal.

The gas films were removed by brushing the leaves with a dilute solu-

tion (0.05% v/v) of Triton X-100 (Colmer & Pedersen, 2008; Raskin &

Kende, 1983), and the buoyancy of the leaf segments was measured

in deionized water using a four-digit balance mounted with a hook

underneath. Projected area was measured for each leaf segment using

digital scans and image analysis in ImageJ (Schneider et al., 2012).

Mean gas film thickness was calculated by dividing gas film volume

(mm3) by the two-sided area (mm2).

2.7 | Underwater net photosynthesis and dark
respiration

Underwater net photosynthesis was assessed according to the

method described by Pedersen et al. (2013). In brief, 1 whole leaf

(200–400 mm2) was inserted in a 28 ml glass vial with artificial flood-

water (see above). O2 was initially set to half air equilibrium by mixing

1:1 volumes of air bubbled and N2 purged artificial floodwater; this

procedure served to minimize photorespiration as O2 accumulates in

the vials during incubation (Setter et al., 1989). The water was further

prepared with 200 μmol CO2 l−1 by adjusting pH to 7.35 using HCl;

200 μmol CO2 l−1 is commonly found in natural floodwaters (Colmer

et al., 2011). The vials were mounted on a rotating incubator at a pho-

ton flux of 150 μmol photons m−2 s−1 at 23�C for 2 h before the O2

concentration was measured using an O2 optode (Opto-MR,

Unisense, Aarhus, Denmark) connected to an optode meter (Opto-F4

UniAmp, Unisense); vials without tissue served as blanks. After mea-

surements, the projected area of the tissue was measured from digital

scans using ImageJ (Schneider et al., 2012) and the underwater net

photosynthesis was calculated as net O2 production per projected

area of leaf per time unit (PN, μmol O2 m
−2 s−1).

Underwater dark respiration was assessed using a MicroResp sys-

tem following the approach of Pedersen and Colmer (2012). Leaf seg-

ments of 200–400 mm2 were prepared as rectangular segments and

positioned individually in a 4 ml glass vial filled with artificial floodwater

(see above) which was slightly supersaturated with O2. The vial was

placed in a rack to enable stirring with a glass-coated stir bar and a cap-

illary hole in the lid enables measurements of O2 consumption with

time (MicroResp, Unisense A/S). O2 was measured using an O2 optode

(Opto-MR, Unisense) connected to an optode meter (Opto-F4 UniAmp,

Unisense). The system allowed for eight parallel samples and vials with-

out tissue served as blanks. Measurements were taken at external O2

concentrations ranging from 22 to 17 kPa and lasted for less than

60 min; the temperature was 2 �C. Prior to the measurements, the O2

optode was calibrated in DI water at air equilibrium as well as at zero

O2 using ascorbate in alkaline solution according to Pedersen

et al. (2013). After measurements, the projected area of the tissue was

measured from digital scans using ImageJ (Schneider et al., 2012) and

the underwater dark respiration rate was calculated as O2 consumption

per projected area of leaf per time unit (RD, μmol O2 m
−2 s−1).

2.8 | Net photosynthesis in air

Leaf gas exchange measurements were performed during the morning

(30 min to 2 h after the start of illumination) in the first fully devel-

oped leaf per seedling with a portable LI-6400 infrared gas analyzer

with a red/blue light-emitting diode light source and CO2 injector (LI-

COR Inc., Lincoln, Nebraska). Photosynthetic photon flux density

(PPFD) was set to 150 μmol m−2 s−1, CO2 concentration to 410 ppm,

leaf temperature was maintained around 23�C, and relative humidity

to chamber conditions at approximately 30%, flow rates were set at

400 μmol s−1 (Evans & Santiago, 2014). Net photosynthesis (A, μmol
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m−2 s−1) was measured and subsequently adjusted to the leaf area.

Each leaf was excised after measurements, and the leaf area was mea-

sured with a Leaf Area Meter (LI-300 m, LI-COR Inc.).

2.9 | Oxygen status within petioles during
submergence

Tissue O2 status of the petiole during submergence was measured fol-

lowing the approach of Herzog and Pedersen (2014). In brief, a single

plant was positioned horizontally on a stainless-steel mesh with the

root hanging freely in a 25 ml beaker with DI water. The petiole of

the second fully expanded leaf was gently fixed using pieces of rubber

band. Beaker and mesh were transferred to a 9 l glass aquarium to

enable complete submergence during the experiment. An O2 micro-

sensor (OX25, Unisense A/S, Denmark) was inserted into the center

(350–400 μm) of the petiole halfway between the stem and the lam-

ina using a micromanipulator (MM33, Unisense A/S). The O2 micro-

sensor was connected to a pico ampere (pA) meter (fx-6 UniAmp,

Unisense A/S, Denmark), and was calibrated prior to each series of

experiments in air-purged water (267.8 μmol O2 l−1 equivalent to

20.6 kPa pO2 at 23�C) and in an oxygen-free solution (2 g ascorbate

in 100 ml 0.1 M NaOH); the signal from the O2 microsensor was log-

ged on a computer every 1 s (Logger, Sensortrace 3.2, Unisense A/S).

