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Abstract

Traditional network monitoring involving packet capturing or flow sampling has many challenges

such as scalability, accuracy and availability of processing resource when networks become large-

scale, high-speed and heterogeneous. SDN is a promising approach to address these challenges, in

which highly granular flow rule installations can provide us with fine-grained flow based statistic. But

each SDN switch has its own capacity limitation, such as its cache memory called TCAM, which

can get exhaused with a large number of highly granular flow rule installations. Thus, network

nodes need coordination of resources with other network nodes to monitor the network in a scalable

manner. This thesis introduces an intelligent framework, called liteFlow, which divides flow rule

installations into two parts, monitoring and forwarding flow rules. The proposed system distributes

the load of monitoring flows among SDN switches, and makes the scalability and accuracy of network

monitoring manageable. Also, we introduce a forwarding mechanism which uses a more abundant

L2 cache in SDN switches based on MAC labels.
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Chapter 1

Introduction

Network monitoring is fundamental to examine the state of enterprise networks. It is used for daily

network management operations like traffic engineering, troubleshooting, anomaly detection, QoS

support and accounting etc. Today’s networks are large and complex. Distributed environment and

resource constraints make network management rather difficult. In addition, the network operations

mentioned above require fine grained application-level flow details, which may cause an additional

overhead to capture.

Flow-based measurement techniques such as NetFlow[1] and sFlow[2] provide generic support

for some measurement tasks. However, their network resource consumption is very high [3]. Also,

sampling makes these techniques unusable for other monitoring operations, though we can make

small changes in these techniques to support a particular monitoring operation, such as [4] [5]. This

essentially means, for different network operations, we need different parameters, that limit the

scalability of these techniques. Hence, enabling a fine-grained and robust monitoring framework,

which can cater to large variety of monitoring operations is interesting.

OpenFlow [6] is widely adopted realization of SDN. It has enabled switches to perform flow-based

control of packets. Each switch maintains flow tables on them, which consists of flow rules, dictating

the actions to be performed on incoming packets. Incoming packets are indexed in the flow table

by extracting packet match fields. Based on the matched flow rule, corresponding actions, such as

forwarding, dropping, broadcasting etc., are taken. In a flow rule, there is also a field called counter,

which provides a few statistics about the matched packets on the corresponding flow. OpenFlow

provides a variety of fields, on which packets can be matched. It also provides the flexibility of

choosing match fields, and wildcarding others. With an intelligent mechanism of installing flow

rules on switches, coupled with the central view of the network elements in SDN, this thesis aims

to design and implement a platform which can provide fine-grained, unsampled, application-level

statistics that are useful for a plethora of network monitoring applications.

In OpenFlow, if an unknown packet arrives at a switch, it sends the packet as a packet in

message to the SDN controller. Because of this packet in message, the controller has to make

a decision on what flow rule should be installed on the switch. Installing a 5-tuple flow rule

<srcIP, dstIP, srcPort, dstPort, protocol> or other high level flow rules, and wildcarding the rest

of the match fields, will suffice to the need of knowing application-level detail of a flow.

Table 1.1 [21] shows the number of L2 and TCAM(ternary content-addressable memory) flow
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rules entries supported by four SDN switches. The IP based flow rules are matched in the TCAM,

while MAC based forwarding rules are stored in L2 MAC tables. As shown, TCAM rule space has

minimal capacity limits when compared to L2 MAC table rule space. If we were to install a 5-tuple

IP based flow rule on all path switches for a flow, this will result in TCAM rule space exhaustion,

and unfilled L2 tables rule space. In this research work, we try to leverage L2 and TCAM rule space

to get fine-grained flow based statistics.

Table 1.1: Switch Table Sizes

Table Broadcom HP Intel Mellanox
Trident ProVision FM6000 SwitchX

TCAM 2K+2K 1500 24K 0?
L2/Eth 100K 64K 64K 48K
ECMP 1K unknown 0 unknown

Using the current OpenFlow protocol, we introduce liteF low, a lightweight, distributed flow-

based monitoring platform for SDN. liteF low consists of three separate modules, PseudoMAC

Forwarding and FlowPartitioner. pseudoMACForwarding provides a forwarding backbone uti-

lizing l2 entries of the switches. FlowPartitioner divides the flow rule space into forwarding and

monitoring rules. It also attempts to distribute the IP monitoring responsibility among switches

while consuming TCAM rule space optimally.

1.1 Overview of our work

This work includes the study of SDN and OpenFlow for engineering the enterprise network. liteF low

is proposed to address efficient hardware resource utilization on SDN switches with an application

to network monitoring. OpenFlow is used for implementing liteFlow. liteFlow load balances and

reduces the load of flow rule installations on TCAM of switches. It has capability to efficiently

migrate flow rules from one switch to other without noticable packet loss.

1.2 Thesis Outline

The thesis is structured as follows. Section 2 describes about the SDN and related concepts essential

for this work. We define this work in Section 3. Literature survey and related studies are presented

in Section 4. liteF low approach to flow rules installation and optimization is presented in Section

5. We evaluate liteF low in Section 6. In Section 7, we describes our approach towards Network

Function Virtualisation.
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Chapter 2

Software Defined Networking

Computer networks are large, complex and difficult to manage. Traditional networks are ossified

considering their non-programmable, vertically integrated, closed and vendor specific architecture.

It is difficult to control and manage the network as there is no centralized way to do so. Networking

devices run complex and distributed control software that is typically closed and proprietary, and

each device needs to be configured individually.

Software Defined Networking (SDN) paradigm promises to simplify the control and management

of the network. SDN aims to make networks more simple, dynamic, open and programmable.

OpenFlow [6] was the first open standard interface for implementing the SDN.

2.1 Software Defined Networking

A traditional networking device consists of data plane and control plane as shown in Figure 2.1.

Data plane is used to forward a packet and control plane is used to determine where to forward the

packet. For instance, in a learning switch, data plane is responsible for packet forwarding and control

plane keeps a MAC table to determine the output port for the incoming packet. SDN architecture

separates out the control plane and data plane of a networking device. In SDN architecture, control

plane is programmable and logically centralized (known as the controller) which allows network

administrators to control all the data-plane elements by writing a single control program. Network

intelligence is centralized in the SDN controller which maintains a global view of the network.

Switches communicate with a centralized controller through an open standard (such as OpenFlow).

SDN facilitates the deployment of new services and protocols in the network, due to its vendor

independence architecture and network virtualization. It also reduces the capital and operational

costs for deploying and managing the network. Common SDN applications are network virtualization

[7], network monitoring [8][9], load balancing [10], user authentication [11] and cloud or data center

network [12] etc.

Figure 2.2 shows a logical view of SDN architecture. With a global view of the network at the

controller, applications and policy-engines which are built on top of the controller, view networking

devices as a single logical switch. Controller communicates with all the devices through an open-

standard. Networking devices are simple and implement only basic packet forwarding mechanism.

SDN is not a new idea but has gained traction in recent times [13][14]. Many vendors (such as
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Data Plane (Packet  Forwarding) Data Plane (Packet Forwarding)

TCP OpenFlow

Control Plane

Openflow Controller

Figure 2.1: Traditional vs OpenFlow Switch

Cisco) have their proprietary implementations of the concept of SDN. OpenFlow is a widely accepted

implementation of SDN across the industry and academic research communities. The OpenFlow

protocol is open source and aims at making network programmable, innovative and vendor agnostic.

