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Introduction and Motivation

We know the orthogonality in Hilbert space, which is easy to investigate,
because inner product is available there. In this paper we will discuss the
orthogonality in a general Banach space and then for a general normed
space (the later one may be covered later.) Also we will discuss the existence
and properties of elements that are orthogonal to a given closed subspace.
Here we will discuss the generalization of Birkhoff orthogonality in a
general normed space.In a Hilbert space so-called Birhkoff orthogonality
and general orthogonality both are same.But in general its not true.Here
Riesz’s lemmma comes into the picture, which says that for a given proper
closed subspace M of a normed linear space X and for a given ε > 0 there is
a point xε ∈ X with ‖xε‖ ≡ 1 and dist(xε,M) ≥ 1. That is this lemma says
that for a given proper closed subspace of a normed space there is always
a point in the unit sphere whose distance form M is as closed to 1 as we
please.So the natural question is that does there exist a point in the unit
sphere which is exactly at the distance 1 from the subspace? In general the
answer is “no”. But if the normed space is reflexive or finite dimensional.
the answer is affirmative.Also if we take ε = 0 in Riesz’s lemma,then the
corresponding vector x0 is orthogonal to M . In Banach space theory, there
are two fundamental theorems, one is James theorem and the next one
is Bishops-Phelps theorem.James theorem says that a normed space X is
non-reflexive if and only if there is a hyperplane in X such that no point in
X is orthogonal to M . This forces us not to take ε = 0 in Riesz’s lemma.
But Bishop-Phelps theorem points a solution in case of non-reflexive space.
This theorem says that for a given proper closed subspace of a non-reflexive
Banach space, we will be able to find a hyperplane which is as closed to as
we wish.

In the last section we discuss an interesting object. Suppose X is a
given Banach space and Y be a closed linear subspace fo X. One can ask a
natural question whether there is a norm 1 projection from X onto Y. This
kind of subspaces are called “constrained subspaces”. For a given point
x ∈ X \ Y , define Yx = span[Y ∪ {x}]. Now if Y is a constrained subspace
of X, then it is clear that there is also a norm 1 projection from Yx onto Y.
This kind of spaces are called “almost constrained subspaces”. We observe
that constrained property of a Banach space implies the almost constrained
property of it. Now question is whether the converse is true always. This
gives a negative answer. One counterexample is in chapter 2 of reference [5].
Also we discuss the two sets L(Y,X), the set all elements in X which are
left orthogonal to Y and O(Y,X), the set of all elements which are right
orthogonal to Y. Here the orthogonality is in the sense of Birkhoff only. We
characterize all proximinal subspaces in terms of L(Y,X) and all almost
constrained subspaces in terms of O(Y,X).
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Chapter 1

Banach Spaces

Definition 1.0.1 Let X be a an additive group.If any two elements x and
y of X be combined by an operation,(called addition) to get a new element
x+ y and any scalar(element of fields F , here we assume field means R, the
real number system or C, the complex number system.) α and any element
x of X be combined by an operation (called scalar multiplication) to get a
new vector αx such that

(1) α(x+ y) = αx+ αy.

(2) (α+ β)x = αx+ βx.

(3) (αβx) = α(βx).

(4) 1 · x = x.

Then X is called a linear space or a vector space and any element of X is
called a vector.

Example 1.0.2 The real number system , the complex number system are
the easiest examples of vector space.

Definition 1.0.3 A function ‖ · ‖ : X −→ R≥0 is called norm if it satisfies
the following properties:

(1)‖x‖ ≥ 0. ∀x ∈ X and equality holds if and only if x = 0.
(2)‖x+ y‖ ≤ ‖x‖+ ‖y‖, ∀x, y ∈ X.
(3)‖αx‖ = |α|‖x‖, for all α ∈ F and for all x ∈ X

Definition 1.0.4 A linear space along with a norm is called a normed linear
space.

Example 1.0.5 The real number system and the complex number system,
where the norm of an element x is given by ‖x‖ = |x|.
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Example 1.0.6 The linear space Rn and Cn of all n-tuples x =
(x1, x2, x3, ..., xn) of real and complex numbers can be made into normed
linear spaces in an infinite variety of ways.One such defined norm is given
by

‖x‖ = (
n∑
i=1
|xi|2)

1

2

Example 1.0.7 The space lp for 1 ≤ p < ∞, of all bounded sequences
(xn)∞n=1 of scalars such that

∞∑
n=1
|xn|p <∞

Definition 1.0.8 A complete normed linear space is called a Banach space.

For example the above three spaces are complete as metric spaces.And so
they are Banach spaces.In a linear space,if we change the norm, the space
will be changed.For example,the space C[0, 1] of all continuous real valued
functions on the closed interval [0, 1] is normed linear with respect to the
following norms as: (a)‖f‖∞ = sup |f(x)| (b)‖f‖1 =

∫ 1
0 |f(x)|dx.

The space (C[0, 1], ‖·‖∞) is complete whether the space (C[0, 1], ‖·‖1) is not.

1.1 Continuous Linear Transformation

Let X and Y be two normed linear spaces with the same scalar field. Let
T be a linear transformations from X into Y , called continuous if it is
continuous mapping from a metric space X into the metric space Y by
means of if a sequence xn −→ x⇒ T (xn) −→ T (x).

Theorem 1.1.1 Let X and Y be two normed linear spaces with the same
scalar field and T be a linear transformation from X into Y , then the fol-
lowings are equivalent:

(a) T is continuous;

(b) T is continuous at the origin;

(c) there exists a non-negative real number M ≥ 0 such that ‖T (x)‖ ≤M‖‖,
for every x ∈ X.

(d) for any closed unit ball S = {x ∈ X : ‖x‖ ≤ 1}, T (S) is bounded.

Proof:
(1)⇔ (2):

Assume T is continuous.As T (0) = 0, it is obvious that T is continuous at
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the origin.So (1)⇒ (2)is fine.
Now assume that T is continuous at the origin.So if xn → x ⇔ xn − x →
0⇒ T (xn − x)→ 0 [because T is continuous at 0]⇔ T (xn)→ T (x)[because
T is linear]⇒ T is continuous.
(2)⇔ (3) :
(3)⇒ (2) is obvious, because if such a M exists, then if x→ 0,then obviously
‖T (x)‖ → 0 which means that T (x) → 0, means T is continuous at the
origin.
(2) ⇒ (3) : by contrary, we assume that no M exists to satisfy (3).then for
each natural number n, there is a vector xn such that ‖T (xn)‖ > n‖xn‖.
That is, ‖T (

xn
n‖xn‖

)‖ > 1. Put yn =
xn

n‖xn‖
, we get yn → 0, but T (yn) 9 0,

means T is not continuous at the origin, a contradiction.
(3)⇔ (4):
(3) ⇒ (4): we know that a non-empty subset of a normed linear space is
bounded if and only if it is contained in a closed sphere centered on the
origin. So (3)⇒ (4) is clear.
To show (4)⇒ (3); we assume T (S) is contained in a closed ball of radius K,
centered at te origin.If x = 0, thenT (x) = 0 and clearly ‖T ((x)‖ < K‖x‖;
and if x 6= 0, then

x

‖x‖
∈ Sand hence ‖T (

x

‖x‖
) ≤ K, so again we have

‖T (x)‖ ≤ K‖x‖.

Theorem 1.1.2 If X and Y be two normed linear spaces, then the set
B(X,Y ) of all bounded linear transformations of X into Y is a normed
linear space with respect to the operator norm which is defined as

‖T‖ = sup{‖T (x)‖ : ‖x‖ = 1}

Moreover, Y is complete if and only if B(X,Y ) is a Banach space.

Proof:
We only prove that if Y is complete, then B(X,Y ) is also complete( we

left to prove that B(X,Y ) is normed linear as it is easy to check). Let (Tn)
be Cauchy sequence in B(X,Y ).Let x be a fixed but arbitrary vector in X,
then‖Tn(x)−Tm(x)‖ ≤ ‖Tn−Tm‖‖x‖, and this implies that ‖Tn‖ is Cauchy
sequence and since Y is complete there is a vector in Y , say y such that
Tn(x) → y. Now define a transformation T : X → Y by T (x) = y.We have
to check that T is linear and bounded.Let Tn(x)→ T (x) and Tn(z)→ T (z) ,
then Tn(x)+Tn(z)→ T (x)+T (z) but Tn(x)+Tn(z) = Tn(x+z)→ T (x+z)
and due to uniqueness of limit, T (x+ z) = T (x) + T (z).Let α be any scalar
and x be any vector in X, then Tn(αx)→ T (αx) and αTn(x)→ αT (x)which
means that T (αx) = αT (x). Now T (x) = ‖ limTn(x)‖ = lim ‖Tn(x)‖ ≤
sup(‖Tn‖‖x‖) = (sup ‖Tn‖)‖x‖ shows that T has a bound and hence it is
continuous. Now it remains to prove that ‖Tn−T‖ → 0. Here Tn is Cauchy,
so for each ε > 0, there is N0 ∈ N such that m,n > N0 ⇒ ‖Tn − Tm‖ < ε. if
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‖x‖ ≤ 1, thenm,n > N0 ⇒ ‖Tn(x)− Tm(x)‖ ≤ ‖Tn − Tm‖ < ε. Now keep n
fixed and allow m to approach∞ we get ‖Tn(x)−Tm(x)‖ → ‖Tn(x)−T (x)‖
which means that ‖Tn(x) − T (x)‖ ≤ ε for all n ≥ N0 and all x such that
‖x‖ ≤ 1. This shows that ‖Tn − T‖ ≤ ε for all m ≥ N0. This completes the
proof of the theorem.
Now assume that B(X,Y ) is complete.Fix x0 ∈ X with ‖x0‖ = 1. Then by
Hahn-Banach theorem, there is f(x0) = 1. Let {yn} be a Cauchy sequence
in Y . Define

An : X → Y

, by
An(x) = f(x)yn

,then

‖An −Am‖ = sup{‖(An −Am)x‖ : ‖x‖ = 1}
= sup{‖f(x)yn − f(x)ym‖ : ‖x‖ = 1}
= sup{|f(x)|‖yn − ym‖ : ‖x‖ = 1}
= ‖yn − ym‖

This shows that {An} is a Cauchy sequence in B(X,Y ). Since, B(X,Y )
is complete, there is a A ∈ B(X,Y ) such that An → A. Now An(x0) =
f(x0)yn = yn. So lim yn = A(x0) ∈ Y. Hence Y is complete.

Definition 1.1.3 Let X be a normed linear space endowed with two norms
‖ · ‖1 and ‖ · ‖2. We say these two norms are “equivalent” if there is an
isomorphism between these two spaces i.e. if there exists two positive real
numbers c and C such that

c‖x‖2 ≤ ‖x‖1 ≤ C‖x‖2 , for all x ∈ X

Note 1.1.4 For a finite dimensional normed linear space, any two norms
are equivalent.

1.2 New Normed Space from the Old

Let X and Y be two normed linear spaces. We can introduce a new
normed linear space X ⊕ Y called topological direct sum, consisting
of all ordered pairs (x, y) where x ∈ X and y ∈ Y with the norm
‖(x, y)‖ = ‖x‖X + ‖y‖Y .Moreover, if X and Y are Banach spaces, then
X ⊕ Y is also so.