Positioning of the microsensor was aided using a boom stand stereo-

microscope (M3B, Leica Microsystems). All measurements were taken

at 23�C in light (150 μmol photons m−2 s−1; fiber lamp KL1500, Schott

AG) or in darkness. During submergence (DI water in air equilibrium in

terms of dissolved O2 and CO2), the shoot was completely sub-

merged. The experimental sequence used was shoot submerged in

darkness (30 min) - > shoot submerged in light (30 min) so that a new

quasi-steady-state of tissue oxygen status was reached in each

situation.

3 | RESULTS

3.1 | Transcriptome analysis of Brassica napus
cultivars under submergence

Although B. napus is an important oil crop and known to be very sensi-

tive to flooding, very little is known about its molecular and physiolog-

ical responses to flooding, particularly to complete submergence. In

order to build on existing knowledge on different cultivars, we used

15-day-old plants of a waterlogging-tolerant cultivar from Asia,

Zhongshuang 9 (e.g., Xu et al., 2016; Zou et al., 2014; Zou, Cong,

et al., 2013) and compared its response to submergence with a popu-

lar European hybrid cultivar, Avatar (Wollmer et al., 2018). After 24 h

of submergence, the first true leaf was harvested, and the trans-

criptome was obtained.

We identified 63,569 expressed transcripts in the dataset. Since

B. napus is a tetraploid species and the Brassica genus underwent a

genome triplication (Nikolov & Tsiantis, 2017), a gene from A. thaliana

could be present at maximum in six copies in the B. napus genome,

explaining the large transcript numbers. Interestingly, while about

79% of the reads could be mapped from samples from the European

cultivar Avatar to the reference transcriptome of the cultivar Darmor-

bzh (Chalhoub et al., 2014), only about 75% of the reads of the Asian

cultivar Zhongshuang 9 could be successfully mapped. This indicates

genomic differences between both genotypes. Mapping the reads to

another transcriptome from the Asian cultivar Zhongshuang 11 (Sun

et al., 2017) did not improve mapping statistics, so we used the refer-

ence transcriptome of the cultivar Darmor-bzh for both genotypes.

Submergence for 24 h dramatically changed the gene expression

in both genotypes. Total of 7347 and 8344 transcripts were up-

regulated by submergence (Signal-log ratio (SLR) > 1, false discovery

rate (FDR) < 0.01) in Avatar and Zhongshuang 9, respectively, with an

overlap of 4995 transcripts (Table S3, Figure 1); and 7040 and 8991

transcripts were down-regulated (SLR < −1, FDR < 0.01), with an

overlap of 4973 transcripts. In summary, about 22 and 29% of the

expressed transcriptome were modified in expression.

3.2 | Submergence causes up-regulation of
starvation-related genes

The functional characterization of differentially expressed genes was

done by use of GO enrichment analysis (Table S4). In both genotypes,

defense-related GO terms were enriched among up-regulated genes,

for example, “response to chitin”, “defense response to fungus” or

“regulation of defense response”. Not surprisingly, hormone-related

GO terms were also enriched, for example, “response to ethylene”,

“abscisic acid-activated signaling pathway” or “response to

brassinosteroid”. The responses between both genotypes were very

similar, and hardly any GO term was only enriched in the cv. Avatar.

In contrast, in the cv. Zhongshuang 9 some GO terms were enriched,

for example, “cell communication” or “response to nitrate”, which did

not respond in Avatar. Furthermore, evaluation of the expression data

in MapMan suggested a stronger up-regulation of degradation pro-

cesses in Zhongshuang 9 compared with Avatar, for example, degra-

dation of carbohydrates, amino acids, and nucleotides (Figure S1),

while the genes encoding biosynthesis enzymes of these compounds

were down-regulated. Accordingly, gluconeogenesis gene expression

was also induced.

One example for a highly up-regulated gene involved in degrada-

tion was MYO-INOSITOL OXYGENASE 2 (MIOX2), which was present in

four annotated transcripts in the B. napus genome. All four transcripts

were strongly induced by submergence in both genotypes (Figure S2).

This gene is a marker for carbohydrate starvation. Therefore, we com-

pared an Arabidopsis dataset of an extended night (Usadel et al., 2008)

and a carbon starvation dataset (Cookson et al., 2016) to our data. We

found a highly significant proportion of submergence-induced tran-

scripts also responding to carbon starvation in Arabidopsis (Table S5,

Figure S3). Besides MIOX2, we also identified MIOX4, BETA-
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GALACTOSIDASE 4 (BGAL4), BRANCHED-CHAIN AMINO ACID TRANS-

AMINASE 2 (BCAT-2) as examples of starvation-induced genes.