One of the advantages of OpenFlow and its vendor independence is the rise of the concept of virtual

switches. These are software level switches which are implemented usually as user-space or kernel-

space software. One such example is Open vSwitch [15] which implements the OpenFlow protocol.

This enables any regular computer to be used as networking hardware and reduces the need to

purchase expensive hardware from proprietary vendors.

2.2 OpenFlow Protocol

OpenFlow is a protocol designed by the Open Networking Foundation(ONF) which promotes and

adopts SDN through open standards development. OpenFlow was the first SDN standard to realize

the concept of Software Defined Networking. The OpenFlow protocol is spoken between OpenFlow

enabled switch (SDN switch) and OpenFlow Controller as shown in Figure 2.1. OpenFlow allows to

control the network on per-flow basis in a fine-grained manner.

Table 2.1: A flow entry

Match Fields Counters Actions

Table 2.2: Match fields used to match packets against flow entries

Ingress Ether Ether Ether VLAN VLAN IP IP IP TCP/UDP TCP/UDP
Port src dst type Id Priority src dst ToS bit src port dst port

In OpenFlow protocol, switches only consist of a forwarding plane that is equipped with flow

tables. A switch can have multiple flow tables. Each flow table contains several flow rules. Flow

rules are similar to forwarding or routing rules in traditional switches and routers. Each packet is
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Figure 2.2: Software-Defined Network Architecture (Source: [])

matched with flows rules in the flow tables. A flow rule includes a match, actions and counters as

shown in Table 2.1. The OpenFlow protocol defines the fields which are included in the flow rules

for matching. It currently supports matching up to the transport layer as shown in Table 2.2.

When the OpenFlow switch receives a packet and it has no matching flow rule for the packet,

it forwards the packet to the controller through the packet in message. The logic implemented in

the controller then determines the actions for such packets. Depending on the logic, an OpenFlow

switch can work as a router, switch, firewall, or network address translator etc. Controller either

installs a flow rule on the switch by sending a f low mod message or sends a packet out message. If

a flow rule is installed on a switch, then the packet in message will not be sent for packets which

match to that flow rule unless it is mentioned in the action explicitly. Once a flow rule is matched

to a packet then counters corresponding to that flow are updated and corresponding actions are

executed on that packet of the flow. The flow rules also have two timeout values: Idle timeout

and Hard timeout, which control when the flow should be removed from the flow table of the switch

automatically. Flows can also be removed by the controller explicitly. The OpenFlow protocol works

on top of TCP and has support for TLS/SSL encryption.

Currently a few hardware vendors like Big Switch Networks, HP, and Pronto support OpenFlow

in their hardware switches. Some of the available OpenFlow controllers are Floodlight [16], Ryu

[17], Trema [18], NOX/POX [19] etc.
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2.3 Pipeline Processing

The OpenFlow pipeline of every OpenFlow switch contains multiple flow tables, each flow table

containing multiple flow entries. The OpenFlow pipeline processing defines how packets interact

with those flow tables (see Figure 2.3). An OpenFlow switch with only a single flow table is valid,

in this case pipeline processing is greatly simplifed. The flow tables of an OpenFlow switch are

Table

Flow metadata +
pkt hdrs

Action Set

Match fields:
Ingress Port +

metadata +
pkt hdrs

Action Set

Match fields:
Ingress Port +

b. Per−table packet processing

Table TableTable Execute
Action
Set

Packet IN
Ingress

Port

Action
Set = {}

metadata
Packet +

Set
Action

Action
Set

Packet
. . . . .

a. Packets are matched against multiple tables in the pipeline

1

2

3

  0 n1

Figure 2.3: Packet Flow through the processing pipeline (Source: [20])

sequentially numbered, starting at 0. Pipeline processing always starts at the first flow table: the

packet is first matched against entries of flow table 0. Other flow tables may be used depending on

the outcome of the match in the first table.

If the packet matches a flow entry in a ow table, the corresponding instruction set is executed.

The instructions in the flow entry may explicitly direct the packet to another flow table, where the

same process is repeated again. A flow entry can only direct a packet to a flow table number which

is greater than its own flow table number, in other words pipeline processing can only go forward

and not backward. Obviously, the flow entries of the last table of the pipeline can not include the

Goto instruction. If the matching flow entry does not direct packets to another flow table, pipeline

processing stops at this table. When pipeline processing stops, the packet is processed with its

associated action set and usually forwarded.

If the packet matches a flow entry in a flow table, the corresponding instruction set is executed.

The instructions in the flow entry may explicitly direct the packet to another flow table, where the

same process is repeated again. A flow entry can only direct a packet to a flow table number which

is greater than its own flow table number, in other words pipeline processing can only go forward

and not backward. Obviously, the flow entries of the last table of the pipeline can not include the

Goto instruction. If the matching flow entry does not direct packets to another flow table, pipeline
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processing stops at this table. When pipeline processing stops, the packet is processed with its

associated action set and usually forwarded.
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Chapter 3

Problem Statement

Due to SDN being deployed mostly in campus networks, or proof of concept implementations, there

is not much emphasis given to optimization at the SDN switch level. As discussed in the next

Section, there has been a lot of work done on flow monitoring in SDN, but none talk about the

switch hardware load incurred due to it. Flow monitoring require heavy duty flow rule installations

on switches. This hefty task may lead to exhaustion of cache memory of switches, called TCAM.

And hence, new flow rules will be installed in software of the switches, lead to very slow packet

matching and switching. Our aim is to provide a framework which allows us to load balance and

reduce the load incurred on the TCAM of switches due to flow monitoring.
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Chapter 4

Related Work

There has been a considerable amount of work done in the field of flow-based network monitoring for

traditional networks. Sekar et al. [22] present a minimalist approach for network flow monitoring.

They use flow sampling and sample-and-hold as sampling primitives and configure these primitives

on routers using cSamp [23] in a coordinated fashion across the network. NetFlow [1] and sFlow [2]

are commonly used technologies for implementing network flow monitoring. As they rely on sampling

techniques, they can miss the several small flows and are not well suited for some applications such

as [24] which require some specific packets involving connection setup phase of a TCP flow.

Network monitoring using OpenFlow has also been explored in recent years. OpenSAFE [9] routes

the traffic for network analysis and requires separate monitoring appliances. OpenNetMon [25] uses

adaptive polling for determining throughput, latency and packet loss. OpenSketch [26] is an SDN

based measurement architecture similar to OpenFlow. A three stage pipeline (hashing, filtering, and

counting) is implemented in the commodity switches. It provides a measurement library to use these

sketches. Upgradation or replacement of SDN switches is required to support this. FlowSense [27]

uses push based approach to determine the link utilization in the network. It uses only packet in

and flow mod messages to gather the required information. Our approach for FlowMon is similar

to FlowSense.

Some research has gone into effective usage of TCAM resources and reducing controller load.

Devoflow [28] aims to reduce the controller-switch interaction and the number of TCAM entries

in the switch. This is done through an effective mechanism of devolving controller’s flow setup

responsibility back to the switches. Controller maintains the visibility over only large elephant flows,

while switches take local routing actions to forward the rest of flows without invoking controller.

