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Chapter 1

Geometry and Arithmetic

In this chapter we will introduce some definitions and facts which will be useful. We will see how to get
rational points on elliptic curve. We will give the composition law on the set of rational points on elliptic

curve by this composition law and we will show that E(Q) is a group. Moreover it is Abelian.

1.1 Algebraic Geometry

In this section we will discuss some definitions like affine space, affine variety, projective space etc which

we will use .

Definition 1.1.1. Given a field K and a positive integer n, we define the n-dimensional affine space
A™ over k to be the set
A™M(K) ={(a1,...,a,) 1 a1,...,a, € K}

Definition 1.1.2. Let K be a field, and let f1, fa,..., fs be polynomials in K|xy,...,2,]. Then we set
V(fi, fa,-- -, fs) = {(a1,a9,...,a,) € K" : fi(a1,...,a,) =0} V1<i<s

We call V(f1, fa,. .., [s) the affine variety defined by f1, f2, ..., fs. Thus, an affine variety V(f1,..., fs) C
K™ is the set of all solutions of the system of equations fi(x1,...,2,) =+ = fs(x1,...,2,) = 0.

We begin in the plane R? with the variety V(2% 4+ y? — 1), which is the circle of radius 1 centered at

the origin given by the following figure 1.1. An interesting example of a curve in R3 is the twisted cubic,

YA

=Y

Figure 1.1:

which is the variety V(y — 22,z — 2%). For simplicity, we will confine ourselves to the portion that lies in



Figure 1.2:

the first octant. To begin, we draw the surfaces y = 22 and z = 2 separately given by the following figure

1.2. Then their intersection gives the twisted cubic given by the following figure 1.3.

The Twisted Cubic

Figure 1.3:

Definition 1.1.3. The projective plane is defined as the set of all triples (a,b,c), such that a,b and c
are not all 0, and where (a,b, c) is considered to be the same point as (a’,b', ) if (a',b', ) = (ta,tdb, tc) for

some nonzero t.

In other words, the projective plane is defined in terms of an equivalence relation ~ on all triples of
homogeneous coordinates (a, b, ¢), such that (a,b,c) ~ (a’,V/,c') if and only if o/ = ta,b’ = tb,¢’ = tc for

some nonzero t. This equivalence relation allows for the following simplified definition of P2 :

{(a,b,¢)| a,b,c € K are not all 0}

~

P2 =

This definition lends itself to a somewhat more intuitive definition of the projective plane. If a triple
(a,b,c) is to be thought of as a vector in R3, then the vector (a, b, c) is considered equivalent to all scalar
multiples of the vector itself. Thus, for any given triple (a,b, ¢) the set of all triples considered equivalent to
(a, b, c) is the line passing through the origin and (a,b,c). Because all points in a given direction from the
origin are equivalent in projective space, the projective plane can simply be thought of as including the set
of all directions in R3.

An interesting implication is the notion of point at infinity. Because any two parallel lines in A% must by
definition have the same direction, in projective space the lines must have the point defining their direction
in common. This intersection is the basis for the notion of a “point at infinityaAl -it is the point at which
two parallel lines traveling in a given direction must intersect in projective space. In order to maintain the
property that two lines may only intersect at one point, there must be a point at infinity for every given

direction in Thus, projective space can also be defined as :
P? = A2 U { The set of directions in A?}

It is important to remember that both projective space and affine space are defined over a field.

Definition 1.1.4. A cubic curve in projective space is defined as the set of solutions of a polynomial
function F(X,Y,Z) such that
E:F(X,Y,Z)=0



More specifically, because such curves exist in projective space, the polynomial F(X,Y,Z) must be
homogeneous of degree d. This means that it must satisfy the property :

F(tX,tY,tZ) = t'F(X,Y, Z),

where d is the degree of the polynomial F'.

Definition 1.1.5. Let F(X,Y,Z) = 0 is an projective plane and let (X, Yy, Zo) be any point on the curve
such that OF OF OF
—(Xo, Yo, Z0), =— (X0, Yo, Z9y), =—= (X0, Yo, Z
<8X( 0,10, O)aay( 0,10, 0)78Z( 0,10, 0)) 7&(07070)
Such a point is called a non-singular point on the curve . If every point on the curve is non singular then

then we say our curve is non singular. A point which is not non-singular is called a singular point.

Definition 1.1.6. Let f(z,y) = 0 is an affine plane and let (zg,yo) be any point on the curve such that the
partial derivatives do not both vanish,
of of
—(x0,%0), 5 (20, 0,0
(5o G o)) # 0.0
Such a point is called a non-singular point on the curve . If every point on the curve is non singular then

then we say our curve is non singular. A point which is not non-singular is called a singular point.