Interestingly, 127 and 187 transcripts were more strongly

induced in Avatar and Zhongshuang 9, respectively, than in the other

genotype (comparison of genotype × treatment, Table S3). For exam-

ple, Zhongshuang 9 induced several genes of the starvation response

stronger than Avatar. However, there were no obvious GO terms

enriched among the differentially expressed transcripts in this com-

parison (Table S4). In order to confirm these expression differences

for some transcripts, we performed RT-qPCR analysis for four up-

regulated genes, three of them starvation markers (MIOX2, BGAL4,

ERD5 = EARLY RESPONSIVE TO DEHYDRATION 5), and one gene with

a similar expression pattern that was previously not associated with

the core starvation response, SULFUR E2 (SUFE2). All four transcripts

showed significant induction in Zhongshuang 9, and a lower induction

under submergence in Avatar (Figure 2A–D). The relative transcript

levels corresponded well with the RNA-seq quantification.

We also looked into the hypoxia core-response genes (HRGs),

identified in Arabidopsis (Mustroph et al., 2009). The Brassica napus

genome contained 154 orthologues of the 49 Arabidopsis HRGs in

our dataset, and of this only 40 and 36 transcripts (representing

19 and 16 HRGs in Avatar and Zhongshuang 9, respectively) were

identified as significantly up-regulated in our dataset. Among them

were the homologs of AT1G19530, a subunit of the DNA polymer-

ase complex, the ethylene sensor ETHYLENE RESPONSE 2 (ETR2),

AT4G27450 (aluminum-induced protein with YGL and LRDR) as

well as the PHLOEM PROTEIN 2-A13 (Figure S4). This finding and

the fact that neither the genes for fermentative enzymes ADH nor

PYRUVATE DECARBOXYLASE (PDC) were up-regulated in our exper-

iments suggests that there was no severe hypoxia during

submergence.

In order to get more evidence for this hypothesis, the oxygen sta-

tus of petioles of the cultivar Avatar was measured with an O2 micro-

sensor under water (Figure S5A). During a period of 30 min

submergence in darkness, the oxygen content dropped to 12.9 kPa

indicating a mild, but not severe hypoxic stress (Figure S5B, C). Upon

illumination of the still submerged plant, the oxygen content increased

again close to air equilibrium, namely 18.9 kPa.

3.3 | Sugar content and fermentation activity

We measured the sugar content under submergence in both geno-

types, since the observed induction of carbohydrate starvation

markers indicated that submergence caused sugar depletion. Indeed,

after 24 h of submergence, soluble sugars as well as starch content

were dramatically lower in comparison to growth in air, leading to

more than 90% decrease in available glucose equivalents (Figure 3).

However, there was no significant difference in carbohydrate con-

tent between genotypes, neither under control nor under submerged

conditions.

To analyze the sugar depletion more deeply, we performed a time-

line analysis of soluble sugar and starch contents. Already after 3 h of

submergence, there was a significant decrease of carbohydrates in Ava-

tar (Figure 4(A)) and Zhongshuang 9 (Figure 4(B)), although plants were

in full growth light during this treatment. This is obvious when looking

at the control plants that accumulated carbohydrates, and especially

starch, during the day, until the 6-h time point. During the night (6 –

22 h time points), plants under both treatment conditions consumed

most of their carbohydrates, and no significant differences between

submerged and control plants were visible. However, within the next

light period (22–24 h time points), control plants started to accumulate

sugars again, which was not the case under submergence in light. Again,

we did not observe significant differences between the two genotypes

analyzed, indicating that the genotype-specific regulation of starvation

marker gene expression does not correlate with a difference in the

extent of carbon starvation.

In addition, the adenylates ATP and ADP were measured. Surpris-

ingly, their content did hardly change during the treatment (Figure S6).

Only after 6 h, the adenylate content decreased significantly in both

genotypes compared with control time points, and at no time point

there was a difference between the ecotypes.

Since we found no up-regulation of expression of genes coding

for fermentative enzymes (ADH and PDC), we also measured the

ADH enzyme activity. Accordingly, there was no induction of ADH

activity in any of the two genotypes at the 24 h-submergence time

point (Figure 5), and no significant difference between the

(A)

(B)

F IGURE 1 Number of differentially expressed genes (DEGs) in
leaves of 15-day-old Brassica napus plants exposed to 24 h of
submergence in a day-night rhythm (8/16 h). (A) Number of genes
that are significantly (FDR < 0.01) induced (dark color, SLR > 1) or

reduced (light color, SLR < −1) by the stress treatment in two
different genotypes (Avatar, Zhongshuang 9), and overlap between
both genotypes. (B) Number of genes that are significantly
(FDR < 0.01) higher (SLR > 1) expressed in one genotype (Avatar—
blue, Zhongshuang 9—red) compared to the other genotype under
control (dark color) and submerged (light color) conditions, and
overlap between both treatments
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genotypes, but with a tendency for Zhongshuang 9 to have

extremely low ADH activities.

3.4 | Down-regulation of translation and
biosynthesis under submergence

Among down-regulated genes, we again observed a common

response of the two cultivars. Enriched GO terms were associated

with translation, DNA replication, photosynthesis, and cell wall. Many

biosynthetic processes were also negatively affected by submergence.