There system requires a new design for OpenFlow. DIFANE [29] also propose a mechanism for

reduction of controller load by keeping the traffic in the data plane. In their approach, controller

runs a partition algorithm to partition flow rules into high level flow rules and low level flow rules.

High level flow rules are assigned to designated switches, called Authority Switch. Instead of the

controller, Authority switch is invoked for flow setup. There approach has fixed Authority switches.

For forwarding flows, we use a similar concept of label switching used in [30] and MPLS []. In

particular, in order to use large L2 MAC tables makes switching using MAC addresses a favourable

option. As in [30], we also change destination MAC address to a MAC label in the edge switches,

and forward packets based on these labels in the core switches. But [30] has one or more MAC

9



labels for each host depending on the traffic which is flowing through. While we use MAC labels for

aggregating flows from different hosts traversing the same path.
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Chapter 5

liteFlow: Load Balancing Platform

for Lightweight and Distributed

Flow Monitoring in SDN

Network monitoring is fundamental to examine the state of enterprise networks. It is used for daily

network management operations like traffic engineering, troubleshooting, anomaly detection, QoS

support and accounting etc. Today’s networks are large and complex. Distributed environment and

resource constraints make network management rather difficult. In addition, the network operations

mentioned above require fine grained application-level flow details, which may cause an additional

overhead to capture.

Flow-based measurement techniques such as NetFlow[1] and sFlow[2] provide generic support

for some measurement tasks. However, their network resource consumption is very high [3]. Also,

sampling makes these techniques unusable for other monitoring operations, though we can make

small changes in these techniques to support a particular monitoring operation, such as [4] [5]. This

essentially means, for different network operations, we need different parameters, that limit the

scalability of these techniques. Hence, enabling a fine-grained and robust monitoring framework,

which can cater to large variety of monitoring operations is interesting.

OpenFlow [6] is widely adopted realization of SDN. It has enabled switches to perform flow-based

control of packets. Each switch maintains flow tables on them, which consists of flow rules, dictating

the actions to be performed on incoming packets. Incoming packets are indexed in the flow table

by extracting packet match fields. Based on the matched flow rule, corresponding actions, such as

forwarding, dropping, broadcasting etc., are taken. In a flow rule, there is also a field called counter,

which provides a few statistics about the matched packets on the corresponding flow. OpenFlow

provides a variety of fields, on which packets can be matched. It also provides the flexibility of

choosing match fields, and wildcarding others. With an intelligent mechanism of installing flow

rules on switches, coupled with the central view of the network elements in SDN, this thesis aims

to design and implement a platform which can provide fine-grained, unsampled, application-level

statistics that are useful for a plethora of network monitoring applications.

In OpenFlow, if an unknown packet arrives at a switch, it sends the packet as a packet in
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message to the SDN controller. Because of this packet in message, the controller has to make

a decision on what flow rule should be installed on the switch. Installing a 5-tuple flow rule

<srcIP, dstIP, srcPort, dstPort, protocol> or other high level flow rules, and wildcarding the rest

of the match fields, will suffice to the need of knowing application-level detail of a flow.

Table 5.1 [21] shows the number of L2 and TCAM flow rules entries supported by four SDN

switches. The IP based flow rules are matched in the TCAM, while MAC based forwarding rules are

stored in L2 MAC tables. As shown, TCAM rule space has minimal capacity limits when compared

to L2 MAC table rule space. If we were to install a 5-tuple IP based flow rule on all path switches

for a flow, this will result in TCAM rule space exhaustion, and unfilled L2 tables rule space. In this

research work, we try to leverage L2 and TCAM rule space to get fine-grained flow based statistics.

Table 5.1: Switch Table Sizes

Table Broadcom HP Intel Mellanox
Trident ProVision FM6000 SwitchX

TCAM 2K+2K 1500 24K 0?
L2/Eth 100K 64K 64K 48K
ECMP 1K unknown 0 unknown

Using the current OpenFlow protocol, we introduce liteF low, a lightweight, distributed flow-

based monitoring platform for SDN. liteF low consists of three separate modules, PseudoMAC

Forwarding and FlowPartitioner. pseudoMACForwarding provides a forwarding backbone uti-

lizing l2 entries of the switches. FlowPartitioner divides the flow rule space into forwarding and

monitoring rules. It also attempts to distribute the IP monitoring responsibility among switches

while consuming TCAM rule space optimally.

5.1 PeudoMac Forwarding

liteF low uses a label-switching forwarding technique, similar to [30], to optimize the number of

flow rules installed by FlowPartitioner. In this approach, we assign a label to each path in the

network. The label is essentially a 48 bit MAC address chosen distinctly and randomly. Each path

in the core network is assigned this unique MAC label, using which forwarding decisions are taken.

The path labels are used to aggregate flows on the path so that L2 rule space can be conserved in

switches. In OpenFlow-compatible switches, packet header rewriting can be done at line rates [30].

By leveraging this fact, this forwarding approach works by changing the destination MAC address of

packets at the ingress switch to a suitable path label, called PseudoMAC address, and forwarding

packets through core non-edge switches by matching on destination MAC based flow rules. At the

egress, we use destination IP based flow rules to change destination address MAC back from the

pseudo to the one of the host.

Figure 5.1 illustrates how the packet forwarding with PseudoMAC address work. Hosts H1

→ H3 and H2 → H3 are two hostpair which are communicating on the path S1 → S4. P1 is

the assigned PseudoMAC label for this path. For both the hostpairs, we change the destination

MAC address to PseudoMAC address “P1” and forward the packet through port 2 of S1. On the

core switches S2 and S3, they match the packets on the destination MAC address P1 and forward

12
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Figure 5.1: PseudoMAC Forwarding Approach

the packet through port 2. At the egress switch S4, using the destination IP based flow rules, we

revert the destination MAC address P1 to H3M of the host H3. In the process, we achieve packet

forwarding through flow rules installed in L2 MAC table. Note that at the egress switch, we have

flow rule in TCAM rule space, but the number of flow rules would depend just on the number of

flow rules installed at that switch.

5.2 Flow Partitioner

Highly granular flow rule installations on switches will provide us with the data needed for application-

level monitoring. As seen in Table 5.1, TCAM is scarce. By installing more and more highly granular

IP flow rules will lead to TCAM exhaustion, leading to packet matching in the software of the switch.

This in turn will lead to switch delays. We propose a few approaches in which these highly granular

flow rules can be installed in the switches, while still maintaining a bound on TCAM exhaustion

limits of each switch. The way we achieve it is by partitioning the flow rules to be installed into

forwarding flow rules, which will only forward the packets through interfaces, and monitoring

flow rules, which will record monitoring statistics. This partitioning of flow rules is named as flow

partitioning. By this partitioning, we intend to have lower flow rule count and load balanced flow

installation in the switches as explained later in this section.

We use a simple topology with 4 switches, S1, S2, S3 and S4 connected in a linear manner

shown in Figures 5.2, 5.3, 5.4 and 5.5. Two hosts H1 and H2 are connected to S1 and two hosts

H3 and H4 are connected to S4. The blocks shown in Figures 5.2, 5.3, 5.4 and 5.5 are the flow

table of each switch. There are 2 TCP connections from H1, with source transport ports 20 and 21,

to H3 with port 30. Also, there are similar TCP connections from H2, with source transport port

40 and 41, to H3 with port 30. These port numbers are randomly chosen for explanation purposes.

