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Abstract 

 

While attaining the objective of online optimization of complex chemical 

processes, the possibility of using the first principle based models is rarely an 

option, since such models demand large computational time. Surrogate models, 

which can emulate first principle based models, offer a credible solution to this 

problem, by ensuring faster optimization. Thus, the entire challenge of enabling 

online optimization of complex models depends on construction of efficient 

surrogate models. Often, the surrogate building algorithms have certain parameters 

that are usually fixed based on some heuristic, thereby inviting potential errors in 

building such surrogate models. This work aims at presenting an elaborate study on 

the effect of various parameters affecting the predictability of artificial neural 

networks viz. (a) architecture of ANN, (b) sample size required by the ANN, (c) 

maximum possible accuracy of prediction, (d) a robust sampling plan and (e) 

transfer function choice for node activation. The ANNs are then utilized as 

surrogates for a highly nonlinear industrial sintering process, the optimization of 

which is then realised nearly 7 times faster than the optimization study using the 

expensive phenomenological model.  

 

Index Terms— ANNs, nonlinear models, Online optimization and control, 

Parameter in surrogate construction, Surrogate models, Sintering process.  
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Chapter 1 
 

Introduction 

   

 

Process control and optimization of industrial problems, often involving huge 

computational rigour owing to the usage of complex and robust first principle based 

models, demand large times for computation. The first principle models, such as, 

those trying to capture the dynamics of reaction networks in a polymer industry or a 

model handling the wake effects or turbulence in fluid flow, etc. usually involve 

several highly nonlinear coupled ordinary and partial differential equations (ODEs 

& PDEs) [1]. This necessitates the involvement of time consuming simulation 

packages, such as, Computational Fluid Dynamics (CFD), or some differential 

algebraic solvers (DAE) etc., to solve the system of ODEs and PDEs to facilitate 

their implementation at pilot plant level or at an industrial scale. The intrinsic 

complexity of these models considered for optimization forms the genesis for the 

large computational time consumed by the optimizer, thus compelling the entire 

process to run over several days or months [2]. The problem grows by multiple folds 

when the considered system is multi-dimensional in nature (say m dimensions) with 

optimization formulation involving multiple conflicting objective functions instead 

of one. The conflicting nature of the objective functions results in a set of non-

dominating solutions called Pareto Optimal (PO) solutions from which a single 

solution is obtained using some higher order information, often provided by the 

decision maker [3]. The solution obtained in such a way aims at enabling a decision 

support system to program and simulate the given process in an optimal fashion. 

This concept of online optimization is practically imbibed in industry when the 

combined functioning of optimizer and controller is realised in real time of the live 
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process. The tremendous industrial growth and ever expanding demand over the last 

decade have created strong need for the solutions, which could cater multiple 

objectives at the same time. This requires solving the underlying multi-objective 

optimization problem (MOOP). Till date, owing to the advent of fast computing 

machines, the ability of modern evolutionary methods for solving the MOOP has 

remained unparalleled [4]. On the other hand, due to the predominant condition, 

wherein lack or expensive computation of gradient information of the complex 

models has become a common scenario, the modern evolutionary optimization 

techniques have gained enormous prominence over their classical counterparts, 

which provide every future course of movements depending on the current gradient 

information [3]. The procedure of solving the MOOP by the robust evolutionary 

techniques, which primarily work with population of candidate solutions, 

necessitates multiple function evaluations in order to generate those solutions 

required in optimization process [5]. These aspects together make the concept of 

online optimization a far-fetched impractical concept confined to theory, which 

cannot be realized practically unless the optimization happens in real time. 

The key to this problem lies with fast and accurate surrogate models, which 

essentially are data based models trying to emulate the given complex first principle 

or physics based models. These surrogates then replace the original physics based 

models in the optimization algorithm thereby shielding them from the optimizer 

while generating the candidate solutions. With surrogates in place, the entire 

optimization algorithm may proceed in a fast manner thus enabling a step towards 

online optimization. Artificial Neural Networks (ANNs) are one of the prominent 

candidates for surrogate models by virtue of their immense potential to recognize 

complex patterns [6]. ANNs are mathematical models in form of network of nodes, 

whose functioning is motivated by the impeccable parallel networking of neurons in 

the human brain. They are widely acknowledged across all engineering and 

scientific disciplines for their immense applications in various fields such as 

computer science and electrical engineering [6], nanoscience [7], geosciences [8], 

chemical engineering [9, 10] and biological sciences [11] and so on. In this article, 

an elaborate study is conducted on the perceptron networks, which without any loss 

of generality can be extended to the specific class of recurrent networks. The 
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parameters, in terms of weights and biases of the network, enable several degrees of 

freedom to capture the overall nonlinear behaviour in the given complex system. 