Definition 1.2.1 Let Y be closed linear subspace of a normed linear space
X . Define a relation “ ∼ ” by for any x, z ∈ X,x ∼ z ⇔ x − z ∈ Y , then
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for x ∈ X ,the coset x relative to Y be considered as
x = {z ∈ X : (x − z) ∈ Y } = {x + y : y ∈ Y }. Here we will denote x as
x+ Y

Consider the set
X

Y
= {x : x ∈ X}. This set with the operations “addition”

and “scalar multiplication” as defined bellow:
x + y = x+ y and λx = λx is a vector space. And it is easy to check that
this space with the norm defined as
‖x+ Y ‖ = inf{‖x+ y‖ : y ∈ Y } , is a normed linear space, called “quotient
space”.

Therefore, for a given normed linear space we always be able to get a new
normed space.

Theorem 1.2.2 Let Y be a closed subspace of a Banach space X. Then

the space
X

Y
is a Banach space.

Proof:

Let (xn)∞n=1 be a Cauchy sequence in
X

Y
.Choose a subsequence (n(k))∞k=1

such that ‖xn(k)−xn(k+1)‖ < 2−k.Then choose any arbitrary element xn(k) ∈
xn(k) such that ‖xn(k)−xn(k+1)‖ < 2−k. Clearly this is a Cauchy sequence in
X and since X is complete, this sequence converges.Let xn(k) → x ∈ X. But
‖xn(k)−x‖ ≤ ‖xn(k)−x‖ , immediately it follows that for every k, xn(k) →

x in
X

Y
.Hence,xn converges to x in

X

Y

Theorem 1.2.3 In a finite dimensional normed linear spaces, any two
norms are equivalent.

Proof:
Let {e1, e2, e3, ..., en} be an algebraic basis for a normed linear space X

of dimension n.Then any element x ∈ X can be written as
∑n

i=1 λei. Now
we would like to introduce a new norm on X, viz. ‖ · ‖1 defined as
for any x ∈ X, ‖x‖1 =

∑n
j=1 |λj |.To prove this is a norm, we only triangle

inequality which is as bellow:
Let x =

∑n
i=1 αei and y =

∑n
i=1 βei be two elements of X.Then ‖x+ y‖1 =∑n

i=1 |λi+βi| ≤
∑n

i=1 |λi|+
∑n

i−1 |βi| = ‖x‖1 +‖y‖1.Next we will show that
an arbitrary norm on X is a Lipschitz function on (X, ‖ · ‖).If x =

∑n
i−1 λiei

and y =
∑n

i=1 βiei, then
‖x−y‖ =

∑n
i=1 |λi−βi|‖ei‖ ≤ max ‖ei‖

∑n
i=1 |λi−βi| = max ‖ei‖ · ‖x−y‖1.

Therefore,
|‖x‖ − ‖y‖| ≤ ‖x− y‖ ≤ max ‖ei‖ · ‖x− y‖1.
Note that S1 = {x ∈ X : ‖x‖1 = 1} be compact in (X.‖ · ‖1). Let xk ∈ S1,
then xk =

∑n
i=1 λ

k
i ei, for any k ∈ N. then we have

∑n
i=1 |λki | = 1.Thus

(λki )
∞
k=1 is a bounded sequence for every i.Let (kl)

∞
l=1 be a subsequence such
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that λkli=1 → λi, as l→∞ for every i.Then
∑n

i=1 |λ
kl
i −λi| → ∞ as l→∞.So

we have xkl → x as l →∞, where x =
∑n

i=1 λiei. Since
∑n

i=1 |λ
kl
i | = 1, for

every l, we have
∑
|λi| = 1 and thus x ∈ S1. Since ‖ · ‖ is continuous on the

compact set S1, there exists two non-zero constants c and d such that

c ≤ ‖ x

‖x‖1
‖ ≤ d,∀x ∈ X

.
that is

c‖x‖1 ≤ ‖x‖ ≤ d‖x‖1, ∀x ∈ X

. Which shows that all norms are equivalent.

Lemma 1.2.4 Let X be a normed linear space and M be a proper closed
subspace of X. Then for each ε > 0, there is an element xε ∈ SX such that
dist(xε, X) ≥ 1− ε.

Proof: Choose any arbitrary z ∈ X

M
, with 1 > ‖z‖ > 1− ε. Now take any

z ∈ z with ‖z‖ ≤ 1 and set x =
z

‖z‖
.

Then dist(x,M) = dist(z,M) · 1

‖z‖
=

z

‖z‖
≥ z > 1− ε.

1.3 Four Important Theorems

The following four theorems are the building block of functional analysis:

• Hahn-Banach Theorem;

• Open Mapping Theorem;

• Closed Graph Theorem;

• Uniform Boundedness Theorem.

Let us state and prove the above theorems.

Theorem 1.3.1

The Hahn-Banach Extension Theorem

Theorem A: Let M be a linear subspace of a normed linear space X, and
let f be a linear functional defined on M , then f can be extended to a
functional g defined on X, such that ‖f‖ = ‖g‖.
Proof: Consider the set F : {g : M ′ → C : g|M = f,M ⊆M ′}. Then clearly
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F is partially ordered with respect to the relation:g1 ≤ g2 ⇔ M1 ⊆ M2 and
g2|M2 = g1, where Mi is the domain of gi,∀i. If X be a normed linear space
and x0 be a given non-zero point in X, then there is a functional f ∈ X∗
such that f(x0) = ‖x0‖ and ‖f‖ = 1. And it is obvious that union of any
chain of extensions is again a chain and is an upper bound for the chain.
According to Zorn’s lemma,there is a maximal extension f0. We will be
done if we can prove that domain of f0 is the whole X. And in fact , it is.
Because otherwise that function could be extended further and would not
be maximal, using Zorn’s lemma.
Theorem B: If X be a normed linear space and x0 be a given non-zero
point in X, then there is a functional f ∈ X∗ such that f(x0) = ‖x0‖ and
‖f‖ = 1.
Proof: Let M = span{x0} and define

f : M → C

by

f(αx0) = α‖x0‖.

Clearly, f(x0) = ‖x0‖ and ‖f‖ = 1. So by Hahn-Banach theorem, f can
be extended to some functional g on the whole of X, with the required
properties.
Theorem C: If M is proper closed subspace of a normed linear space X
and x0 ∈ X \M , then there is a functional f ∈ X∗ such that f(M) = 0 and
f(x0) 6= 0.
Proof: Since M is closed subspace of X, we get a natural mapping

η : X → X

M

which is continuous linear.
η(M) = 0 and η(x0) = x0 + M 6= 0. Now using theorem (B), there is an

f ∈ X

M
with

f(x0 +M) 6= 0.

Now we can define f0 ∈ X∗ by f0(x) = f(η(x)). This is our required
functional.

1.4 The Natural Embedding of X in X∗

If we are given a normed space X. We can think of its conjugate X∗ or
this is called the dual of X, consisting of all linear functionals on X. Now
this space X∗ is again a normed linear space and again we can think of
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its conjugate, namely X∗∗ or we can call it as second dual of X or dual of
dual of X.By this way, we will be getting duals a normed linear space. Now
why we are concentrating on the the dual space a normed space is to be
discussed.Each vector in x ∈ X can be imagined as an element of its second
dual or its bidual i.e. x can raise to a functional Fx ∈ X∗∗. Let f ∈ X∗ be
an arbitrary element.Then Fx be defined by

Fx(f) = f(x)

Now it is clear that Fx is linear.Because Fx(αf + βg) = (αf + βg)(x) =
αf(x) + βg(x) = αF(x)(f) + βF(x)(g),∀f, g ∈ X∗.
Now we wish to calculate the norm of Fx as:

‖Fx‖ = sup{|Fx(f)| : ‖f‖ ≤ 1}
= sup{|f(x)| : ‖f‖ ≤ 1}
≤ sup{‖f‖‖x‖ : ‖f‖ ≤ 1}
≤ ‖x‖.

But by Hahn-Banach theorem, we know that for a given non-zero point x0

in a normed linear space X,we always be able to find some functional f0 in
its dual such that f0(x) = ‖x‖ and ‖f‖ = 1. So from this we can conclude
that ‖Fx(f)‖ = ‖x‖. , that is the map

x→ Fx

is norm preserving map of X into X∗. And the functional Fx is called the
functional on X∗ induced by the vector x. and the mapping

x→ Fx

is isometrically isomorphism of X into X∗. We can call this as canonical
embedding.

Definition 1.4.1 A normed space is said to be reflexive if the canonical
embedding is surjective.

.

Example 1.4.2 The space lp, Lp for 1 < p <∞ are reflexive. Here
l∗p = lq and l∗∗p = l∗q = lp

Note: Since X∗∗ is complete, then if X is reflexive it is necessarily com-
plete.But if X is complete, then it need not be reflexive. A counter-example
is given below:
c∗0 = l1 and c∗∗0 = l∗1 = l∞.
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Proposition 1.4.3 Let X be a compact Hausdorff space, then C(X) is re-
flexive if and only if X is a finite set.

An Interesting Fact: We are now ready to go through the following
concept, which is weak∗ topology on a normed linear space. First we will
clarify what we mean by weak topology on a normed space.For normed
space X is a metric space,so there is a topology in X induced by the metric
in its own right called strong topology on X. The weak topology is a
topology on the normed space X with respect to which all the functions in
X∗ are continuous. Clearly this is weaker than the strong topology.
We are now interested about the weak∗ topology on X∗. We know that X∗

is also a normed linear space, and as a metric space,it has a topology,which
is the biggest topology, called strong − topology on X∗. As above we can
define weak topology on it. By weak∗-topology on X∗ we mean the weakest
topology on X∗ with respect to which all the induced functionals are
continuous. By canonical embedding, we can think of X as a part of X∗∗.
Now we can restate the above definition. The weakest topology on X∗

with respect to which all functions in X regarded as a subset of X∗∗ are
continuous.This is weak∗ − topology and clearly it is weaker than the weak
topology.
Consider a vector x ∈ X and its induced functionals Fx ∈ X∗. The
weak∗ − topology on X∗ is the weakest topology on X∗ with respect to
which all Fx are continuous.Let f0 ∈ X∗ be arbitrary and ε > 0 be given,
then

S(x, f0, ε) = {f : f ∈ X∗ and |Fx(f)− Fx(f0)| < ε}
={f : f ∈ X∗ and |f(x)− |f0(x) < ε}

This is an open set in the weak∗ topology.The family of such kind of open
sets defines an open sub-base for the weak∗ − topology. And all finite
intersections of these sets form an open base for the weak∗ − topology and
the open sets are the unions of these finite intersections.

Remark 1.4.4 X∗ is Hausdorff space with respect to its weak topology.
This is because if f and g be two distinct functionals in X∗, then there

is a vector x ∈ X such that f(x) 6= g(x). Choose ε =
f(x)− g(x)

3
,then

S(x, f, ε) and S(x, g, ε) are two disjoint neighborhoods of f and g.

Theorem 1.4.5 The Open Mapping Theorem: If B and B′ are two
Banach spaces and T is a continuous linear transformation of B onto B′,
then T is an open mapping.
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Before going through the proof of this theorem, we will introduce a lemma
without proof, which is

Lemma 1.4.6 If B and B′ be two Banach spaces and T is a continuous
linear transformation of B onto B′. Then image of an open sphere in B
with center at origin contains an open sphere center at the origin in B′.

