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Abstract
Aim: Ecological niche models (ENMs) typically require point locations of species’ oc-
currence as input data. Where exact locations are not available, geographical cen-
troids of the respective administrational spatial units (ASUs) are often used as a 
substitute. We investigated how the use of ASU centroids in ENMs affects model 
performance, what role the size of ASUs plays, and what effects different grain sizes 
of explanatory variables have.
Location: Europe.
Major taxa studied: Virtual species.
Methods: We set up a two-factorial study design with artificial ASUs of three differ-
ent sizes and environmental data of four commonly used grain sizes, repeated over 
three study regions. To control other factors that may affect ENM performance, we 
created a virtual species with a known response to environmental variables, precise 
and even sampling and a known spatial distribution. We ran a series of Maxent mod-
els for the virtual species based on centroids and precise occurrence locations under 
varying ASU and grain sizes.
Results: The use of ASU centroids introduces a value frequency mismatch of the 
explanatory variables between centroids and true occurrence locations, and it has 
a negative effect on ENM performance. Value frequency mismatch, negative effect 
on ENM performance and over-prediction of the species’ range all increase with ASU 
size. The effect of grain size of environmental data, on the contrary, was small in 
comparison.
Main conclusions: ENMs built upon ASU centroids can suffer considerably from the 
introduced error. For ASUs that are sufficiently small or show low spatial heterogene-
ity of explanatory variables, ASU centroids can still be a viable and convenient sur-
rogate for precise occurrence locations. When possible, however, central tendency 
values (median, mean) that represent the whole ASU rather than just a single point 
location need to be considered.
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1  | INTRODUC TION

Ecological niche models (ENMs), based on niche theory, are widely 
used in many fields such as invasion and conservation ecology, 
biogeography, as well as epidemiology (Elith & Leathwick, 2009; 
Escobar & Craft, 2016; Liu et al., 2018; Peterson, 2014). They are 
often employed to estimate the spatial distribution of certain spe-
cies (Elith et al., 2006, 2011; Elith & Leathwick, 2009) or diseases 
(Tjaden et al., 2018), and thus also known as ‘species distribution 
models’. ENMs typically use geographical occurrence locations of 
the target species as input data. These locations are then related to 
a series of explanatory variables (spatial raster data describing the 
environmental and/or socio-economic conditions in the study area), 
forming a correlative model of the species’ environmental niche. This 
model can be projected onto regions where the presence–absence 
state of the species is unknown, resulting in a map showing probabil-
ity of presence or environmental suitability.

By default, ENMs assume that the whole study area was sampled 
consistently with precisely recorded geographical locations of occur-
rence, and that the selected explanatory variables can represent the 
species well (Yackulic et al., 2013). In practice, however, sampling bias 
is inevitable, especially when the input data have to be assembled 
from different sources that are based on different sampling methods 
(Liu et al., 2018; Lobo & Tognelli, 2011; Qiao et al., 2017; Stolar & 
Nielsen, 2015). While the sampling bias caused by uneven sampling can 
be reduced by rarifying or filtering the occurrence records (Castellanos 
et al., 2019; Gábor et al., 2020; Kramer-Schadt et al., 2013), imprecisely 
recorded occurrence locations are very difficult (although not entirely 
impossible) to correct (Hefley et al., 2017). In certain cases, for exam-
ple, when using citizen-science databases or local monitoring systems, 
the occurrence locations of the species may be of a coarse precision or 
only available at municipal or county level (i.e., related to geographical 
surfaces of differing sizes). For epidemiological data, such missing spa-
tial precision ensures information privacy.

Internet databases like the Global Biodiversity Information 
Facility (GBIF; http://www.gbif.org) gather and compile species oc-
currence data from different sources (scientific, governmental, cit-
izen-science) across a tremendous geographical extent and across 
national boundaries. However, the precision of the occurrence loca-
tions in this kind of database is not always sufficient (Liu et al., 2018), 
and the record precision differs considerably depending on how the 
occurrence records were collected and processed (in certain cases, 
the precision might even be unknown) (Collins et al., 2017). In other 
databases, only very coarse administrational level information is 
available, that is, instead of geographical locations, the occurrence 
records are assigned to counties or postal regions. For instance, the 
European Centre for Disease Prevention and Control (ECDC) and the 
European Food Safety Authority (EFSA) maintain a joint collection 

of occurrence records of epidemiologically relevant mosquito, tick 
and sand fly species in their VectorNet database. This highly relevant 
database covers the entire European Union and adjoining countries, 
but only maps showing local administrational units are publicly avail-
able (https://www.ecdc.europa.eu/en/disea se-vecto rs/surve illan 
ce-and-disea se-data). Similarly, occurrences of species are often re-
ported as inventories of protected areas that can differ considerably 
in size. For the sake of simplicity, hereafter we will refer to all kinds 
of administrational areas as ‘administrative spatial units’ (ASUs).