The path for these TCP connections is S1 → S4. Note that ∗ in these figures is used to represent

wildcard values. Also note that we will use 5-Tuple <srcIP, dstIP, srcPort, dstPort, protocol> as

monitoring flow rule from here on.

13



5.2.1 Naive Approach

This is a basic approach in which we install 5-tuple flow rules on all the path switches between

hosts. So basically, we use 5-tuple flow rules both for forwarding, as well as monitoring purposes.

Figure 5.2 explains the flow rules installations incurred as a result of using this approach. Since we

are installing 5-tuple flow rules on all path switches, there will be a packet in message for each new

TCP connection between a HostPair. Hence, between HostPair H1→H3, two TCP makes way for

two 5-tuple flow rules on all path switches. Same goes for HostPair H2→H3. We can use any flow

rule as monitoring flow rule. Hence, this approach gives us robustness, but the flow rules installed

are redundant in nature.
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Figure 5.2: Naive Approach

5.2.2 Ingress Switch Approach

Instead of using monitoring flows as forwarding flows, we keep them separate in this approach. On

the ingress switch, we install 5-Tuple monitoring flow rules, while on all the other switches we install

forwarding flow rules. The switch on which monitoring flow rules are installed for a HostPair, is

known as AuthoritySwitch(AS) for that HostPair. Hence, ingress switch always act as the AS for

a HostPair in this approach.

Figure 5.3 shows the flow rule installations which took place in the same scenario used above.

2-tuple <srcIP, dstIP> forwarding flow rules in the path switch provide an aggregate path for

all monitoring flows of HostPairs. As seen, the benefits of using a 2-tuple forwarding flow rule

is that packets from all TCP connections between a HostPair will match the same flow rule in

the path switches. As more and more TCP flows arrive, the monitoring flows at AS will increase.

However, forwarding rules at on the path switch will remain the same. A potential pitfall of this

approach is that the capacity limits of the ingress switch will get exhausted more quickly as more

TCP flows come in for a HostPair. Hence, TCAM load on an ingress switch gets higher than that

of path switches. This can be a significant problem if Wi-Fi access points are connected to a switch

where a large number of hosts may connect. Note that a monitoring and forwarding flow rule can

not be on the same switch. If it was not the case, new monitoring flows will match forwarding

flows on AS which generating a Packet In event at the controller.
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Figure 5.3: Ingress Switch Approach

5.2.3 Load Balanced Approach

In this approach, the ingressSwitch problem faced in the above subsection is solved by a randomiza-

tion algorithm. Instead of simply using the ingress switch as AS, we use Uniform Hashing Algorithm

[31] to calculate the AS for a HostPair.
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Figure 5.4: Load Balanced Approach

Figure 5.4 shows the idea of LoadBalancing Approach. S1 acts as AS for HostPair H1→H3,

while S3 acts as AS for HostPair H2→H3. Hence the monitoring load is balanced between switch

S1 and S3. Again, note that forwarding and monitoring flow rules for the same HostPair can’t

be on the same switch. If that was allowed, then packets would match the forwarding rule on AS

and we won’t have any monitoring rules. This approach is optimal as we won’t have peaks as in the

case of ingressSwitch Approach. But we are spending TCAM for Ip-based forwarding flow rules.

For more number of HostPair, TCAM rule space at the switches will get exhausted. In addition

to that, if a HostPair involves a large number of monitoring flow rules, then the AS for HostPair

can get exhausted.
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5.2.4 LiteFlow Approach

In this approach, we address the drawbacks mentioned in LoadBalanced Approach of TCAM rule

space exhaustion due to 2-tuple IP based forwarding rules and large number of monitoring flows

at the AS for a HostPair. We use PseudoMAC forwarding explained in section 3.2, instead

of 2-tuple forwarding. Using pseudoMAC approach to forwarding reaps a lot of benefits over

LoadBalanced approach.

Here, in addition to forwarding and monitoring flow rules, we have a third type of 2-tuple

flow rule called controlleraction flow rule. On a packet match, this flow rule pushes the packet to

the controller. Also, we use the concept of priority of flow rules in OpenFlow to implement this

system. Here monitoring > controlleraction > forwarding is the priorities assigned to flow rules.

So, packet matching will be done first for monitoring flow rules, then for controlleraction and lastly

for forwarding flow rules. forwarding flow rules in this approach provides a backbone path for

packets. We are going to leverage this fact for seamless flowmigration.
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Figure 5.5: liteFlow Approach

Figure 5.5 shows the flow rule installation in TCAM and L2 MAC table of the switches. The

TCP connections are identical to the approaches mentioned in the previous sections. We use same

pseudoMac flow rules illustrated in Section 5.2. Similar to LoadBalanced approach, we have the

concept of AS here too, with AS for HostPair H1→H3 being S1 and for H2→H3 being S3. If the

AS is ingress switch of the path, note that the action required a change in destination Mac to P1

for monitoring flow rule.

controlleraction flow rule is required when a new 5-tuple flow arrives at the AS. If there was no

controlleraction flow rule, the packet would match pseudoMac flow rules in L2 MAC tables, and

controller would get no event for new 5-tuple connection. Hence, it won’t install monitoring flow

rule in the corresponding switch.
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Figure 5.6: Logical Flow Table Architecture

5.3 Benefits of liteFlow Approach

5.3.1 Flow Migration for HostPair

Taking topology from Figure 5.5 as reference, suppose HostPair H1→H3 has 100 monitoring flows

with S1 as its AS, HostPair H2→H3 has 50 monitoring flow rules with S3 as its AS, and HostPair

H1→H4 has 20 monitoring flow rules with S1 as its AS. The resulting TCAM state of the switches

is not load balanced due to the growth of a large number of monitoring flows for some HostPairs.

To hinder this growth of monitoring flows on AS, we introduce a FlowMigration approach which

migrates monitoring flows from more loaded AS of a HostPair to a less loaded switch, which will

then act as new AS of HostPair. This process can then again recover load balanced flow rule

installations property of liteF low.

In our approach, we are very considerate about the buffer state of flow tables in the switches.

FlowMigration in LoadBalanced approach could have been done simply by deleting monitoring

flow rules on the AS and adding them on the new AS for a HostPair. But this approach would

have a considerable delay incurred due to deleting a number of flow rules from AS and adding the

same to a different AS. Consider Figure 5.6, in which n flow table are shown with priorities A1 to

An with A1 > A2 > ...An. If we delete a number of monitoring flow rules from Flow Table 0, then

this will lead to longer buffers at Buffer0 due to time it will take to remove them, called the flow

removal time. Also, similar time will be taken to add the same number of flows at new AS, called

Flow Installation Time.