Proof: We denote Sr and S′r to be two open spheres with radius r and
centered at the origin in B and B′ respectively. Clearly

T (Sr) = T (rS1) = rT (S1),

so we will be done if we can show that T (S1) contains some S′r. First we
will prove that T (S1) ⊃ S′r for some r > o.Since T is onto, we see that
B′ = ∪∞n=1T (Sn). Since B′ is complete, so Baire’s category theorem implies
that for some n0 T (Sn0) has an interior point y0, we may be assumed to
lie in T (Sn0). The mapping y → y − y0 is a homeomorphism of B′ onto
itself,so T (Sn0)−y0 has the origin as an interior point.Since y0 is in T (Sn0)
we have T (Sn0) − y0 ⊂ T (S2n0) and from this we obtain interior point.
Multiplication by any non-zero scalar is a homeomorphism of B′ onto itself,
so T (S2n0) = 2n0T (S1) = 2n00T (S1), and it follows from this that origin
is also an interior point of T (S1), so Sε ⊆ T (S′ε),for some positive ε We
conclude the proof by showing that S′ε ⊆ T (S3)which is clearly equivalent
to S′ε/3 ⊆ T (S1), for some positive ε. Let y be a vector in B′ such that

‖y‖ < ε. Since y ∈ T (S1) there is a vector x1 ∈ B such that ‖x1‖ < 1 and
‖y− y1‖ < ε/2, where y1 = T (x1). We next observe that S′ε/2 ⊆ T (S1/2), so

there is a vector x2 ∈ B such that ‖x2‖ < 1/2 and ‖(y − y1) − y2‖ < ε/4,
where y2 = T (x2), continuing this way,we obtain a sequence {xn} in B such
that ‖xn‖ < 1/2n−1 and ‖y− (y1 +y2 + ...+yn)‖ < ε/2n, where yn = T (xn).
If we put

sn = x1 + x2 + ...+ xn,

then it follows from ‖xn‖ < 1/2n−1 such that {sn} is a Cauchy sequence in
B for which

sn ≤ ‖x1‖+ ‖x2‖+ ...‖xn‖ < 1 + 1/2 + ...+ 1/2n−1 < 2

. Since B is complete, there is sequence x ∈ B such that sn → x and
‖x‖ = ‖ lim sn‖ = lim ‖sn‖ ≤ 2 < 3.This shows that x ∈ S3and T is also
continuous, so

T (x) = T (lim sn) = limT (sn) = lim(y1 + y2 + ...yn) = y.

This implies that y ∈ T (S3).
Proof of Open Mapping Theorem:
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We are done if we can show that for an open set G in B, T (G) is also
open.Let y ∈ T (G), then it is sufficient to produce an open sphere centered
at origin, which is contained in T (G).Since T is onto, let x ∈ G such that
T (x) = y. Let Sr(x) be an open sphere centered at x and radius r, then
Sr(x) can be written as x + Sr, where by Sr we mean the sphere centered
at origin and radius r. And of course, x + Sr ⊂ G. By previous lemma
T (Sr) contains some S′r1 .Now it is evident that y + S′r1 ⊆ T (G). So we get
y + S′r1 ⊆ y + T (Sr) = T (x) + T (Sr) = T (x+ Sr) ⊆ T (G).

Note: In most of the case of application of open mapping theorem the
following statement of the open mapping theorem is more useful:
A one-one continuous function of one Banach space onto another is a home-
omorphism. In particular, if a one-one linear transformations of one Banach
space to itself is continuous, then its inverse is automatically continuous.

Theorem 1.4.7 Closed Graph Theorem: If B and B′ are two Banach
spaces and T is linear transformation of B into B′, then T is continuous
⇔ its graph is closed.
Proof: One implication is straight forward, which is if T is continuous,
then its graph is closed.Because, if xn → x in B, then T (xn) → T (x)
which means that T is a closed map.So the graph of T is closed. For other
implication, let us denote the space B as B1 after re-norming by
‖x‖1 = ‖x‖+ ‖T (x)‖. Since

‖T (x)‖ ≤ ‖x‖+ ‖T (x)‖ = ‖x‖1.

T is a continuous of B1 into B′.We will be done if we can show that B1 and
B′ have the same topology.Since

‖x‖ ≤ ‖x‖+ ‖T (x)‖ = ‖x‖1,

it is clear that that the identity mapping of B1 onto B′ is continuous.If we
can show that B1 is complete, then by the restatement of the open mapping
theorem given above in “Note”, it is clear that T is a homeomorphism. To
prove, B1 is complete, let (xn) be a Cauchy sequence in B1, then xn and
(T (xn)) are also Cauchy in B and B′ respectively. As these two spaces are
complete, it follows that for some x and y in B and B′ respectively, ‖xn-
x‖ → 0 and ‖T (xn) − y‖ → 0. We assumed that the graph of T is closed
in (B,B′), so the point (x, y) lies in the graph of T . Which means that
T (x) = y. Therefore
‖xn − x‖1 ≤ ‖xn − x‖ + ‖T (xn − x)‖ = ‖xn − x‖ + ‖T (xn) − T (x)‖ =
‖T (xn)− y‖ → 0.
So B1 is complete, and hence we are done.

Theorem 1.4.8 Uniform Boundedness Theorem: Let B be a Banach
space. If {Ti} be a non-empty set of continuous linear transformations of B
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into X such that {Ti(x)} is bounded subset of X , for each x ∈ B, {‖Ti‖} is
bounded set of numbers,that is {Ti} bounded as a subset of B(B,X).

Proof: For each positive integer n, consider the set
Fn = {x : x ∈ B and ‖Ti(x)‖ ≤ n, ∀i} Clearly this is a closed subset of B.
By our assumption,

B = ∪∞n=1Fn

Since B is complete, so Baire’s category theorem implies that one of
the Fn say,Fn0 is a non-empty interior.And so there is r0 > 0 such that
for some point x0, the closed sphere S0 centered at x0 and radius r0 is
contained in Fn0 . So ∀i, each vector in Ti(S0) has norm at most n0. i.e.

‖Ti(S0)‖ ≤ n0. Denote S =
S0 − x0

r0
is the closed unit sphere.Therefore, we

have ‖T (S − x0)‖ ≤ 2n0, which means ‖T (S)‖ ≤ 2n0

r0
,∀i. And hence the

proof is complete.
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Chapter 2

Hilbert Space and Birkhoff
Orthogonality

Introduction:
Hilbert space is a special type of Banach space.Because there is some
additional structure on the Hilbert space which tells us when two vectors
in that space will be orthogonal( or,perpendicular).Besides, there is a
natural correspondence between the Hilbert and its conjugate. As we are
given a linear space, the first thing that comes into the picture is the
linear transformation.So in Hilbert space H,if T is a linear operator, its
corresponding conjugate acts on H (instead of H∗).

Definition 2.0.9 A Hilbert space is a complex Banach space whose norm
comes from the inner product, i.e., in which there is defined a complex func-
tion 〈, 〉 on the Hilbert space as
for any two vectors x, y ∈ H and α, β ∈ C, the followings hold:
(1)〈αx+ βy, z〉 = α〈x+ z〉+ β〈y + z〉
(2)〈x, y〉 = 〈y, x〉.
(3) 〈x, x〉 = ‖x‖2.

Example 2.0.10 The space ln2 with the inner product of two vectors
x(x1, x2, ..., xn) and y = (y1, y2, ..., yn) defined by

〈x, y〉 =
n∑
i=1

xiyi

Example 2.0.11 The space l2 with the inner product of two vectors x =
{x1, x2, ..., xn, ...} and y = {y1, y2, ..., yn, ...} defined by

〈x, y〉 =
∞∑
i=1

xiyi
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Example 2.0.12 The space L2 associated with a measure space X with
measure µ, with the inner product of two functions f and g defined by

〈f, g〉 =

∫
f(x)g(x)dµ(x)

Example 2.0.13 If x and y be any two vectors in H, then it satisfies
Schwarz inequality, which is |〈x, y〉 ≤ ‖x‖‖y‖.

Example 2.0.14 Let H = {f : f : [0, 1] → C is absolutely continuous with
f(0) = 0 and f ′ ∈ L[0, 1]}. Define 〈f, g〉 =

∫ 1
0 f
′(t)g′(t)dt;∀f, g ∈ H. We

will see H is a Hilbert space.

Proof: If y = 0, there is nothing to prove. So assume that y 6= 0., then

the inequality reduces to |〈x, y

‖y‖
〉| ≤ ‖x‖. Without loss of generality we

assume that ‖y‖ = 1, so it remains to prove that |〈x, y〉| ≤ ‖x‖, ∀x. This is
clear, because
0 ≤ ‖x − 〈x, y〉y‖2 = 〈x − 〈x, y〉y, 〈x − 〈x, y〉y〉 = 〈x, x〉 − 〈x, y〉〈x, y〉 −
〈x, y〉〈x, y〉+ 〈x, y〉〈x, y〉〈y, y〉 = 〈x, x〉 − 〈x, y〉〈x, y〉 = ‖x‖2 − |〈x, y〉|2.

Theorem 2.0.15 A closed convex subset C of a Hilbert space H contains
a unit vector of the smallest norm.

Proof: Let d = inf{‖x‖ : x ∈ C} So there is a sequence {xn} of vectors
in C such that ‖xn‖ → d. Since C is convex, (xn + xm)/2 ∈ C and so
‖(xn + xm)/2‖ ≥ d, i.e. ‖xn + xm‖ ≥ 2d.

‖xn + xm‖2 = 2‖xn‖2 + 2‖xm‖2 − ‖xn + xm‖2

≤ 2‖xn‖2 + 2‖xm‖2 − 4d2 → 2d2 + 2d2 − 4d2 = 0.

shows that {xn} is Cauchy in C. and since H is complete,it converges to
some point say x.
Now ‖x‖ = ‖ limxn‖ = lim ‖xn‖ = d shows that x is the vector in with the
smallest norm. We are now to prove this x is unique.If not, suppose there
is another x′ with ‖x′‖ = d. As C is convex, (x + x′)/2 is also in C. By
parallelogram law,

‖x+ x′

2
‖2 =

‖x‖2

2
+
‖x′‖2

2
− ‖x− x

′‖2

2
<
‖x‖2

2
+
‖x′‖2

2
= d2

. This is a contradiction to the definition of d.
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Theorem 2.0.16 Parseval’s Identity: In a Hilbert space H,for any two
vectors x, y ∈ H
4〈x, y〉 = ‖x+ y‖2 − ‖x− y‖2 + i‖x+ iy‖2 − ‖x− iy‖2.
holds.This is easy to prove. Just we are to convert the right hand side by
inner product.

