
Subgraph Similarity Search in Large Graphs

Kanigalpula Samanvi

A Thesis Submitted to

Indian Institute of Technology Hyderabad

In Partial Fulfillment of the Requirements for

The Degree of Master of Technology

Department of Computer Science and Engineering

June 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Archive of Indian Institute of Technology Hyderabad

https://core.ac.uk/display/38679099?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1






Acknowledgements

I take this opportunity to express my sincere gratitude to my thesis adviser Dr. Naveen Sivadasan

for his constant encouragement, patience and immense knowledge. His guidance and persistent help,

not only made this dissertation possible, but also helped me become a better individual than I was.

I am also thankful to my seniors and friends for their selfless help, motivation and guidance. Finally,

I am greatful to god and my family for their unconditional love, support and encouragement.

iv



Abstract

One of the major challenges in applications related to social networks, computational biology, collab-

oration networks etc., is to efficiently search for similar patterns in their underlying graphs. These

graphs are typically noisy and contain thousands of vertices and millions of edges. In many cases,

the graphs are unlabeled and the notion of similarity is also not well defined. We study the problem

of searching an induced subgraph in a large target graph that is most similar to the given query

graph. We assume that the query graph and target graph are undirected and unlabeled. We use

graphlet kernels [1] to define graph similarity. Graphlet kernels are known to perform better than

other kernels in different applications.

Our algorithm maps topological neighborhood information of vertices in the query and target

graphs to vectors. These local topological informations are then combined to find a target subgraph

having highly similar global topology with the given query graph. We tested our algorithm on

several real world networks such as facebook network, google plus network, youtube network, amazon

network etc. Most of them contain thousands of vertices and million edges. Our algorithm is able to

detect highly similar matches when queried in these networks. Our multi-threaded implementation

takes about one second to find the match on a 32 core machine, excluding the time for one time

preprocessing. Computationally expensive parts of our algorithm can be further scaled to standard

parallel and distributed frameworks like map-reduce.

v



Contents

Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Approval Sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Nomenclature viii

1 Introduction 1

1.1 Distance metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Graphlet Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Overview of the Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminaries 6

2.1 Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Positive Semi-definite Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Properties of Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Nearest Neighbor Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.1 k Nearest Neighbor Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.2 Space Partitioning using k-d trees . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Existing Graph Kernels 10

3.1 Random Walk Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.1 Drawbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.2 Fast Computation of RWK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

vi



3.2 Shortest Path Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.1 Adavantages and Drawbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Other Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4 Graphlet Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4.1 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4.2 Bounded Degree Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4.3 Advantages and Drawbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Graphlet vector based vertex labeling 18

4.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Vertex Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3 Vertex Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Graphlet Based Subgraph Similarity Search 20

5.1 Pre-processing Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1.1 Computation of vertex labels fv . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1.2 Nearest neighbor data structure on fv . . . . . . . . . . . . . . . . . . . . . . 21

5.2 Matching Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2.1 Selection Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2.2 Seed Match Generation Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2.3 Match Growing Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2.4 Match Completion Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Experiments and Results 27

6.1 Experimental Data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.3.1 Experiment 1: Effect of bfs depth t . . . . . . . . . . . . . . . . . . . . . . . . 29

6.3.2 Experiment 2: Subgraph Similarity Searching with Induced Subgraphs as

Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.3.3 Experiment 3: Subgraph Similarity Searching with Query Graphs that are not

Induced Subgraphs of Target Graph . . . . . . . . . . . . . . . . . . . . . . . 32

6.3.4 Experiment 4: Dense Subgraph Identification . . . . . . . . . . . . . . . . . . 33

6.4 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

vii



7 Conclusion and Future Work 36

References 37

viii



Chapter 1

Introduction

Similarity based graph searching has attracted considerable attention in the context of social net-

works, road networks, collaboration networks, software testing, computational biology, molecular

chemistry etc. In these domains, underlying graphs are large with tens of thousands of vertices and

millions of edges. Subgraph searching is fundamental to the applications, where occurrence of the

query graph in the large target graph has to be identified. Searching for exact occurrence of an

induced subgraph isomorphic to the query graph is known as the subgraph isomorphism problem,

which is known to be NP-complete for undirected unlabeled graphs.

Presence of noise in the underlying graphs and need for searching ‘similar’ subgraph patterns

are characteristic to these applications. For instance, in computational biology, the data is noisy

due to possible errors in data collection and different thresholds for experiments. In object-oriented

programming, querying typical object usage patterns against the target object dependency graph of

a program run can identify deviating locations indicating potential bugs [2]. In molecular chemistry,

identifying similar molecular structures is a fundamental problem. Searching for similar subgraphs

plays a crucial role in mining and analysis of social networks. Subgraph similarity searching is

therefore more natural in these settings in contrast to exact search. In subgraph similarity search

problem, induced subgraph of the target graph that is ‘most similar’ to the query graph has to

be identified, where similarity is defined using some distance function. Quality of the solution and

computational efficiency are two major challenges in these search problems. In this work, we assume

that both the underlying graph and query graph are unlabeled and undirected.

1



1.1 Distance metric

Most applications work with a distance metric to define similarity between two entities (graphs in

our case). More is the distance metric value, less similar the objects are. Popular distance metrics

include Euclidean distance, Hamming distance, Edit distance, Kernel functions [3–6] etc. We use

graph kernel functions to define graph similarity.

1.1.1 Kernels

Kernels are symmetric functions that map pairs of entities from a domain to real values which

indicate their similarity. Kernels that are positive definite not only define similarity between pairs of

entities but also allow implicit mapping of objects to a high-dimensional feature space and operating

on this space without requiring to compute explicit mapping of objects in the feature space. Kernels

implicitly yield inner products between the feature vectors without explicit computation of the same

in feature space. This is usually computationally cheaper than explicit computation. This approach

is usually referred to as the kernel trick or kernel method. Kernel methods have been widely applied

to sequence data, graphs, text, images, videos etc., as many of the standard machine learning

algorithms including support vector machine (SVM) and principle component analysis (PCA) can

directly work with kernels.

Kernels have been successfully applied in the past in the context of graphs [7–9]. There are

several existing graph kernels based on various graph properties, such as random walks in the

graphs [10, 11], cyclic patterns [12], graph edit distance [13], shortest paths [14, 15], frequency of

occurrences of special subgraphs [16,17], common subtree-patterns [18] and so on.

1.1.2 Graphlet Kernel

Graphlet kernels are defined based on occurrence frequencies of small induced subgraphs called

graphlets in the given graphs [1]. Graphlet kernels have been shown to provide good SVM classifi-

cation accuracy in comparison to random walk kernel and shortest path kernel on different data sets

including protein and enzyme data [1]. Graphlet kernels are also of theoretical interest. It is known

that under certain restricted settings, if two graphs have distance zero with respect to their graphlet

kernel value then they are isomorphic [1]. Improving the efficiency of computing graphlet kernel

is also studied in [1]. Graphlet kernel computation can also be scaled to parallel and distributed

setting in a fairly straight forward manner. In our work, we use graphlet kernels to define graph

similarity.

2



1.2 Related Work

Similarity based graph searching has been studied in the past under various settings. In many of the

previous works, it is assumed that the graphs are labeled. In one class of problems, a large database

of graphs is given and the goal is to find the most similar match in the database with respect to the

given query graph [19–24]. In the second class, given a target graph and a query graph, subgraph

of the target graph that is most similar to the query graph needs to be identified [25, 26]. Different

notions of similarity were also explored in the past for these classes of problems.

In [27], approximate matching of query graph in a database of graphs is studied. The graphs

are assumed to be labeled. Structural information of the graph is stored in a hybrid index structure

based on B-tree index. Important vertices of a query graph are matched first and then the match is

extended progressively. In [28], graph similarity search on labeled graphs from a large database of

graphs under minimum edit distance is studied. In [25], algorithm for computing top-k approximate

subgraph matches for a given query graph in a large labeled target graph is given. In this work, the

target graph is converted into a set of multidimensional vectors based on the labels in the vertex

neighborhoods. Only matches above a user defined threshold are computed. With higher threshold

values, the match is a trivial vertex to vertex label matching. Subgraph matching in a large target

graph for graphs deployed on a distributed memory store was studied in [26]. It looks for exact

matching and not similarity matching. Though different techniques were studied in the past for

the problem of similarity searching in various settings, to the best of our knowledge, little work has

been done on subgraph similarity search on large unlabeled graphs. In many of the previous works,

either the vertices are assumed to be labeled or the graphs they work with are small with hundreds

of vertices.