This unique ability of the ANN to capture the global trend of the complex model 

with maximum accuracy, not only assures it a status of an efficient surrogate for 

optimization but also allows for its wide applicability as a highly efficient 

interpolator which then finds an edge in several numerical techniques [12]. Several 

other notable surrogate models listed in literature are Kriging Interpolation (KI) 

[13], Support Vector Machines (SVM) and Response Surface Methodologies (RSM) 

[14]. The philosophy of surrogate models is to generate accurate functional 

relationship among inputs and outputs of a given process. RSMs are statistical 

models, which try to regress lower order (commonly, second order) polynomial 

models followed by conducting a sequence of designed experiments to guide the 

optimization search in a direction of optimal response of the objective function. 

Several instances of failure in capturing the local surface utilizing lower degree 

polynomials led the RSM research into dealing with higher degree polynomials. KI, 

which has proved its immense scope of applicability in the areas of system 

identification, parametric analysis and optimization, geosciences, statistics, design 

and analysis of computer experiments, is yet another popular function 

approximation technique. It uses Gaussian distribution functions to fit the training 

data with a set of parameters which can be tuned based on the estimation of potential 

error in interpolation. The interpolator predicts the output using the weighted 

combinations of predictions from simple basis functions. 

On the other hand, ANNs are mathematical models, which try to mimic the 

functioning of biological neural network of human brain. A biological neuron and its 

mathematical counterpart, called the node, are described in Fig. 1. They are widely 

acknowledged for their immense applications in pattern recognition problems, image 

processing and many other chemical engineering applications. The number of nodes 

in a single layer and the number of layers in the network together constitute the 

architecture of the network. One of the flaws with implementation of the ANNs is 

the inability to optimally design the architecture of the network. The architecture of 

the network is obtained based on the method of hit and trial, which often leads to an 

impasse. 
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Fig. 1. Basic Structure of a neuron and node  

 

One rule of thumb in this heuristic based design, applied widely in order to 

reduce the complexity of aforementioned hit and trial procedure, is the assumption 

that for any given data, a single hidden layer with some arbitrary number of nodes 

would be sufficient to predict any model with reasonable accuracy [15]. The 

potential of ANNs lies within their ability to segregate the data into exclusive 

regions. This can be visualised geometrically by considering one layer as an m-

dimensional hyper-plane trying to separate out the existing data into two sub spaces, 

where m is the number of inputs feeding to that layer. A multi-layer perceptron 

network may, therefore, provide more accuracy for an unseen data, which might be 

linearly inseparable [12]. This rationale justifies for the fact that the aforementioned 

assumption may not be true in all cases. Apart from this, the sample size required for 

training also effects the predictability of the network significantly in accordance 
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with the network architecture [12]. Thus, there is strong obligation to device a 

logical approach to design the architecture of a given network, simultaneously, 

along with sample size determination. Some of the prominent contributions in the 

literature are mixed integer nonlinear programing (MINLP) approach [16], the 

Akaike Information Criteria (AIC) [17], etc. to come up with the optimal design of 

the architecture. However, apart from being computationally expensive, none of 

them addressed the problem of simultaneous design of architecture and sample size 

determination. With this backdrop, a schematic for the current scenario of a primal 

surrogate building algorithm for ANN as surrogate model has been presented in Fig. 

2. The simple layout in Fig. 2 clearly shows that the surrogate building algorithm is 

governed by several parameters whose values are usually fixed based on some 

heuristic, thus inviting potential errors and credible variations in the predictability of 

the surrogates. Also, any extrapolation out of the m-dimensional input space calls 

for re-construction of the surrogate model, which would require a significant amount 

of computational time. Thus, the surrogate building algorithm should be fast enough, 

apart from being parameter free to make the surrogate models universal and process 

of optimization online.  

In this work, the effect of several parameters governing the ANN surrogate 

building procedure has been studied. The work presents a sound basis and 

justification for the need of a novel parameter free surrogate building algorithm 

especially focusing on the automated design of configuration of ANNs along with 

the simultaneous determination of the sample size required for maximizing the 

prediction accuracy, without over-fitting the network. The individual effect of each 

of the parameters like architecture, sample size, sampling plan, transfer function, etc. 

on the aspects of predictability and parsimonious behaviour of the surrogate model 

has been investigated. The potential dangers associated with heuristic based design 

of ANN with respect to recognizing the capability of the ANNs as surrogate models 

have also been presented. An industrially validated model for sintering process, used 

in steel plants, is considered for all the sensitivity analysis and optimization studies. 

A comprehensive comparative study between the results obtained using several 

ANN surrogates obtained by varying the aforementioned parameters, is presented in 

details. The Introductory section in the article is followed by the Formulation section 
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comprising a detailed description of the sintering model and the ANN sensitivity 

analysis. This is then followed by the Results and Discussions section before 

concluding the work in the Conclusion section. 

 

 

Fig. 2: Schematic showing the generic surrogate building algorithm. 
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Chapter 2 
 

Formulation 

   

 

2.1 Parameters in Surrogate building algorithm 

 

With reference to Fig. 2, the parameters involved in surrogate building algorithm are 

listed down before describing them further in details. 

i) Accuracy of prediction. 

ii) Sampling plan or design of experiments (DoE).  

iii) Sample size. 

iv) Architecture of the network. 

v) Activation function. 