2.1 Orthogonality in Hilbert Spaces:

Let x, y ∈ H,are said to be orthogonal if 〈x, 〉y = 0, and we write x ⊥ y.
In Hilbert space, orthogonality is symmetric, but in general normed linear
spaces it is not true. We will come to this later.
Theorem 3. Let M be closed linear subspace of H and let x ∈ H\M, and
d be the distance from x to M . There exists a unique vector in M such
that ‖x− y0‖ = d.
Proof:
The set C = x + M = {x + m : m ∈ M} is convex and d is the distance
from origin to C. Then by the previous theorem, there is a unique vector
z0 ∈ C with ‖z0‖ = d. Set y0 = x− z0 ∈M , moreover, ‖x− y0‖ = ‖z0‖ = d.
Now if we prove, such y0 is unique, we are through. If y0 is not unique,
then there is y1 ∈ M with y0 6= y1 and ‖x− y1‖ = d, then z1 = x− y1 ∈ C
with z1 = z0 and ‖z1‖ = d, a contradiction to the fact that z0 is unique.

Theorem 2.1.1 Let H be a Hilbert space and x and y be any two elements
in H, then the following statements are equivalent:
1. x ⊥ y
2.‖x+ α y‖ ≥ ‖x‖, ∀α ∈ C
3.‖x+ αy‖ = ‖x− αy‖, ∀α ∈ C
4.‖x+ y‖ = ‖x− y‖
5.‖x+ αy‖ = ‖x+ βy‖, ∀α, β ∈ C and |α| = |β|
6.‖x± y‖2 = ‖x‖2 + ‖y‖2
7.‖ x
‖x‖ + y

‖y‖‖ = ‖ x
‖x‖ −

y
‖y‖‖, provided ‖x‖ 6= 0 and‖y‖ 6= 0.

Proof:

(1)⇔ (2)
Assume (1) holds.‖x+αy‖2−‖x‖2 = 〈x+αy, x+αy〉−〈x, x〉 = |α|2‖y‖2 ≥ 0.
Now assume (2) holds.x + αy‖2 − ‖x‖2 = 〈x + αy, x + αy〉 − 〈x, x〉 =
|α|2‖y‖2 + α〈x, y〉 + ᾱ〈x, y〉.Take α = β〈x, y〉, where β is any real and we
get β|〈x, y〉|2(β‖y‖2 + 2) ≥ 0. Let a = |〈x, y〉|2and b = ‖y‖2.So we have
βa(bβ + 2) = ‖x + αy‖2 − ‖x‖2 ≥ 0. Suppose a > 0. So the last inequality
fails for a negative realβ whose absolute value is sufficiently small. So a = 0
is the only choice, which proves our result.
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(1)⇔ (3)
Assume (1).‖x + αy‖2 − ‖x − αy‖2 = 0. This obviously follows through
inner product.Now suppose (3)holds.In this case we only consider when
α; is non-zero complex number,because α = 0 is the trivial case.
Then‖x+ αy‖2 − ‖x− αy‖2 = 0⇒ α〈y, x〉+ ᾱ〈x, y〉 = 0.Which immediate
implies 〈x, y〉 = 0 = 〈y, x〉. From this our required result follows.
Results (4),(5) and(7) are the immediate consequence of the above re-
sult.And simple calculation using inner product will show (1)⇔ (6).

Definition 2.1.2 By an orthonormal set in a Hilbert space, we mean a
subset of H consisting of all mutually orthonormal unit vectors, i.e., if {ei}
be a orthonormal set, then
(1)i 6= j ⇒ ei ⊥ ej .
(2)‖ei‖ = 1.
If H contains only zero-vector, then H contains no orthonormal sets.

Theorem 2.1.3 Let {e1, e2, ..., en} be a finite orthonormal set in H, If x ∈
H, then ∑n

i−1 |〈x, ei|2 ≤ ‖x‖2;

And moreover, x−
∑n

i=1〈x, ei〉 ⊥ ej .

Proof: 0 ≤ ‖x −
∑n

i=1〈x, ei〉‖2 = 〈x −
∑n

i=1〈x, ei〉ei, x −∑n
i=1〈x, ei〉ei〉 = 〈x, x〉 −

∑n
i=1〈x, ei〉〈x, ei〉 −

∑n
j=1〈x, ej〉〈x, ej〉 +∑n

i=1

∑n
j=1〈x, ei〉〈x, ej〉〈ei, ej〉 = ‖x‖2 −

∑n
i=1 |〈x, ei〉|2.

So one part is proved. For the other part we look at the following:
〈x−

∑n
i=1〈x, ei〉ei, ej〉 = 〈x, ei〉 −

∑n
i=1〈x, ei〉〈ei, ej〉 = 〈x, ej〉 − 〈x, ej〉 = 0.

Theorem 2.1.4 If {ei} is an orthonormal set in H, if x ∈ H,then the set
S = {ei : 〈x, ei〉 6= 0} is either empty or countable.

Proof: Consider the set, for each n ∈ N,

Sn = {ei : |〈x, ei〉| > ‖x‖2/n}

By the above inequality, Sn contains at most n− 1 vectors. But

S = ∪∞n=1Sn

And so S is countable.
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Theorem 2.1.5 Bessel’s Inequality: If ei is an orthonormal set in H,
then for any x ∈ H, ∑

|〈x, ei|2 ≤ ‖x‖2;

Proof: By Theorem 5. either S is finite or countable. If S is finite, we
can define

∑
|〈x, ei|2 =

∑n
i=1 |〈x, ei|2, this problem reduces to the theorem 5.

So we need to take care when S is countable.If
∑∞

i=1 |〈x, ei|2 converges, then
every series obtained from this also converges with the same sum.Therefore,
we can define

∑
|〈x, ei|2 to be

∑∞
i=1 |〈x, ei|2; That means our problem re-

duces to
∞∑
i=1

|〈x, ei|2 ≤ ‖x‖2;

Since no partial sum in the left hand side can exceed ‖x‖2, the inequality
is in fact true.

The Conjugate Space of H :

Let y ∈ H be fixed but arbitrary, and consider the function fy defined on H
by fy(x) = 〈x, 〉y. It is easy to see that fy is linear.We now wish to compute
the norm as

|fy(x)| = |〈x, y〉| ≤ ‖x‖‖y‖.

Which shows that
‖fy‖ ≤ ‖y‖.

If y = 0, then equality is attained. But if y 6= 0, then

‖fy‖ = sup{|fy(x) | : ‖x‖ = 1} ≥ |fy(
y

‖y‖
)||〈 y
‖y‖

, y〉| = ‖y‖.

So we can say that y → fy is a norm preserving mapping of H into H∗.
The next theorem is easy to prove.

Theorem 2.1.6 Let f ∈ H be fixed but arbitrary.Then there exists a unique
y ∈ H such that

f(x) = 〈x, 〉y,∀x ∈ H.

A short computation will reach one to the proof of the above theorem.

The Adjoint of an Operator

Let H be a Hilbert space. Let T be an operator on H, then T gives rise to
an operator T ∗ on H∗, where T ∗ is defined by

(T ∗f)x = f(Tx).
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The mapping T → T ∗ is an isometrically isomorphism of B(H) into B(H∗).
This map reserves products and preserves identity transformations. By the
same argument,T ∗ gives rise to an operator T ∗∗ on H. Since H is reflexive,
T ∗∗ = T.

Definition 2.1.7 Birkhoff Orthogonality: Let X be a normed space and for
any two vectors x and y, x is said to be Birkhoff orthogonal to y if ‖x+αy‖ ≥
‖x‖, for all α ∈ C.

The Birkhoff orthogonality is not symmetric, i.e. x ⊥B y does not imply
that y ⊥x, for all x, y ∈ X.
In the next chapter we will see the geometric structure of a Banach space
in Birkhoff orthogonal sense.
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Chapter 3

Reisz’s Lemma and
Orthogonality in Normed
Linear Spaces:

Lemma 5.1. Let X be a normed linear space, x ∈ X, and let f ∈ X∗, then

|f(x)| = dist(x, ker(f)) · ‖f‖

.
Proof: If f(x) = 0, then there is noting to prove. So assume that

f(x) 6= 0. Let v ∈ ker(f). Then ‖x − v‖ · ‖f‖ ≥ |f(x − v)| = ‖f(x)‖. This
means that dist(x, ker(f)) · ‖f‖ ≥ |f(x)|.
To see the other inequality, let y ∈ X \ ker(f). Then y 6= 0 and

‖y‖ = |f(x)

f(y)
| · ‖x− (x− (

f(x)

f(y)
)y‖ ≥ |f(x)

f(y)
|dist(x, ker(f))

,

since x − (
f(x)

f(y)
)y ∈ ker(f). Therefore dist(x, ker(f))|f(y)| ≤ ‖y‖ · |f(x)|,

for any y ∈ X and hence the lemma follows.

Lemma 3.0.8 Let X be a normed linear space and M be a proper closed
subspace of X and x ∈ X, there is a f ∈ X∗ such that ‖f‖ = 1,M ⊂ ker(f)
and dist(x,M) = dist(x, ker(f)) = f(x).

Proof: If x ∈ M, then by Hahn-Banach theorem, there is f ∈ X∗ such
that ‖f‖ = 1 and M ⊂ ker(f). So dist(x,M) = dist(x, ker(f) = f(x) = 0).
So assume that x ∈ X \M. Then Hahn-Banach theorem implies that there
is g ∈ X∗ such that M ⊂ ker(g), g(x) = 1 and dist(x,M) = ‖g‖−1. Just
put f = ‖g‖−1 · g. Therefore, ‖f‖ = 1,M ⊂ ker(f), and dist(x, ker(f)) =
|f(x)| = f(x) = ‖g‖−1 = dist(x,M), using lemma 1.1.
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Proposition 3.0.9 Let X be a normed space, M be a proper closed subspace
of X,M 6= 0, and let ε ∈ (0, 1). Then there is a pair (x, f) ∈ X×X∗ such that
‖x‖ = ‖f‖ = 1,M ⊂ ker(f) and f(x) = dist(x,M) = dist(x, ker(f) = 1− ε.

Proof: Let y ∈ X \ M. Then d ≡ dist(y,M) > 0. There is a point

z ∈ M such that d(1 +
ε

1− ε
) > ‖y − z‖ ≥ d. Put x =

(y − z)
‖y − z‖

.

Therefore ‖x‖ = 1 and for any w ∈ M, ‖x − w‖ ≥ 1 − ε. And
this means that dist(x,M) ≥ 1 − ε. Hence,lemma 1.2. there is a
f ∈ X∗ with ‖f‖ = 1,M ⊂ ker(f) and f(x) = dist(x,M) ≥ 1 − ε. If
dist(x,M) = 1 − ε, (x, f) is the desired pair.And if dist(x,M) > 1 − ε, we

take x
′ ∈ M \ 0 and define xt =

[tx+ (1− t)x′ ]
‖[tx+ (1− t)x′ ]‖

for any t ∈ [0, 1]. Since

f(x0) = 0 and f(x1) > 1− ε, f(xt) = dist(xt,M) = 1− ε, for some t ∈ (0, 1).

Definition 3.0.10 Let X be a normed space and M be a proper closed
subspace of X. Then for a given point x ∈ X, an element m ∈M is said to
be an element of best approximation of x if ‖x−m‖ = dist(x,M).

Proposition 3.0.11 Let X be a normed space and M be a proper closed
subspace of X and x ∈X\M. Then we have:

(a) An element m ∈ M is an element of best approximation of x if and
only if (x−m) ⊥M.

(b) Let f ∈ X∗.Then X ⊥ ker(f) if and only if f 6= 0 and |f(x)| =
‖f‖ · ‖x‖.