1.3 Overview of the Work

We consider undirected graphs with no vertex or edge labels. We use graphlet kernel to define

similarity between graphs. We give a subgraph similarity matching algorithm that takes as input a

large target graph and a query graph and identifies an induced subgraph of the target graph that is

most similar to the query graph with respect to the graphlet kernel value.

In our algorithm, we first compute vertex labels for vertices in both query and target graph.

These labels are vectors in some fixed dimension and are computed based on local neighborhood

structure of vertices in the graph. Since our vertex labels are vectors, unlike many of the other

3



labeling techniques, our labeling allows us to define the notion of similarity between vertex labels of

two vertices to capture the topological similarity of their corresponding neighborhoods in the graph.

We build a nearest neighbor data structure for vertices of the target graph based on their vertex

labels. Computing vertex label for target graph vertices and building the nearest neighbor data

structure are done in the one time pre-processing phase. Using nearest neighbor queries on this data

structure, vertices of the target graph that are most similar to the vertices of the query graph are

identified. Using this smaller set of candidate vertices of target graph, a seed match is computed

for the query graph. Using this seed match as the basis, our algorithm computes the final match for

the full query graph.

We study the performance of our algorithm on several real life data sets including facebook

network, google plus network, youtube network, road network, amazon network provided by the

Stanford Large Network Dataset Collection (SNAP) [29] and DBLP network [30]. We conduct

number of experimental studies to measure the search quality and run time efficiency. For instance,

while searching these networks with their communities as query graphs, the computed match and

the query graph has similarity score close to 1, where 1 is the maximum possible similarity score.

In about 30% of the cases, our algorithm is able to identify the exact match and in about 80% of

the cases, vertices of exact match are present in the pruned set computed by the algorithm. We

validate our results by showing that similarity scores between random subgraphs and similarity scores

between random communities in these networks are significantly lower. We also query communities

across networks and in noisy networks and obtain matches with significantly high similarity scores.

We use our algorithm to search for dense subgraphs and identify subgraphs with significantly high

density.

Computationally expensive parts of our algorithm can be easily scaled to standard parallel and

distributed computing frameworks such as map-reduce. Most of the networks in our experiments

have millions of edges and tens of thousands of vertices. Our multi-threaded implementation of the

search algorithm takes close to one second on these networks on a 32 core machine for the search

phase. This excludes time taken by the one time pre-processing phase.

1.4 Thesis Outline

This remainder of this thesis is organized as follows. We formally define graphs, graph similarity

search and kernels and their properties in chapter 2. We discuss few graph kernels devised in the

past along with their advantages and drawbacks in chapter 3. We discuss the aim of our work and

4



our vertex similarity measure in chapter 4. Chapter 5 contains the details of our approach. We

present a comprehensive experimental study of our work using various real life datasets in chapter 6

and conclude with a few remarks on the study and future work in chapter 7.

5



Chapter 2

Preliminaries

Graph is an ordered pair G = (V,E) comprising a set V of vertices and a set E of edges. To

avoid ambiguity, we also use V (G) and E(G) to denote the vertex and edge set. We consider only

undirected graphs with no vertex or edge labels. A subgraph H of G is a graph whose vertices are

a subset of V , and whose edges are a subset of E and is denoted as H ⊆ G. An induced subgraph

G′ is a graph whose vertex set V ′ is a subset of V and whose edge set is the set of all edges present

in G between vertices in V ′.

Definition 1 (Graph Isomorphism). Graphs G and G′ are isomorphic if there exists a bijection

b : V (G) → V (G′) such that any two vertices u and v of G are adjacent in G′ if and only if b(u) and

b(v) are adjacent in G′.

Definition 2 (Subgraph Isomorphism). Graph G is isomorphic to a subgraph of graph G′, if there

is an induced subgraph of G′ that is isomorphic to G.

Definition 3 (Graph Similarity Searching). Given a collection of graphs and a query graph, find

graphs in the collection that are closest to the query graph with respect to a given distance function

between graphs.

Definition 4 (Subgraph Similarity Searching). Given graphs G and G′, determine a subgraph

G∗ ⊆ G that is closest to G′ with respect to a given distance function between graphs.

2.1 Kernel

The idea of finding some non-linear mapping Φ : χ → H, such that we map x ∈ χ and x′ ∈ χ , in

lower dimensional space χ, to Φ(x) and Φ(x′) respectively, in some higher dimensional space H and

6



then compare them by taking dot product of Φ(x) and Φ(x′) is known as kernel. We formally define

kernel as follows,

Definition 5 (Kernel). Suppose 〈x, x′〉 denote dot product of x and x′ then kernel function k is

defined as,

k(x, x′) = 〈Φ(x),Φ(x′)〉 (2.1)

Note that the kernel function is defined as dot product of x and x′ in some higher dimensional

space. Thus, it is a symmetric function.

Kernel trick: Mapping the objects from a general set χ into an inner product space H (equipped

with its natural norm), without having the need to compute the mapping explicitly is known as the

kernel trick or kernel method. By using kernel trick we save the computation cost of finding explicit

mapping function. It can easily be embedded into standard classification methods which uses dot

product to classify objects like SVM (support vector machine) and principle component analysis

(PCA).

2.2 Positive Semi-definite Kernel

For a kernel function to be able to compare objects it needs to follow certain properties. To under-

stand what kind of kernel functions effectively compare objects, we need to define the following,

Definition 6 (Gram Matrix). Let R be the set of real numbers and C be the set of complex

numbers. Given a function k : χ2 → K (where K = C or K = R) and patterns x1, x2, ..., xm ∈ χ,

the m×m matrix K with elements,

Kij = k(xi, xj) (2.2)

is called the gram matrix (or kernel matrix) of k with respect to x1, x2, ..., xm.

Definition 7 (Positive Semi-definite Matrix). A real m×m matrix K satisfying

m
∑

i,j=1

rir̄jKij ≥ 0 (2.3)

for all ri ∈ R is called positive semi-definite matrix, where R denotes the set of complex numbers.

Definition 8 (Positive Semi-definite Kernel). Let N be the set of natural numbers and χ be a non

7



empty set. A symmetric function k on χ× χ for all m ∈ N and all x1, x2, ..., xm ∈ χ that generates

a positive definite gram matrix is called a positive semi-definite (psd) kernel. We often refer to psd

kernel as a kernel.

If k is a psd kernel function, only then the Hilbert space H can be constructed with,

k(x, x′) = 〈Φ(x),Φ(x′)〉 (2.4)

A Hilbert space is an inner product space, which is closed with respect to inner product. The Hilbert

space associated with a kernel is referred to as a Reproducing Kernel Hilbert Space (RKHS) [31]. It is

well known fact that every kernel function is associated with a RKHS and every RKHS is associated

with a kernel function. So, we need not find explicit mapping of objects in higher dimension when

we have psd kernel.

Theorem 1 (Mercer’s Theorem). A symmetric function k(·, ·) is a kernel if and only if for any

finite sample ζ the kernel matrix for ζ is psd [32].

2.3 Properties of Kernel

Every psd kernel satisfies properties mentioned in [33]. Consider any space ζ of samples and kernels

k1(x, y) and k2(x, y) over ζ with x, y ∈ ζ. Then k(x, y) is a kernel with,

• k(x, y) = k1(x, y) + k2(x, y), sum of two kernels is a kernel.

• k(x, y) = k1(x, y)k2(x, y), product of kernels is a kernel.

• k(x, y) = αk1(x, y) where α > 0

• k(x, y) = f(x)f(y) for any function f on x

• k(x, y) = k1(x,y)√
k1(x,x)

√
k1(y,y)

and so on. Combining one or more kernels based on above properties one can get a new kernel.

2.4 Nearest Neighbor Search

Nearest neighbor search is an optimization problem to find the object that is closest to a given

object from a set of objects. Inorder to express the notion of closeness, similarity functions are

8



used. Higher the values of similarity function, more similar are the objects. The problem of nearest

neighbor search is also referred to as similarity search, proximity search or closest point search.