When occurrence records are available at the level of entire ASUs 
only, the geographical centroids of the ASU are often used in ENMs 
as a substitute for precise point locations (Collins et al., 2017; Park & 
Davis, 2017). As mentioned above, the ENMs allocate explanatory vari-
ables’ values at the respective geographical occurrence locations and 
form a correlative model of the species’ environmental niche. The use of 
centroid locations introduces geographical distance between the true 
(but unknown) occurrence locations and the geographical centroids 
representing them. This induces a mismatch in the values of explana-
tory variables (Figure 1a): it is very unlikely (although not impossible) for 
the true geographical location of the observed record to exactly match 
the environmental conditions at the centroid location (Figure 1b). This 
means that between each pair of true location and geographical cen-
troid, there is likely a mismatch in values of explanatory variables. It 
can consequently be expected that substituting geographical centroids 
for true occurrence locations also leads to a change in the overall fre-
quency of values of explanatory variables. The correlative model, built 
with the shifted values, will further lead to a biased prediction for the 
species’ distribution, and will probably lead to over-prediction.

While finding a substitute for a geographically unknown occurrence 
location, drawing the geographical centroid of the ASU minimizes the 
largest possible spatial distance between the substitute location and the 
unknown true location (Figure 1b1). However, this does not necessar-
ily minimize the difference in environmental conditions (i.e., values of 
explanatory variables) at the two locations. In fact, it is entirely possi-
ble that among all possible locations within an ASU, the environmen-
tal conditions at the ASU centroid are the worst possible substitute for 
the conditions at the true location—especially in areas where spatial 
heterogeneity is high. Approaching the substitute from another angle 
(Figure 1b2), using a central tendency value (median, mean) of each ex-
planatory variable across the entire ASU has been presented as a better 
option (Park & Davis, 2017). Instead of minimizing the largest possible 
spatial distance, central tendency values minimize the largest value mis-
match directly. The boxplot in Figure 1b2 illustrates this on the basis of 
the median: when using the median as the substitute, very likely (97% 
in this example) the largest potential value mismatch is half of the range 
between the two bars. Possibly (50%) the value of the occurrence loca-
tion falls in the box. In this case, the largest potential value mismatch is 
even smaller. It is obvious that using central tendency values reduces 
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the possibility of introducing extreme values. Not surprisingly, it has 
been shown that the central tendency values outperform the variable 
values at the centroids (Collins et al., 2017; Park & Davis, 2017). Despite 
this, however, ASU centroids are still widely being used (e.g., Evans 
et al., 2010; Fois et al., 2018; Gao & Cao, 2019; Johnson et al., 2017; 
Quiner & Nakazawa, 2017). It is thus worth further investigating if and 
under what circumstances the much simpler approach of using ASU cen-
troids can lead to sound results.

Here, we investigate how the application of geographical cen-
troids affects the ENM results, a factor that has not received much 
attention so far. Of course, ENMs are also affected by a series of 
other factors. This includes the selection of explanatory variables, 
the specific modelling algorithm, model settings and the spatial res-
olution or pixel size of explanatory variables, from here on referred 
to as ‘grain size’ (Connor et al., 2018; Fourcade et al., 2018; García-
Callejas & Araújo, 2016; Moudrý & Simova, 2012; Nezer et al., 2017; 
Record et al., 2018; Warren & Seifert, 2011; Yates et al., 2018). To 
best control these factors, we generated a virtual species with true, 
known occurrence locations and a known response to a fixed set of 
variables. Similar to the use of ASU centroids, the choice of grain size 
of explanatory variables may also cause a mismatch of explanatory 

variable value. For a given location, the explanatory variable value 
may differ at different grain sizes, though the difference is in gen-
eral small due to spatial autocorrelation. Hence, we included a series 
of commonly used grain sizes of explanatory variables. Focusing on 
the bias resulting from the use of ASU centroids, we hypothesize 
that: (a) using ASU centroids as substitutes for true occurrence loca-
tions leads to a value frequency mismatch of explanatory variables 
between the true locations and the centroids. An increased spa-
tial heterogeneity within the ASU elevates that mismatch, assum-
ing that larger ASUs tend to have higher spatial heterogeneity. (b) 
When using ASU centroids, the ENM’s performance decreases with 
increasing ASU size. (c) The size of the ASUs affects the model per-
formance more than the grain size of explanatory variables. (d) The 
use of ASU centroids leads to an over-estimation of the modelled 
species’ distributional range.