Considering liteF low approach, where we have different priorities for monitoring and forwarding

flow rules, deleting flow rules from old AS and migrating them to new AS will have same transi-

tion time as compared to LoadBalanced approach. But there is also a problem of correctness of

monitoring statistics in this approach. Suppose we migrate a monitoring flow rule from FlowTable0

in the old AS to the new AS. During this interval, there could be traffic which may pass through

forwarding flow rule installed in FlowTable n. The monitoring flow will not be able to record

this statistic in any of the AS. Hence, we will lose statistics for this flow. If monitoring flow rule

was first installed on new AS and then removed from old AS, then there could be overlapping of

statistics. This process of installation and removal or vice-versa needs to be done atomically in order

to guarantee statistics correctness.
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We propose a different migration mechanism in which the old AS will record the statistics of

current monitoring flow rules, while new AS will record statistics for future monitoring flow rules.

This migration is called FlowMigration.

S41 2

H2

MAC H2M

3

2 1 1
S3S2

H4H3

MAC H4M
IP  H4IP

IP  H3IP
MAC H3MIP  H2IP

2

2 3

S1

H1

1

MAC H1M 

IP  H1IP

IP IP

SRC SRC

PORT PORT

DST DST
ACTION

PROTO

N/W

IP IP

SRC SRC

PORT PORT

DST DST
ACTION

PROTO

N/W

IP IP

SRC SRC

PORT PORT

DST DST
ACTION

PROTO

N/W

IP IP

SRC SRC

PORT PORT

DST DST
ACTION

PROTO

N/W

S41 2

H2

MAC H2M

3

2 1 1
S3S2

H4H3

MAC H4M
IP  H4IP

IP  H3IP
MAC H3MIP  H2IP

2

2 3

S1

H1

1

MAC H1M 

IP  H1IP

* contro

H3IP * * *H2IP controcontro

H4IPH1IP

H1IP H3IP * * *

**

H1IP H3IP * * * contro contro

contro

****

** *

H2IP H3IP

H1IP H4IP

flows

H1−H4 20 Monitoring H2−H3 50 Monitoring

flows

flows

H2−H3 50 Monitoring

H1−H4 20 Monitoring

flows

a. Before Migration

b. After Migration

20 Monitoring flows

for H1−H4

H1−H3 100 Monitoring

flows

H1−H4 40 Monitoring

flows

H1−H3 100 Monitoring

flows

New AS for H1−H4

Figure 5.7: Flow Migration Scenario

Figure 5.7 shows the scenario described earlier in this Section. HostPair H1→H3 has 100

monitoring flows with S1 as its AS, HostPair H2→H3 has 50 monitoring flow rules with S3 as its
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AS, and HostPair H1→H4 has 20 monitoring flow rules with S1 as its AS. At this moment, assume

20 more monitoring flows arrive for HostPair H1→H4 shown in Figure 5.7(a). If migration event

is initiated, suppose the new AS for H1→H4 is S3. Instead of moving monitoring flow rules for S1

to S3, we just move controlleraction flow rule. This will not install any new monitoring flow rules

at old AS as there is no controlleraction flow rule installed on it for the concerned HostPair and

packets will match lower priority forwarding rules installed in the switch. While, new AS will now

have the new monitoring flows shown in Figure 5.7(b). By doing this, we won’t have the problem

of delay incurred by flow deletions as described above. Also statistics loss won’t occur as we are not

moving current monitoring flow rules. In the new AS, the old monitoring flows will be used for

forwarding as there is a controlleraction flow rule for the concerned HostPair now. Hence, figure

5.7(b) shows S3 40 monitoring flows for H1 H4 instead of just 20 new flows. In System Design

section, we discuss approaches to limit these effects. The installation of monitoring flow rules for

forwarding is the downfall of this approach. This loss can be significant for a HostPair with large

number of monitoring flows as all these will be used for forwarding at new AS because of migration

of controlleraction flow rule. A possible solution of this obstacle is by using hard timeout value in

the monitoring flow rules. After a hard timeout, monitoring flows will be removed from old AS,

and will then be installed at new AS.

5.3.2 Forwarding in L2 MAC Table

Since we are using L2 MAC table for forwarding flows as seen in Figure 5.5, we are saving a

considerable amount of TCAM. As Table 5.1 shows, the TCAM capacities are much lower in the

switches as compared to L2 MAC tables, using L2 MAC for forwarding packets reduces the TCAM

utilization. Now TCAM is only used for monitoring purposes. In the evaluation section, we compare

LoadBalanced and liteF low on the number of flow rules installed in the TCAM of the switches.
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Figure 5.8: Path Change Scenario
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5.3.3 Changing Paths due to TCAM Load

Considering topologies, with more than one end to end path, we offer support for changing path

between end to end hosts by simply changing the pseudoMac label at the ingress. Figure 5.8 shows

the simple change which needs to be done for changing path keeping the rest similar to the earlier

scenarios. We do not discuss a path computation problem in this thesis.

5.4 System Design and Implementation

5.4.1 Design

Toppology
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SDN Controller
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Figure 5.9: System Design of liteFlow

Figure 5.9 shows the system design of liteF low. All Modules can perform its task without interacting

with other modules because fo the shared liteF low database.

First we present the various algorithmic explainations of the concepts defined above and various

scenarios related to it.

The following are the datastructures used in the implemention of liteF low

• Monitoring Flow : 5-Tuple <srcIP, dstIP, srcPort, dstPort, protocol> object

• Flow db : is a HashMap where Monitoring F low is used as key and AuthoritySwitch as

value

• HostPair : is an object of <SrcIP , dstIP>

• HostPair Info : is an object of <HostPair, AS, List < Monitoring F low >>
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• HostPair List : is a list all reported List <HostPair>

• AS HostPair List : is a HashMap where AS is used as key and HostPair List as value

• NodePort : is an object of <Switch, Port>

• Path : is a list of List <NodePort>

• Path MAC db : is a HashMap where Path is used as key and pseudoMac as value

• MAC Path db : is a HashMap where pseudoMac is used as key and Path as value

• Current TCAM Load : is a HashMap where AS is used as key and count of flows installed

as value

• Capacity TCAM Load : is a HashMap where AS is used as key and MaxCount of flows

installed as value

5.4.2 PseudoMac Forwarding

Algorithm 1 PseudoMac Forwarding

1: procedure PseudoMac Generator()
2: PseudoMac← Select Random(x2-xx-xx-xx-xx-xx) . Choose a MAC from a Locally

Administered Range
3: return PseudoMac
4: end procedure
5:

6: procedure Path Selector(srcHost, dstHost)
7: srcSwitch← get AttachmentPoint(srcHost)
8: dstSwitch← get AttachmentPoint(dstHost)
9: Path← get FloodLight Route(srcSwitch,dstSwitch) . Can be some other routing module

10: return Path
11: end procedure
12:

13: procedure PseudoMac Forwarder(srcHost, dstHost)
14: Path← Path Selector(srcHost, dstHost)
15: if Path MAC db.contains(path) then
16: return Path MAC DB.get(Path)
17: else
18: PseudoMac← PseudoMac Generator()
19: Path MAC db.put(Path, PseudoMac)
20: MAC Path db.put(PseudoMac, Path)
21: Install PseudoMac Rules(PseudoMac, Path) . Install Dst Mac based rules
22: return PseudoMac
23: end if
24: end procedure

Label Generation

Since we are using MAC labels in this approach, it is important that label space is mutually exclusive

to MAC addresses used by the hosts. Using one of the set of Locally Administered Address Ranges,

such as x2-xx-xx-xx-xx-xx, we have generated mutually exclusive random pseudoMac label.
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Algorithm 2 Authority Switch Selection

1: procedure Select AS(Path, srcHost, dstHost)
2: AS← Uniform Hashing Algorithm(Path, srcHost, dstHost)
3: if Current TCAM Load.get(AS) > Capacity TCAM Load.get(AS) then
4: return Switch on Path with largest remaining TCAM
5: else
6: return AS
7: end if
8: end procedure

Path Selection

An administrator can use any algorithm for path discovery in this module. We have used default

floodlight controller routing module for path computation at the expense of L2 Mac tables. But we

have them in abundance. For example, as future scope we plan to integrate TCAM utilization as a

factor in path costs.