Homogenization

The question still remains of how curves in P? might be transformed into curves in A2. Such transforma-
tions are typically carried out through a process known as homogenization. Homogenization maps a curve
E in P? to a curve in A? by transforming the function by which E is defined, F(X;Y;Z) into a function
f(z,y). The process for such transformations is rather straightforward. We define f(x,y) by the following
relation :

flz,y) = F(X,Y,1)

In such a transformation, every homogeneous triple (a,b,c) that solves the polynomial F' is scaled by the
reciprocal of an element of the triple. For example, if the function F is to be homogenized with respect to

Z, the solutions to F' are scaled in the following way :
b
(a,b,c) — (a, -, 1)
cc

Note that, in projective space, the original triple and the triple to which it is mapped are equivalent

because % is a nonzero scalar applied to each element of the triple. Notice that f(z,y) = F(z,y,1). So for

dehomogenization of a polynomial F(z,y, z) we have to substitute z = 1 to finding f(z,y) = 0.

Properties of homogeneous polynomial

Suppose that our polynomials have coefficients in a field K, and if x,v, z € K such that F(x,y,z) = 0.
Notice that

(1) For any A € K, F(Az, \y, \z) = \"F(z,y, 2) (n = total degree of F)

(2) For any non zero A € K,F()\x, Ay, \z) =0iff Fx,y,2) =0
In particular, for z we have F(z,y,z) = 0iff F(z/z,y/2) =0

Now we will discuss how to get all rational points on the conic and cubic then we will study about elliptic

curve (particular cubic curve) .



1.2 Rational points on conics

A line is said to be a “rational” if we can write its equation by rational coefficients i.e., ax +by+c¢ =0

is rational if
a,b,ceQ

We can easily check that two rational line intersect at a rational point and line passing through two rational

points is rational

We will say that a conic C : ax? + bxy + cy? + dx + ey + f = 0 is rational if a,b, ¢, d, e, f € Q. Now we
will describe all rational points on conic completely. Given a rational conic, the first question is whether or
not there are any rational points on it. But let us suppose that there is one rational point O on our rational
conic then we can get all of them very simply. We just draw some rational line L and we project the conic
onto the line from this point O and for O itself onto the line given by the figure 1.4, we use the tangent
line to the conic at O. A line meets a conic in two points, so for every point P on the conic we get a point

Projecting a Conic onto a Line

Figure 1.4:

Q@ on the line; and conversely, for every point @ on the line, by joining it to the point O, we get a point
P on the conic. We get a one-to-one correspondence between the points on the conic and points on the
line . If the point P on the conic has rational coordinates, then the point @ on the line will have rational
coordinates because we know line passing through two rational points is rational and intersection point of
two rational line is rational. And conversely, if @ is rational, then the line through P and @ meets the conic
in two points if one of which is rational So the other point is rational. Thus the rational points on the conic
are in one-to-one correspondence with the rational points on the line. Of course, the rational points on the
line are easily described in terms of rational values of some parameter . We will try this procedure for the
unit circle :
2?+y?=1

We will project from the point (—1,0) onto the y - axis. Let’s call the point of intersection (0,t) given by

the following figure 1.5 on page. we can easily find ¢ by = and y and by simple calculation we get :

1t 2t

Tire o YT iy

This is the rational parametrization of the circle and now the assertion made above is clear from these
formulas. i.e. if z and y are rational numbers, then ¢ will be a rational number and vice versa. So this is
the way for getting all rational points on the circle by all choice of ¢t. That will give us all points except
(—1,0) and for (—1,0) substitute infinity for ¢ .



(z,y)

A Rational Parametrization of the Circle

Figure 1.5:

Problem 1.2.1. Show that there is no rational point on the circle :

> +y*=3

Proof. suppose there is a rational point (z,y) then we can write it as

X Y

Yy=—

T Z

for some integers X, Y, Z which have no common factor. It follows that both X and Y are not divisible by
3. This is true because if 3| X, then 3|Y?(= 322 — X?) so 3|Y. But then 9 divides X? + Y? = 322, s0 3|Z,
contradicting the fact that X,Y, Z have no common factors. Hence 3 does not divide X, and similarly for

Y. Since X and Y are not divisible by 3, we have
X =41 mod 3, Y =41 mod 3, X?=Y?=1 mod3

But then
0=322=X?>+Y?=1+1=2 mod 3

This contradiction shows that no two rational numbers have squares which add up to 3. O

1.3 Geometry of cubic curves

Let
3 2 2 3 2 2 ; C_
azx® + bx y + cxy® +dy° +ex” + fry+ gy +hex+iy+45=0

be equation for general cubic over field K.
We can not use the geometric principle that worked so well for conic because a line generally meets a
cubic in three points. If we have one rational point, we cannot project the cubic onto a line, because each

point on the line would then correspond to two points on the curve



But there is a geometric principle we can use. If we can find two rational points on the curve, then we
can generally find a third one. Namely, draw the line connecting the two points you have found. This will
be a rational line, and it meets the cubic in one more point. If we look and see what happens when we try
to find the three intersections of a rational line with a rational cubic, we find that we come out with a cubic
equation with rational coefficients. If two of the roots are rational, then the third must be also. We will
work out some explicit examples below, but the principle is clear. So this gives some kind of composition
law : starting with two points P and @ and let P x @Q denote the third point of intersection of the line with

the cubic given by the following figure 1.6. Even if we only have one rational point P, we can still generally

The Composition of Points on a Cubic

Figure 1.6:

get another. By drawing the tangent line to the cubic at P, we are essentially drawing the line through
P and P . The tangent line meets the cubic twice at P, and the same argument will show that the third
intersection point is rational. Then we can join these new point up and get more points. So if we start with
a few rational points, then by drawing lines, we generally get lots of others.