2  | MATERIAL AND METHODS

To investigate how much ASU size and grain size affect ENM per-
formance, a two-factorial design with three replicates was applied 

F I G U R E  1   (a) Value frequency mismatch of an explanatory variable resulting from the use of administrational spatial unit (ASU) centroids. 
(a1) is a group of ASUs (here: counties) with true occurrence locations and respective centroid locations. Note that for each ASU only one 
centroid location will be kept, as there exists only one. (a2) is the value frequency curve mismatch between these two groups of locations, 
concerning an explanatory variable. (a1) and (a2) illustrate our hypotheses on how geographical distance between occurrence locations and 
ASU centroids leads to value frequency mismatch. (b) Zooming in to each ASU, for a single pair of occurrence location and centroid location. 
(b1) shows that using ASU centroids minimizes the largest potential spatial distance (thick black line) between the centroid location (black 
dot) and any possible unknown occurrence location in the given ASU. However, this does not mean that the difference in values between 
those two points is minimized. (b2) shows the variation of values of an explanatory variable across all the grid cells within the ASU. More 
than 97% of values fall into the range between the whiskers, and 50% of the values fall into the rectangular box

(a1) (a2)

(b1) (b2)
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(Figure 2). For this, a virtual species was generated based on three ex-
planatory variables across Europe (see below for details). According 
to the presence–absence map of this virtual species, three squared 
regions (sized 5° × 5°) were selected within which the virtual spe-
cies occupancy was about 50%. For each squared region, pseudo-
ASUs of three different sizes were constructed by dividing it evenly 
into 25 (large), 100 (medium) and 400 (small) squares (Figure 2). The 
size range of these pseudo-ASUs corresponds to those of low-level 
administrational units across Europe. There, the Nomenclature of 
Territorial Units for Statistics (NUTS, https://ec.europa.eu/euros tat/
web/nuts/backg round) consists of three levels (NUTS 1–3). NUTS 
3 is for small regions with a population size threshold of 150,000–
800,000. The average area of the NUTS 3 units is about 7,000 km2. 
The large pseudo-ASU size applied in this study is about 8,000 km2, 
which can be treated as an equivalent of the average NUTS 3 admin-
istrative units across Europe. The medium pseudo-ASU size is about 
2,000 km2, and the small pseudo-ASU size is about 500 km2.

The hypotheses were first tested with these artificial pseu-
do-ASUs from the three rectangular regions (with three pseudo-ASU 

sizes; Figure 2). Afterwards, data from real countries (Germany and 
France) with irregular ASU size and shape were used to confirm the 
previous results in a real-life environment (Supporting Information 
Appendix S1, Figure S1.1). The varying pseudo-ASU sizes for the 
regions were applied to detect the general trend of centroid-arisen 
bias. France and Germany were chosen as test cases as they are of 
very different NUTS 3 ASU sizes. For France, the average area of 
NUTS 3 ASUs is about 6,000 km2. For Germany, it is 1,200 km2. As 
the NUTS 3 ASU size of Germany is much smaller than that of France, 
we expected the ENM models based on Germany’s NUTS 3 cen-
troids to outperform the ones based on French NUTS 3 centroids.

For the rectangular regions as well as France and Germany, a 
series of commonly used grain sizes was taken into consideration 
(four grain sizes 0.5, 2.5, 5, 10 arc-min, roughly equivalent to 0.5, 10, 
40 and 200 km2, respectively), because the grain size (raster reso-
lution) of explanatory variables in ENMs also affects model perfor-
mance (Connor et al., 2018; Guisan et al., 2007; Lauzeral et al., 2013; 
Manzoor et al., 2018). It is necessary to view both ASU size and grain 
size as factors that affect models on similar special scales.