(c) The element is orthogonal to M if and only if there exists g ∈ X∗ such
that g 6= 0, g(x) = ‖g‖ · ‖x‖ and M ⊂ ker(g).

Proof: Assertion (a) is clear from the definition of best approximation.
Let 0 6= f ∈ X∗. Let m ∈ M is a best approximation of x and f 6= 0,
because x ∈ ker(f). Then using lemma 5.1, we get x ⊥ ker(f) if and only if

‖x‖ = dist(x, ker(f)) =
|(x)|
‖f‖

. and hence the assertion (b) follows.

Now assume that x ⊥ M. Then, by lemma 5.2, there exists a g ∈ X∗ such
that g(x) = dist(x,M) = |g(x)| = ‖x‖. So (c) is proved. Conversely,
suppose that there is a g ∈ X∗ with the conditions imposed in (c). So by
M ⊂ ker(g) and x ⊥M , it follows that x ⊥M. To show (d) it is sufficient for
the case when x 6= 0. Now if f ∈ F (x) then f(x) > 0, ‖f‖ = ‖x‖. Then for
very α ∈ C and every y ∈ ker(f), ‖x‖ = ‖x‖−1 · f(x+ αy) ≤ ‖x+ αy‖.This
shows that x ⊥ ker(f).
Conversely, assume that f(x) ≥ 0, and x ⊥ ker(f). Then using (b) we get
that f(x) = ‖f‖ · ‖x‖, and in addition,if ‖f‖ = ‖x‖, then we are done.
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Theorem 3.0.12 James Theorem:
Let C be closed convex subset of a Banach space X. Then C is w−compact
if and only if every f ∈ X∗ attains its supremum over C at some point of
C.

Corollary 3.0.13 A Banach space X is reflexive if and only if every f ∈ X
attains its norm.

Theorem 3.0.14 Let X be a Banach space. Then the following conditions
are equivalent:
(a)X is reflexive.
(b) For every proper closed subspace M of x, there is an element x ∈ X \M
such that dist(x,M) = ‖x‖.
(c) For every proper closed subspace M of X there is an element x ∈ X \M
such that x ⊥M.

Proof: (a)⇔ (b) : Assume X is reflexive and M be a proper closed subspace
of X.Then there is an f ∈ X∗ with ‖f‖ = 1 and M ⊂ ker(f). Since X
is reflexive, there is x ∈ X such that ‖x‖ = 1 and f(x) = 1. So, for all
v ∈M, ‖x− v‖ ≥ f(x− v) = f(x) = 1 and hence dist(x,M) = 1.
(b) ⇔ (a) : Assume (b) holds. Let f ∈ X∗ with ‖f‖ = 1 and we take M =
ker(f). Then M is a closed subspace of co-dimension 1, and so by condition
(b), there is an element x ∈ X \M with ‖x‖ = 1 and distt(x,M) = 1. Now
applying lemma 5.1, we conclude that |f(x)| = 1 = ‖f‖, i.e. every f ∈ X∗
achieves its norm .By James theorem, we conclude that X is reflexive.
Using lemma 5.4(a), it is clear that (b) and (c) are equivalent.
Note: We now proceed through an example to understand Theorem 5.6
clearly.
Let us consider the space C[0,1] with the sup norm. Let {x ∈ C[0,1] :
x(0) = 0}. Now define a linear functional f on X by

∫ 1
0 x(t)dt = 0, where

the integral is taken in the sense of Riemann. Now ker(f) = {x ∈ X :∫ 1
0 x(t)dt = 0}. Here C[0,1] ∼= X. Then ‖f‖ = sup |f(x)| = 1, but f does not

attain its norm.Because if it does, then there is some x0 ∈ X with ‖x0‖ = 1
such that f(x0) = 1, contradiction to the fact that f is continuous.Which
shows that 0 can never be a best approximation to any point on the unit
sphere.

3.1 Generalization of Birkhoff Orthogonality:

For every non-reflexive Banach space, there is always a proper closed
subspace such that no elements will be orthogonal to that subspace.So
now it is interesting whether we can define the orthogonality in a general
non-reflexive Banach space or not.With this motivation, we are like to
introduce “asymptotic orthogonality” in such spaces. Bishop − Phelps

23



orthogonality is one such, which is being introduced below:

Definition 3.1.1 Let X be a normed linear space and M be a proper closed
subspace of X. A sequence (xn) in X with ‖xn‖ ≡ 1 is said to be (BP ) −
orthogonal to M if it satisfies the following conditions:
(a)There is a sequence (fn) in X∗ with fn ∈ F (xn) for each n.
(b)There is a functional f ∈ X∗ with ‖f‖ = 1,M ⊂ ker(f) and lim ‖fn−f‖.
and we write (xn) ⊥BP M.

Remark 3.1.2 Let M be a proper closed subspace of X and for some x ∈ X
with ‖x‖ = 1, x ⊥B M . Then the constant sequence (xn) ⊥BP M . Because,
using the proposition 5.4(c), we get g ∈ X∗ with ‖g‖ = 1,M ⊂ ker(g) and
g(x) = 1. Also dist(x,M) = ‖x‖ = 1. We can now apply lemma 5.1 because
the constant sequence gn = g satisfies the conditions (a) and (b);and condi-
tions (a) and (b) imply that lim g(xn) = 1 and lim dist(xn, ker(f)) = 1. This
shows that Birkhoff orthogonality is a special case of BP − orthogonality.

Definition 3.1.3 Let X be a normed linear space.X is said to be
subreflexive if the set of all normed attaining functionals on X is dense in
the dual of X. i.e., more precisely,for every f ∈ X∗, and for every ε > 0,
there is a g ∈ X∗ and x ∈ SX such that |g(x)| = ‖g‖ and ‖f − g‖ < ε.

Example 3.1.4 Every Banach space is subreflexiveḂut a incomplete
normed linear space may or may not be subreflexive. For example,every
dense subspace of a Hilbert space is subreflexive.

Remark 3.1.5 From the definition of subreflexivity and Hahn−Banach
theorem, a consequence is given below:

Proposition 3.1.6 A normed linear space X is subreflexive if and only
if for every proper closed subspace M of X ,there is a sequence (xn) of X
with ‖xn‖ ≡ 1 such that (xn) ⊥BP M.

Theorem 3.1.7 A normed linear space X is subreflexive if and only if
for every proper closed subspace M of X, there is a sequence (xn) of X with
‖xn‖ ≡ 1 such that (xn) ⊥BP M.

Theorem 3.1.8 Let X be an arbitrary Banach space.Then for every proper
closed subspace M of X, there is a sequence (xn) in X which is BP −
orthogonal to M.

This is nothing but an easy consequence of Bishop-Phelps theorem.

Lemma 3.1.9 Let f ∈ X∗, ‖f‖ = 1 and let (xn) be a sequence in X with
‖xn‖ ≡ 1, Then lim f(xn) = 1 ⇔ w∗(xn) ⊂ F ∗(f), where F ∗ denotes the
duality mapping of X∗.
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Proof: Assume lim(xn) = 1, and let λ ∈ w∗(xn), there is a sub-sequence
(xn(k)) such that 1 = lim f(xn(k)) = λ(f). But λ(f) ≤ 1, and so we have,
1 = λ(f) ≤ ‖λ‖‖f‖ ≤ 1. This means λ ∈ F ∗(f). Conversely, assume that
w∗(xn) ⊂ F ∗(f) and lim f(xn) 6= 1. So there is a subsequence (xn(k)) and
ε ∈ (0, 1) such that f(xn(k)) ≤ 1 − ε, ∀k ≥ 1. Let λw∗(xn(k)).Then λ(f) ≤
1− ε. So λ ∈ w∗(xn) ⊂ F ∗(f). Therefore λ(f) = 1. This is a contradiction.

Lemma 3.1.10 Let f ∈ X∗, ‖f‖ = 1, and F ∗ be the duality mapping of
X∗. If λ ∈ F ∗(f), then λ ⊥ ker(f), where ker(f) is understood to be the
subspace of X∗∗ via the natural embedding of X into X∗∗.

Proof: Denote κ∗ : X∗ → X∗∗∗ be a natural embedding and
F ∗∗ : X∗∗ → X∗∗∗∗ be the duality mapping.Then λ ∈ F ∗(f) ⇔ f̃ ∈ F ∗∗(λ)
,where f̃ = κ∗f. Hence using proposition 5.3., we can conclude
that λ ⊥ ker(f̃), whenever λ ∈ F ∗(f). Therefore, λ ∈ F ∗(f) and
ker(f) ⊂ ker(f̃)⇒ λ ⊥ ker(f) in X∗∗.

Non-Reflexive Banach Spaces and BP-Orthogonality

3.2 Non-Reflexive Banach Space and BP-
Orthogonality

Theorem 3.2.1 Let X be a Banach space.The followings are equivalent:

(a) X is non-reflexive.

(b) There exists f ∈ X∗ which does not achieve its norm.

(c) There exists a proper closed subspace M such that none of the elements
of X is orthogonal to M

The above theorem is just the restatement of the theorem 5.6.

Theorem 3.2.2 A Banach space X is non-reflexive if and only if there is
a proper closed subspace M of X with co-dimension 1 such that any BP −
orthogonal sequence to M does not converge weakly to an element of X.

Proof: Suppose X be reflexive and M be an arbitrary subspace of X.
Let (xn) be any sequence in x such that (xn) ⊥BP M and let (fn) ⊂ X∗

be a sequence and f ∈ X∗ satisfies the conditions necessary to define
BP − orthogonality. Since X is reflexive, then (xn) contains a subsequence
xnk which converges weakly to some element, say x ∈ X. Therefore we
have, for each k, |f(x)−1| = |f(x)−fnk(xnk)| ≤ f(x−xnk)|+‖f−fnk‖ → 0
as k → ∞ and ‖x‖ ≤ 1.This proves the “if” part. To prove the “only if”
part, let X is non-reflexive and every proper closed subspace M of X admits
a BP − orthogonal sequence which weakly converges to some point of X,
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say,x. Moreover, let f ∈ X∗ and a sequence (fn)satisfying the conditions
necessary to define BP − orthogonality.Then surely M = ker(f), since
M ⊂ ker(f) and co-dimension of M is 1. Hence by lemma 5.1 with the
conditions to define BP − orthogonality imply dist(xn,M) ≤ f(xn) ≤ 1.
Thus f(x) = lim f(xn) and proposition 5.3 ensures that x ⊥ M .Now using
theorem 5.6, we can conclude that X is reflexive, a contradiction.

Definition 3.2.3 Let X be Banach space and M be a proper closed subspace
of X. For the subspace M , we define two subspaces L(M) and R(M) by

L(M) = {x ∈ X : x ⊥ v,∀v ∈M}

R(M) = {x ∈ X : v ⊥ x,∀v ∈M}

We say that M is L−complemented in X if L(M) is a closed linear subspace
of X and

X = L(M)⊕M

Similarly M is said to be R−complemented in X if R(M) is a closed linear
subspace of X and

X = M ⊕R(M)
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Chapter 4

Almost Constrained
subspaces of Banach spaces

First we will recall certain definitions.

Definition 4.0.4 Let Y be a subspace of a Banach space X.