It is very difficult to determine in finite number of steps whether a given rational cubic
has a rational point. We will leave this difficult problem aside, and assume that we have a
cubic which has a rational point O

If we consider the set of all rational points on the cubic, we can say that set has a law of composition.
Given any two points P, @), we have defined a third point P*(@Q. We might ask about the algebraic structure
of this set and this composition law; for example, is it a group ? Unfortunately, it is not a group; to start
with, it is fairly clear that there is no identity element.

We can make it into a group in such a way that the given a rational point O becomes the zero element of
the group. We will denote the group law by + because it is going to be a commutative group. The rule is
as follows :

To add P and @, take the third intersection point P * @), join it to O ( zero element), and then take the
third intersection point to be P 4+ @. Thus by definition, P+ Q = O x (P x Q)

In the following figure 1.7, 1.8, 1.9 we can understand geometrically our group law.

We also want to mention that there is nothing special about our rational point O; if we choose different

O’ to be the zero element of our group,then we get a group with exactly same structure. In fact the map
Pr—— P+ (0 -0)

is an isomorphism from the group “C with zero element O to the group “C with the zero element O'.

1.4 Elliptic curve

Definition 1.4.1. An elliptic curve is a pair (E,O) ,where E is a non singular curve and O € E in
projective space (We generally denote the elliptic curve by E , the point O being understood.) The elliptic
curve E is defined over field K, written E/K, if E is defined over field K as a curve and O € E



P*0O
P+O=P
The Group Law on a Cubic Verifying O Is the Zero Element
Figure 1.7:

The Negative of a Point

Figure 1.8:

Why have we concentrated attention only on the non-singular cubics? The singular cubics
( 1.10) and the non-singular cubics have completely different types of behavior. For instance, the singular
cubics are just as easy to treat as conics. If we project from the singular point onto some line, we see that
the line going through that singular point meets the cubic twice at the singular point, so it meets the cubic
only once more. The projection of the cubic curve onto the line is thus one-to-one. So just like a conic, the
rational points on a singular cubic can be in one-to-one correspondence with the rational points on the line.

In fact, it is very easy to do that explicitly with formulas.

If we let = £, then the equation y* = z*(2 + 1) becomes

rP=x4+1 and so r=r2-1 and y=r>—r
. These operation are inverse of each other, and are defined at all rational points except for the singular
point (0,0) on the curve. So the singular cubics are trivial to analyze as far as rational points go. But one

can prove that and Mordell’s theorem does not hold for them means this group is not finitely generated.



(P+Q)*R=P*(Q+R)

Verifying the Associative Law

Figure 1.9:

1.5 Weierstrass equations

In this section we will transform our elliptic curve into simplified cubic equation known as Weierstrass

equation for an elliptic curve which will help to study more about elliptic curve

Weierstrass equations is a projective cubic curve of the form
Y2Z 4+ a1 XYZ+asYZ? = X2+ o X%Z + ay X Z% + ag 2>

with an extra point O’ = [0,1,0] over field K. After dehomogenization by substituting © = X/Z and

y = Y/Z Weierstrass equations becomes :

E:y2+a1xy+a3y:x3+a2x2+a4m+a6

Yy Yy
-1 T ] z
A Singular Cubic with A Singular Cubic
Distinct Tangent Directions with A Cusp
Figure 1.10:



There is the extra point at infinity O’ = [0, 1, 0] on this elliptic curve . As usualiif a;,...,a6 € K , then E
is said to be defined over field K.
By Riemann-Roch theorem We know that every elliptic curve can be written as a Weierstrass plane

cubic, and conversely, every non-singular Weierstrass plane cubic curve is an elliptic curve.
Proposition 1.5.1. [ST92, Prop.3.1] Let E be an elliptic curve defined over field K

(a) There exist functions x,y € E(K) such that the map
¢:E—P  ¢=[z,y,1]
gives an isomorphism of E/K onto a curve given by a Weierstrass equation.
Y2Z 4+ a1 XYZ+asYZ% = X3+ ay X?Z + au X 2% + ag 23

satisfying ¢(O) = [0,1,0]
(b) Any two Weierstrass equations for E as in (a) are related by a linear change of variables of the form

r=u’z' +r and y=uy +u's +t

where u,r,s,t € K and u # 0.