F I G U R E  2   The two-factorial study design with three replicates. Three rectangular regions [with varying grain size and pseudo-
administrational spatial unit (pseudo-ASU) size] were used to assess the general trend of bias resulting from the use of ASU centroids 
together with varying grain size. For each region, 200 random locations were drawn to keep the sampling effort even, and only locations 
where the virtual species occurs were kept (black crosses). The whole setup was repeated with the three bioclimatic variables that the virtual 
species was generated with (see Material and methods)

https://ec.europa.eu/eurostat/web/nuts/background
https://ec.europa.eu/eurostat/web/nuts/background
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2.1 | Virtual species

A virtual species was generated using the ‘virtualspecies’ package 
version 1.4.2 (Leroy et al., 2016) in R 3.4.2 (R Core Team, 2015), 
with a spatial resolution of 0.5 arc-min (for details on explanatory 
variables see section ‘Explanatory variables’). Virtual species gen-
eration can be understood as defining a niche of a virtual species 
by limiting the determining environmental variables, setting the re-
sponse to the variables, and setting prevalence or tolerance levels. 
By applying a virtual species, (a) the exact explanatory variables 
are known, (b) the occurrence locations are precise, (c) the whole 
study area is evenly sampled without sampling bias, (d) the true 
spatial distribution probability and presence–absence maps are 
available. These advantages make virtual species an ideal tool for 
testing our hypotheses.

To generate a virtual species, a certain number of explanatory 
variables is needed, as well as parameters such as the response of 
the virtual species to each variable. Depending on the parameters 
and the presence–absence conversion method applied, different 
species distribution patterns can be achieved. The spatial distri-
bution of the virtual species, both the logistic distribution map 
and presence–absence map, can be exported as raster files for 
further use. A dataset of presence–absence or presence-only lo-
cations can be generated in order to simulate real-world sampling 
of occurrence records in the field. In this study, 200 random loca-
tions were drawn for each rectangular region to simulate sampling 
locations of an unbiased field campaign. By allocating the same 
number of sampling locations, the simulated sampling effort for 
each region is the same, thus the model performance is compara-
ble across the regions. Locations where the species was recorded 
as ‘absent’ were discarded and the remaining presence locations 
(c. 60 per region) were used to build the ENMs. For more details 
about the virtual species in this study see Supporting Information 
Appendix S2.

2.2 | Explanatory variables

To keep the virtual species simple, only bioclimatic variables were 
taken into account. For this, the standard set of 19 bioclimatic 
variables was acquired from https://www.world clim.org (Fick & 
Hijmans, 2017), with grain sizes of 0.5, 2.5, 5 and 10 arc-min. Three 
bioclimatic variables were selected according to the following crite-
ria: (a) the set must include both hydrological and thermal factors, 
which are essential to most life-forms; (b) the variables should not 
be closely related to each other [De Marco & Nóbrega, 2018; i.e., 
|Pearson’s r| > .7 (see Supporting Information Appendix S3, Table 
S3.1), calculated with the European extent (Supporting Information 
Appendix S2, Figure S2.2) of the virtual species]. As a consequence, 
three bioclimatic variables, namely annual mean temperature (Bio 1), 
annual precipitation (Bio 12), and precipitation seasonality (Bio 15), 
were chosen (for details see Supporting Information Appendix S2, 
Figures S2.3 and S2.4).

2.3 | Value frequency mismatch in explanatory 
variables due to the use of ASU centroids

To visualize the value frequency mismatch, the three explanatory 
variables’ values were extracted at the centroid locations of the 
three different pseudo-ASU sizes separately per region. This was 
repeated for the four different grain sizes (Figure 2). The value fre-
quencies of the explanatory variables were then described through 
a kernel density curve (which can be understood as the response 
curve of the virtual species to the variable) using the R package 
‘caTools’ version 1.17.1.2 (Tuszynski, 2014). Relative overlap of the 
curve for the centroid locations with the corresponding curve for the 
original occurrence records was calculated using ‘caTools’. Mismatch 
between these curves was then calculated as 1 − overlap, so that a 
mismatch of 0 means identical curves and 1 means no overlap at all.

The spatial heterogeneity of each explanatory variable was as-
sessed by calculating its standard deviation within the respective 
pseudo-ASU and for the respective grain size, using the ‘raster’ 
package version 2.6.7 (Hijmans, 2019) in R. The spatial heterogene-
ity was expected to increase with the size of pseudo-ASUs. For each 
explanatory variable, a linear regression was applied to describe 
the correlation between frequency curve mismatch and spatial 
heterogeneity.