PseudoMac Forwarding

As described in Section 3.2, we assign a different pseudoMac label to each path discovered in the

topology. And we forward packet based on destination MAC forwarding rules installed by this

module.

5.4.3 Authority Switch Selection

Choosing a switch as AS randomly is the essence of load balancing monitoring responsibilities. But

since this is random in nature, we resort to a second alternative of choosing the max remaining

TCAM capacity switch as AS when the load on randomly chosen switch is beyond a threshold.

Algoritm 2 states a simple procedure for AS selection.

5.4.4 Flow Migration

Algoritm 3 states a simple procedure for Flow Migration.

Migration Event

We propose an event-based migration algorithm to migrate HostPair to a new AS. When we have

reached the TCAM capacity limits of the switch, migration event is fired.

HostPair for Migration

In case of migration event, we also need a HostPair who should be migrated to another AS. Migrating

the HostPair with the least number of monitoring flows looks most logical, because there will be

monitoring flow rule duplicacy on the new AS as discussed in Section 3.4.1. Though monitoring

stats for old monitoring flows will be taken from the old AS, but there will be some redundancy

on the new AS where forwarding old monitoring flows will be done by higher granular flows. This

redundancy can be solved by using a hard timeout value in monitoring flow rules.

22



Algorithm 3 Flow Migration

procedure Is Migration Required(AS)
if thenCurrent TCAM Load.get(AS) > Capacity TCAM Load.get(AS)

return true
else

return false
end if

end procedure

procedure Select HostPair For Migration(AS)
Minimum HostPair← null
HostPair Count list← AS HostPair Count db.get(AS)
while HostPair Count list.hasNext() do

hostPair Count← HostPair Count list.getNext()
if HostPair Count.get Count() is Minimum then

Minimum HostPair ← HostPair Count.get HostPair()
end if

end while
return Minimum HostPair

end procedure

procedure Migrate Flows(AS)
Migrate HostPair← Select HostPair For Migration(AS)
srcHost←Migrate HostPair.getSrc()
dstHost←Migrate HostPair.getDst()
New AS← Select AS(srcHost, dstHost)
Uninstall Conrtoller Action F low(AS, srcHost, dstHost)
Install Controller Action F low(new AS, srcHost, dstHost)
return New AS

end procedure

Migrate Flows

Only controlleraction flow rule is migrated to new AS. Gradully, new monitoring flows will be

installed on new AS. While, old monitoring flows stats will be collected from the old AS. By

migrating controlleraction flow rule, the controller can know about new flows of the HostPair, and

hence install monitoring flows on the new AS.

5.4.5 Flow Partitioner

This module waits for PACKET IN and FLOW REMOVED events to install/remove flows from

the switches or maintain datastructures of liteF low system. Algorithm 4 describes the pseudocode

used for its implementation.

PACKET IN Event

On a PACKET IN event, we install the monitoring flow for HostPair just arrived. For sake of

simplicity, migration of monitoring flows to new AS is also fired by this mod ule. Migration event

can also be fired independent of FlowPartitioner. Datastructure Flow db gives the monitoring

statistics. Monitoring applications can be implemented using this datastructure.
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FLOW REMOVED Event

FLOW REMOVED event is used for garbage collection.

Interaction between Topology Manager and PseudoMAC Forwarder

Using SDN controller’s Topology manager, whenever there is an event of link addition or deletion,

pseudoMAC is initiated. On this initiation of a new path, PseudoMAC forwarder promptly installs

destination MAC based flow rules in the network core using FlowInstaller in SDN controller. The

PseudoMAC and concerned path are stored in the datastore.
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Chapter 6

Evaluation

6.1 Mininet Evaluation of FlowPartitioner

Using Mininet [32], we tested FlowPartitioner on the topology shown in Figure 6.1. For traffic

generation, we have set up Iperf [33] servers on H21, H22 , H23 and H24 attached to switch S6.

All the hosts connected to switch S1 act as Iperf clients to the four Iperf servers connected to S6.

S1 S3S2 S4 S5 S6

H1 H2 H20

.    .    .     .

CONTROLLER

SDN

H21 H22 H23 H24

Figure 6.1: Mininet Topology For Evaluation

Setup: We start iperf connections from all hosts on S1 to all servers on S6, which makes up

80 end-to-end HostPairs. At a point of time, we start three iperf connections from all the hosts

on S1 towards all iperf servers, which makes up 240 total 5-tuple monitoring flows from S1 to S6.

Considering the reverse flow as well, we get 80 more end-to-end HostPairs, making up 240 more

5-tuple monitoring flows from S6 to S1. This makes up a total of 160 HostPairs acknowledging

480 monitoring flows in both the directions.

We run the same traffic generation script when all the flows are removed from the switches due to

idle timeout set to 10 secs.

• IngressSwitch Approach : According to theorical calculations, all the path switches, i.e.

S2 to S5, should have a maximum 2-tuple forwarding flow rules installations equal to the

number of HostPairs, equal to 160. S1 should act as AuthoritySwitch for flows from S1 to
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S6, and also install 2-tuple forwarding flows for the reverse path. So, the maximum flow

rules on S1 and S6 should not exceed 320.

• LoadBalaced Approach : Theoritical calculations show that on the upper scale, each switch

on an average should act as authority switch for 27 hostpairs considering 6 switches and 160

hostpairs. This makes 81 5-tuple monitoring flow rules on each switch. Also, each switch

will have 2-tuple forwarding rules for rest of the hostpairs, making it 133 in number. Total

maximum comes out to be 214 flow rules on each switch. Since it involves randomization

approach, we may not accurately get this number, but on a number of experiments, we should

get this number of flow rules on each switch.

• liteF low Approach : Similar to LoadBalaced Approach, each switch should act as an

AuthoritySwitch to 27 hostpairs, making up 81 5-tuple monitoring flow rules on a switch. In

addition, each authority switch will have 1 2-tuple controlleraction flow rule for each HostPair

for which it is acting as AuthoritySwitch, hence accounting for 27 2-tuple controlleraction

flow rules on each switch. Apart from this, the path switches S2 to S5 should have 2 pseudo

mac rules each, switches S1 and S6 should both have 80 source destination mac based to be

stored in L2 MAC table and 20 and 4 destination IP based flow rules respectively to be stored

in TCAM. This calculations provides an estimate of maximum 108 flow rules on switches S2

to S5, while ingress switch S1 have 128 and switch S6 have 112 maximum flow rules approxi-

mately in the TCAM of respective switches.

Our evaluation will be divided into three parts :

6.1.1 Load Balancing Property

We first compare Ingress, LoadBalaced and liteF low Approaches of FlowPartitioner on their

Load Balancing properties.