Flavonoid and carotenoid biosynthesis were more strongly affected in

Avatar, while, for example, pyrimidine ribonucleotide biosynthesis and

protein import into the nucleus were more inhibited in Zhongshuang

9. Examples of strongly down-regulated genes in both cultivars were

an AMP-dependent synthetase and ligase family protein (AAE2,

AT1G77240), and several genes coding for CYP450 monooxygenase

family members (Table S3). Again, a highly significant proportion of

the down-regulated genes in both genotypes were also negatively

regulated by starvation in Arabidopsis (Usadel et al., 2008; Cookson

et al., 2016, Table S5).

(A) (B)

(C) (D)

F IGURE 2 Expression of submergence-induced genes in leaves of 15-day-old Brassica napusplants exposed to 24 h of submergence in a day–
night rhythm (8/16 h). Two different genotypes (Avatar, Zhongshuang 9) have been analyzed. (A) BETA-GALACTOSIDASE 4 (BGAL4); (B) MYO-
INOSITOL OXYGENASE 2 (MIOX2); (C) EARLY RESPONSIVE TO DEHYDRATION 5 (ERD5); (D) SULFUR E2 (SUFE2). White bars, relative mRNA level

from RT-qPCR analysis; black bars, read count from RNAseq. Values are means ±SD from three biological replicates. Different letters show
significantly different values (ANOVA and TUKEY HSD test, P < 0.05), separately for the two methods

F IGURE 3 Sugar content in leaves of 15-day-old Brassica napus
plants exposed to 24 h of submergence in a day–night rhythm
(8 h:16 h). Two different genotypes (Avatar, Zhongshuang 9) have
been analyzed. Values are mean ±SD of 12 samples from 6 biological
replicates. Different letters show significantly different values
(calculated for the sum of all sugars, ANOVA and TUKEY HSD
test, P < 0.05)
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Evaluation of the MapMan categories revealed down-regulation

of photosynthesis and translation (Figure S7). Interestingly, ribosomal

proteins appeared to be more down-regulated in Zhongshuang 9 than

in Avatar. Further analysis of the data showed that 128 and 414 tran-

scripts were more strongly down-regulated in Avatar and

Zhongshuang 9, respectively, than in the other genotype (Table S3,

genotype × treatment). GO analysis of this comparison revealed a

stronger down-regulation of sulfate assimilation in Avatar, and a

stronger down-regulation of cell-wall-associated processes and

growth in Zhongshuang 9 (Table S4, genotype × treatment).

We aimed at confirming expression differences between

genotypes by RT-qPCR. All four tested genes, the basic helix–loop–

helix transcription factor HOMOLOG OF BEE2 INTERACTING WITH

IBH (HBI1), EXPANSIN A6 (EXPA6), FASCICLIN-LIKE

ARABINOGALACTAN PROTEIN 15 PRECURSOR (FLA15), and LIPID

TRANSFER PROTEIN 6 (LTP6), were significantly down-regulated after

submergence, and in three of the genes, expression levels under con-

trol conditions were higher in Zhongshuang 9 than in Avatar at the

same time point (Figure 6(A)–(D), Figure S2), explaining the stronger

down-regulation in the Asian genotype.

3.5 | Growth under submergence

The low availability of sugars as well as the down-regulation of bio-

synthetic processes and translation prompted us to test how much

the growth of Brassica napus was affected under submergence. For

other plant species like Rumex palustris, rice or the Brassicaceae

N. officinale, enhanced elongation of stems or petioles has been

described (summarized in Voesenek & Bailey-Serres, 2015;

Mustroph, 2018; Müller et al., 2019). Therefore, we determined the

growth of the hypocotyl and the petioles of submerged B. napus

plants within a two-week treatment.

The hypocotyl of the 15-day-old plants hardly grew under control

and submerged conditions (Figure 7(A)). A slight increase of less than

1 mm per day was observed, with a tendency for a faster growth under

submergence in Zhongshuang 9. On the other hand, petioles of the first

and second true leaf grew at about 2–3 mm per day in both genotypes,

while their elongation was drastically and significantly lowered under

submergence (Figure 7(B), (C)). While under control conditions, the peti-

oles of Zhongshuang 9 grew slightly faster than those of Avatar, there

was no significant difference in growth under submergence between

both genotypes. Surprisingly, despite drastic down-regulation of

growth, we observed the formation of a new small leaf under submer-

gence within the 2 weeks of treatment in both genotypes (Figure S8).