If char(K) # 2, then we can simplify the equation by completing the square. Thus the substitution
1
y— - arw —a)

gives an equation of the form
FE: y2 = 42 + byz® + 2047 + b

where

by :a%+4a2, by = 2a4 + aqas, be :a§+4a6

We also define quantities :

bg = a%aG + dasag — araszay + agag — ai
cy = b2 — 24b,

c6 = —b3 + 36byby — 216bg

A = —bibg — 8b3 — 27b2 + Ibobybs

3

€4

A

Definition 1.5.2. The quantity /\ is known as discriminat of the polynomial f(x) = 4x® + byx® + 2bs2 + bg

and j is known as j-invariant of elliptic curve.

Definition 1.5.3. The discriminant of cubic f(x) is the quantity :
N = (041 — 042)2((11 — 043)2(042 - a3)2

Proposition 1.5.4. (a) The elliptic curve given by a Weierstrass equation is non singular if and only if

A£0

(b) Two elliptic curves are isomorphic over field K if and only if they both have the same j-invariant.

10



Proof. (a) Let C be given by the Weierstrass equation in projective space:
F(X,Y,2)=Y?Z4+ a1 XYZ+a3YZ? — X3 — 4y X?Z — a4 X Z* — ag Z*

We will check that the point at infinity O = [0, 1, 0] is never singular.

Since oF
77O =1#0

For simplification we assume char(K) # 2 then we can convert our C' as:
C :y? = 42% + by + byx + bg
The curve C' is singular if and only if there ia a point (xg, o) € C satisfying
20 = 1202 + 2boxo +2b4 = 0=y =0

So the singular points are exactly the points of the form (x,0) such that z( is a double root of the
polynomial 423 + box? + 2bsx + bg. This polynomial has double root if and only if discriminant, which

equals 164\, vanishes.

(b) We will see that after changing the variables given be proposition 1.5.1 (b) in following way fixing

[0,1,0] we get same j-invariant.
z=u’z" +rand y = udy + u’sa’ +1t
where u,r,s,t € K and u # 0.

2 = (uPa' +r)? = uta? +r? 4 2ruPa’
23 = uba + 3 3ruta’® + 3r?ua’
2 = (uPy +ulst + 1) = uSy + uls?a? + £ + 2uPsa'y + 2t + WPty

zy = udz'y + ulsx? + uite’ +ta' + udry’ +ulsra’ +rt
Now substitute these values in equation in Weierstrass equation for an elliptic curve, then we get :

f@' y) = uby? + uts?a? + 12 + 2ulsa’y’ + 2stua’ + 2tudy’ + ayula’y’ + agutsa?
+ a1u’ta’ + a1udry’ + ajulsra’ + arrt + asuy’ + agulsa’ + ast — ubs”?

— % = 3ruta”? — 3r¥ule — a2u4sc'2 — a2r2 — 2a2ru2x/ — a4u29:/ — aur
— g = 0

1 1 1
i y) =y + a(al +2s)z’y’ + $(2t +rajaz)y’ — x> + ﬁ(s2 +ays — 3r —ap)x’?
1 3 2 ;1 3
+ —4(2st + ait + aysr+a’s — 3r° — 2a9r — ag)r’ + ﬁ(alrt +ast —r
u

— agr? — ayr —ag) =0

11



Now calculation for b}, b}, b; and by
b/_/_|_4/_i( +2)2+i( _ +3_2)
o = aj ay = (a1 s —z(az —say r—s
= af +4s% + 4a1s + 4as — 4saq + 12r — 42
u?bly = a? + dag + 12r = u?by = by + 12r
by = 2aly + a'aj
2 ) 1 1
= —4(a4 — saz + 2ras —tay —ra+ ls+ 3r° — 2st) + E(al + 25)$(a3 +rap + 2t)
U
= 2a4 — 2sa3 + 4ray — 2tay — 2ra1s + 612 — 4dst + aias + ra% + 2a1t + 2saz + 2sra; + 4st.
u4bﬁl = 2ay + 4ay + 6r% + ra% + ayas = 2a4 + aras + r(dag + a%) + 612
u4bﬁl = by + 7Dy + 612

by = a + 4aj
1 2, 4 2 3 2
zﬁ(ag—i-ral—i—%) +$(a6+r(z4+r as +1° —tag — trtay

u6b£i = ag + 7’2af + 4% + 2rajas + 4raqt + Atas + dag + draqg + 4rlaqg + 473 — 4taz — 4¢2

—4drtaq

ag + rza% + 2rajas + dag + 4raq + 4r2%as + 413

a3 + 4ag + 2r(2a4 + araz) + r*(af + dag) + 4r°
uSby

/ 2/ !/ ! 112 12
s = ajag + dayag — ayazay + asag — ag

be + 2rby + 12by + 413

1 1 4
ﬁ(al + QS)ZE(aG +rag +r2ay +riaz —t* —rtay) + E(ag — sa; + 3r — s%)

1 1 1
E(ag +rag +r2ay + 13 —tag —t* —rtay) — E(al + ZS)E(ag +ra; + 2t)
1 2 1 2
E(aél — sas + 2ras —tay — rsay + 3r° — 2st) + ﬁ(ag —say +3r — s%)
1 o 1 2 2
—6(a3 +ray + 2t)° — —8(a4 — sas + 2ras — tag — rsay + 3r° — 2st)
u U
1