(a) For y∗ ∈ Y ∗, HB(y∗) = {x∗ ∈ X∗ : x∗|Y = y∗ and ‖x∗‖ = ‖y∗‖}

(b) Y ia U-subspace of X if for any y∗ ∈ Y ∗, HB(y∗) is singleton.
X is said to be Hahn- Banach smooth if X is a U-subspace of X∗∗

(c) The duality mapping D for X is the set-valued map from SX to SX∗

defined by

DX(x) = {x∗ ∈ SX∗ : x∗(x) = 1}, for all x ∈ SX

(d) x ∈ SX is called a smooth point of BX if DX(x) is singleton.

Definition 4.0.5 Constrained subspace: Let X be a Banach space. A
subspace Y (which has to be closed in norm sense) of X is said to be con-
strained subspace of X if there is a norm 1 projection on X with the range
Y.

Example 4.0.6 Let X = l1, the space of all absolute summable sequences
and Y = span{e1, e2, ..., en}, where ei = (0, 0, ..., 1, 0, 0, ...), 1 is in the ith

position. Now the map
P : X → Y

defined by
P (x) = (x1, x2, ..., xn, 0, 0, ...),

where x = (xn) ∈ X. We see that P is linear and P (P (xn)) =
P (x1, x2, x3, ...xn, 0, 0, 0, ...) = (x1, x2, x3, ..., xn, 0, 0, 0, ...) = P (xn). Which
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shows that P 2 = P. Also P is continuous. So P is a projection with range Y.
Now ‖P‖ = sup{|Px| : x ∈ SX} = sup{|(x1, x2, x3, ..., xn, 0, 0, 0, ...)| : x =
(xn) ∈ SX}. Notice that ‖(x1, x2, x3, ...)‖1 ≥ ‖(x1, x2, x3, ..., xn, 0, 0, 0, ...)‖1.
So ‖P‖ ≤ 1. As norm of a projection is always greater than or equal to 1, it
immediate shows that it’s a norm 1 projection.

Definition 4.0.7 Almost Constrained subspace: A closed subspace Y
of a Banach space X is said to be almost constrained if any family of closed
balls centered at Y, if they intersects in X, they also intersect in Y.

Definition 4.0.8 Finite-Infinite-Intersection Property: A Banach
space X is said to have finite-infinite -intersection property (or in symbol
IPf,∞) if any family {Fα}α∈Λ of closed balls in X with ∩α∈ΛFα = Φ, then
there exists α1, α2, ..., αn such that ∩ni=1Fαi = Φ.
Dual space of every Banach space and their constrained subspaces have
IPf,∞.

Note 4.0.9 Through the thesis we will use X is a real Banach space and Y
is closed subspace of X. If somewhere I mention simply X and Y, it is to be
understood that Y is closed subspace of the Banach space X.

Definition 4.0.10 Let Y be a subspace of X. Let x ∈ X and y∗ ∈ Y ∗. We
define

U(x, y∗) = inf{y∗(y) + ‖x− y‖ : y ∈ Y }
L(x, y∗) = sup{y∗(y)− ‖x− y‖ : y ∈ Y }.

Lemma 4.0.11 Let Y be a normed closed subspace of a Banach space X.
Suppose x0 ∈ X \ Y and y∗ ∈ Y ∗ with ‖y∗‖ = 1. Then the followings are
equivalent:

(a) L(x0, y
∗) ≤ U(x0, y

∗) and α is a real number such that L(x0, y
∗) ≤

α ≤ U(x0, y
∗).

(b) There is a Hahn-Banach extension x∗ of y∗ such that x∗(x0) = α.

Proof: Assume (a).
Claim: there is a Hahn-Banach extension x∗ of y∗ such that x∗(x0) = α. By
definition,

L(x0, y
∗) = sup{y∗(y)− ‖x0 − y‖ : y ∈ Y }. (4.1)

U(x0, y
∗) = inf{y∗(y) + ‖x0 − y‖ : y ∈ Y }. (4.2)

= inf{−y∗(y) + ‖x0 + y‖ : y ∈ Y }.(replacing y by −y). (4.3)
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By given condition,

L(x0, y
∗) ≤ α ≤ U(x0, y

∗)

i.e,

sup{y∗(y)− ‖x0 − y‖ : y ∈ Y } ≤ α ≤ inf{−y∗(y) + ‖x0 + y‖ : y ∈ Y }

or,
y∗(y)− α ≤ ‖x0 − y‖

y∗(y) + α ≤ ‖x0 + y‖

for all y ∈ Y. Multiply both by any real number c ∈ R, and take the second
one which will become

y∗(y) + αc ≤ ‖αx0 + y‖

(replacing y by αy).
Note: Here we can take the first one also according to the sign of c.
Define a function x∗ on the space X1 = span{Y ∪ {x0}} by x∗(y + cx0) =
y∗(y) +αc. This is linear and continuous function on X1, which is an exten-
sion of y∗ and also x∗(x0) = α. And

‖x∗‖ = sup{x∗(x) : x ∈ SX1} (4.4)

≥ sup{x∗(x) : x ∈ SY } (4.5)

= ‖y∗‖ = 1. (4.6)

Also

‖x∗‖ = sup{‖x∗(y + dx0)‖ : y + dx0 ∈ SX1 , d ∈ R} (4.7)

= sup{‖y∗(y) + dα‖ : y + dx0 ∈ SX1 , d ∈ R} (4.8)

= sup{|d|‖y∗(y/d) + α| : y + dx0 ∈ SX1 , d ∈ R} (4.9)

If X1 = Y, we are done. If this is not, then we can increase the space by one
dimension and using Zorn’s lemma we will get the Hahn-Banach extension,
with x∗(x0) = α.

Remark 4.0.12 From above lemma, it is clear that for any x∗ ∈ X∗1 and
x ∈ X,

L(x, x∗) ≤ x∗(x) ≤ U(x, x∗)

Also every y∗ ∈ Y ∗1 has a unique Hahn-Banach extension to X if and only
if for all x ∈ X

L(x, x∗) = U(x, x∗)
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Lemma 4.0.13 Let Y be a subspace of a Banach space and x1, x2 ∈ X.
Then the followings are equivalent:

(a) x2 ∈ ∩y∈YBX [y, ‖x1 − y‖]

(b) for all x∗ ∈ X∗, U(x2, x
∗) ≤ U(x1, x

∗).

Proof: Assume (a). So ‖x2 − y‖ ≤ ‖x1 − y‖, ∀y ∈ Y. Or, ∀y ∈ Y, x∗(y) +
‖x2 − y‖ ≤ x∗(y) + ‖x1 − y‖ =⇒ inf{x∗(y) + ‖x2 − y‖ : y ∈ Y } ≤
x∗(y) + ‖x1 − y‖, that is U(x2, x

∗) ≤ x∗(y) + ‖x1 − y‖ =⇒ U(x2, x
∗) ≤

inf{x∗(y) + ‖x1 − y‖ : y ∈ Y }, that is U(x2, x
∗) ≤ U(x1, x

∗).
Now assume (b). Suppose (a) is not true. Then ∃ y0 ∈ Y such that
‖x2 − y0‖ > ‖x1 − y0‖. Then ∃ ε such that ‖x2 − y0‖ − ε ≥ ‖x1 − y0‖.
Choose x∗ ∈ X∗1 such that

‖x2 − y0‖ < x∗(x2 − y0) + ε/2

(Using the definition of supremum)
or,

‖x1 − y0‖ ≤ ‖x2 − y0‖ − ε < x∗(x2 − y0)− ε/2.

Thus

U(x1, x
∗) ≤ x∗(y0) + ‖x1 − y0‖ < x∗(x2)− ε < U(x2, x

∗),

a contradiction.

Lemma 4.0.14 Let Y be a subspace of a Banach space X. For x1, x2 ∈
X \ Y and x∗ ∈ X∗, U(x1, x

∗)− U(x2, x
∗) ≤ U(x1 − x2, x

∗).

Proof: Let x∗ ∈ X∗ and y1, y2 ∈ Y. Then
U(x1, x

∗) ≤ x∗(y1 + y2) + ‖x1− y1− y2‖ = x∗(y1) +x∗(y2) + ‖x2− y2 +x1−
x2 − x1‖ ≤ x∗(y1) + ‖(x1 + x2)− y1‖+ x∗(y2) + ‖x2 − y2‖.
This happens for all y1, y2 ∈ Y. So U(x1, x

∗) ≤ U(x1 − x2, x
∗) + U(x2, x

∗),
which follows the proof.

Definition 4.0.15 Let X be a Banach space and x ∈ X. We define

(a) C(x) := {x∗ ∈ X∗1 : U(x, x∗) = L(x, x∗)}

(b) C := ∩x∈XC(x)

Proposition 4.0.16 Let Y be a subspace of a Banach space X. Let x∗ ∈ X∗1
and x0 ∈ X \ Y, then the followings are equivalent:

(a) x∗ ∈ C(x0)

(b) ‖x∗|Y ‖ = 1 and every x∗ ∈ HB(x∗|Y ) takes the same value at x0.
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(c) ‖x∗|Y ‖ = 1 and if {xα} ⊆ X∗1 is a net such that x∗α|Y → x∗|Y in the
weak∗− topology of Y ∗, then lim

α
x∗α(x0) = x∗(x0)

(d) ‖x∗|Y ‖ = 1 and if {xn} is a sequence such that x∗|Y → x∗|Y in the
weak∗− topology of Y ∗, then lim

n
x∗n(x0) = x∗(x0)

Proof: The theorem will be proved by going (a) ⇐⇒ (b), (b) =⇒
(c), (b) =⇒ (d) and finally (d) =⇒ (b).
(a) ⇐⇒ (b) : First assume (a). That is x∗ ∈ C(x0), which implies that
L(x0, x

∗) = U(x0, x
∗). Let ‖x∗|Y ‖ = α. Clearly α ≤ ‖x∗‖ ≤ 1. We will prove

that α = 1. Let x∗1 ∈ HB(x∗|Y ). Then ‖x∗‖ = α and
|x∗1(x0 − y)| ≤ α‖x0 − y‖ ≤ ‖x0 − y‖, for all y ∈ Y −−−−−−− (1)
From (1), we can write
−‖x0−y‖ ≤ −α‖x0−y‖ ≤ x∗1(x0−y)| ≤ α‖x0−y‖ ≤ ‖x0−y‖, for all y ∈ Y
Which can be written into two inequalities as:
x∗(y)−‖x0−y‖ ≤ x∗(y)−α‖x0−y‖ ≤ x∗(x0), for all y ∈ Y −−−−−−−−(2)
x∗1(x0) ≤ x∗(y)+α‖x)−y‖ ≤ x(y)+‖x0+y‖, for all y ∈ Y −−−−−−−−(3)
Note that here we are using x∗1(y) = x∗(y) as x∗1 is a Hahn-Banach extension
of x∗|Y .
From (2) we get
L(x0, x

∗) ≤ sup{x∗(y)− α‖x0 − y‖ : y ∈ Y } ≤ x1(x0)
and from (3) we get
x∗1(x0) ≤ inf{x∗(y) + α‖x0 − y‖ : y ∈ Y } ≤ U(x0, x

∗).
So
L(x0, x

∗) ≤ x∗1(x0) ≤ U(x0, x
∗).