(A)

(B)

F IGURE 4 Sugar content in leaves of 15-day-old Brassica napus
plants exposed to different lengths of submergence in a day–night
rhythm (8 h:16 h). Two different genotypes (A, Avatar; B,
Zhongshuang 9) have been analyzed. 0 h is the timepoint at the start
of the treatment, 2 h into the photoperiod. Values are mean ±SD of
9–12 samples from 4 biological replicates. Different letters show
significantly different values (calculated for the sum of all sugars,
ANOVA and TUKEY HSD test, P < 0.05). There was no significant
difference between the genotypes at any time point

F IGURE 5 ADH activities in leaves of 15-day-old Brassica napus
plants exposed to 24 h of submergence in a day-night rhythm
(8 h:16 h). Two different genotypes (Avatar—blue, Zhongshuang 9—
red) have been analyzed. Values of 9–12 samples from six biological
replicates are presented in box plots with medians and first and third
quartile (http://shiny.chemgrid.org/boxplotr/). Single activity values
are shown with circles. n.s., no significant differences were found
between the two genotypes at any time point (ANOVA, P < 0.05)
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3.6 | Expression differences between both
genotypes

When comparing both genotypes, we identified 5272 and 5935 tran-

scripts that were higher expressed in Avatar than in Zhongshuang

9 under control and submerged conditions, respectively (Table S3).

On the other hand, Zhongshuang 9 expressed 2887 and 4032 tran-

scripts at a higher level than Avatar. Functional analysis through GO-

term enrichment suggested a higher expression of translation-

associated genes in Avatar in comparison to Zhongshuang 9, which

was especially obvious under submergence, and confirms our

MapMan observations mentioned above (Figure S7). On the other

hand, Zhongshuang 9 expressed genes involved in defense response

more so than Avatar, again more pronounced under submergence.

Interestingly, two genes coding for the flower-repressing transcription

factor FLOWERING LOCUS C (FLC), BnaC03g04170D and

BnaC09g46540D, showed significantly higher expression in winter

rape Avatar compared to the semi-winter rape Zhongshuang

9 (Table S3).

Of note, the strong expression differences might not always be

associated with different functions, but different isoforms and genes

could be expressed in the two genotypes, and the overall expression

level of a certain function might not be so different. As previously

mentioned, one Arabidopsis gene could have 6 copies in the tetraploid

B. napus genome. This would explain why there are little functional

differences between the two genotypes under control conditions

(Table S4).

3.7 | Differences in gas films do not affect
underwater photosynthesis or survival

During our submergence experiments, we repeatedly observed that

the genotype Avatar retained a thin leaf gas film upon submergence

whereas Zhongshuang 9 did not (Figure S9). This prompted us to

assess leaf hydrophobicity by measurements of contact angle

according to the approach of Konnerup and Pedersen (2017) since a

contact angle exceeding 150� entails superhydrophobic properties

(Koch & Barthlott, 2009). Indeed, for leaves that had never been sub-

merged, the contact angle of Avatar exceeded 150� whereas leaves of

Zhongshuang 9 had contact angles of 125� showing that leaves of

Zhongshuang 9 are not superhydrophobic (Figure 8(B)). However,

(A) (B)

(D)(C)

F IGURE 6 Expression of submergence-repressed genes in leaves of 15-day-old Brassica napus plants exposed to 24 h of submergence in a day–
night rhythm (8/16 h). Two different genotypes (Avatar, Zhongshuang 9) have been analyzed. (A) EXPANSIN A6 (EXPA6); (B) LIPID TRANSFER
PROTEIN 6 (LTP6); (C) BASIC HELIX–LOOP–HELIX TRANSCRIPTION FACTOR (HBI1); (D) FASCICLIN-like arabinogalactan protein 15 precursor (FLA15).
White bars, relative mRNA level from RT-qPCR analysis; black bars, read count from RNAseq. Values are means ±SD from three biological replicates.
Different letters show significantly different values (ANOVA and TUKEY HSD test, P < 0.05), separately for the two methods
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upon submergence, the superhydrophobic properties of Avatar were

soon lost. In fact, the leaves of both genotypes became hydrophilic

within the first 24 h of submergence (Figure 8(B)). The super-

hydrophobic properties of leaves of Avatar resulted in retention of

leaf gas films with a thickness of approximately 25 μm, but the gas

films disappeared as the contact angle declined (Figure 8(A)). Surpris-

ingly, neither underwater net photosynthesis nor dark respiration was

affected by the thin leaf gas film that was present for the first 24 h in

the genotype Avatar (Figure 8(C), (D)). This observation supports our

findings on similar sugar levels (Figure 3) and growth rates (Figure 7)

during the stress treatment in both genotypes.

In order to compare the net photosynthesis under water with

those normally present in aerated plants of the same age, net photo-

synthesis was measured under the same illumination conditions as

under water. The net photosynthesis was 5.99 and 5.53 μmol

CO2 m−2 s−1 for Avatar and Zhongshuang, respectively (Figure S10).

There were no significant differences between the genotypes. Inter-

estingly, the underwater photosynthetic rate (Figure 8(C)) was less

than 20% of the photosynthetic rate in air, pointing to severe restric-

tions of this process under water.