4
= @(a% + 45 + 4ay8)(ag + ras + r2ag + riaz — t* — rtar) + E(a2 — say + 3r — 52

1
2 rta) — —(a1a3 + ra? + 2tay + 2sas + 2sra;
U

(ag + ray + r2ay + 13 —taz —t 3

1
+ 4st)(as — sas + 2rag — tay — rsay + 3r? — 2st) + —S(ag —say + 3r — 52)
u

1
(a2 4+ 72a? + 4% + 2a1a37 + 4arrt + 4ast) — — ((ag — saz)? 4 (2rap — tay)*+
u

(3r% — rsa; — 2st)? + 2(ay — sa3)(2ras — ta1) + 2(2ras — tay)(3r? — rsa; — 2st)
+2(3r2 — rsa; — 2st)(ay — saz))

= ajag + 4asag — ajazay + azai — a3 + 3r(ai + 4ag) + 3r*(2a4 + araz) + 3 (a3 + 4ay)
+ 374

= bg + 3rbg + 31"21)4 + 7’3b2 + 3rt

Now we will see after change of variable which quantities are changing and what is invariant by the

following table.
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uay = ay + 2s
u?aly = s2+a1s—3r—asy
udal = 2t + rajas
u4aﬁl = 2st+ait+aisr+a3s—3r2 —2a9r —ay
ubal = a1t + agt — 3 — agr? — aur — ag
U2b,2 = b2 + 12r
utt) = by + rbo + 612
uSbjy = be + 2rby + 5 + 413
uBb} = bs + 3rbg + 3r2by + 13by + 31t
utc) = 4
ubcly = Co
ul2A = A
J = J

So after change of variable up to isomorphism we got same j-invariant.
For converse, we will assume char(k) # 2,3. Let E and E’ be two elliptic curves over field K with the

same j-invariant in form of Weierstrass equation:
E:y?> =234 Az + B,
E :y?=a4+ A2 + B
From the assumption j(F) = j(E’) implies that

(44)* (44')*

443 +97B2  4A’3 + 27B"?

So
ABBIQ — A/SBQ

2

We look for an isomorphism of the form (x,y) = (u?2’,u®y’) and we will discuss isomorphism in three

cases:
Case(1 :) A=0(j =0). Then B # 0, since A # 0, so A’ =0, and we obtain an isomorphism using
u = (B/B’)/S.
Case(2 :) B = 0(j = 1728). Then A # 0, so B’ = 0, and we obtain an isomorphism using
u=(AJAN/2,
Case(3 :) AB # 0(j =0,1728). Then A’B’ # 0, since one of them were 0, then both of them would
be 0, contradicting A’ # 0. Taking u = (A/A’)'/* = (B/B’)"/ gives the desired isomorphism.

O

1.6 Legendre form

Just from j-invariants of elliptic curves we can know they are isomorphic are not. So j-invariant is very
important quantity about elliptic curves. Now we will discuss Legendre form of the elliptic curve where

we can find j- invariant explicitly. A Weierstrass equation is in Legendre form if it can be written as :
By =z(x—1)(z -\
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over algebraic closed field K.

Proposition 1.6.1. Let E : y?> = 23 4+ ax? + bx + ¢ be an elliptic curve over K in Weierstrass form then

we can transform elliptic curve E into Legendre form.

Proof. Let y?> = 2% 4 ax?® + bz + ¢ be an elliptic curve over K in Weierstrass form . If a1, as and as are
the roots of the polynomial. Then y? = (x — ay)(z — a2)(x — a3) Replace x by (ag — a1)2’ + a3 and y by
(o — 1)3/?y’) we get :

(a2 — a1)*2y)? = (a2 — 1)2’ + o1 — a1)((a2 — a1)2’ + a1 — az)((a2 — 1)z’ + o1 — as)
3 12 /

(a2 — 1)’y = (a2 — a1)a’((a2 — a1)z’ — (a2 — a1))((ag — a1)2’ — (a3 — a1))
(az — a1)3y? = (ag — )32/ (' — 1)(2’ — sl |
Qo — (1
Ey:y? =2z’ —1)(a =\ where A = 22~
g — (X1

Proposition 1.6.2.
285(\2 — A +1)3

T == -1y

Proof. On comparing E) with Weierstrass equation
y2 +arry +asy = z3 + a2x2 + asx + ag
over field K then we get :
a; =0, az =0, as = —(A+1), ag = A, ag =0

So value of bo, by, bg, bg, 4, 2\, j will be :

14



Hence j-invariant of E is

Now we are going to define compostion law for rational points on elliptic curve in Weierstrass form.

by = 2\
bg =0
by = A’

ey = 16(A2 =\ +1)
A =160%(\ —1)?