2.4.1 k Nearest Neighbor Search

k nearest neighbor search problem is a generalization of the nearest neighbor search problem. In k

nearest neighbor search, instead of the finding the most similar object to the given object, k most

similar ones are identified.

Several solutions have been proposed to efficiently solve the problem of k nearest neighbors

search. Few of them are linear search, space partitioning, locality sensitive hashing etc. Of the

above mentioned solutions, we use space partitioning in our work, as it is proved to be efficient for

large set of objects with less number of dimensions. Since, our work deals with dimensions less than

10, using space partitioning we can efficiently solve the problem of finding k nearest neighbors in

our work.

2.4.2 Space Partitioning using k-d trees

Various data structures like k-d tree, R-tree, vp-tree, BK-tree, BSP tree are proposed to solve the

k nearest neighbors search problem using space partitioning technique. We use k-d trees for this

purpose in this work.

k-d tree is a binary tree in which every vertex is a k-dimensional point. Each non-leaf vertex

generates a splitting hyperplane that divides the space into two parts, known as half-spaces. The

left subtree of this vertex represents the points to the left of this hyperplane and points right of the

hyperplane are represented by the right subtree.

Our proposed algorithm constructs a k-d tree index of the vertex lables of the target graph. These

vertex labels are nothing but graphlet vectors of some fixed dimension. The vertex lable generation

and k-d tree index construction are discussed in detail in chapter 4 and chapter 5 respectively.

9



Chapter 3

Existing Graph Kernels

A Kernel that operates on graphs to measure their similarity is known as graph kernel. These graph

kernels belong to larger class of R-convolution kernel defined by [3]. We now discuss few approaches

for graph kernels that were proposed in the past.

3.1 Random Walk Kernel

Gartner proposed calculating random walks on direct product of graphs is equivalent to calculating

common random walks on graphs individually. Direct product graph is also known as tensor product

or categorical product.

Definition 9 (Direct Product Graph). The direct product of two graphs G(V,E) and G′(V ′, E′)

is denoted as Gx(Vx, Ex) = G×G′. The vertex set Vx and edge set Ex of Gx are respectively defined

as,

Vx = {(u, v) : u ∈ V, v ∈ V ′} (3.1)

Ex = {((ui, vp), (uj , vq)) : (ui, uj) ∈ E ∧ (vp, vq) ∈ E′} (3.2)

An example of direct product graph is shown in Figure 3.1.

Random Walk Kernel [10], abbreviated as RWK, compares number of common random walks

in given graphs. The trick to calculate number of common random walks of length d is by taking

direct product of the graphs. Once the direct product is taken, raise the adjacency matrix A, of the

resultant graph, by power of d to get the number of common walks. Random walk kernel is formally

defined as follows,

10



Figure 3.1: Example of a direct product graph

Definition 10 (Random Walk Kernel). Let G and G′ be two graphs and Ax denote the adjacency

matrix of their direct product graph Gx(Vx, Ex). Given a sequence of weights (also known as

decaying factor) w = w1, w2, ..wd(wi ∈ R, wi ≥ 0 for all i ∈ N) the random walk kernel is defined as,

kx(G,G′) =

|Vx|
∑

i,j=1

(

∞
∑

d=1

wdA
d
x

)

ij

(3.3)

3.1.1 Drawbacks

Tottering: Some vertices might get visited over and over again for walks going back and

forth, as walk allows repetition of vertices. This can result in high similarity between two

graph because of one edge being in common.

Halting: Decaying factor has to be small (in most of the cases) for convergence. By choosing

small w we are down-weighing the random walk of length more than 1 significantly, meaning

the random walks of length more than 1 are almost neglected.

High Runtime: O(n6)

If we set wd = wd then, the kernel equation 3.3 will be reduced to,

kx(G,G′) =

|Vx|
∑

i,j=1

[

(I − wAx)
−1
]

ij
(3.4)

11



As Ax is n2 ×n2 matrix (assuming G and G′ are of size n each) the inverse would take O(n6).

3.1.2 Fast Computation of RWK

In [34] time complexity of RWK was reduced from O(n6) to O(n3). Sylvester equation was used to

speed-up the process of finding the inverse of matrix, the term in summation in above equation 3.4.

3.2 Shortest Path Kernel

As seen previously, in the case of random walk kernel, graph kernels that consider walks as their

basis for comparison suffer from tottering and halting. On the other hand, paths do not suffer from

tottering as there is no repetition of vertices. So, [14] proposed a new kernel based on paths. But

computing all paths in a graph is an NP-hard problem. To overcome this difficulty the kernel was

based on shortest path distance as it is unique for a graph and can be computed in polynomial time.

Definition 11 (Shortest Path Distance Matrix). Let G(V,E) be a graph of size n. Let d(vi, vj)

be the length of the shortest path between vi, vj ∈ V . The shortest path matrix D of G is a n× n

matrix. Each entry dij of D is defined as

dij =











d(vi, vj) if vi and vj are connected

∞ otherwise











(3.5)

Definition 12 (Shortest Path Graph). Consider a graph G(V,E) with D being its shortest path

distance matrix. The shortest-path graph S of G has its vertex set as V , that is the vertex set of

G itself and its edge set is defined using the adjacency matrix A(S) as follows,

A(S)ij =











1 if D(vi, vj) < ∞

0 otherwise











(3.6)

where D(vi, vj) is the edge label of edge (vi, vj) in S.

To compute SPK we have to transform the graphs G and G′ into shortest path graphs S and

S′ using Floyds algorithm. This transformation is often refered to as Floyd-transformation. SPK is

formally defined as follows,

Definition 13 (Shortest Path Kernel). Given two graphs G and G′. Consider S and S′, the Floyd-

transformed graphs of G and G′. The shortest-path graph kernel, k(G,G′) = k(S, S′), on S = (V,E)

12



and S′ = (V ′, E′) is defined as

kshortestpath(S, S
′) =

∑

vi,vj∈V

∑

v′

k
,v′

l
∈V ′

klength
(

d(vi, vj) , d(v′k, v
′
l)
)

(3.7)

where klength(·, ·) is any psd kernel to compare lengths of shortest path like delta kernel or linear

kernel.

Linear kernel can be defined as the product of d(vi, vj) and d(v′k, v
′
l). Delta kernel is a kernel

whose value is Equal to 1 if and only if d(vi, vj) = d(v′k, v
′
l) otherwise, it is 0. It can be easily proved

that SPK is a psd kernel.

3.2.1 Adavantages and Drawbacks

SPK has the following advantages,

• SPK doesnt suffer from tottering.

• It is an accurate classification kernel.

• Time complexity is O(n4) wich is much less than random walk kernel.

The drawback of this approach is that, O(n4) is too slow for large Graphs.

3.3 Other Kernels

In this section we briefly discuss few other graph kernels.

Cyclic Pattern Kernel [12] decomposes a graph into cyclic patterns and then counts the

number of common cyclic patterns occuring in both graphs. It is computationally expensive

as computing the cyclic pattern kernel on a general graph is NP-hard.

Edit Distance based kernel [13] is based on computing the cost c, which is the number

of edit operations required to transform a graph G into another graph G′. The edit distance

based kernel works by minimizing this cost c over all possible sequences of edit operations to

convert graph G into graph G′. It is not psd kernel and worst case time complexity can be

exponential and hence not used in practice.

Optimal assignment kernel [16] finds a best match, an optimal assignment between the

substructures from G and G′. It is not a psd kernel, hence it is not applicable everywhere.

13



Figure 3.2: Set of all non isomorphic graphlets of size 4

Figure 3.3: Non isomorphic connected graphlets of size 4

Subtree-Pattern Kernel [18] compares subtree-patterns. It suffers from tottering and can

have exponential time complexity with respect to the height of the sub-tree patterns considered.

Weighted decomposition kernel [17] decomposes a graph into small subparts and assigns

similarity of these subparts with different weights. It works efficiently only for highly simplified

representation of graph.

Note that the kernels discussed above work efficiently for small graphs with tens or hundreds of

vertices and are quite useful in cheminformatics. Since the applications under consideration for this

particular work, like social networks, web graphs, road networks, collaboration networks deal with

large graphs, with tens of thousands of vertices and millions of edges, we need efficient graph kernel

for large graphs. In the next section we discuss a graph kernel for large graphs.