 

2.1.1 Accuracy of prediction. 

The accuracy of the surrogate model is a necessary parameter, which needs to be 

specified prior to the modelling by the decision maker. It is obvious that any 

decision maker would like to have a maximum value of accuracy for the surrogate 

model, which may come at the cost of large computational time and large number of 

sample points for training. With the dubious nature of this issue, the decision maker 
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without any specific prior experience in the domain of surrogate modelling, would 

hesitate to provide a particular value of accuracy. This may not allow the algorithm 

to build a surrogate model capable of maximum predictability. Thus, there is a need 

to ensure that without providing a specific value of accuracy as an input to the 

algorithm, it must be able to build a surrogate model having maximum 

predictability. Two well-known statistical measures [18] for estimating the accuracy 

of the predictions by the network have been considered: 

i) Root mean square error: RMSE 

ii) Correlation coefficient r2 

 

 

 

where y is the original output coming from physics driven model or data and  is the 

predicted output from the surrogate model. 

 

2.1.2 Sampling plan or DoE 

The sampling plan is at the heart of the surrogate building algorithm as it 

directly influences the number of sample points, accuracy of prediction and 

architecture of the network. The sampling plan can be easily interpreted as a scheme 

of placing some arbitrary probes in an m-dimensional space to capture the behaviour 

of the model (m being the number of inputs). An ideal case would be to divide the 

entire space into grids and place a probe at every junction which leads to the full 
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factorial sampling plan [19]. This will ensure maximum accuracy based on the 

precision of the grid size, but the number of probes required will be extremely large 

making it an impractical proposition. However, the ability to capture the dynamics 

of the system at every cross joint would certainly make the sampling plan uniform 

and such a sampling plan is thus said to have the feature of space-filling [18]. The 

characteristic trait of any efficient sampling plan should be able to probe the 

dynamics of the entire m-dimensional input space with least possible function 

evaluations or in other terms least possible sample points. Several sampling plans 

exist in literature displaying the feature of space filling, but none of them reports of 

performing the task in least possible number of function evaluations. One such 

example is Latin Hyper-cube Sampling technique (LHS) [18, 20], which would 

ensure the space filling nature of the system but when prompted for an additional 

sample point, would generate a set of points, completely different from previous set 

constituting the sampling plan. This essentially abandons the previously collected 

sample points and calls for several new function evaluations. Sobol sampling plan 

[21], based on highly convergent Sobol sequence, is one sampling plan, which 

ensures both space filling attribute and maintains the sequence even if prompted for 

a new sample point. The projection of the distribution of 200 sample points in 3-

dimensional space obtained using the Sobol sampling plan is compared with the 

distribution of those obtained using LHS sampling plan and is presented in Fig 3. 

One can easily decipher qualitatively the enhanced uniformity and space filling 

nature of Sobol points over the LHS points. A metric, called the  (PHI) metric, 

proposed in literature [18, 22] of sampling techniques, measures the space filling 

attribute of any given sampling plan. Lower the value of this  metric, better the 



10 

space filling ability of the sampling plan. The space filling nature of both LHS and 

Sobol sampling plans are measured using this PHI metric for the same distribution 

of 200 points as given in Fig. 3 and the results are presented in Table 1. It is evident 

from Table 1 that Sobol sampling plan emerges out to be one of the best alternatives 

among the existing options. Thus, Sobol sampling plan is selected in this work for 

implementation in the surrogate building algorithm. 

 

Fig. 3: The distribution of 200 sample points using the a) Sobol sampling plan and 

b) LHS sampling plan. 

 

Table 1: Comparison of different sampling plans in terms of PHI metric and 

computational time for 200 sample points.  

Sampling Plan The measure of PHI 

metric 

Computational time 

LHS-200 205.367 588.69 seconds 

Sobol-200 201.939 0.0251 seconds 
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2.1.3 Sample size 

ANNs are infamous for their data greedy nature. The scarce amount of 

literature available on realizing the ANNs as potential surrogates reveals that no 

proper rationale is devised to decide the number of data points required for training 

[23]. In most of the cases, the general rule of thumb of considering 70% of the 

available data for training is applied. Such kind of heuristic based assumption may 

cause the network to be either over-fitted or under trained because of the 

unavailability of any exact measure of the number of sample points required for 

training. One significant contribution in literature [24] showcases a novel algorithm 

for sample size determination of the given network. Their approach is based on the 

fact that, the training error of the network is minimized by increasing the sample 

size. Although this is true, but the fact that the network might get over-fitted as the 

sample size is increased cannot be ruled out. Thus, in order to ensure the 

parsimonious nature of the network, they incorporated the K-fold model evaluation 

technique [25, 26] (with K = 10) along with a variant of LHS called the incremental-