By our assumption, equality should hold everywhere.
Therefore x∗1(x0) = some constant.
And this is true for any x∗1 ∈ HB(x∗|Y ).
The only remaining thing to prove is that α = 1. By the contrary assume
α < 1. Let 0 < δ < d(x0, Y ) and 0 < ε < (1− α)δ.
Then (1− α)‖x0 − y‖ > ε for all y ∈ Y.
So y∗(y)−‖x0−y‖+ε < y∗(y)−α‖x0−y‖ which implies that the inequality in
(2) must be strict and that will be a contradiction to the fact that L(x0, x

∗) =
U(x0, x

∗). This shows α ≥ 1 and hence α = 1.
The converse can be proved just going by reverse.
(b) =⇒ (c) : Let {x∗α} ⊆ X∗1 be a net such that lim

α
x∗α(y) = x∗(y), for all

y ∈ Y. By Banach-Alaoglu theorem this net has a convergent subnet, let’s say
{x∗αβ} be such that x∗αβ → x∗ the weak-star topology of X∗. This shows that
weak-star cluster point of {x∗α} i.e. x∗ ∈ HB(x∗|Y ). By (b), lim

α
x∗α(x0) =

x∗(x0).
(c) =⇒ (d) : Same proof as above.
(d) =⇒ (b) : On the contrary, let us assume there is a x∗1 ∈ HB(x∗|Y )
such that x∗(x0) 6= x∗1(x0). Take the constant sequence (x∗n) = (x∗1). Then
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lim
n
x∗n(y) = x∗1(y) = x∗(y), for all y ∈ Y. But {x∗1(x0)} can’t converge to

x∗(x0), a contradiction.

Proposition 4.0.17 Let Y be a subspace of a Banach space X. Let x∗ ∈ X∗1
then the followings are equivalent:

(a) x∗ ∈ C = ∩x∈XC(x)

(b) ‖x∗|Y ‖ = 1 and every x∗ ∈ HB(x∗|Y ) = {x}.

(c) ‖x∗|Y ‖ = 1 and if {xα} ⊆ X∗1 is a net such that x∗α|Y → x∗|Y in the
weak∗− topology of Y ∗, then xα → x∗ in the weak-star topology of X∗.

(d) ‖x∗|Y ‖ = 1 and if {xn} ⊆ X∗1 is a net such that x∗n|Y → x∗|Y in the
weak∗− topology of Y ∗, then x∗n → x∗ in the weak-star topology of X∗.

Proof: Same proof followed by the above proposition.

4.1 Some Characterizations:

Definition 4.1.1 Let Y be a subspace of a Banach space X.
For any x ∈ X, P(x) = ∩y∈YBY [y, ‖x− y‖].

It is obvious that if y ∈ Y, P(y) = {y}.
Also note that Y is an AC-subspace of X if and only if P(x) 6= Φ, for all
x ∈ X.
Note:

(a) P(λx) = λP(x), for all x ∈ X,λ ∈ R

(b) P(x+ y) = P(x) + y, for all x ∈ X, y ∈ Y.

Proof of (a): P(λx) = ∩y∈YBY [y, ‖λx− y‖].
Let z ∈ P(λx) =⇒ z ∈ BY [y, ‖λx − y‖], for all y ∈ Y =⇒ ‖z − y‖ ≤
‖λx− y‖, for all y ∈ Y −−−−−−(1).
claim: z ∈ λP(x) = λ ∩y∈Y BY [y, ‖x− y‖]
i.e. z ∈ λBY [y, ‖x− y‖], for all y ∈ Y
i.e. z ∈ BY [y, λ‖x− y‖], for all y ∈ Y.
i.e. ‖z − y‖ ≤ λ‖x− y‖ = ‖λx− λy‖, for all y ∈ Y.
Therefore, ‖z − y‖ ≤ ‖λx− y‖ ≤ ‖λx− λy‖, (Using (1))
And this is if and only if condition. Therefore, the proof is clear.
Proof of (b): Let z ∈ P(x+ y) = ∩u∈YBY [u, ‖x+ y − u‖]
=⇒ z ∈ BY [u, ‖x+ y − u‖], for all u ∈ Y
=⇒ ‖z − y‖ ≤ ‖x+ y − u‖, for all u ∈ Y −−−−−−−−−−−−(2).
Claim: z ∈ P(x) + y = ∩u∈YBY [u, ‖x− u‖] + y
=⇒ z ∈ BY [u, ‖x− u‖] + y, for all u ∈ Y,
i.e. ‖z − (u+ y)‖ ≤ ‖x− y‖, for all u ∈ Y.
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In (2), just replace u by u+ y, we’ll get the result.

Definition 4.1.2 Let Y be a closed subspace of a Banach space X. The
ortho-complement [Notation: O(Y,X)] of Y in X is defined as:

O(Y,X) := {x ∈ X : ‖x− y‖ ≥ ‖y‖, ∀y ∈ Y }

which is same as:
O(Y,X) := {x ∈ X : Y ⊥B x}

where the orthogonality is taken in the sense of Birkhoff.

4.2 Characterization of AC-subspaces:

Proposition 4.2.1 Let Y be a closed subspace of a Banach space X. Then
the following statements are equivalent:

(a) Y is an AC-subspace of X.

(b) For all x ∈ X, there is a y ∈ Y and z ∈ O(Y,X), such that x = y+ z

(c) For every subspace Z with Y ⊆ Z ⊆ X and dim(Z/Y ) = 1, Y is
constrained in Z.

Proof:
(a) =⇒ (b): Assume (a).
Let x0 ∈ X. Then ∃ y0 ∈ P(x0) = ∩y∈Y [y, ‖x0 − y‖]
i.e. y0 ∈ BY [y, ‖x0 − y‖], for all y ∈ Y.
‖y0 − y‖ ≤ ‖x0 − y‖, for all y ∈ Y
Put u = y0 − y, i.e. y = y0 − u,
We get
‖u‖ ≤ ‖x0 − y0 + u‖, for all u ∈ Y
=⇒ Y ⊥B (x0 − y0).
Take z0 = x0 − y0,
Then x0 − y0 = z0 ∈ O(Y,X) and x0 = y0 + (x0 − y0) = y0 + z0.
(b) =⇒ (c) : Let x0 ∈ X and Z as in (c). Any Z of the above type can be
written as Z = span[Y ∪ {x0}]
By (b) there is y0 ∈ Y and z0 ∈ O(Y,X) such that x0 = y0 + z0.
Therefore it follows that Z = Y ⊕ Rz0.
Define a map

P : Z → Y
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by
P (αz0 + y) = y

for all y ∈ Y and for all α ∈ R.
Obviously P is continuous and

P 2(αz0 + y) = P (y) = y = P (αz0 + y)

for all y ∈ Y and for all α ∈ R.
Also

‖P (z)‖ = ‖P (αz0 + y)‖ = ‖y‖ ≤ ‖αz0 + y‖

=⇒ ‖P‖ = sup{‖P (z)‖ : z ∈ SZ} ≤ 1.

Therefore P is a norm 1 projection on Z with the range Y. This shows that
Y is constrained in Z by P.
(c) =⇒ (a) : By (c), for every x ∈ X, there is a norm 1 projection
from Zx = span[Y ∪ {x}] onto Y. Let Px be the projection by which Y is
constrained in Zx. Then

‖Px‖ = 1

and
‖Px(x− y)‖ ≤ ‖x− y‖,

for all y ∈ Y.
=⇒ ‖Px(x)− y‖ ≤ ‖x− y‖,

for all y ∈ Y.
=⇒ Px(x) ∈ BY [y, ‖x− y‖],

for all y ∈ Y.

=⇒ Px(x) ∈ ∩y∈YBY [y, ‖x− y‖] = P(x).

Therefore Y is an AC-subspace of X.

• Sufficient Conditions for an AC-subspace to be Constrained
by a Unique Norm 1 Projection:

Corollary 4.2.2 A subspace Y of a Banach space X is an AC-subspace if
and only if there exists a (not necessarily linear) onto map

P : X → Y

such that

(a) P 2 = P

(b) for all x ∈ X,λ ∈ R, P (λx) = λP (x)
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(c) for all x ∈ X, y ∈ Y P (x+ y) = P (x) + y

(d) for all x ∈ X, ‖P (x)‖ ≤ ‖x‖

Proof: If we take P is as above. Then for any x ∈ X,

P (x) ∈ P(x)

This proves that Y is an AC-subspace of X.
Conversely, let Y be an AC-subspace of X. For any z ∈ O(Y,X), define
Yz = Y ⊕ Rz and

Pz : Yz → Y

be a norm 1 projection with the range Y. We ca see that for any z1, z2 ∈
O(Y,X)
either Yz1 = Yz2 or Yz1 ∩ Yz2 .
By the above proposition

∪z∈O(Y,X)Yz = X.

Now define a map
P : X → Y

by P (x) = Pz(x) for x ∈ Yz.
Then the map P is well-defined and satisfies all the above properties.
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4.3 Some Sufficient Conditions for an AC-
Subspace to Be Constrained:

Let Y be a closed subspace of a Banach space X. Then the following state-
ments are equivalent:

(a) Y is AC-subspace of X and O(Y,X) is a closed subspace of X.

(b) Y is AC-subspace of X and O(Y,X) is a linear subspace of X.

(c) Y is constrained in X by a norm 1 projection and for all x ∈ X,P(x)
is singleton. Moreover that projection is unique.

Proof: (a) =⇒ (b) is trivial.
(b) =⇒ (c) : Since Y is an AC-subspace of X. Then every x ∈ X \ Y, can
be written as x = y + z, for some y ∈ Y and z ∈ O(Y,X), by the above
proposition. Since Y and O(Y,X) are linear subspaces and Y ∩ O(Y,X) =
{0}, the representation of x as above is unique.
Define a map

P : X → Y

by
P (x) = y

for every x ∈ X.
We’ll show that this is a norm 1 projection from X onto Y and also this is
unique.

‖P (x)‖ = ‖y‖ ≤ ‖y − x− y‖ = ‖x‖

=⇒ ‖P‖ ≤ 1.

Also this is continuous and P 2 = P.
This shows that Y is a constrained subspace of X by the norm 1 projection
P.
Moreover, since for every x ∈ X,∃! y ∈ Y and z ∈ O(Y,X) such that
x = y + z. Since for every x ∈ X, y(= P (x)) ∈ P(x) i.e. P(x) is single-
valued.
(c) =⇒ (a) : Let Y be constrained in X by a norm 1 projection P and for
all x ∈ X, let P(x) is singleton. So Y is an AC-subspace of X and for all
x ∈ X,

P(x) = {P (x)}

The only thing we have to prove that O(Y,X) is a closed subspace of X.
We are claiming that

O(Y,X) = ker(P )
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Let x ∈ ker(P ). Then

‖x− y‖ ≥ ‖P (x− y)‖ = ‖P (x)− P (y)‖ = ‖y‖

for all y ∈ Y.
This implies that

x ∈ O(Y,X)

Therefore
ker(P ) ⊆ O(Y,X)

Let x ∈ O(Y,X), Then for all y ∈ Y

‖x− y‖ ≥ ‖y‖

=⇒ 0 ∈ P(x)

Also for all y ∈ Y

‖x− y‖ ≥ ‖P (x− y)‖ = ‖P (x)− y‖

=⇒ P (x) ∈ P(x).