2.4 | Ecological niche model

Maxent, an ENM algorithm widely used and known for its good per-
formance with small occurrence location datasets (Baldwin, 2009; 
Elith et al., 2006; Hernandez et al., 2006), was chosen in this study. 
To make the models comparable, the settings were kept the same 
for all runs, for the three rectangular patches, Germany and France. 
Default model settings were applied (with 10,000 background loca-
tions), with 10 replicates. Instead of commonly used methods such 
as the true skill statistic (TSS) or the area under the curve (AUC) of 
the receiver operating characteristic, model performance was as-
sessed using Spearman’s rank correlation coefficient (Spearman’s 
rho). Spearman’s rho is obviously a better choice than AUC, and com-
pared to TSS, Spearman’s rho has the advantage of being threshold-
independent. As the true spatial distribution probability map for the 
virtual species is available, Spearman’s rho for the correlation be-
tween the environmental suitability predicted by the model and the 
true probability of presence can easily be achieved [via R package 
‘pspearman’ (Savicky, 2014)]. In this case, Spearman’s rho can range 
from 0 (no correlation) to 1 (perfect linear positive correlation, the 
compared models are identical).

To calculate Spearman’s rho, the larger grain-sized (2.5, 5 and 
10 arc-min) outputs from Maxent models were resampled to 0.5 arc-
min resolution using the ‘nearest neighbour’ method [R package 
‘raster’ (Hijmans, 2019)]. Essentially, this means cutting the large 
raster cells into smaller ones, while keeping the original values with-
out interpolation or loss of information. The model results were 
then compared with the true (distribution) probability map of the 

https://www.worldclim.org
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virtual species (the virtual species was generated with 0.5 arc-min 
resolution; for more details see above and Supporting Information 
Appendix S2).

2.5 | Calculation of over-prediction ratio

The model results were transformed into binary presence–absence 
maps according to the thresholds: maximum training sensitivity 
plus specificity logistic threshold (MaxSSS; Liu et al., 2005, 2016), 
equal training sensitivity and specificity logistic threshold (eqSS; Liu 
et al., 2005; Nenzen & Araujo, 2011) and 10 percentile training pres-
ence logistic threshold (10 percentile; Pearson et al., 2004). Over-
prediction was then calculated as the ratio of raster cells classified as 
‘presence’ in the model output versus the original virtual species [i.e., 
(Presencemodelled − Presenceoriginal)/Presenceoriginal]. Here, a value of 
0 suggests that the distributional range predicted by the model has 
the same size as the one defined in the virtual species. Values larger 
or smaller than 0 mean that the predicted range is larger (over-pre-
diction) or smaller (under-prediction) than that of the original spe-
cies, respectively.

3  | RESULTS

3.1 | The larger the pseudo-ASU size, the larger 
the value frequency mismatch of the explanatory 
variables

Using ASU centroids resulted in a mismatch of value frequency 
curves of the explanatory variables. This mismatch increases with 
the spatial heterogeneity within the respective ASU. A statistically 
significant positive relationship between variable mismatch and spa-
tial heterogeneity was revealed through linear regression analysis for 
all three bioclimatic variables (Figure 3, top; Bio1: p < .01, R2 = .16; 
Bio12: p < .05, R2 = .11; Bio15: p << .001, R2 = .56). The overall spatial 
heterogeneity of an ASU increases with its size (Figure 3, bottom).

3.2 | For ENM performance, ASU size matters more 
than the grain size

Ecological niche models built with the original occurrence locations 
showed strong correlations of predicted environmental suitability 

F I G U R E  3   Top: the spatial heterogeneity of each explanatory variable (Bio 1: annual mean temperature, Bio 12: annual precipitation, 
Bio 15: precipitation seasonality) increases with increasing centroid region size. Bottom: value frequency curve mismatch for explanatory 
variables (Bio 1, Bio 12, Bio 15) at occurrence locations versus centroid locations increases with elevated spatial heterogeneity. Each black 
dot represents one pair of comparisons of the recorded variable values between centroid locations and real locations. For each variable, the 
spatial heterogeneity is measured by the standard deviation of that variable within the individual centroid regions. ASU = administrational 
spatial unit.
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with the true distribution of the virtual species, suggesting good 
model performance (Figure 4a). For these ENMs, the model per-
formance decreased with increasing grain size (see Supporting 
Information Appendix S4, Figure S4.5). For those ENMs built with 
centroids, a Kruskal–Wallis rank sum test with multiple comparison 
post-hoc test revealed statistically significant (p < .05) effects of 
ASU size on model performance. There is a clear trend of model per-
formance decreasing with increasing ASU size (Figure 4a). No clear 
model performance pattern was observed for the different grain 
sizes (Figure 4b). A direct comparison using two-way ANOVA (see 
Supporting Information Appendix S4, Table S4.2; only including the 
ENMs built with centroids, i.e., the three grey boxes in Figure 4a) 
reveals that while ASU size can explain more than half (52%) of the 
variability in model performance (f(2) = 16.414, p << .001); grain size 
appears to have almost no effect (f(3) = 0.876, p = .467); the interac-
tion between grain size and ASU size shows no significance (f(6) = 
0.561, p = .757), either.