LHS (i-LHS) sampling plan for sample size determination. Their algorithm starts 

with an initial guess value of the sample size, for a given architecture, which they 

proposed to consider 10 times the number of dimensions in the model. The sample 

size is given to the i-LHS sampling algorithm, which then generates the training set 

and it is then divided equally into K-groups or folds. Out of the K available folds, 

one group is selected for validation and the remaining groups are used for training 

the network. A validation error is obtained, which is defined as the maximum of the 

absolute values of the deviations between original output and fitted quantities. The 

fold for validation can be considered in K different ways thereby resulting in K 
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number of validation errors. A mean of those errors is thus considered and is 

denoted as the cross validation error of the current model (models are differentiated 

by the sample sizes). Then the sample size is incremented by a user defined value 

(say plus 10) and the entire procedure is repeated for this new model. A quantity is 

then evaluated for each iteration which is defined as the ratio of the differences of 

the cross validation errors of two consecutive iterations with the difference in their 

corresponding sample size. This ratio is divided by the maximum value of such 

ratios found till the current iteration to obtain the measure called slope ratio 

percentage (SRP). If this SRP is less than some tolerance value which is again user 

specified (say 0.01), the algorithm is terminated and the current sample size is fixed 

as the final sample size. The essence of their algorithm in brief is to find a minima of 

cross validation error metric, which is a function of the sample size. One of the 

major drawbacks of this algorithm is the large computational time of K-fold based 

validation method. Another disadvantage is the extensive number of function 

evaluations deliberately called by the i-LHS sampling plan, as described previously.  

 

 

2.1.4 Architecture of the network 

The architecture of the network is perhaps the most important input, which 

influences the ANN surrogate building algorithm to maximum extent than any other 

parameter. The design of architecture as described in the introductory section has 

always been determined through a heuristic assumption of considering a single 

hidden layer and varying the nodes in that layer until some desired accuracy is 

found. Since a hidden layer in a perceptron structure can be visualised geometrically 
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as an m-dimensional hyper-plane trying to separate out the existing data into two 

sub spaces, a multi-layer perceptron network may, therefore, provide more accuracy 

for an unseen data, which might be linearly inseparable [12]. This rationale justifies 

for the fact that the aforementioned assumption may not be true in all cases. The 

author in this current work proposes an elaborate study on the effect of architecture 

design on the predictability of the network and provides an appropriate justification 

for the need of a optimal design the architecture of the network along with 

simultaneous determination of the sample size and sampling plan, which would 

enable the network to predict results with maximum accuracy.            

  

2.1.5 Transfer function 

This parameter specific to the ANNs describes the necessity of considering 

various possible alternatives to ensure proper activation of the inputs, which would 

lead to an efficient training of the ANN. Two prominent activation functions listed 

in literature [15] have been considered to analyse their effect on the performance of 

ANNs. 

i) The continuous log-sigmoid transfer function: 

 

and 

ii) The continuous tan-sigmoid transfer function: 

 

These activation functions are enabled into the architecture as the decision variables 

of the optimization formulation mentioned in the previous section. The author in this 

work has limited the variability of the activation function to the entire network and 
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thereby restricting the variation at the level of each node. Although this can be 

implemented with slight modification, it has been intentionally avoided to honor the 

computational time constraint on the ANN design. The output layers in any given 

network are always activated by pure linear activation function [15]. 

 

2.2 Industrial Sintering  

 

 

Fig 4. Schematic of Industrial Sintering Process 

 

2.2.1 Modeling of Sintering Process 

The industrial process considered (Fig 4) in this article is the iron ore 

sintering process that produces raw material for the blast furnace operation in steel 

plants. High quality sinter is essential for better chances of running the blast furnace. 

Optimum melting achieved during the sintering operation determines the quality of 

the sinter. Therefore, it is one important parameter supervising the performance of 

the sintering process. If the melting is less than the optimum, the blast furnace 
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witnesses the granule breakage, while if the melting is more than optimal point, the 

reducing ability of the sinter drastically decreases leading to operational problems in 

the blast furnace. The consumption of coke is one another important metric of 

sintering operation. In order to ensure better sintering process, consumption of coke 

should be minimal due to the direct correlation of coke consumption with carbon 

footprint of the plant. The lesser the coke consumption, higher the efficiency of the 

plant in terms of energy, which leads to lower carbon footprint value of the 

operation and thus lower the cost of operation. The conventional sintering process 

starts with the raw materials being charged on a moving strand (30–60 cm thick) 

proceeding for sintering. The combustion of the coke, to attain the desired 

temperature during sintering process, begins in the top where the charge is ignited. 

This is the region where cold air is forced inside by the vacuum created by suction 

pressure. The cold air cools the corresponding zone resulting in melting lower than 

the desired. On the other hand, the preheated air, making its way from the top zone 

where coke is burnt, creates a broad melting zone in the bottom region, which is way 

higher than the optimum. Thus, the melting of the charge is not uniform because of 

different temperatures owing to the different conditions of combustions at both 

upper and lower regions of the charge. In order to avoid this, the charging process is 

split into two layers, where the combustion of coke is different but uniform in each 

of the layers, and this ensures uniform melting of the sinter mix.  