3.4 Graphlet Kernel

Graphlets are fixed size non isomorphic induced subgraphs of a large graph. Typical graphlet sizes

considered in applications are 3, 4 and 5. Number of graphlets of size l are exponential with respect

to l. But number of modulo isomorphic graphlets of size l will be far less. For example, Figure 3.2

shows all possible non isomorphic size 4 graphlets. There are 11 of them, of which 6 are connected.

We denote by Dl, the set of all size l graphlets that are connected. The set D4 is shown in Figure

3.3.

Definition 14 (Graphlet Vector). For a given l, the graphlet vector fG for a given graph G is a

frequency vector of dimension |Dl| where its ith component corresponds to the number of occurrences

of the ith graphlet of Dl in G. Here, the graphlet vector fG is assumed to be normalized by the

L2 norm ||fG||2. In [1], the graphlet vector is normalized by the L1 norm ||fG||1. We use L2

14



normalization instead, as it is directionally invariant.

If graphs G and G′ are isomorphic then clearly their corresponding graphlet vectors fG and fG′

are identical. But the reverse need not be true in general. But, it is conjectured that given two

graphs G and G′ of n vertices and their corresponding graphlet vectors fG and fG′ with respect to

n− 1 sized graphlets Dn−1, graph G is isomorphic to G′ if fG is identical to fG′ [1]. The conjecture

has been verified for n ≤ 11 [1]. Kernels based on similarity of graphlet vectors provide a natural

way to express similarity of underlying graphs.

Definition 15 (Graphlet Kernel). Given two graphs G and G′, let fG and fG′ be their correspond-

ing graphlet frequency vectors with respect to size l graphlets for some fixed l. The graphlet kernel

value K(G,G′) is defined as the dot product of fG and fG′ . That is, K(G,G′) = fT
GfG′

Graphlet vectors are in fact an explicit embedding of graphs into a vector space whose dimension

is |Dl| if size l graphlets are used. Graphlet kernels have been shown to give better classification

accuracies in comparison to other graph kernels like random walk kernel and shortest path kernel

for certain applications [1]. Values of K(G,G′) ∈ [0, 1] and larger values of K(G,G′) indicate higher

similarity between G and G′.

To find fG exactly using naive algorithm we have to consider
(

n
k

)

graphlets of size l for a graph of

size n.Thus the theoretical time complexity is O(nk). O(nk) is too expensive in practice, therefore

two speed-up schemes including sampling and specifically designed scheme for bounded degree graphs

are discussed below.

3.4.1 Sampling

Sampling of graphlets from the graph is done with the hope that if sufficient samples are drawn

from a graph then the approximate similarity score is close to the actual one. By sampling some

graphlets with some confidence in an error bound the kernel value can be calculated.

Theorem 2. Let D be a probability distribution on finite set A = {1, 2, ..., a}. Let X = {Xj}mj=1

be an independently and identically distributed multiset, with Xj ∼ D. For a given ǫ > 0 and δ > 0,

m =

⌈

2
(

a log 2 + log( 1δ )
)

ǫ2

⌉

samples suffice to ensure that, P{‖D− D̂m‖1 ≥ ǫ} ≤ δ, where D̂m(i) = 1
m

∑m
j=1 δ(Xj = 1) for i ∈ A

15



and δ(Xj = i) =















1, Xj = i

0, otherwise

[1]

For comparing graphs, consider A the set of all size l graphlets that are distributed according to

an unknown distribution D. Let m be the number of graphlets randomly sampled from the graph.

Then from above formula, the value of m gives number of randomly selected samples required to

ensure that D̂m is atmost ǫ distance away from the actual distribution D with a confidence of 1− δ.

For example, considering size 4 graphlets we have, 11 non-isomorphic distinct graphlets. If we set

ǫ = 0.05 and δ = 0.05 then m = 8, 497 and if we set, ǫ = 0.01 and δ = 0.01 then, m = 244, 596.

3.4.2 Bounded Degree Graph

In graphs with bounded degree d, counting of graphlets can be performed efficiently. In other

words, a BDG (bounded degree graph) with bounded degree d will not have any vertex with degree

more than d. Two algorithms for counting graphlets efficiently in low bounded degree graphs were

proposed,

Counting all connected graphlets: Under the assumption that graphs are given in adja-

cency list representation, a data structure that supports checking of existence of edge in O(1)

time was constructed.

Theorem 3. Let G be a BDG, and let d denote maximum degree. Then all connected graphlets

of with size l ∈ 3, 4, 5 can be enumerated in O(ndl−1) [1].

Counting all graphlets for a fixed vertex v:

Theorem 4. For a fixed node v of G , the distribution of subgraphs of size 3 can be computed

in time O(d2), where d is the maximum degree of any node [1].

3.4.3 Advantages and Drawbacks

The main advantage of graphlet kernel is that it is scalable. That is, graphlet kernel computation

can be easily paralellized for large graphs using standard map-reduce framework or OpenMP/MPI

framework. Also the time Complexity is O(ndl−1) for an n sized graph, where d is the maximum

degree of a graph and l is the size of the graphlet considered for comparing graphs.

Despite its advantages, the maximum degree of a graph can be atmost n− 1, implying the worst

case time complexity can be O(nl−1), which is expensive. This kernel considers non-connected

16



components as well for calculating the kernel value, which can unwantedly increase the similarity

score between graphs.

17



Chapter 4

Graphlet vector based vertex

labeling

4.1 Problem Statement

In this section we formally define the main aim of our work.

Problem Statement. Let K(·, ·) be a graphlet kernel based on size l graphlets for some fixed l.

Given a large connected graph G of size n and a connected query graph Q of size nq with n > nq,

find a subset V ∗ of vertices in G such that its induced subgraph G∗ in G maximizes K(Q,G∗).

(a) Target Graph (b) Query Graph (c) Expected subgraph of (a)

Figure 4.1: Example Target graph with a given query graph and their expected similar subgraph result

Figure 4.1 shows a sample target graph, query graph and the expected induced subgraph of the

18



target graph as a result of the query graph. The figure highlights in red, the induced subgraph of

the target graph that is the expected result of the similarity search.

Computing vertex labels that capture topological neighborhood information of corresponding

vertices in the graph and comparing vertex neighborhoods using their labels is crucial in our match-

ing algorithm. Our vertex labels are graphlet vectors (discussed in section 3.4 above) of their

corresponding neighborhood subgraphs.

4.2 Vertex Labeling

Given a fixed positive integer t and graph G, let N(v) denote the depth t neighbors of vertex v in

G. That is, N(v) is the subset of all vertices in G (including v) that are reachable from v in t or less

edges. Let Hv denote the subgraph induced by vertices N(v) in G. We denote by fv, the graphlet

vector corresponding to the graph Hv, with respect to size l graphlets for some fixed l. We note that

for defining the graphlet vector fv for a vertex, there are two implicit parameters l and t. To avoid

overloading the notation, we assume them to be some fixed constants and specify them explicitly

when required. Values of l and t are parameters to our final algorithm.

For each vertex v of the graph, its vertex label is given by its graphlet vector fv.

4.3 Vertex Similarity

Given vertex labels fu and fv for vertices u and v, we denote by s(u, v) the similarity between labels

of fu and fv, given by their dot product as

s(u, v) = fT
u fv (4.1)

Values of s(u, v) ∈ [0, 1] and larger values of s(u, v) indicate higher topological similarity between

neighborhoods of vertices u and v. Computing the vertex labels of the target graph is done in the

preprocessing phase. Implementation details of the vertex labeling algorithm are discussed in the

next section.

19



Chapter 5

Graphlet Based Subgraph

Similarity Search

Our subgraph similarity search algorithm has two major phases: one time pre-processing phase and

the query graph matching phase. Each of these phases comprise sub-phases as given below. Details

of each of these subphases is discussed in the subsequent sections.

A. Pre-processing Phase: This phase has two subphases:

1) In this phase, vertex labels fv of all the vertices of the target graph G are computed.

2) k-d tree based nearest neighbor data structure on the vertices of G using their label vectors

fv is built.

B. Matching Phase: This phase is further divided into four subphases:

1) Selection Phase: In this phase, vertex labels fv for vertices of the query graph Q are

computed first. Each vertex u of the query graph then selects a subset of vertices from the

target graph G closest to u based on their Euclidean distance.