(16(A2 — A+ 1))
16X2(\ — 1)2

, 285(\2 — X +1)3
J(E,\)Z()\z()\_j_)g)

Composition law on cubic curves

Starting with two points P and Q) , we draw the line through P and @) and let P x Q denote the third
point of intersection of the line with the cubic. Even if we only have one rational point P, we can still get
another. By drawing the tangent line to the cubic at P, we are essentially drawing the line through P and
P. The tangent line meets the cubic twice at P, and we can’t use the same geometric principle that worked
so well for conics because a line generally meets a cubic in three points And if we have one rational point,
we can’t project the cubic onto a line, because each point on the line would then correspond to two points
on the curve. argument will show that the third intersection point is rational. Then we can join these new

points up and get more points. So if we start with a few rational points, then by drawing lines, we generally

get lots of others.

P*Q

=
N\

P+Q

Adding Points on a Weierstrass Cubic
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1.7 Explicit formulas for the group law

We start with our equation for the elliptic curve over field K :
E:y?=fx)=2>+ax’ +bx+c

Let P, = (z1,22) and P» = (x2,y2) We may define P, + P, = P3, where P;3 = (x3,y3). From this
construction, it follows that P; + P> = (x3,y3). We define the line connecting Py, P2, and Ps as :

y = Az + v; where \ = yQ:zll and v = y; — Az = Yo — Axo.

T2
We can substitute the equation for this line into the equation for E, so we have (Az+v)? = 23 +ax? +bx +c.
Moving everything to one side and expanding, we get :

0 =2 +az? +bx+c— (N2 +0? + 2\wz).
After some factoring, this yields :

0=a3+ (a— N)z?+ (b — 20Nz + (c — v?)
The roots of this equation are z1;xs, and 23, so we can rewrite the left side :

(x —21)(x — 22) (2 — 23) = 2% + (a — M)z + (b — 20Nz + (c — v?).
So we have that A2 — a = 1 + z2 + x3. We can use this to find formulas for 3 and y3
23 =N —a— 11 — 2o and Y3 = Ax3 + v

This equation is called the duplication formula. This is a useful result because it allows us to find the
coordinates of P; + P» given distinct points P; and P on an elliptic curve. To find P, 4+ P», all we have to
do is use the duplication formula to find the coordinates of Ps, and then reflect over the z-axis by taking

the opposite of y3.

Duplication formula

The formulas we gave earlier involve the slope A of the line connecting the two points. So suppose that
we have Py = (z0,yo) and we want to find Py+ Py = 2P). We need to find the line joining Py to Fy. Because
x1 = xo and y; = yo, we can’t use our formula for A. But the recipe we described for adding a point to
itself says that the line joining Py to P, is the tangent line to the cubic at P,. From the relation y? = f(x)

we find by implicit differentiation that
N
dx 2y

Sometimes it is convenient to have an explicit expression for 2P in terms of the coordinates for P. If we
substitute A = %;) into the formulas given earlier, put everything over a common denominator, and replace
y? by f(z), then we find that

xt — 2bx? — 8cx + b% — 4dac

2P) =
z(2P) 43 + 4ax? + 4bx + 4c

1.8 Group structure

Now we will show that the set of points on an elliptic curve, combined with the binary relation + on the

curve, forms an Abelian group. We will prove each condition for the group structure independently.
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Closure

Closure property is clear by the definition of construction.

Associative law

We will use Bezout’s theorem to demonstrate this result, particularly in showing that for any three
rational points on an elliptic curve, denoted P,@ and R, we have that (P+ Q)+ R =P+ (Q + R). We
shall assert Bezout’s theorem, and use this result to prove a more specific theorem about cubics. It is then

rather simple to prove that associativity holds for the group structure on an elliptic curve.

Theorem 1.8.1 (Bezout’s Theorem). For any two polynomials C; and Cs that do not have a component

in common, where C1 has degree n and Cy has degree m,C1 and Cy intersect at nm distinct points.

Lemma 1.8.2. For any three cubic curves C1,Co,Cs in projective space, where Cy and Cy do mot have a
component in common, if C3 passes through eight of the nine intersection points of Cy and Cs, then C3 also

passes through the ninth intersection point.

Proof. Let C7 and Cy be two cubic curves. Bezout’s theorem gives us that C; and Cy intersect at 9 distinct
points. Assume that C3 passes through 8 of the 9 intersection points of C; and Cy. Because C; and Csy are
defined in projective space, they are associated with two functions F} and F5 such that C; : Fi(X,Y,Z) =0
and Cy : F»(X,Y,Z) = 0. It is therefore possible to create a linear combination of F; and F, defined by
AF + A\F5 for some values of AF; and A\F5. Because such a linear combination is defined in projective space,
it forms a one-dimensional family. Because C'5 is pinned down by 8 points through which it must travel, it
is part of a one-dimensional family. Thus, for some values of A\F} and AF5 , we have F3 = AF} + \F5 for
Cs : F3(X,Y,Z). If we are to evaluate this relationship at the ninth intersection point of C; and Cs, we
have F} = Fy = 0 by definition. Thus, F3 = 0 at this point, and therefore, C5 passes through the ninth

point of intersection. O

We can now use Bezout’s theorem to prove the associativity property for the group operation + on
the points on an elliptic curve. To show that P + (Q + R) = (P + Q) + R, it suffices to show that
Px(Q+ R) = (P+ Q) * R, because this point will simply be reflected over the z-axis to obtain the desired
result.