A dynamic sintering process model has been developed considering a two-

dimensional Cartesian coordinate system. The variations in the lateral direction are 

assumed to be negligible. The temperatures and compositions of both solids and gas 
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at any position of the sinter bed can be calculated using this model. For predicting 

the gas velocity, the well-known Ergun’s equation is used: 

 

The following equation is used in general for predicting the transport variables, 

temperature, and concentration of gas and solid state species:  

 

where ϕ is transport variable, and Sc and Sp are the source terms.  

The initial conditions for solving this ODE are provided at the inlet boundary while 

zero gradient condition is used at the outlet. The convective terms in the rate 

expression (given below) are used to calculate the velocities of the solids. 

 

All the prominent reactions and phase transformations considered for developing the 

sintering model are listed in Table 2. The details of the kinetic models and the 

parameters involved in reaction mechanisms can be obtained from the literature [28, 

29]. 

2.2.2 Optimization of Sintering Process 

Extensive simulation studies reveal that the twin objectives of  

a) achieving good quality sinter by maximization of melting with  

b) minimum coke consumption  

are conflicting in nature. This kind of optimization problem with conflicting 

objective functions is ideal for a multi-objective optimization framework where the 

trade-off between the objectives can be captured. For the current sintering problem 
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considered, it is observed that 30% melting is the optimal value for the sinter quality 

for melting (SQM). The first objective is, therefore, defined as to achieve a 

maximum of 100% when the SQM equals 30%. The combined weighted average of 

the coke consumed in both the layers (Cw) is considered as the second objective. The 

height (B) of any one of the two layers in sintering process and the percentages of 

coke present in each of the two layers (CA, CB) can be considered as the decision 

variables of this optimization problem. The lower and upper bounds for the decision 

variables are represented by superscripts L and U, respectively. 

Table 2: Kinetic model of the Sintering system 

                  Reaction name                                                                     Formula  

1 Iron oxides reduction       

2 Limestone decomposition      

3 Combustion of coke       

4 Solution loss reaction            

5 Water gas reaction       

6 Water gas shift reaction      

7 Water vapor formation      

8 Condensation and drying       

9 Solidification and melting      

 

 

The well-known NSGA II was chosen to solve the aforementioned 

optimization problem. When the above-mentioned multi-objective optimization is 

carried out using the complex phenomenological model presented in section 2.2, the 
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optimization takes a large amount of time creating a deterrent to use the 

optimization approach as an online one. So, the real challenge in this study is to 

build ANN surrogates in place of the phenomenological model for this complex 

sintering process and carry out the optimization exercise using the surrogate model.  

 

2.3 Artificial Neural Network: The Algorithm and its functioning 

A Matlab source code has been developed for successful implementation 

and functioning of the ANNs. In order to test the scope and applicability of the 

multi-layered perceptron networks, the code developed was a generic code which 

can practically take the following as inputs 

1. Any architecture in the form of a row vector where the entry in first 

column would correspond to number of inputs, the entry in last column 

would correspond to number of outputs while the number of entries in 

between first and last column would determine the number of hidden 

layers. The values in these in between entries will determine the number 

of nodes in the hidden layer. 

2. A numerical value for determining the transfer function. Although as 

mentioned previously, the output layers were all activated by the linear 

transfer function, but the activation of the hidden layers needs to be 

specified prior to the design of neural networks. Thus the code accepts 

the numerical value of 1 for implementing the tan sigmoidal activation 

function while the numerical value 2 would trigger the implementation of 

log sigmoidal activation. 
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3. The data set required for training and validation needs to be sent in to the 

code to ensure proper training and validation. The code can accept any 

number of training and validation sample points. 

The outputs from the code are listed below: 

1. Original outputs and ANN predictions. The predicted values of the 

outputs corresponding to the inputs in the validation set are sent as 

outputs of the ANN code along with the original outputs of the model 

which were sent in as validation set. 

2. RMSE 

3. R2 

4. Weights of the trained neural network which will enable it to interpolate 

any new value. 

The working of the code, as per the sequential flow of the steps, is described further in the 

article. 

1. Normalization of the training data: The training data needs to be 

normalized before it is utilized for training the given network. The 

normalization needs to be performed in the range according to the 

transfer function used in the code. This is specifically to capture the 

sigmoidal shape and to thereby enable the network to perform to its full 

capability. Thus the data is normalized between -10 to 10 for log 

sigmoidal activation and between -5 to 5 for tan sigmoidal activation. 

2. Declaration and initialization of weights: The number of weights keep 

changing based on the architecture of the network. Thus, once the 
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architecture is sent to the code as input, the weights are declared and 

initialized, to a suitable value, according to the architecture. The initial 

values of the weights will affect the optimization routine used in 

determining the weights of the network.  