2) Seed Match Generation Phase: In this phase, a one to one mapping of a subset of query

graph vertices to target graph vertices is obtained with highest overall similarity score.

Subgraph induced by the mapped vertices in the target graph is called the seed match.

The seed match is obtained by solving a maximum weighted bipartite matching problem.

3) Match Growing Phase: The above seed match is used as a basis to compute the final match

for Q.

20



4) Match Completion Phase: This phase tries to match those vertices in Q that are still left

unmatched in the previous phase.

5.1 Pre-processing Phase

5.1.1 Computation of vertex labels fv

In this phase, vertex label fv for each vertex v of the target graph G is computed first. To compute

fv, we require parameter values t and l. These two values are assumed to be provided as parameters

to the search algorithm. For each vertex v, a breadth first traversal of depth t is performed starting

from v to obtain the depth t neighborhood N(v) of v. The graph Hv induced by the vertex set

N(v) is then used to compute the graphlet vector fv as given in [35]. The pseudo code is given in

Algorithm 1.

Major time taken by the pre-processing phase is for computing the graphlet vector for Hv. In [1],

methods to improve its efficiency including sampling techniques are discussed. We do not make use

of sampling technique in our implementation. We remark that finding the graphlet frequencies can

easily be scaled to parallel computing frameworks or distributed computing frameworks such as

map-reduce.

Algorithm 1 Compute label fv for vertex v

Input: Graph G, vertex v, BFS depth t, graphlet size l

Output: Label vector fv
1: Run BFS on G starting from v till depth t. Let N(v) be the set of vertices visited including v.
2: Identify the induced subgraph Hv of G induced by N(v).
3: Compute graphlet vector fv for graph Hv.
4: Normalize fv by ||fv||2.

return fv

5.1.2 Nearest neighbor data structure on fv

After computing vertex labels for G, a nearest neighbor data structure on the vertices of G based

on their label vectors fv is built. We use k-d trees for nearest neighbor data structure [36]. k-d trees

are known to be efficient when dimension of vectors is less than 20 [36]. Since the typical graphlet

size l that we work with are 3, 4 and 5, the dimension of fv (which is |Dl|) does not exceed 10.

21



5.2 Matching Phase

In the following we describe the three subphases of matching phase.

5.2.1 Selection Phase

The vertex labels fv for all vertices of the query graph Q are computed first using Algorithm 1. Let

Rv denote the set of k vertices in G that are closest to v with respect to the Euclidean distance

between their label vectors. In our experiments, we usually fix k as 10. For each vertex v of Q, we

compute Rv by querying the k-d tree built in the pre-processing phase. Let R denote the union of

Rv for each vertex v of the nq vertices of Q. For the subsequent seed match generation phase, we

will only consider the vertex subset R of G. Clearly size of R is at most k.nq which is typically much

smaller than the number of vertices in G.

5.2.2 Seed Match Generation Phase

In this phase, we obtain a one to one mapping of a subset of vertices of the query graph Q to the

target graph G with highest overall similarity score. We call the subgraph induced by the mapped

vertices in G as the seed match. To do this, we define a bipartite graph (V (Q), R) with weighted

edges, where one part is the vertex set V (Q) of the query graph Q and the other part is the pruned

vertex set R of G obtained in the previous step. The edges of the bipartite graph and their weights

are defined as follows. Each vertex v in the part V (Q) is connected to every vertex w in Rv ⊆ R,

where Rv is the set of k nearest neighbors of v in G as computed in the previous step.

The weight λ(v, w) for the edge (v, w) is defined in the following manner. Let 0 < α < 1 be a

fixed scale factor which is provided as a parameter to the search algorithm. We recall that vertex

v belongs to query graph Q and vertex w belongs to target graph G and s(v, w) given by equation

(4.1) denote the similarity between their label vectors fv and fw. Let Vw denote the neighbors of

vertex w in graph G including w. Let Q′ denote the subset of V (Q) excluding v such that each

vertex in Q′ is connected to at least one vertex in Vw in the bipartite graph (V (Q), R). In particular,

for each vertex u ∈ Q′, let s(u) denote the maximum s(u, z) value among all its neighbors z in Vw

in the bipartite graph. Now the weight λ(v, w) for the edge (v, w) of the bipartite graph is given by

λ(v, w) =

(

s(v, w)α +
∑

u∈Q′ s(u)α
)1/α

(|Q′|+ 1)
(5.1)

We now solve maximum weighted bipartite matching on this graph to obtain a one to one mapping

22



between a subset of vertices of Q and the vertices of G. Defining edge weights λ(v, w) to edge (v, w)

in the bipartite graph in the above fashion not only takes into account the similarity value s(v, w),

but also the strength of similarity of neighbors of w in G to remaining vertices in the query graph

Q. By assigning edge weights as above, we try to ensure that among two vertices in G with equal

similarity values to a vertex in Q, the vertex whose neighbors in G also have high similarity to

vertices in Q is preferred over the other in the final maximum weighted bipartite matching solution.

Let M denote the solution obtained for the bipartite matching. Let QM and GM respectively

denote the subgraphs induced by the subset of matched vertices from graphs Q and G under the

matching M . The connectivity of QM and GM may differ. For instance, the number of connected

components in GM and QM could differ. Therefore, we do not include all the vertices of GM in

the seed match. Instead, we use the largest connected component of GM as a seed solution. That

is, let SG ⊂ V (G) denote the subset of vertices in GM corresponding to a maximum cardinality

connected component. Let SQ denote their corresponding mapped vertices in QM . We call SG as a

seed match. The pseudo code for seed match computation is given in Algorithm 2.

Algorithm 2 Computing seed match SG in G and its mapped vertices SQ in Q

Input: Vertex sets V (Q), R and Rv for each v ∈ V (Q) and their labels fv, parameter α
Output: SG and SQ

1: Construct bipartite graph (V (Q), R) with edge weights given by λ(v, w).
2: Compute maximum weighted bipartite matching M on (V (Q), R)
3: Let QM and GM respectively denote the subgraphs induced by vertices from Q and G in the

matching M .
4: Compute largest connected component in GM . Let SG denote the vertices in that component.

Let SQ denote its mapped vertices in QM under the bipartite matching M .
return SG and SQ

5.2.3 Match Growing Phase

After computing the seed match SG in G and its mapped vertices SQ in Q, we use this seed match

as the basis to compute the final match. The final solution is computed in an incremental fashion

starting with empty match. In each iteration, we include a new pair of vertices (v, w) to the solution,

where v and w belongs to G and Q respectively. In order to do this, we maintain a list of candidate

pairs and in each iteration, we include a pair with maximum similarity value s(v, w) to the final

solution. We use a max heap to maintain the candidate list. The candidate list is initialized with the

mapped pairs between SG and SQ as obtained in the previous phase. Thus, the heap is initialized

by inserting each of these mapped pairs (v, w) with corresponding weight s(v, w).

We recall that the mapped pairs obtained from previous phase have stronger similarity with

23



respect to the modified weight function λ(v, w). Higher value of λ(v, w) indicates that not only

s(v, w) is high but also their neighbors share high s() value. Hence they are more preferred in

the solution over other pairs with similar s() value. By initializing the candidate list with these

preferred pairs, the matching algorithm tries to ensure that the incremental solution starts with

these pairs first and other potential pairs are considered later. Also, because of the heap data

structure, remaining pairs are considered in the decreasing order of their similarity value. Moreover,

as will be discussed later, the incremental matching tries to ensure that the partial match in G

constructed so far is connected. For this, new pairs that are added to the candidate list are chosen

from the neighborhood of the partial match between G and Q.

The incremental matching might still match vertex pairs with low s() value if they are available

in the candidate list. Candidate pairs with low s() values should be treated separately as there could

be genuine pairs with low s() value. For instance, consider boundary vertices of an optimal subgraph

match in G. Boundary vertices are also connected to vertices outside the matched subgraph. Hence,

their local neighborhood structure is different from their counterpart in the query graph. In other

words, their corresponding graphlet vectors can be very dissimilar and their similarity value s() can

be very low even though they are expected to be matched in the final solution. In order to find such

genuine pairs, we omit pairs with similarity value below some fixed threshold h1 in this phase and

such pairs are handled in the next phase.