3.3 | Over-prediction of species spatial distribution 
due to the use of centroid data

Almost all ENM runs in this study, including those performed with 
true occurrence locations, over-predicted the virtual species’ occur-
rence. Based on the MaxSSS threshold, over-prediction tends to be 
stronger with increasing ASU size (Figure 5). However, this increase 
is statistically significant only for the large ASUs (p < .01 based on 
ANOVA followed by a Tukey honest significant difference post-hoc 
test). This is consistent with the results obtained from the eqSS 

and 10 percentile thresholds (Supporting Information Appendix S4, 
Figure S4.6).

3.4 | Real-world application example using 
French and German ASU centroids

The ENM built with centroids of NUTS 3 administrative units in 
Germany outperforms the model for France, with Spearman’s rho 
value of .818 and .790, respectively. For the ENM built with true 
occurrence locations, Spearman’s rho for Germany and France is 
.894 and .924, respectively (Table 1). When occurrence locations are 
available, the model performance decreases with increasing grain 
size. However, when only centroid locations are available, fine grain 
size was not always the best. For France, the ENM with 2.5 arc-min 
had the best model performance (Table 1). This is in accordance with 
the pattern shown in Figure 4: ASU size matters more than grain size.

4  | DISCUSSION

In this study, we looked into the mechanism of how the use of cen-
troids affects ENM performance. Though there have been studies fo-
cusing solely on centroid size (Collins et al., 2017; Park & Davis, 2017) 
or grain size (Connor et al., 2018; Lauzeral et al., 2013; Manzoor 
et al., 2018), we investigated and compared how much ASU size and 
grain size affect ENM performance. Our results confirm that, in gen-
eral, larger ASUs have higher spatial heterogeneity, and higher spatial 
heterogeneity is associated with higher value frequency mismatch of 

F I G U R E  4   Administrational spatial unit (ASU) size affects model performance more than grain size. (a) Grey: performance of the 
ecological niche model (ENM) at different ASU sizes. White, for reference: ENM performance when using true occurrence locations. Lower 
case letters above the boxes indicate differences between groups as indicated by a Kruskal–Wallis rank sum test with multiple comparison 
post-hoc test. (b) Performance of the ENM at different grain sizes (i.e., spatial resolution of environmental data). Lower case letters above 
the boxes indicate that an ANOVA followed by a Tukey honest significant difference post-hoc test revealed no statistically significant 
differences between any of the groups. Grey boxes in (a) and (b) refer to the same set of models. Model performance was assessed through 
the correlation coefficient (Spearman’s rho) between the environmental suitability predicted by the ecological niche model and the true 
species distribution defined for the virtual species. Model performance ranges from 0 to 1. The larger the value, the better the model 
performance.

(a) (b)
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explanatory variables between the true locations and centroids. When 
using ASU centroids, larger ASUs also lead to a larger decrease of 
ENM performance. Compared with ASU size, grain size does not af-
fect ENM performance as much. The use of ASU centroids leads to 
over-prediction of the modelled species’ distribution range, and the 
over-prediction ratio shows a tendency to increase with ASU size.

Using centroids of ASUs as a substitute for true occurrence records 
in ENMs introduces errors. Spatial distance between the centroids 
and the true, unknown occurrence locations leads to a mismatch of 
explanatory variables’ values at these locations. These mismatched 
values at the centroid locations lead to a mismatch of explanatory 
variables’ value frequency curves, which further results in a mismatch 
between the projected niche and the true niche. Our results show 
that the absolute size of ASUs affects the value frequency mismatch 
between true locations and centroids. How strong this effect is, ul-
timately depends on the explanatory variables’ spatial heterogeneity 
(here: standard deviation) within the ASUs. Park and Davis (2017) 
found that spatial heterogeneity in climatic variables was mainly gov-
erned by the heterogeneity in topography in the US. Their findings 
that ASU (county) size only had minimal effects on spatial heterogene-
ity does not contradict our results, due to their different, non-nested 
study design. The absolute ASU size or grain size alone cannot deter-
mine how much the explanatory variables’ values mismatch with the 
values at the true occurrence locations, but in general, larger ASU size 
leads to larger value mismatch (Figure 3).