Subsequently, we tested whether there was a difference in sur-

vival under long-term submergence between both cultivars. Previ-

ously, Zhongshuang 9 has been described as a waterlogging-

tolerant genotype (e.g., Xu et al., 2015; Zou et al., 2014). However,

we found no difference in submergence survival between the culti-

vars at the developmental stage that we analyzed. Both genotypes

survived 14 days of submergence quite well, while longer durations

between 17 and 19 days caused death of most of the plants

(Figure 9).

4 | DISCUSSION

4.1 | Submergence in light causes no oxygen
deficiency in Brassica napus

Under submergence, gas diffusion between the plant and its sur-

roundings is strongly restricted. Potential gases to be affected are

oxygen, carbon dioxide, and the gaseous plant hormone ethylene.

Oxygen deficiency is recognized by the subgroup VII of the ethylene

response factor (ERF) transcription factor family (Gibbs et al., 2011;

Licausi et al., 2011), and causes the induction of the so-called “hypoxia

core-response genes” in Arabidopsis (Mustroph et al., 2009). Brassica

napus has homologous genes coding for group VII ERFs as well as

HRGs (Table S3), which can be induced by oxygen deficiency in the

root zone (Zou et al., 2015; Zou, Tan, et al., 2013b). In our dataset,

however, the HRGs are hardly affected by the submergence treat-

ment, analyzed 2 h after the onset of light (Figure S4, Table S5).

Among the significantly induced HRGs under full submergence are

homologs for an YGL motif gene (AT4G27450), the atypical CYS HIS

rich thioredoxin 5 (AT5G61440), the ABSCISIC ACID 80-HYDROXYLASE

3 (AT5G45340), the ethylene sensor ETR2 (AT3G23150), and the

PHLOEM PROTEIN 2-A13 (AT3G61060). Most of those submergence-

induced genes (despite ABSCISIC ACID 8’-HYDROXYLASE 3 and ETR2)

are also induced by carbohydrate starvation caused by artificial dark-

ness in Arabidopsis (Usadel et al., 2008, van Veen et al., 2016,

Figure S11).

(A)

(B)

(C)

F IGURE 7 Hypocotyl growth (A) and growth of the petioles from
the first (B) and second (C) true leaf of two genotypes (Avatar,
Zhongshuang 9) of Brassica napus during submergence (sub)
compared to aeration (Ctr). Fifteen-day-old plants were submerged in
equilibrated tapwater in an 8/16 h light/dark cycle, for 7 and 14 days.
Length of the organs was measured, and growth per day was
calculated. White bars, growth within 7 days; gray bars, growth within
14 days. Values are means ±SD from 20 plants from four independent
experiments. Different letters show significantly different values
(ANOVA and TUKEY HSD test, P < 0.05)
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Other HRGs like ADH (AT1G77120) or the LOB DOMAIN-

CONTAINING PROTEIN 41 (AT3G02550) are not induced in our sub-

mergence treatment, or under carbon starvation (Figures S4, S11).

Those genes are significantly induced by submergence in darkness

(van Veen et al., 2016, Figure S11), but not by submergence in light (-

Figure S4, Müller et al., 2019). In addition to gene expression, we ana-

lyzed the activity of the fermentation enzyme ADH, which was not

modified under submergence (Figure 5). Those two facts suggest that

the leaves, despite under water, had sufficient oxygen, most likely

produced through photosynthesis.

In order to further support this hypothesis, we also measured the

oxygen status within the petiole tissue of the cultivar Avatar under

water in darkness and in light. While a significant drop in internal oxy-

gen content was observed in darkness (12.9 kPa), it increased again

under illumination to 18.9 kPa (Figure S5). Oxygen production

through photosynthesis under water has been demonstrated before

for Arabidopsis leaves (Lee et al., 2011; Vashisht et al., 2011) as well

as other plant species (Mori et al., 2019; Müller et al., 2019; Rijnders

et al., 2000). For example, petioles of N. officinale contained 14.8 and

23.3 kPa oxygen in darkness and in light under water (Müller

et al., 2019), and similar levels were observed for Arabidopsis petioles

even after 18 h of submergence (Vashisht et al., 2011). A work on

(A) (B)

(C) (D)

F IGURE 8 Gas film thickness (A), contact angle (B), underwater net photosynthesis (C) and underwater dark respiration (D) in two genotypes
(Avatar, Zhongshuang 9) of Brassica napus. Fifteen-day-old plants were submerged in artificial floodwater with O2 and CO2 maintained at air
equilibrium in an 8/16 h light/dark cycle at 23�C. The figure panels show data for submerged individuals (sub) as well as controls in air (con); for
contact angle and underwater dark respiration, the 0-day start point indicates controls in air at time of submergence. Values are mean ±SD of four
replicates. Different letters show significantly different values (ANOVA and TUKEY HSD test, P < 0.05); n.s., not significant