Algorithm 3 Incremental Matching

Input: Seed match SG and its mapped vertices SQ, threshold h1

Output: Partial match F

1: Initialize F to empty set.
2: Initialize the candidate list max heap with mapped pairs (v, w) of the seed match where s(v, w) ≥

h1.
3: while candidate list is not empty do
4: Extract maximum weight candidate match (v, w)
5: Add (v, w) to F

6: updateCandidateList(candidate list, (v, w), h1,F )
7: end while

return F

In each iteration of the incremental matching, a pair (v, w) with maximum s(v, w) value is

removed from the candidate heap and added to the final match. After this, the candidate list is

modified as follows. We recall that v and w belong to G and Q respectively. We call a vertex

unmatched if it is not yet present in the final match. The algorithm maintains two invariants: (a)

the pairs present in the candidate list are one to one mappings and (b) a query vertex that enters

the candidate list will stay in the candidate list (possibly with multiple changes to paired partner

24



vertex) until it is included in the final match. Let Uv denote the unmatched neighbors of v in G that

are also not present in the candidate list. Let Uw denote the unmatched neighbors w in Q. For each

query vertex y in Uw, let x be a vertex in Uv with maximum similarity value s(x, y). We add (x, y)

to the candidate list if y is absent in the list and s(x, y) ≥ h1. If y is already present in the candidate

list, then replace the current pair for y with (x, y) if s(x, y) has a higher value. The incremental

algorithm is given in Algorithm 3. The candidate list modification is described in Algorithm 4.

Algorithm 4 updateCandidateList

Input: candidate list, (v, w), h1 and F

1: Compute Uv which is the set of unmatched neighbors of v in G that are also not present in
candidate list.

2: Compute Uw which is the set of unmatched neighbors of w in Q.
3: for all vertex y ∈ Uw do
4: Find x ∈ Uv with maximum s(x, y) value.
5: if y does not exist in candidate list then
6: Include (x, y) in the candidate list if s(x, y) ≥ h1.
7: else
8: Replace existing pair for y in the candidate list with (x, y) if s(x, y) has higher value.
9: end if

10: end for

5.2.4 Match Completion Phase

In this phase, vertices of the query graph Q that are left unmatched in the previous phase due

to similarity values below the threshold h1 are handled. Typically, boundary vertices of the final

matched subgraph in G remain unmatched in the previous phase. As discussed earlier, this is

because, such boundary vertices in G and their matched partners in Q have low s() value as their

local neighborhood topologies vastly differ. Hence using neighborhood similarity for such pairs is

ineffective. To handle them, we try to match unmatched query vertices with unmatched neighbors

of the current match F in G. Since the similarity function s() is ineffective here, we use a different

similarity function to compare potential pairs. Let X denote the set of unmatched neighbors of the

current match F in G. Let Y denote the set of unmatched query vertices. Let v ∈ X and let w ∈ Y .

We define the similarity c(v, w) as follows. Let Zv denote the matched neighbors of v in target graph

G and let Zw denote the matched neighbors of w in query graph Q. Let Z ′
v denote the matched

partners of Zv in Q. We now define c(v, w) using the standard Jaccard similarity coefficient as

c(v, w) =
|Z ′

v ∩ Zw|
|Z ′

v ∪ Zw|
(5.2)

We use a fixed threshold h2 that is provided as parameter to the algorithm. We now define a

25



bipartite graph (X,Y ) with edge weights as follows. For each (v, w) ∈ X × Y , insert an edge (v, w)

with weight c(v, w) in the bipartite graph if c(v, w) ≥ h2. Compute maximum weighted bipartite

graph matching on this bipartite graph and include the matched pairs in the final solution F . In

our experiments, size of Y (number of unmatched query graph vertices) is very small. The pseudo

code is given in Algorithm 5.

Algorithm 5 Match Completion

Input: Partial match F and threshold h2

Output: Final match F

1: Let X denote the set of unmatched neighbors of the match F in G.
2: Let Y denote the set of unmatched vertices in Q.
3: Construct bipartite graph (X,Y ) by introducing all edges (v, w) with edge weight c(v, w) if

c(v, w) ≥ h2.
4: Compute maximum weighted bipartite matching.
5: Add each of these matches to F

return F

We remark that our searching algorithm finds the matched subset of vertices in G and also their

corresponding mapped vertices in the query graph Q.

26



Chapter 6

Experiments and Results

In this section, we conduct experiments on various real life graph data sets [29] including social

networks, collaboration networks, road networks, youtube network, amazon network and on synthetic

graph data sets.

6.1 Experimental Data sets

Social Networks: We conduct experiments on facebook and google plus undirected graphs

provided by Stanford Large Network Dataset Collection (SNAP) [29]. Facebook graph con-

tains around 4K vertices and 88K edges. In this graph vertices represent anonymized users

and an undirected edge connects two friends. google plus graph contains 107K vertices and

13M edges. google plus graph also represents users as vertices and an edge exists between two

friends. The data set also contains list of user circles (user communities), where user circle is

specified by its corresponding set of vertices. We use these user circles as query graphs and

they are queried against the entire facebook network. We also query facebook circles against

google plus network to find similar circles across networks. We also experiment querying face-

book circles against facebook network after introducing random noise to the facebook network.

DBLP Collaboration Network: We use the DBLP collaboration network downloadable

from [30]. This network has around 317K vertices and 1M edges. The vertices of this graph

are authors who publish in any conference or journal and an edge exists between any two

co-authors. All the authors who contribute to a common conference or a journal form a com-

27



munity. The data set provides a list of such communities by specifying its corresponding set

of vertices. We use such communities as query graphs.

Youtube Network: Youtube network is downloaded from [29]. Network has about 1M ver-

tices and 2M edges. Vertices in this network represent users and an edge exists between two

users who are friends. In youtube, users can create groups in which other users can join.

The data set provides a list of user groups by specifying its corresponding set of vertices. We

consider these user-defined groups as our query graphs.

Road Network: We use the road network of California obtained from [29] in our experi-

ments. This network has around 2M vertices and 3M edges. Vertices of this network are road

endpoints or road intersections and the edges are the roads connecting these intersections. We

use randomly chosen subgraphs from this network as query graphs.

Amazon Network: Amazon network is a product co-purchasing network downloaded from

[29]. This network has around 334K vertices and 925K edges. Each vertex represents a product

and an edge exists between the products that are frequently co-purchased [29]. All the products

under a certain category form a product community. The data set provides a list of product

communities by specifying its corresponding set of vertices. We use product communities as

query graphs and we query them against the amazon network.

The statistics of the data sets used are listed in Table 6.1.

Data Set #vertices #edges
Facebook 4039 88234

Google Plus 107614 13673453
DBLP 317080 1049866
Amazon 334863 925872
Youtube 1134890 2987624

Road Network 1965206 2766607

Table 6.1: Data set Statistics

28



6.2 Experimental Setup

All the experiments are carried out on a 32 core 2.60GHz Intel(R) Xeon(R) server with 32GB RAM.

The server has Ubuntu 14.04 LTS. Our implementation uses Java 7.

The computationally most expensive part of our algorithm is the computation of vector labels

for all vertices of a graph. The preprocessing phase that computes label vectors for each vertex of

the graph is multi-threaded and thus executes on all 32 cores. Similarly, in the matching phase,

computing label vectors for all vertices of the query graph is also multi-threaded and uses all 32

cores. Remaining phases use only a single core.

6.3 Results

To evaluate the accuracy of the result obtained by our similarity search algorithm, we compute the

graphlet kernel value K(Q,G∗) between the query graph Q and the subgraph G∗ of G induced by

the vertices V ∗ of the final match F in G. We use this value to show the similarity between the query

graph and our obtained match and we refer to this value as similarity score in our experiments. We

recall that similarity score lies in the range [0, 1] where 1 indicates maximum similarity.

There are six parameters in our algorithm: (1) graphlet size l, (2) BFS depth t for vertex label

computation, (3) value of k for the k nearest neighbors from k-d tree, (4) value of α in the edge weight

function λ and (5) similarity thresholds h1 for match growing phase and h2 for match completion

phase. In all our experiments we fix graphlet size l as 4. We performed experiments with different

values of k, α, h1 and h2 on different data sets. Based on the results, we chose ranges for these

parameters. The value of k is chosen from the range 5 to 10. Even for million vertex graphs, k = 10

showed good results. We fix scaling factor α to be 0.3 and the thresholds h1 and h2 to be 0.4 and

0.95 respectively.