Similarly, coarser grain size leads to a deterioration in model perfor-
mance (Supporting Information Appendix S4, Figure S4.5). This is in line 
with previous findings (Connor et al., 2018; Guisan et al., 2007; Manzoor 
et al., 2018). However, although the grain size does affect model perfor-
mance, its effect was found to be small compared that of the ASU size 
(Figure 4 and Supporting Information Appendix S4, Table S4.2). When 
centroids are drawn from ASUs with large extent, the ENM’s performance 
can hardly be improved by using a fine grain size (Figure 4). However, 
when using centroids drawn from a small extent or using the true oc-
currence locations, a fine grain size is preferable (Table 1). Note that the 
‘small’ pseudo-ASU size used in this study is 0.25° × 0.25° (c. 400 km2). 
This is not much larger than the coarsest grain size (c. 170 km2) in this 
study, which corresponds to the resolution of some commonly used en-
vironmental datasets [e.g., E-OBS (Cornes et al., 2018)]. For ASUs of this 
size, the value mismatch between the centroids and true locations is very 
small, and the effect of ASU size on the value mismatch cannot be distin-
guished from that introduced by a large grain size.

The use of a virtual species in this study means that the environ-
mental suitability and the presence–absence status of the species 
across the study region are known, and the species’ occurrence records 
are precise. This makes the comparison between models based on true 

F I G U R E  5   Relative over-prediction ratio [ecological niche model 
(ENM) results versus ‘true’ virtual species occurrence] for models 
built on point locations (white) as well as centroids of differently 
sized regions (grey). Lower case letters above the boxes indicate 
differences between groups as indicated by an ANOVA followed 
by a Tukey honest significant difference post-hoc test. ASU = 
administrational spatial unit
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Country Grain size
Model performance 
(centroids)

Model performance (true 
occurrence locations)

France 10 arc-min .725 .852

France 5 arc-min .798 .927

France 2.5 arc-min .858 .942

France 30 arc-sec .779 .974

Germany 10 arc-min .807 .837

Germany 5 arc-min .812 .897

Germany 2.5 arc-min .826 .914

Germany 30 arc-sec .828 .927

TA B L E  1   Model performance of the 
real-world examples using French and 
German administrational spatial units 
(ASUs). Performance of the models was 
assessed by calculating Spearmans’ 
rho for the correlation of the predicted 
probability of presence with the known 
true probability of presence of the virtual 
species. Bold: best-performing models for 
centroid- and true location-based models 
for France and Germany
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locations and models based on ASU centroids feasible and reliable. The 
difference between models based on observed point locations from 
field data versus centroid-based locations has previously been quanti-
fied (Collins et al., 2017). However, using observed locations, additional 
effects resulting from sampling bias or uncertainty cannot be excluded. 
Generating a virtual species and drawing precise geographical locations 
ensures that the observed differences between model results are due 
to the use of centroid locations itself and that they can be quantified. As 
the true environmental suitability of the virtual species is known, it can 
be used as a benchmark for the performance of the models by directly 
calculating Spearman’s rho. This obviates the use of threshold-based 
performance measures such as TSS or the commonly used but contro-
versial AUC (Allouche et al., 2006; Tjaden et al., 2018).

The value frequency mismatch was for the first time applied as an 
indicator of potential projected niche mismatch. This method calculates, 
for each explanatory variable, the value frequency mismatch between 
ASU centroids and occurrence locations. Compared with conventional 
statistical tests (such as ANOVA or Kruskal–Wallis test) that show 
whether a statistical difference between centroid-based and true lo-
cation-based environmental data exists or not, this method focuses on 
quantifying the differences between the two. As ENMs typically process 
variables’ values in a continuous way (for a given variable value at a sin-
gle location, the ENMs calculate a probability of presence rather than 
a binary presence–absence value), the true/false information alone is 
clearly not sufficient to assess the effect of using ASU centroids. While 
test statistics fail to measure how much two groups of data differ, the 
continuous method makes it possible to capture the general trend of 
the value mismatch and compare it across groups. For instance, our re-
sults suggest that a larger ASU size leads to larger value frequency mis-
match. If a binary-result-only method had been applied in this study, this 
general trend could not have been captured, or evaluated. It should be 
noted that the value frequency mismatch ranges from 0 to 100%, that 
is, though the value frequency mismatch increases with spatial hetero-
geneity within the ASU, this increase is not always linear. Here, a linear 
model was applied to show the general trend, but it should not be inter-
preted as an indication for how much the mismatch will be when larger 
spatial heterogeneity occurs.