And as we know for every

x ∈ X, P(x) = {P (x)}.

This shows that for all x ∈ X

P (x) = 0

This proves that
x ∈ ker(P ).

Therefore
O(Y,X) ⊆ ker(P )

Hence
O(Y,X) = ker(P )

Therefore O(Y,X) is a closed subspace of X.

Proposition 4.3.1 Let Y be a subspace of X. Let x1, x2 ∈ X be such that
x1 ∈ ∩y ∈ Y BX [y, ‖x2 − y‖], then for any x∗ ∈ C(x2), x∗(x1 − x2) = 0.
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Proof: We have x1, x2 X with x1 ∈ ∩y ∈ Y BX [y, ‖x2 − y‖], then by the
lemma 4.0.13 for all x∗ ∈ X∗1

L(x2, x
∗) ≤ L(x1, x

∗) ≤ U(x1, x
∗) ≤ L(x2, x

∗)−−−−−−−−−−(1)

Now
x∗ ∈ C(x2) =⇒ L(x2, x

∗) = U(x2, x
∗)

So for any x∗ ∈ C(x2), equality should hold everywhere in (1).
Therefore, for any x∗ ∈ C(x2),

L(x1, x
∗) = U(x1, x

∗) = x∗(x1)

L(x2, x
∗) = U(x2, x

∗) = x∗(x2)

But (1) should be equality. Therefore for any x∗ ∈ C(x2),

x∗(x1) = x∗(x2)

=⇒ x∗(x1 − x2) = 0.

Corollary 4.3.2 Let Y be a subspace of a Banach space X. If x1, x2 ∈ X
be such that for all y ∈ Y, ‖x1 − y‖ ≤ ‖x2 − y‖, then for all y ∈ SY , that is
a smooth point of X, DX(y) = {x}, we have x∗(x1 − x2) = 0.

Proof: Let y ∈ Y be a smooth point of of X. Then ∃!x∗ ∈ X∗1 such that

x∗(y) = ‖x∗‖ = 1

Then by Hahn-Banach theorem, there is a functional y∗ such that

y∗(y) = ‖y‖ = 1.

Therefore for all y ∈ Y

x∗(y) = ‖x∗‖ = 1 = ‖y‖ = y∗(y)

So x∗ is norm attaining at y which is a Hahn-Banach extension of y∗. But
x∗ is unique, since y is a smooth point of X.
This shows that HB(y∗) = {x∗}
By the proposition 4.0.20

x∗ ∈ C = ∩x∈XC(x)

x∗ ∈ C(x2)

Now by the proposition 4.3.1

x∗(x1 − x2) = 0.
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Definition 4.3.3 Let Y be a closed subspace of a Banach space X. Then
NA(Y ) := {y∗ ∈ Y ∗ : ∃ y ∈ BY such that y∗(y) = ‖y∗‖}

Definition 4.3.4 Let Y be a closed subspace of a Banach space X. Y is
said to be weakly U-subspace of X if for all y ∈ Y, HB(y∗) is singleton.

Definition 4.3.5 Let X be Banach space. A set A ⊆ B∗X is said to separate
points of X if for all x1, x2 ∈ X with x1 6= x2, ∃ x∗ ∈ A such that x∗(x1) 6=
x∗(x2).

Theorem 4.3.6 Let Y be a subspace of X. For every x1, x2 ∈ X, C(x1) ∩
C(x2) separates the points of Y. If Y is an AC-subspace of X, then Y is
constrained in X. Moreover the projection is unique and O(Y,X) is a closed
subspace of X.

Proof: Since Y is AC-subspace of a Banach space X. Then P(x) 6= Φ,
for all x ∈ X.
By proposition 0.3.1, for all x ∈ X,
x∗(x− y) = 0 for any x∗ ∈ C(x), y ∈ P(x).
Now if y1, y2 ∈ P(x), then for any x∗ ∈ C(x)

x∗(x− y1) = 0 = x∗(x− y2)

Therefore
x∗(y1 − y2) = 0

Since C(x) separates the points of Y, we have

y1 − y2 = 0

i.e.
y1 = y2

This implies P(x) is singleton.
Let P(x) = {P (x)}
We can see that P satisfies the conditions of the corollary 0.2.2. So the only
thing we have to check is that P is additively linear.
Let x1, x2 ∈ X. If x∗ ∈ C(x1) ∩ C(x2). Then by the proposition 4.0.16 we
see that

x∗n(x1)→ x∗(x1)

and
x∗n(x2)→ x∗(x2)
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Getting together,
x∗n(x1 + x2)→ x∗(x1 + x2)

=⇒ x∗ ∈ C(x1 + x2)

Also

x∗(x1 − P (x1)) = x∗(x2 − P (x2)) = x∗((x1 + x2)− P (x1 + x2)) = 0.

Therefore
x∗(P (x1 + x2)− P (x1)− P (x2)) = 0

=⇒ P (x1 + x2) = P (x1) + P (x2)

=⇒ P is additive linear.

Proposition 4.3.7 Every unit vector y ∈ Y is a smooth point of X1 if and
only if every subspace of Y is a weakly U-subspace of X. In particular X is
smooth if and only if every subspace of X is weakly U-subspace of X

Proof: Suppose every unit vector y ∈ Y is a smooth point of X1.
Let Z be any subspace of Y.
Let z0 ∈ Z with ‖z0‖ = 1 attains its norm at z∗ ∈ Z∗1 (Here ‖z∗‖ = 1 and by
Hahn- Banach theorem z∗(z0) = ‖z0‖ = 1).
Here z∗ ∈ HB(z∗).
Since z0 is a smooth point of X1, we have z∗ ∈ DZ(z0) = {z∗} This shows
that

HB(z∗) ⊆ DZ(z0) = {z∗}
=⇒ HB(z∗) = {z∗}

This implies that Z is weakly U-subspace of X.
Conversely, assume that every subspace of Y is a U-subspace of X.
Claim: every unit vector y ∈ Y1 is a smooth point of X1.
On the contrary, suppose this is not true.
Then there is y0 ∈ Y1 such that

{x∗1, x∗2} ⊆ DX(y0) with x∗1 6= x∗2

Let

Z = {x ∈ Y : x∗1(x) = x∗2(x)} ⊂ Y

Here Z 6= Φ because y0 ∈ Z.
Therefore ‖x∗1‖ = ‖x∗2‖ = 1
Taking z∗ = x∗1|Z , we have z∗ attains its norm at y0 ∈ Z.
But {x∗1, x∗2} ⊂ HB(z∗).
This is a contradiction, because Z being a subspace of Y is not at all a
weakly U-subspace of X.
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Corollary 4.3.8 Let Y be an AC-subspace of X. In each of the following
cases, Y is constrained in X by a unique norm 1 projection.

(a) C separates points of Y .

(b) Y is a U-subspace of X.

(c) Y is weakly U-subspace of X.

(d) Every unit vector in Y is a smooth point of X.

Proof: (a) follows from the previous theorem. And also (b) =⇒ (c) =⇒
(a). From the last proposition we have (d) =⇒ (a).
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4.4 Proximinality

Definition 4.4.1 For a closed set K in X and x ∈ X, we denote the dis-
tance function of K at x by d(x,K) = inf{‖x − k‖ : k ∈ K}. The metric
projection of x onto K is PK(x) = {k ∈ K : ‖x− k‖ = d(x,K)}.

Definition 4.4.2 The set K is called proximinal in X if for every x ∈ X,
PK(x) is nonempty.

Definition 4.4.3 The set K is called antiproximinal in X if for every x ∈
X \K, PK(x) = ∅.
Or,
Consider the set

E(K) = {x ∈ X : P (x) = PK(x) 6= ∅.}

The set K is called proximinal in X if

E(K) = X

and called antiproximinal in x if

E(K) = K.

4.4.1 Characterization of Proximinal Subspaces:

Theorem 4.4.4 A subspace Y of X is proximinal if and only if X = Y +
L(Y,X).

Proof: Y is proximinal in X implies PY (x) 6= ∅, ∀ x ∈ X. Choose
y ∈ PY (x) then ‖x − y‖ = d(x, Y ) or in other words ‖x − y‖ ≤ ‖x − z‖, ∀
z ∈ Y , that is ‖(x− y) + (y− z)‖ ≥ ‖x− y‖,∀z ∈ Y that is x− y ⊥B Y . So
x = y + (x− y), where x− y ∈ L(Y,X).

Conversely, let X = Y + L(Y,X), to show PY (x) 6= ∅, ∀ x ∈ X. Now
x0 = y0 + z0, with y0 ∈ Y and z0 ∈ L(Y,X). Now for all y ∈ Y ,

d(x0, Y ) ≤ ‖x0 − y0‖ = ‖z0‖ ≤ ‖z0 + y‖ = ‖x0 − y0 + y‖,

since z0 ∈ L(Y,X). Taking infimum over y ∈ Y , we have the result.

Theorem 4.4.5 A subspace Y is antiproximinal in X if and only if
L(Y,X) = {0}

Proof: From the above proof, it follows that for x ∈ X, y ∈ PY (x) if and
only if x− y ∈ L(Y,X). The result is now immediate.

The set O(X,X∗∗) appears in the works of Godefroy in relation to the
study of nicely smooth spaces and the spaces with the finite-infinite inter-
section property (IPf,∞). In some equivalent formulation.
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(a) X is nicely smooth if and only if O(X,X∗∗) = {0}.

(b) X has the IPf,∞ if and only if X∗∗ = X +O(X,X∗∗).

Both of these notions have been subsequently generalized in the sub-
space context :

(c) A subspace Y is a very non-constrained (V N) subspace of X if
O(Y,X) = {0}.

(d) A subspace Y is an almost constrained (AC) subspace of X if X =
Y +O(Y,X).

It is easy to see that if there is a norm one projection P : X → Y , then
Y is an AC subspace of X. The converse is in general false, but it remains
an open question if X has the IPf,∞ implies X is 1-complemented in X∗∗.

Definition 4.4.6 We say that X is proxbid if X is proximinal in its bidual,
X∗∗.
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Chapter 5

Conclusion

The main problem we propose to study in the thesis is the geometry of
proxbid spaces. We should point out that proximinality of a subspace is
most well-understood for subspaces of finite codimension and otherwise very
little is known except in special cases. However, if X is of finite codimension
in X∗∗, then X already has some similarity with reflexive spaces. Thus, our
study may require somewhat different techniques. Since X is proxbid if and
only if X∗∗ = X + L(X,X∗∗), we feel that in this study, characterizations
of the set L(X,X∗∗) would be very useful.

One special class of proxbid spaces that are better understood are spaces
that are M -ideals in their biduals. In this case, many isometric and isomor-
phic properties of such spaces are known. So this can very well be our staring
point.

The literature on proxbid spaces is rather small. It is known that C(K)
spaces are proxbid. It has been proved that if K is compact, Hausdorff and
X is uniformly convex then any C(K) module M ⊆ C(K,X) is proximinal
in any higher dual of even order of C(K,X), so in particular M is proxbid
and hence C(K,X) is also becomes proxbid. The case for X is LUR or
MLUR can be investigated.
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