6.3.1 Experiment 1: Effect of bfs depth t

This experiment shows the effect of bfs depth t on the final match. We performed experiments

with different values of t. We observed that after the depth of 2, there is very little change in the

similarity scores of the final match. But as the depth increases the time to compute graphlet vectors

also increases. Thus, the bfs depth t was taken to be 2 for most of our experiments. Table 6.2

shows the similarity scores of querying amazon communities on amazon network and and DBLP

communities on DBLP collaboration network for different values of t. These results are averaged

29



Figure 6.1: Experiment 1: Effect of bfs depth t

over 150 queries.

Data Set t=2 t=3 t=4
Amazon 0.9999823 0.9999851 0.9999858
DBLP 0.9999942 0.9999896 0.9999917

Table 6.2: Experiment 1 : Similarity Score vs. t

The plot in Figure 6.1 shows the effect of bfs depth t on the final match similarity scores for

amazon and DBLP data sets. It is clear from the results that for different values of depth, after a

depth of 2, the similarity score doesn’t vary much.

6.3.2 Experiment 2: Subgraph Similarity Searching with Induced Sub-

graphs as Queries

For each of the data sets discussed earlier, we perform subgraph querying against the same network.

For each network, we use the given communities as query graphs and measure the quality of the

search result. That is, we query facebook communities against facebook network, DBLP communities

against DBLP network, youtube groups against youtube network and amazon product communities

against amazon network. For road network, we use randomly chosen induced subgraphs from the

network as query graph. Second column of Table 6.3 shows the similarity score of the match. All the

results are averages over 150 queries. The average community (query graph) size is around 100 for

facebook, around 40 for DBLP, around 50 for youtube and around 300 for amazon. Query graphs

for road network have about 500 vertices.

To validate the quality of our solution, we do the following for each of the network. We compute

the similarity score between random induced subgraphs from the same network. These random

subgraphs contain 100 vertices. We also compute the similarity score between different communities

30



Figure 6.2: Experiment 2: Similarity scores of queries that are induced subgraphs in their respective data
sets

from the same network. All results are averaged over 150 scores. Table 6.3 shows the result. The

results show that the similarity score of our match close to 1 and is significantly better than scores

between random subgraphs and scores between communities in the same network. For road network,

the third column shows the average similarity between its query subgraphs.

Data Set Query graph & Between Between
Final Match Random Communities

Subgraphs
Facebook 0.944231 0.702286 0.787296
DBLP 0.999994 0.443763 0.6144779
Amazon 0.999982 0.663301 0.624756
Youtube 0.998054 0.311256 0.524779

Road Network 0.899956 0.770492 0.599620

Table 6.3: Experiment 2 : Similarity Scores. Second column shows the average similarity score between
query graph and the computed match. The query graphs are the given communities. Third column shows the
average similarity score between random subgraphs. Fourth column shows average similarity score between
communities

In Figure 6.2, the similarity scores of final matches obtained by our approach for the queries

which are induced subgraphs of their respective data sets are depicted. The plot also shows the

similarity scores between random subgraphs of each network and similarity scores within the query

graphs. From the plot our approach can be easily validated, as our final match scores are high and

close to 1, where as, the random subgraphs similarity is much less.

Table 6.4 shows the #exactMatches which is the number of queries that yielded the exact match

out of the 150 queries (query graph is a subgraph of the network), and #inPruned - the percentage

of queries where the vertices of the exact target match are present in the pruned subset of vertices

31



R of target graph G obtained after the selection phase. Table 6.4 shows that, for about 30% of the

query graphs, our algorithm identifies the exact match. Also, for about 75% of the queries, vertices

of the ideal match are present in our pruned set of vertices R in the target graph after selection

phase.

Data Set #exactMatches #inPruned

(out of 150) (percentage)
Facebook 53 83
DBLP 47 82
Amazon 60 72

Table 6.4: Experiment 2 : Exact Match Statistics

Table 6.5 shows the timing results corresponding to Experiment 2. The timing information is

only for the matching phase and it excludes the one time pre-processing phase. Here δ denotes time

taken (in secs) to compute the label vectors for all vertices of the query graph and τ the time taken

(in secs) for the entire matching phase (including δ). We recall that the label vector computation

is implemented as multithreaded on 32 cores and the remaining part is executed as a single thread.

It can be seen that the label vector computation is the computationally expensive part and the

remaining phases take much lesser time.

Data Set δ(in sec) τ (in sec)
Facebook 0.213596 0.253706
DBLP 0.159492 0.777687
Amazon 0.199767 0.781500
Youtube 0.225131 0.989452

Road Network 0.216644 1.437619

Table 6.5: Experiment 2 : Timing Results

6.3.3 Experiment 3: Subgraph Similarity Searching with Query Graphs

that are not Induced Subgraphs of Target Graph

In all previous experiments, query graphs were induced subgraphs of the target network. In this

experiment, we evaluate the quality of our solution when the query graph is not necessarily an

induced subgraph of the target graph. For this, we conduct two experiments. In the first experiment,

we use facebook communities as query graphs and query them against google plus network. To

validate the quality of our solution, we measure the similarity score of the query graph with a random

induced subgraph in the target graph with same number of vertices. In the second experiment, we

create a modified facebook network by randomly removing 5% its original edges. We use this

32



Figure 6.3: Experiment 3: Similarity scores with query graphs that may not be induced subgraphs of
target graph

modified network as the target graph and query original facebook communities in this target graph.

Here also, we validate the quality of our solution by measuring the similarity score for the query

graph with a random induced subgraph of same number of vertices in the target graph. Table 6.6

shows the results. Values shown for both experiments are averaged over 150 scores. The results

show that similarity score of our match is close to 1 and is significantly better than a random match.

Data Set Final Match Random Subgraph
Google Plus 0.912241 0.600442

Facebook with random noise 0.933662 0.701198

Table 6.6: Experiment 3 : Similarity Scores. Second column shows the similarity score between query
graph and match. Third column shows the score between query graph and a random subgraph

Similar to Experiment 2, we validate our Experiment 3 with the help of Figure 6.3. The plot

in Figure 6.3 shows high similarity scores with respect to our final matches and query graphs, and

relatively less scores for random subgraphs. Thus, our approach extracts an actually similar match

to the query graph and not just some random subgraph.

6.3.4 Experiment 4: Dense Subgraph Identification

We use our matching algorithm to identify dense subgraphs in large networks. In particular, we

search for dense subgraphs in DBLP and google plus networks. For this, we first generate dense

random graphs using the standard G(n, p) model with n = 500 and p = 0.9. We now use these

random graphs as query graphs and query them against the DBLP and google plus networks. We

use the standard definition of density ρ of a graph H = (V,E) as

33



Figure 6.4: Experiment 4 : Similarity scores with respect to dense query graphs

ρ =
2|E|

|V | ∗ |V − 1| ∈ [0, 1] (6.1)

The average density of our random query graphs is 0.9. We queried these dense random graphs

against DBLP and google plus networks. Table 6.7 shows the results. Column 2 shows the similarity

score between query graph and obtained match. Column 3 shows the density ρ for the obtained

match. The results are averaged over 150 queries. Results show that the similarity score with

matched result is close to 1 for google plus. For DBLP the score is close to 0.8 primarily because

DBLP does not have dense subgraphs with about 500 vertices. Also, the density of the obtained

match is close to that of the query graph, which is 0.9. Figure 6.4 and Figure 6.5 depict the similarity

scores and density results of Experiment 4 respectively.

Data Set Similarity Score ρ for the match
Google Plus 0.926670 0.812

DBLP 0.799753 0.730

Table 6.7: Experiment 4 : Dense Subgraph Match Results

6.4 Scalability

Computationally most expensive parts of our algorithm are the vertex label computation for vertices

of query and target graphs. Since this is a one time preprocessing for the target graph, it can be

easily scaled to a distributed framework using the standard map-reduce paradigm. Vertex label

computation for each vertex can be a separate map/reduce job. Vertex label computation for query

graph is performed for every search. This can also be parallelized using the standard OpenMP/MPI

34



Figure 6.5: Experiment 4 : Density ρ of the obtained matches with respect to dense query graphs

framework as each vertex label computation can be done in parallel. As shown in the experimental

results, remaining phases take much lesser time even with serial implementation. Parts of them can

also be parallelized to further improve the search efficiency.