F IGURE 9 Survival rates of two genotypes (Avatar, Zhongshuang
9) of Brassica napus after submergence. Fifteen-day-old plants were
submerged in equilibrated tapwater in an 8/16 h light/dark cycle, for
several days. Subsequently, they were taken out of the water and
observed for another 7 days. Plants were assigned as surviving when
they showed the ability to grow new leaves within the recovery
period. Values are mean ±SD of 3–4 replicates (each with 8 plants per
time point and genotype). n.s., no significant differences were found
between the two genotypes at any time point (T-test, P < 0.05)
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Arabidopsis suggests that only at oxygen concentrations of 10% and

lower (corresponding to 9.83 kPa in saturated water), the transcription

factor AtRAP2.12 starts to accumulate, and induction of a transcrip-

tional response to hypoxia is only observed at even lower oxygen con-

centrations (Kosmacz et al. 2015). Therefore, leaf tissue of B. napus is

not hypoxic under water in light, which is likely due to ongoing photo-

synthesis (Figure 8(C)), as well as in darkness where oxygen might be

taken up from the surrounding water.

4.2 | Differences in temporary gas film formation
have no impact on photosynthesis or survival under
submergence

One strategy to avoid restrictions in gas diffusion under water is the

development of leaf gas films (Colmer & Pedersen, 2008; Kurokawa

et al., 2018). During our submergence experiments, we observed a dif-

ference in the ability to form gas films between both cultivars. While

Avatar was able to develop a gas film and maintain it for several hours

under submergence, the gas film on Zhongshuang 9 leaves was very

weak (Figures 8, S9). Whether this difference is caused by the composi-

tion of the cuticle, the surface structure of the leaves, or the number or

form of leaf hairs, is not known. There are no obvious GO categories

associated with any of those processes that were differentially

expressed between genotypes (Table S4). Also, the gene family associ-

ated with gas film formation, LGF1 from rice (Kurokawa et al., 2018),

whose homologs in Arabidopsis and B. napus are called hydroxysteroid

dehydrogenases, was not higher expressed in Avatar (Table S3).

Despite a difference in gas film formation, we could neither

detect a significant difference in the photosynthetic rates nor in the

dark respiration rates under water (Figure 8). Accordingly, sugar levels,

growth rates, and survival were very similar in the two cultivars

(Figures 3, 4, 7 and 9). This suggests that gas film formation in the

rapeseed cultivar Avatar is not beneficial under submergence, which is

not surprising since the superhydrophobic properties are lost within

the first 24 h of submergence. In line with this, some studies did not

clearly demonstrate a positive effect between gas film formation and

submergence survival for non-grass species (Winkel et al., 2016).

Whether the ability to form gas films has positive effects on other

plant aspects, such as growth, development or under pathogen attack,

remains to be elucidated.

4.3 | Submergence in light causes carbohydrate
starvation and growth retardation in Brassica napus

The comparison of our dataset under submergence with published

datasets of stress treatment in Arabidopsis revealed a strong carbon

starvation signature (Figure S3, Table S5). Genes known to be induced

by extended night or other starvation treatments (Cookson

et al., 2016; Usadel et al., 2008), like MIOX2, BGAL4 or ERD5, were

strongly induced by our submergence treatment, although plants were

in light and had the possibility to photosynthesize under water

(Table S3, Figure 2). The same set of genes was induced in Arabidopsis

under darkness in air (van Veen et al., 2016, Figure S12), but most of

them were not further induced by submergence in darkness

(Figure S12). This again suggests that no oxygen deficiency was pre-

sent under our conditions inside B. napus leaves.

The carbon starvation-responsive gene expression was well cor-

related with the low sugar content in leaves after 24 h of submer-

gence (Figures 3, 4). In both genotypes, less than 10% of sugars in

comparison to aerated control were detectable (Figure 4(A), (B)). This

sugar decline already started within the first 3 h of submergence. The

fast decline in sugar content could have two reasons. First, photosyn-

thesis and especially the Calvin cycle might be inhibited by low carbon

dioxide concentrations within the submerged leaves. Usually, plants

grow under carbon dioxide limitation already under control conditions

due to low CO2 concentration in normal air (for example summarized

in Ainsworth & Rogers, 2007). Under water, this limitation is further

intensified through low gas diffusion under water and most likely

through closed stomata. An additional effect of the floodwater could

be the lower amount of light penetrating the water, which also nega-

tively affects photosynthesis.

Our data on net photosynthesis under water and in air support

this hypothesis. The photosynthetic rate under water (Figure 8(C))

is less than 20% of the rate in air (Figure S10), both based on gas

exchange. The lack of 80% of photosynthates normally produced

through CO2 fixation can easily result in severe carbohydrate star-

vation. However, we cannot exclude cyclic electron transport

within chloroplasts under water which could produce ATP

(Heber, 2002). Indeed, ATP concentrations did not decrease as

much as sugar concentrations within the first 24 h of submergence

(Figure S6).

A second reason for sugar depletion could be the enhanced con-

sumption of carbohydrates under water. Although we could not

detect elongational growth in B. napus under water (Figure 7), the

stress response (including transcription and translation of stress-

related genes) is generally more cost-intensive than the maintenance

of metabolism under control conditions. Under dark submergence,

sugars and starch decreased in Arabidopsis at a similar rate as in dark-

ness in air (Loreti et al., 2018). For submergence in light, no data have

been published yet on Arabidopsis leaves to make a comparison of

degradation rates.