Claim :
For any three points P, @, R on an elliptic curve E, P x (Q + R) = (P + Q) * R.

Proof. Let P,Q, R be points on an elliptic curve E. We will now give names to the lines used in defining
the relevant points on E :

Let L; be the line passing through P, @ and P * Q.

Let L} be the line passing through Q, R, and Q * R.

Let Ly be the vertical line passing through O,Q * R and Q + R.

Let L} be the vertical line passing through O, P« Q and P + Q.

Let L3 be the line passing through P + @ and R.

Let L% be the line passing through P and Q + R.

Because C' is a projective curve, the lines L3 and Lj must intersect at a single point,denoted A. Furthermore,
because both L3 and L% are lines through two points on C, they must intersect C' at a third point. Thus,
if A lies on the elliptic curve, then A = P (Q + R) = (P + @) * R and the associative property holds. Let
D be the set consisting of P, @, R, the compositions P x @ and @ * R, the additions P+ @ and @ + R, and
the point A. By construction, every point p € D has both a line L; and a line L/ passing through it. We
may define Cy = Ly * Ly % Ly and let Cy = L} * L}, = L%, so C; and Cy both pass through all of the nine
points p € D.
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By definition, the elliptic curve E passes through the eight points p € (D/A), so F passes through A by
above Lemma, and the associative property holds. O

Zero element

The identity element for the binary operation -+ is the point at infinity, O©. This property is rather clear
intuitively. Recall that for all points P and @ on the elliptic curve, P + Q = O x (P x Q). Thus, for any
point P on the elliptic curve, O + P = O % (O x P). The right side of this equation reflects the point P over
the z-axis twice, resulting in the point P. Thus,O + P = P, and there is an identity element for the group.

Inverse of a point

The property that every point @ on the elliptic curve must have an inverse is also rather clear to prove
intuitively. For any point @) on the elliptic curve, we define —() to be the point on the elliptic curve obtained
by reflecting Q over the z-axis. Thus, Q * (—Q) must be the point at infinity, implying that Q + (—Q) = O
and, therefore, that the inverse property holds.

Q= (z,_,,\;k/

The Negative of a Point on a Weierstrass Cubic

"\

Commutativity

Commutativity is very clear from the definition of composition law because line joining P and @ is same

as line joining @) and P



Hence set of all rational point points on elliptic curve E(Q) with point at infinity O is Abelian
group.
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Chapter 2

Points of finite order

In this chapter our aim is to prove Nagell-Lutz theorem which says that (z,y) € E(Q),, must have
integer coordinate and y is 0 or y divides the discriminant. In this theorem we are using discriminant
and points of finite order so also we will define discriminant of the polynomial and how looks like torsion
subgruop of E(Q) . So from the theorem we can conlude that we can find (z,y) € E(Q)tor in finite number

step because the set of all divisors of discriminant is finite.

2.1 Points of order two and three

Definition 2.1.1. A point P of any group is said to be of order n € N if
nP=P+P+---+P=0

but mP # 0 for 1 < m < n . If such m does not exist then we say it has infinite order.

Now we will discuss about points of finite order of elliptic curves given in Weierstrass form : y? = f(z) =
22 + ax? + bx + c over the field K and here we are considering point at infinity as zero element for the group

law of elliptic curve.

Points of order two

Let P be a non zero element of our group i.e., 2P = 0 = P = —P and we know if P = (z,y) then
—P = (x,—y) so y co-ordinate of the points of order two will be zero. Let a1,z and x3 are the roots of the
polynomial f(z). If Py, P, and Ps are the points of order two.then
P, = (21,0), P, = (22,0) and P35 = (x3,0). If we allow complex root z1,z2 and x3 of the polynomial f(x)
then these are exactly three.If we take all these points of order two with zero element 0 of elliptic curve
then the set {O, Py, P2, P3} form a subgroup. So we have a group of order four which means if we add two
non zero elements of this group we get third one i.e., these three points are collinear.And we have Abelian

group of order four so it is direct product of two cyclic group of order two.
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Points of order three

Let P = (z,y) be a point of order three i.e.,

3P=0=2P=-P
= z(2P) = 2(—P) = z(P)
xt — 2b2? — 8cx + b? — dac B
4x3 + dax? + 4bx + 4c
= g(x) = 32" + dax® + 6bx® + 12cx + (4ac — b*) = 0

and conversely, if P # O and z(2P) = z(P),then 2P £ P = 3P = O. So the points of order three are
exactly the points satisfying z(2P) = z(P).

Remark : C has exactly nine points of order dividing 3. These nine points form a group which is a

product of two cyclic groups of order three.