35



Chapter 7

Conclusion and Future Work

Given a large target graph and a query graph, in this work, we implement an effective algorithm to

search for an induced subgraph of the target graph that is most similar to the query graph. In this

work we use Graphlet Kernel [1] as the similarity measure to determine the similarity of our obtained

final match with the query graph. Our approach first identifies a seed match to the query graph and

then uses the seed match as a basis to carefully extend it to a final match. To validate the quality

of our match, we perform various experiments on large real life data sets including social networks,

DBLP collaboration network, amazon network, youtube network and road networks which have tens

of thousands of vertices and millions of edges. We also evaluate the computational efficiency of our

approach using these data sets.

The major aim of this work is to propose an effective algorithm to retrieve a high quality match

for a given query graph. Little focus was laid on improving the computational efficiency of the pre-

processing phase, as it is a one time process. Experimental results show that our matching phase is

efficient and completes in 1 sec for even networks with tens of thousands of vertices. Improving the

pre-processing time will further increase the efficiency of our approach. The pre-processing time can

be easily paralellized and distributed using standard map-reduce paradigm or the OpenMP/MPI

framework as each vertex label computation can be done in parallel. In this work experiments were

performed only to identify dense subgraphs with a given density. This can be further extended to

identify given patterns in the target graph. Also instead of using Graphlet Kernel as the similarity

measure, further analysis has to be done to use the vertex level labels to define a new more efficient

graph kernel.

36



References

[1] N. Shervashidze, T. Petri, K. Mehlhorn, K. M. Borgwardt, and S. Vishwanathan. Efficient

graphlet kernels for large graph comparison. In International conference on artificial intelligence

and statistics. 2009 488–495.

[2] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N. Nguyen. Graph-

based mining of multiple object usage patterns. In Proceedings of the the 7th joint meeting

of the European software engineering conference and the ACM SIGSOFT symposium on The

foundations of software engineering. ACM, 2009 383–392.

[3] D. Haussler. Convolution kernels on discrete structures. Technical Report, Citeseer 1999.

[4] F. Desobry, M. Davy, and W. J. Fitzgerald. A Class of Kernels For Sets of Vectors. In ESANN.

Citeseer, 2005 461–466.

[5] R. Kondor and T. Jebara. A kernel between sets of vectors. In ICML, volume 20. 2003 361.

[6] S. Vishwanathan and A. J. Smola. Fast kernels for string and tree matching. Kernel methods

in computational biology 113–130.

[7] S. Hido and H. Kashima. A linear-time graph kernel. In Data Mining, 2009. ICDM’09. Ninth

IEEE International Conference on. IEEE, 2009 179–188.

[8] D. K. Hammond, P. Vandergheynst, and R. Gribonval. Wavelets on graphs via spectral graph

theory. Applied and Computational Harmonic Analysis 30, (2011) 129–150.

[9] N. Shervashidze and K. M. Borgwardt. Fast subtree kernels on graphs. In Advances in Neural

Information Processing Systems. 2009 1660–1668.

[10] T. Gärtner, P. Flach, and S. Wrobel. On graph kernels: Hardness results and efficient alterna-

tives. In Learning Theory and Kernel Machines, 129–143. Springer, 2003.

37



[11] H. Kashima and A. Inokuchi. Kernels for graph classification. In ICDM Workshop on Active

Mining, volume 2002. Citeseer, 2002 .

[12] T. Horváth, T. Gärtner, and S. Wrobel. Cyclic pattern kernels for predictive graph mining. In

Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and

data mining. ACM, 2004 158–167.

[13] M. Neuhaus and H. Bunke. Edit distance based kernel functions for attributed graph matching.

In Graph-Based Representations in Pattern Recognition, 352–361. Springer, 2005.

[14] K. M. Borgwardt and H.-P. Kriegel. Shortest-path kernels on graphs. In Data Mining, Fifth

IEEE International Conference on. IEEE, 2005 8–pp.

[15] R. C. Bunescu and R. J. Mooney. A shortest path dependency kernel for relation extraction.

In Proceedings of the conference on Human Language Technology and Empirical Methods in

Natural Language Processing. Association for Computational Linguistics, 2005 724–731.

[16] H. Fröhlich, J. K. Wegner, F. Sieker, and A. Zell. Optimal assignment kernels for attributed

molecular graphs. In Proceedings of the 22nd international conference on Machine learning.

ACM, 2005 225–232.

[17] S. Menchetti, F. Costa, and P. Frasconi. Weighted decomposition kernels. In Proceedings of

the 22nd international conference on Machine learning. ACM, 2005 585–592.

[18] J. Ramon and T. Gärtner. Expressivity versus efficiency of graph kernels. In First International

Workshop on Mining Graphs, Trees and Sequences. 2003 65–74.

[19] D. Shasha, J. T. Wang, and R. Giugno. Algorithmics and applications of tree and graph

searching. In Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on

Principles of database systems. ACM, 2002 39–52.

[20] X. Yan, P. S. Yu, and J. Han. Graph indexing: a frequent structure-based approach. In

Proceedings of the 2004 ACM SIGMOD international conference on Management of data. ACM,

2004 335–346.

[21] S. Zhang, S. Li, and J. Yang. GADDI: distance index based subgraph matching in biolog-

ical networks. In Proceedings of the 12th International Conference on Extending Database

Technology: Advances in Database Technology. ACM, 2009 192–203.

38



[22] M. Mongiovi, R. Di Natale, R. Giugno, A. Pulvirenti, A. Ferro, and R. Sharan. Sigma: a set-

cover-based inexact graph matching algorithm. Journal of bioinformatics and computational

biology 8, (2010) 199–218.

[23] S. Zhang, J. Yang, and W. Jin. Sapper: Subgraph indexing and approximate matching in large

graphs. Proceedings of the VLDB Endowment 3, (2010) 1185–1194.

[24] X. Wang, A. Smalter, J. Huan, and G. H. Lushington. G-hash: towards fast kernel-based

similarity search in large graph databases. In Proceedings of the 12th international conference

on extending database technology: advances in database technology. ACM, 2009 472–480.

[25] A. Khan, N. Li, X. Yan, Z. Guan, S. Chakraborty, and S. Tao. Neighborhood based fast graph

search in large networks. In Proceedings of the 2011 ACM SIGMOD International Conference

on Management of data. ACM, 2011 901–912.

[26] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li. Efficient subgraph matching on billion node

graphs. Proceedings of the VLDB Endowment 5, (2012) 788–799.

[27] Y. Tian and J. M. Patel. Tale: A tool for approximate large graph matching. In Data Engi-

neering, 2008. ICDE 2008. IEEE 24th International Conference on. IEEE, 2008 963–972.

[28] W. Zheng, L. Zou, X. Lian, D. Wang, and D. Zhao. Graph similarity search with edit distance

constraint in large graph databases. In Proceedings of the 22nd ACM international conference

on Conference on information & knowledge management. ACM, 2013 1595–1600.

[29] J. Leskovec and A. Krevl. SNAP Datasets: Stanford Large Network Dataset Collection. http:

//snap.stanford.edu/data 2014.

[30] DBLP Network. http://dblp.uni-trier.de/db/.

[31] K. M. Borgwardt. Graph kernels. Ph.D. thesis, lmu 2007.

[32] J. Mercer. Functions of positive and negative type, and their connection with the theory of in-

tegral equations. Philosophical transactions of the royal society of London. Series A, containing

papers of a mathematical or physical character 415–446.

[33] B. Schölkopf and A. J. Smola. Learning with kernels: Support vector machines, regularization,

optimization, and beyond. MIT press, 2002.

[34] S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M. Borgwardt. Graph kernels.

The Journal of Machine Learning Research 11, (2010) 1201–1242.

39



[35] N. Przulj, D. Corneil, and I. Jurisica. Supplementary Information: Efficient Estimation of

Graphlet Frequency Distributions in Protein-Protein Interaction Networks .

[36] G. T. Heineman, G. Pollice, and S. Selkow. Algorithms in a Nutshell. ” O’Reilly Media, Inc.”,

2008.

40