3. Network Training and Validation: The network is trained using the back 

propagation algorithm and weights are estimated using the Levenberg 

Marquardt (LM) procedure. The LM algorithm will ensure faster 

convergence to the optimum values as it can be made to work like both 

the fast Gauss Newton algorithm and highly converging steepest descent 

algorithm by changing the damping factor. The network predictions are 

validated using a set of 200 sample points obtained using the LHS 

sampling plan. The corresponding RMSE and r2 values are sent as 

outputs. 
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Chapter 3 
 

Results and Discussions 

   

 

The robust industrially validated model considered in the current study is a 3 

input 2 output Sintering model whose validation results can be obtained from 

literature [28, 29]. The MOOP formulation presented in Table 3 is solved using the 

real and binary coded NSGA II algorithm whose credentials are given in Table 4. 

Although the NSGA II algorithm was run for 30 generations, it was observed that 

the PO front was saturated at generation number 25 with each generation containing 

50 populations. Thus, the total function evaluations required to perform the 

optimization run with original model in place, were nearly 1300 (= 50*26, including 

the 0th generation). The results of the current work are reported below in the 

sequence of the simulations conducted. The sampling plan is fixed to Sobol for the 

reasons mentioned previously. 

Table 3: Multi objective optimization formulation of the Sintering model. 

Objective functions Decision Variables 
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Fig. 5: Contour plots of Output-1 with respect to two inputs considered at a time.  

 

Fig. 6: Contour plots of Output-2 with respect to two inputs considered at a time.  
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Table 4: NSGA II Parameters for solving the MOOP problem of Sintering system 

 

No. Parameter name Value 

1 Maximum generation size 30 

2 Population size 50 

3 Crossover probability 0.9 

4 Mutation probability 0.01 

5  3,10 

6  3,10 

7  1,16 

 

I. Non linearity check. 

In order to assess the amount of nonlinearity present in the considered 

sintering model, the contour plots in the form of tile plots for two inputs taken at a 

time are represented in Fig. 5 and Fig. 6 for output 1 and output 2, respectively. The 

nonlinear curves and the drastic intensity variations in these tile plots clearly 

indicate the complicated behavior of the sintering model. Although full factorial 

experiment was required for generation of these tile plots, none of the sample points 

were used for either training or validation of the ANN models. These plots were 

created purely to show the nonlinearity present in the model. 

 

II. Effect of variation of architecture and exploring multi-layered networks 

Keeping transfer function fixed to tan sigmoidal activation, the architecture was 

varied along with variations in sample size and the surrogate ANN models thus built 
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are reported in Table 5. The number of layers were varied up to a maximum value of 

3 and number of nodes per each layer were varied up to 8, thus leading to 512 

possible architectures. For each of the architectures considered for investigation, the 

sample sizes were also varied within a range of 30 to 250. Since this would lead to 

numerous possible case studies, a progressive study has been adopted by first fixing 

the number of layer and then varying the number of nodes in that layer. Several 

possible architectures (nearly 200) were investigated over a long period of time and 

the potential results which could serve with better accuracy are only reported in 

Table 5. The entries in the columns of the Table are N1 – number of nodes in hidden 

layer 1, N2- number of nodes in hidden layer 2, N3 – number of nodes in hidden 

layer 3, N_TF – Numerical indicator for transfer function where 1 indicates tan 

sigmoidal activation and 2 indicate log sigmoidal activation, N indicates the total 

number of nodes which is the sum of entries in first three columns and n indicates 

the sample size. Clearly one can observe that for single hidden layer, lower the 

number of nodes larger is the sample size requirement. This study justifies the fact 

that as the number of parameters of the network increases, the number of sample 

points required for training decreases. Another interesting observation from this 

Table reveals that, for a multi-layered network the above mentioned observation 

does not hold well. As mentioned previously in the article, a large amount of 

nonlinearity in the sampled data would require more number of layers than more 

number of nodes in a single layer. Therefore, when compared with the architecture 

[3-8-0-0-1], the architecture [3-6-2-0-1] is predicting the results far better (r2 = 

0.999) even with less sample size. All this study corresponds to only output-1 and a 
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simultaneous study was also performed for output-2. Thus from these results, a clear 

rationale is observed for  

1. Devising a logical approach for optimal design of the architecture of the 

neural networks. 

2. Exploration of multi-layered architectures for better system identification.  

 

III. Effect of Variation of Sample Size on predictability of an ANN. 

In order to study the effect of sample size on the prediction accuracies of the 

networks, one of the architectures with maximum prediction accuracy was selected 

from Table 5 and its predictability was studied with variation in sample size. The 

results of this study are reported in Table 6. The evolution of the ANN surrogates 

with increment in sample size for output 1 is shown in Fig. 7. These Figures show 

the distribution of the sample points in the three dimensional space in the left 

subfigure, the surface plot of the formed ANN surrogate model in center while the 

parity plot of the corresponding ANN surrogate is depicted in the right subfigure. 