As a consequence of sugar depletion, submerged plants drasti-

cally reduced their biosynthesis, including translation, cell division

and DNA replication (Table S4), and reduced the expression of

many genes that are also down-regulated under carbon starvation

(Usadel et al., 2008, Cookson et al., 2016, Table S3, Table S5,

Figure 6). One example of such a gene is HBI1. This transcription

factor promotes cell expansion and represses defense responses

(Neuser et al., 2019). Under our treatment conditions, HBI1 expres-

sion is strongly down-regulated in leaves (Figure 6(C)), suggesting

that it is one component of the pathway to downregulate growth

of the leaves and petioles (Figure 7(B), (C)). In line with this,
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putative target genes for HBI1 are certain expansins that are

involved in cell elongation (Fan et al., 2014), whose expressions are

also down-regulated under submergence in B. napus (e.g., EXPA1,

BnaC06g30760D, BnaA07g28080D; EXPA11, BnaCnng55390D;

EXPA9, BnaCnng03570D, BnaA03g55050D; EXPB1,

BnaC07g00140D, BnaA07g00550D; Table S3). Interestingly, during

dark submergence of Arabidopsis, the expression of this transcrip-

tion factor is not repressed, but under these conditions, the petiole

elongation is also not inhibited (van Veen et al., 2016). One could

hypothesize that the down-regulation of growth is an active pro-

cess, rather than a consequence of carbon starvation. This has also

been suggested in a study on Nasturtium, where petioles showed

strong growth inhibition under water, while stems exhibited

elongational growth (Müller et al., 2019). In the future, it should be

analyzed which factors are contributing to a possible active growth

regulation.

4.4 | Two Brassica napus cultivars differ in gene
expression, but not in their response to submergence

In our study, we analyzed the gene expression under submergence for

two different cultivars, of which one had been described as a

waterlogging-tolerant cultivar. We observed many genes that were

differentially expressed between the two genotypes, but most of

these differences were independent of the treatment (Table S3).

Despite the large number of differentially expressed genes (Figure 1),

the functions of those genes did not reveal strong differences

(Table S4). Avatar showed a higher expression of translation-related

categories, while Zhongshuang 9 showed a stronger induction of

defense-related genes especially under submergence. Among the

enriched categories in Avatar was one flower-related GO term,

GO:0048573 (photoperiodism, flowering). Recently, different rape-

seed cultivar groups have been analyzed by sequencing at the genome

level, and the FLC locus was among the ones with multiple single

nucleotide polymorphisms (SNPs, Wu et al., 2019). In our dataset, two

FLC genes were higher expressed in Avatar than in Zhongshuang

9, suggesting repression of flowering in the winter-type rapeseed.

However, our gene IDs (BnaC03g04170D, BnaC09g46540D) were dif-

ferent from the gene with SNP enrichment in the other study

(BnaA02g12130D).

One reason for the low amount of functional differences could

be the fact that B. napus is a tetraploid species with multiple

genome duplication events (Nikolov & Tsiantis, 2017), and each

gene copy could be differentially regulated in different genotypes,

with an overall similar expression of a certain gene function. Varia-

tion in gene expression between different cultivars has been

observed previously (e.g., Havlickova et al., 2018), but no general

functional characterization of differential gene expression has been

performed yet.

Despite the usage of one presumably waterlogging-tolerant culti-

var (Xu et al., 2015; Zou et al., 2014), we did not observe strong

differences in the submergence response. In one other study, that

compared gene expression differences between tolerant

Zhongshuang 9 and sensitive GH01 under waterlogging (Zou

et al., 2015; Zou, Tan, et al., 2013), there were also very little gene

expression differences described. None of the few expression differ-

ences could be associated with higher tolerance so far. In order to

evaluate whether true variations in flood tolerance exist within the

relatively newly evolved species B. napus, experiments with a highly

diverse panel of cultivars, including other Brassica species, are

required.

5 | CONCLUSIONS

In this study, we characterized the submergence response of B. napus

for the first time at the molecular and physiological level. Even in light,

carbohydrates rapidly decreased within the first hours of submer-

gence, causing a drastic carbon starvation response at the transcrip-

tional level. Consequently, biosynthetic processes, translation, and

growth were severely affected. With these responses, rapeseed seed-

lings were able to survive at least 14 days of submergence, presum-

ably with a very low metabolic rate. This suggests a quiescence

strategy of this Brassicaceae species, similar to the flood sensitive

model plant Arabidopsis. However, the usage of two different culti-

vars, one of them previously described as waterlogging-tolerant, did

not reveal any differences between cultivars in their response to sub-

mergence. Nevertheless, this study sheds light on the general

genotype-independent response of B. napus to submergence and

future studies should include other B. napus accessions or even other

tolerant Brassica species.
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