As the virtual species was generated with the grain size of 
0.5 arc-min, it is to be expected that the output from the combi-
nation of this grain size and original locations has the best perfor-
mance. While generating the virtual species, we assumed that the 
grain size employed is the smallest unit in which the virtual species 
can survive, as an individual (similar to e.g., a deer, a bird) or a popula-
tion (e.g., ants, bees). However, modelling with real species, it should 
be questioned which grain size should be utilized. It has been sug-
gested to use a grain size smaller than 1 km when possible, especially 
for habitat specialists (Manzoor et al., 2018). Nevertheless, the ques-
tion of choosing optimal grain size needs to be further investigated.

It is not surprising that centroids of ASUs are chosen as a sub-
stitute when no precise occurrence locations are available. After all, 
the changes in the modelling workflow required by this approach 
are minimal compared with the calculation of central tendency 
measures across ASUs. Using the geographical centroid of an ASU 

minimizes the largest possible spatial distance between the centroid 
and any (unknown) occurrence location within the ASU (Figure 1b1). 
Considering spatial autocorrelation, the value mismatch between 
the unknown true location and the chosen substitute (centroid) has 
a chance of being limited as well. However, central tendency values 
(e.g., mean or median) of the variable value within the ASU are a 
better alternative for minimizing the value mismatch, as they limit 
the potential value distance directly rather than indirectly through 
spatial distance (Figure 1b2). Although the value mismatch cannot 
be eliminated completely, using central tendency values lowers 
the probability of introducing extreme values or outliers. In accor-
dance with previous studies (Park & Davis, 2017), we thus suggest 
the use of central tendency values as substitutes wherever possible. 
However, when the ASU size is very small (e.g., 0.25° × 0.25°) or the 
environment within the ASU is very homogenous, geographical cen-
troids can work as good substitutes. In this case, it is worth compar-
ing the variables’ values from the centroid locations with those from 
available occurrence locations. If the centroids lead to value outliers, 
central tendency values should be used instead or the outliers dis-
carded. Of course, this assumes that only a fraction of the available 
records consists of un-precisely recorded location data.

When using a limited number of ASU centroids in addition to 
precise locations, there are two critical aspects that need to be con-
sidered. First, these coarse centroids are typically assigned the same 
weight as the precise location by the ENMs, which may result in a 
distorted model of the spatial distribution of the species. This could be 
ameliorated by down-weighting centroid locations, provided that the 
chosen modelling algorithm allows for that. Second, for each ASU, only 
one centroid record will be kept by the ENMs. As a consequence, re-
gions with only one record are treated the same as regions with several 
records, and the abundance information (if available at all) is neglected. 
It has been shown that a mixture of precise and centroid-based data 
would be more robust against the issues demonstrated in this work 
(Collins et al., 2017), but to what degree and how the ratio of the two 
data types affect the robustness needs to be clarified in future studies.

It should be noted that the insights gained here only apply to 
models built with continuous variables. Categorical predictors like 
land use classes typically show sharp edges on the map, so that even 
small differences in the spatial location of occurrence records can 
lead to dramatically different values being assigned to them. Thus, 
it seems reasonable to assume that models built with categorical 
variables would be affected more strongly by ASU size, but further 
investigations are needed to confirm this. Similarly, all our analyses 
were conducted at an intermediate (sub-continental) spatial scale, 
as this is the scale where ASU centroids are most likely to be used. 
Further research is needed to verify whether the conclusions drawn 
from this can be transferred to coarser or finer scales.

5  | CONCLUSIONS

Whether ASU centroids can be a viable surrogate for precise occur-
rence locations depends on the ASUs’ sizes and how heterogeneous 
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they are in terms of environmental explanatory variables. For instance, 
in the northern German flatlands, where ASUs are small and the en-
vironment comparably homogenous, the use of centroid locations is 
much less of a problem than in the alpine regions of France, where 
ASUs are large and environmental gradients steep. If possible, central 
tendency values should be considered as a more robust alternative. As 
our results suggest that effects of using ASU centroids outweigh ef-
fects of grain size, it is important for modellers to recognize this source 
of error. In order to enable researchers to assess whether the use of 
centroid locations is appropriate for a specific project, new methods 
and guidelines need to be developed.
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