The results in Table 5 and 6 clearly indicate that as the sample size increases, the 

prediction accuracy of the architecture also increases. But, in Table 6, one can 

observe that the accuracy of predictions (r2) increases with increase in sample size. 

But after sample size 50, the improvement slows down and reaches saturation, and 

after sample size 80, it starts decreasing. The overfitting of the network might be a 

reason for this anomaly. Since the r2 measured is with respect to the validation set, 

the validation error decreased as the sample size for training increased till the 

network got over-fitted. Thereafter, the validation error again increased indicating 

that the network is over-fitted to the training data.  
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Table 5: Effect of Architectures on network predictability for output-1 

N1 N2 N3 N_TF r2 N n 

1 0 0 1 0.945 1 210 

2 0 0 1 0.987 2 190 

3 0 0 1 0.910 3 110 

4 0 0 1 0.913 4 110 

5 0 0 1 0.900 5 100 

8 0 0 1 0.976 8 90 

1 1 0 1 0.872 2 120 

1  2 0 1 0.854 3 110 

1  3 0 1 0.921 4 90 

2 1 0 1 0.913 3 80 

3 1 0 1 0.956 4 80 

2 6 0 1 0.964 8 60 

2 7 0 1 0.978 9 50 

2 2 1 1 0.988 5 50 

2 7 2 1 0.943 11 50 

2 1 2 1 0.975 5 50 

2 7 4 1 0.970 9 50 

5 2 1 1 0.999 8 70 

6 2 0 1 0.999 8 50 
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Thus, sample size plays one critical role in over-fitting the data. Thus, the sample 

size for training cannot be arbitrarily given to the network but a quantitative measure 

should be devised to evaluate systematically the sample size required for allowing a 

given architecture to predict till maximum accuracy possible without over-fitting the 

network.  

Table 6: Effect of Sample size on network predictability for output-1 

N1 N2 N3    N_TF r2 N n 

6 2 0 1 0.923 8 10 

6 2 0 1 0.935 8 15 

6 2 0 1 0.910 8 20 

6 2 0 1 0.953 8 25 

6 2 0 1 0.897 8 30 

6 2 0 1 0.986 8 35 

6 2 0 1 0.991 8 40 

6 2 0 1 0.994 8 45 

6 2 0 1 0.999 8 50 

6 2 0 1 0.999 8 60 

6 2 0 1 0.999 8 80 

6 2 0 1 0.998 8 100 

6 2 0 1 0.982 8 130 

6 2 0 1 0.912 8 180 
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Fig. 7: Evolution of ANN surface for the architecture [3-6-2-0-1] for output -1  
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IV. Effect of transfer function. 

In this study, three different architectures with completely different number 

of hidden layers have been considered and they are allowed to be trained with both 

tan sigmoidal and log sigmoidal activation functions. The results of the same are 

presented in Table 7. From these results no particular transfer function evolves as a 

clear winner thereby suggesting that both the log and tan sigmoidal activation 

functions should be explored prior to training the networks.  

V. Process optimization using ANN surrogates 

Clearly these results justify the need for a parameter free ANN surrogate building 

algorithm which can intelligently devise the architecture along with simultaneous 

determination of sample size and transfer function such that, the network predicts 

with maximum accuracy without being over-fitted. However, with the help of the 

laborious hit and trial routine, two architecture with appropriate sample size and 

transfer function were selected for emulating the output-1 and output-2 of the 

sintering model. These surrogates with their credentials are presented in Table 7.  
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Table 7: Effect of Activation function on network predictability for output-1 

 

N1 N2 N3 N_TF r2 N N 

6 2 0 1 0.999 8 50 

6 2 0 2 0.878 8 150 

5 2 1 1 0.999 8 70 

5 2 1 2 0.913 8 100 

2 7 0 1 0.978 9 50 

2 7 0 2 0.986 9 80 

 

 

Table 8: ANN surrogates for Sintering model 

 Architecture 

(Inputs-N1-

N2-N3-

outputs) 

N_TF N r2 Sample 

size 

Total 

function 

calls 

Output 1 3-6-2-0-1 1 8 0.9999 50 190 + 200 

(training + 

validation 

set) = 390 
Output 2 3-5-4-1-1 1 10 0.9928 190 
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Fig. 8: Parity plot for Output 1 using the architecture = 3-6-2-0-1 with R2 = 

0.99993 obtained using HC sampling technique 

 

Fig. 9: Parity plot for Output 2 using the architecture = 3-5-4-1-1 with R2 = 0.993 

obtained using HC based technique 
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The corresponding parity plots are presented in Figs 8 and 9. The following results 

can be drawn out of the observations in Table 8: 

1. The complete replacement of the original model with ANN surrogate in the 

optimization algorithm resulted in saving an enormous 70 % of the function 

evaluations {[(1300 – 390)/1300] * 100} thereby resulting in nearly 4 times 

{1300/390} faster optimization.  