• IngressSwitch Approach : Figure 6.2 shows the percentage of flow rules installed in IngressSwitch

Approach. As seen, the load on switch S1 and S6 is tremendous as compared to path switches.

The black curve is protruding in some cases. These cases are all of the time when flows are

being deleted from the switches.
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Figure 6.2: Percentage of Flow Rules Installed in Ingress Switch Approach

• LoadBalanced Approach : Figure 6.3 shows the percentage of flow rules installed in LoadBalanced

Approach. As seen, all the curves are overlapping providing a well balanced reslt on all the

switches. Spikes on blue and yellow curve are all recorded when the flows are removed from

the switches. But overall, the load balancing property is achieved in this approach.
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Figure 6.3: Percentage of Flow Rules Installed in LoadBalaced Approach

• liteF low Approach : Figure 6.4 shows the percentage of flow rules installed in liteF low

Approach. This approach follows the same principle of Load Balancing as the LoadBalaced ap-

proach. But we see red and black curves dominate the percentage graph because of PseudoMAC

forwarding TCAM based flow rules in the ingress switch. Though, the number of such flow
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rules installed is equal to the number of hosts connected to that particular switch. This number

will be very insignificant to the actual number of monitoring flows each host carry.
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Figure 6.4: Percentage of Flow Rules Installed in liteFlow Approach

6.1.2 Flow Rule Count

In this section, we compare LoadBalanced and liteF low approach with respect to their flow rule

installations.

• LoadBalanced Approach : Figure 6.5 shows the number of flow rules installed in LoadBalanced

Approach. Almost equal flow rule installation is witnessed on each switch.
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Figure 6.5: Flow Rules Installed in Load Balanced Approach

• liteF low Approach : Figure 6.6 shows the number of flow rules installed in LoadBalanced

Approach. Almost equal flow rule installation is witnessed on each switch except for S1 and

S6. S1 is the attached switch to 20 hosts, and there will be 20 more flow rules installed due

to pseudoMAC forwarding. Similarly on S6, 4 more flow rules will be installed.
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Figure 6.6: Flow Rules Installed in liteFlow Approach

Table 6.1 shows the maximum flow rules installations in the above two approaches, providing an

comparison on the number of flow rules installed on each switch. Hence, we conclude that liteF low

approach is not just load balanced, but also maintains almost 50% less flow rules as compared to

LoadBalaced approach.

Table 6.1: Comparing Maximum Flow Rule Installations

SwitchID LoadBalanced LiteFlow

Approach Approach

S1 214 128

S2 214 104

S3 214 108

S4 214 108

S5 214 104

S6 214 112

6.1.3 Flow Migration in liteFlow

Flow Migation is useful when the capacity of a switch has exhausted and more monitoring flows for a

HostPair are initiating. Using the same evaluation setup, we highlight the benefit of FlowMigration

to liteF low.
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Table 6.2: TCAM Capacity of Switches

Switch ID TCAM Capacity

S1 120

S2 120

S3 120

S4 120

S5 120

S6 120

Table 6.2 shows the TCAM capacities of each switch. This has been chosen so that FlowMigration

can take place at switch S1, as it has maximum installation limit of 128 discussed previously.

Figures 6.7 and 6.8 are the plots of liteF low without and with migration. As shown, the gap

between the black curve and red curve has narrowed down due to migration happening at switch S1.

We migrate when the capacity limit of a switch has been reached. In actual deployment scenarios,

we can relax this condition to an earlier point. Also, we migrate the flows from HostPair which has

the least monitoring flow rules. There can be a discussion on which HostPair to choose.

 0

 50

 100

 150

 200

 0  100  200  300  400  500  600  700  800  900

N
u

m
b

e
r 

O
f 

F
lo

w
R

u
le

s

Time (sec)

S1
S2
S3
S4
S5
S6

Figure 6.7: Result Plot LiteFlow Approach Without Migration
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Figure 6.8: Result Plot LiteFlow Approach With Migration

Table 6.3 shows Maximum flow rule installations with/without FlowMigration. As seen, the

extra load of monitoring flow rules has been migrated to other switches due to FlowMigration on

S1.

Table 6.3: Comparing Maximum Flow Rule Installations of LiteFlow with/without Migration

SwitchID LiteFlow without Migration LiteFlow with Migration

S1 128 121

S2 104 108

S3 108 112

S4 108 112

S5 104 112

S6 112 112

6.2 Trials in IIT Hyderabad Campus Network

liteF low is deployed on a trial setup in Indian Institute of Technology Hyderabad. 20 desktop com-

puters and Wi-Fi access point were connected to a production access switch HP − 3800 supporting

OpenFlow as shown in Figure 6.9.
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Figure 6.9: SDN Topology

We have set up a distribution layer switch D1, and a core SDN switch C1, both of which are Open

vSwitch [15] switches. Though OVS doesn’t have a TCAM associated with it, but for experimental

purposes we take varying TCAM sizes of OVS switches into consideration, as in Table 6.4. It

shows the TCAM capacities in the number of flow rules that can be installed in the TCAM of the

corresponding switch.

Table 6.4: TCAM Capacity of Switches

Switch ID TCAM Capacity

HP 3800 200

D1 300

C1 500

Detailed specifications of the controller and switch used are given in Tables 6.5 and 6.6.

Table 6.5: SDN controller specification for deployment

Model HP Pavilion g6 Notebook
Operating System Linux Ubuntu 14.04
CPU AMD A10-4600M APU
RAM 4GiB
NIC 1 Gbps Ethernet
SDN Controller floodlight 0.90[16]
OpenFlow Version 1.0

Table 6.6: SDN switch specification for deployment

Switch Model HP J9573A 3800-24G-Poe+-2SFP+
Firmware Version KA.15.13.0005

32



 0

 20

 40

 60

 80

 100

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

F
lo

w
R

u
le

s(
%

)

Time (sec)

HP-3800
D1
C1

Figure 6.10: Result Plot of LoadBalanced on SDN Setup
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Figure 6.11: Result Plot of liteF low on SDN Setup

LoadBalaced Trial

Figure 6.10 shows the plot of percentage of flow rules installed on SDN switches w.r.t. time duration

for which this data was captured. Using TCAM capacities as in Table 6.4, peak flow rule count is

shown in Table 6.7. The data presented in Table 6.7 is of the moment when the peak occurred for

HP − 3800. Notice that LoadBalaced approach is able to keep the peak flow rule values well under

the actual capacities.

liteFlow Trial

Figure 6.11 shows the result plot of liteF low trial on SDN setup. As seen, the load on switch C1

is the most due to destination IP based flow rules in PseudoMAC forwarding. But the absolute

values are very less as compared to LoadBalaced approach, as seen in table 6.7. We oberve that

TCAM utilization due to 2-tuple forwarding rules, as in the case of LoadBalaced approach is very

high, which essentially means that a HostPair did not have a large number of monitoring flows
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Table 6.7: Max. Flow Rule Installation for Deployment

Switch ID Max. in LoadBalaced Max. in liteF low
HP 3800 187 167

D1 264 138
C1 467 188

between them during the period of observation.
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Chapter 7

Conclusion and Future Work

This thesis proposed liteF low, a platform for flow-based monitoring in SDN. Monitoring applications

require as much finer detail as possible. For achieving this, the need for fine grained flow rules on

the switches arises, which can exhaust the TCAM resources of the switches. liteF low address this

issue by carefully installing flow rules in a load-balanced, distributed and non-redundant manner

without compromising the accuracy and granularity needed for network monitoring platform. On

the basis of current TCAM load, we propose a michanism for shifting load on other switches which

are less loaded.