2. Although for a safer side, the validation set is considered here to be of 200 

points, the optimization run can be made much faster by considering lower 

number of validation points. With respect to training set alone, the proposed 

algorithm resulted in multilayered architectures which emulate the original 

model with an average accuracy of 99 % and performed the optimization run 

nearly 7 (~ 1300/190) times faster.  

3. The emergence of multi layered networks as results of the extensive study on 

ANNs, justifies the need for exploring the potential of multi-layered 

perceptron networks. This result justifies the elimination of the assumption 

based on heuristic to consider only single hidden layered architectures. 

The ANN surrogate models obtained for both the outputs are then allowed to replace 

the original sintering model in the conventional optimization algorithm. The NSGA 

II simulation runs were completed in no time and the final Pareto Optimal front 

comparisons are shown in Fig 10. For the sake of obtaining a clear cut qualitative 

estimation of the result observed in Fig 10, the inputs of the PO points obtained 

using the ANN surrogate based optimization are sent to the original sintering model 

and the corresponding outputs are compared to measure the RMSE values. An 

average RMSE (averaged over output 1 and 2) of 0.05 was obtained.  
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Fig. 10: PO front comparison of optimization using ANN surrogate built by HC 

based sampling method and original first principle Sintering model 

 

A significant work reported previously in the literature [28] suggested using 

the combination of ANN surrogates along with the original model in NSGA II 

algorithm while optimizing the sintering model. This hybrid based optimization 

resulted in nearly 45-60% savings in computational time. Since the ANN surrogates 

were built only during the optimization runs [28], the resultant ANN surrogates, 

despite predicting with higher accuracies, emulate the original model in only a 

specified zone guided by the optimizer in the feasible search space. However, the 

proposed surrogate models in this work, emulate the first principle model over the 
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entire domain specified by the training set. Thus the ANN models in the current 

work are generic enough as opposed to the simpler models built in [28] which are 

highly specific to only optimization algorithm. However, the fact that these models 

are not the best possible ANN surrogate models for Sintering process cannot be 

denied. The work which essentially used the hybrid ANN – GA based optimization 

resulted in 700 function calls thereby concurring to the fact that the surrogate 

models obtained in the current work, despite being superior in terms of 

parsimonious predictions, are nearly 2 times faster than the former ones. All the 

simulations were carried out in Intel(R) Xeon(R) CPU E5-2690 0 @ 2.90GHz (2 

processors) 128 GB RAM machine. 
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Chapter 4 
 

Conclusion 

   

 

The author in this work has presented a comprehensive research over design of 

ANN surrogate models for enabling the optimization of complex industrial process 

by making use of surrogate based optimization methods. ANNs are specifically 

selected due to their robustness and inherent potential to capture the behavior of any 

complicated nonlinear system. Since the predictability and efficiency of the 

surrogate model play a dominant role in success of surrogate based optimization, the 

effect of various parameters on ANN surrogate building process has been studied. It 

was found that the parameters viz. (a) architecture of ANN, (b) sample size required 

by the ANN, (c) maximum possible accuracy of prediction, (d) a robust sampling 

plan and (e) transfer function choice for node activation are the major parameters 

which effect the surrogate building process. Along with that, the author also studied 

and justified the fact that, in case of unseen data the multi layered perceptron 

networks might overpower the single layered network which have enjoyed the 

monopoly till the present time due to the heuristic based assumptions. Therefore, it 

has been suggested that there is a need for a novel parameter free ANN surrogate 

building algorithm, which can estimate all the parameters automatically, thus 
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eliminating the human intervention ANN design. The prime objective of this study 

is to understand the functioning of the ANNs and lay out a blue print for the 

intelligent design of Neural networks. The ANN surrogate models are utilized to 

emulate a complicated nonlinear sintering model used for successful operation of the 

blast furnace in the steel plants. The results of the surrogate based optimization 

revealed that the surrogate based optimization methods were 4 to 7 times faster than 

the conventional method. The ANN-surrogate based optimization reduced the 

function evaluations by a dramatic 70% clearly making way for real time 

optimization of the complex industrial sintering model.  
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Future Work 

 

1. To develop a novel parameter free ANN surrogate building algorithm for 

intelligent design of neural networks along with simultaneous estimation of 

parameters such as sample size, sample plan and transfer function to enable 

it to emulate with maximum accuracy without being over-fitted. 

2. To apply the proposed surrogate building algorithms to build ANN surrogate 

models for emulating several industrially validated models and enable the 

online optimization of such complex models. 

3. To apply the proposed algorithm to build ANN models for an experimental 

setup and ensure the successful working of the proposed ANN surrogate 

building algorithm with experimental setups.  

4. To apply the surrogate building algorithms to construct recurrent neural 

networks to emulate dynamic systems such as those of systems biology and 

several other real time experimental and industrial models. 

5. To successfully eliminate the entire human intervention and heuristic based 

inputs in ANN design and implementation with the help of the proposed 

parameter free algorithm. 
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