This thesis demonstrated a proof of concept implementation of liteF low in a small test-bed in

IIT Hyderabad exhibiting that it significantly reduces the peak number of flow rules installed at

each SDN switch.

The following scenarios are interesting to work as future work to extend liteF low.

• Analysis of switch TCAM capacities on Network Delay: We develop liteF low on the

premise that TCAM exhaustion will lead to network delay. We can develop a prototpe which

can benchmark switch on effects of TCAM exhaustion on network loads.

• Considering Multi-Path Routes: When there are more than one path between end-hosts,

a path of switches which has more remaining TCAM capacity is optimal. This can be achieved

by providing TCAM capacities of switches to the routing algorithm in PD module as a metric.

• Choosing HostPair for migration: In this work, we migrate the flows for thr HostPair

which had the least number of monitoring flows on AS. There could be other scenarios to

consider for choosing the HostPair, for example the HostPair with maximum monitoring

flows, or the HostPair with most recent monitoring flow. Effects of choosing different policies

for choosing HostPair for migration can have different consequences on TCAM of the new

AS.

35



References

[1] B. Claise, “Cisco systems netflow services export version 9,” 2004.

[2] P. Phaal and M. Lavine, “sflow version 5,” URL: http://www. sflow. org/sflow version 5. txt,

July, 2004.

[3] C. S. Inc., “NETFLOW PERFORMANCE ANALYSIS,” tech. rep., Cisco Systems Inc., 2005.

[4] C. Estan, K. Keys, D. Moore, and G. Varghese, “Building a better netflow: technical report,”

in ACM SIGCOMM, vol. 4, 2004.

[5] T. Zseby, “Sampling and filtering techniques for ip packet selection,” 2009.

[6] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker,

and J. Turner, “Openflow: enabling innovation in campus networks,” ACM SIGCOMM Com-

puter Communication Review, vol. 38, no. 2, pp. 69–74, 2008.

[7] S. Dabkiewicz, R. van der Pol, and G. van Malenstein, “Openflow network virtualization with

flowvisor,” 2012.

[8] L. Jose, M. Yu, and J. Rexford, “Online measurement of large traffic aggregates on commodity

switches,” in Conference on Hot Topics in Management of Internet, Cloud, and Enterprise

Networks and Services–Hot-ICE. USENIX, 2011.

[9] J. R. Ballard, I. Rae, and A. Akella, “Extensible and scalable network monitoring using open-

safe,” Proc. INM/WREN, 2010.

[10] R. Wang, D. Butnariu, J. Rexford, et al., “Openflow-based server load balancing gone wild,”

2011.

[11] A. K. Nayak, A. Reimers, N. Feamster, and R. Clark, “Resonance: dynamic access control

for enterprise networks,” in Proceedings of the 1st ACM workshop on Research on enterprise

networking, pp. 11–18, ACM, 2009.

[12] M. Banikazemi, D. Olshefski, A. Shaikh, J. Tracey, and G. Wang, “Meridian: an sdn platform

for cloud network services,” Communications Magazine, IEEE, vol. 51, no. 2, pp. 120–127, 2013.

[13] B. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, T. Turletti, et al., “A survey of software-

defined networking: Past, present, and future of programmable networks,” Communications

Surveys & Tutorials, IEEE, vol. 16, no. 3, pp. 1617–1634, 2014.

36



[14] N. Feamster, J. Rexford, and E. Zegura, “The road to sdn,” Queue, vol. 11, no. 12, p. 20, 2013.

[15] “Open vswitch.” http://openvswitch.org/.

[16] “Floodlight.” https://github.com/floodlight/floodlight.

[17] “Ryu.” http://osrg.github.io/ryu.

[18] “Trema.” http://trema.github.io/trema.

[19] “Nox.” http://www.noxrepo.org/.

[20] “Flowtables.” https://github.com/floodlight/floodlight.

[21] B. Stephens, A. Cox, W. Felter, C. Dixon, and J. Carter, “Past: Scalable ethernet for data

centers,” in Proceedings of the 8th international conference on Emerging networking experiments

and technologies, pp. 49–60, ACM, 2012.

[22] V. Sekar, M. K. Reiter, and H. Zhang, “Revisiting the case for a minimalist approach for

network flow monitoring,” in Proceedings of the 10th ACM SIGCOMM conference on Internet

measurement, pp. 328–341, ACM, 2010.

[23] V. Sekar, M. K. Reiter, W. Willinger, H. Zhang, R. R. Kompella, and D. G. Andersen, “csamp:

A system for network-wide flow monitoring.,” in NSDI, vol. 8, pp. 233–246, 2008.

[24] S. Guha, J. Chandrashekar, N. Taft, and K. Papagiannaki, “How healthy are today’s enterprise

networks?,” in Proceedings of the 8th ACM SIGCOMM conference on Internet measurement,

pp. 145–150, ACM, 2008.

[25] N. L. van Adrichem, C. Doerr, and F. A. Kuipers, “Opennetmon: Network monitoring in

openflow software-defined networks,” IEEE NOMS, 2014.

[26] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement with opensketch.,” in

NSDI, vol. 13, pp. 29–42, 2013.

[27] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. V. Madhyastha, “Flowsense: mon-

itoring network utilization with zero measurement cost,” in Passive and Active Measurement,

pp. 31–41, Springer, 2013.

[28] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and S. Banerjee, “Devoflow:

scaling flow management for high-performance networks,” in ACM SIGCOMM Computer Com-

munication Review, vol. 41, pp. 254–265, ACM, 2011.

[29] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable flow-based networking with difane,”

ACM SIGCOMM Computer Communication Review, vol. 40, no. 4, pp. 351–362, 2010.

[30] K. Agarwal, C. Dixon, E. Rozner, and J. Carter, “Shadow macs: Scalable label-switching for

commodity ethernet,” in Proceedings of the third workshop on Hot topics in software defined

networking, pp. 157–162, ACM, 2014.

[31] A. Ostlin and R. Pagh, “Uniform hashing in constant time and linear space,” in Proceedings of

the thirty-fifth annual ACM symposium on Theory of computing, pp. 622–628, ACM, 2003.

37



[32] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid prototyping for software-

defined networks,” in Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in

Networks, p. 19, ACM, 2010.

[33] C.-H. Hsu and U. Kremer, “Iperf: A framework for automatic construction of performance

prediction models,” in Workshop on Profile and Feedback-Directed Compilation (PFDC), Paris,

France, Citeseer, 1998.

[34] Y. Gao, Y. Zhao, R. Schweller, S. Venkataraman, Y. Chen, D. Song, and M.-Y. Kao, “Detecting

stealthy spreaders using online outdegree histograms,” in Quality of Service, 2007 Fifteenth

IEEE International Workshop on, pp. 145–153, IEEE, 2007.

38