Proof : Let P = (z,y) be any point of order three then x(2P) = xz(P), we know that x co-ordinate of

f/
2P = Lf2)

g(z) = 2f(x)f"(x) — f'(x)? for checking all four roots(complex) of g(z) are distinct we have to show that

g(x) and ¢'(x) have no common roots. Suppose g(z) and ¢’(z) have common roots then
2f(2)f"(z) = f'(x)*  and  2f(x)f"(x) = 12f(x)

have common root if = is common root of g(x) and ¢’(z). So x would be common root of f(x) and f'(x) .So
we got contradiction because elliptic curve E is non singular.Hence g(x) has four distinct complex roots.

Let (1, B2, B3, B4 be the four complex roots of g(z) and for each 8; we have A\; = \/f(8;) and \; # 0 (because
order of (53;,0) = 2). Then set {(81,£A1), (B2, £A2), (B3, £A3), (B4, £A4)} contains all points of order three
of the elliptic curve. So this set with zero element of elliptic curve form an Abelian group of order nine
having elements of order dividing three.We note that there is only one Abelian group with nine elements
such that every element has order dividing three, namely, the product of two cyclic groups of order three.

2.2 Complex points on elliptic curves

We know by the geometry of elliptic curve E : y? = 23 + az? + bz + ¢ over field K have one or two
components, depending on the real roots of f(x) . The points on the curve with complex coordinates form a
group. The points with real coordinates form a subgroup because if two points have real coordinates, then
so do their sum and difference. And since we are assuming the coefficients a,b,c are rational numbers, it is
even true that the rational points form a subgroup of the group of real points. So we have a big group and

some subgroups :
O CE@Q) c E(R)C E(C)

Definition 2.2.1. Let A C C be a lattice, that is, A is a discrete subgroup of C that contains an R-basis
for C

An elliptic function (relative to the lattice A) is a meromorphic function f(z) on C that satisfies
flz+w) = f(2) VzeCand Ywel

The set of all such functions is denoted by C(A) . It is clear that C(A) is a field.
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A Cubic Curve with One Real Component

U
U
5
8

Figure 2.1: A Cubic Curve with Two Real Components

Remark 2.2.2. A holomorphic elliptic function, i.e., an elliptic function with no poles, is constant. Simi-

larly, an elliptic function with no zeros is constant.
Definition 2.2.3. Let A C C be a lattice. The Weierstrass p-function (relative to A ) is defined by the

series ) ) .
o=zt 3 A

weA,w#=0
The Eisenstein series of weight 2k(A) is the series
Gu(A) = > w*
weN,w#0

Proposition 2.2.4. The series defining the Weierstrass p-function converges absolutely and uniformly on
every compact subset of C(A). The series defines a meromorphic function on C having a double pole with

residue 0 at each lattice point and no other poles .
Proposition 2.2.5. A holomorphic elliptic function, i.e., an elliptic function with no poles, is constant

Theorem 2.2.6. (a) The Laurent series for p(z) around z =0 is given by

1 = 2%
=2 + ];(2/%‘ + 1)Gaky2z
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(b) For all z € C A, the Weierstrass p-function and its derivative satisfy the relation

0 (2)? = 4p(2)® — 60G4p(2) — 140G

Proof. (a) For all z with |z| < |w| we have

o (e ) T

n=1

Substituting this formula into the series for g(z) and reserving the order of summation gives the

desired result.
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(b) We write out the first few terms of various Laurent expansions :

p(z) =

272 + 3G42’2 + 7G826 + 9G1028 + 11G122’10 + 13G14212 + .. )

0(2)% = (272 + 3G42% + 7Gs2% + 9G102° + 11G 122" +13G 1422 +...)

p(2)” =

(272 + 3G42% + TGs2% +9G102% + 11G122'° +13G 142" +...)

246G, + 22 (5G + 5Gg) + 2 (TGs + 9G2 + TGg) + 2°(9G 10+

15G4Gs + 9G10) + 25 (11G12 + 21G4Gg + 25G2 + 21G4Gg + 11G12) + . ..

0(2)® = (272 + 3G42% + 7Gs2% + 9G102° + 11G 1220 + 13G142"% + ...)

(2_4 +6G4 + 22(5G6 + 5G6) + 2’4(7G3 + QGE + 7G8) + 2’6(9G10
+ 15G4Ge + 9G10) + 28(11G12 + 21G4Gg + 25G2 + 21G4Gs + 11G12) + ...)

0(2)® = 270+ 272(6G4 + 3G4) + (10Gs + 5G — 6) + 2*(14Gs + 9G35 + 18G3)+

/!

p(z) =
p(2)? =

24 (18G9 + 15G4Gg + 30G4G) + 2°(22G12 + 42G4Gs + 25G5+
42G4Gg + 27G% + 50GE + 42G4Gs + 11G12) + . ..

—2273 4+ 6G 4z + 20G2> 4+ 42Gs2° + 72G 1027 + 110G 122° + . ..

(—2273 + 6G4z + 20Ge2> + 42Gg2° + 72G102" + 110G 122° +...)
(—2273 + 6G42 + 20Gs2> + 42Gs2° 4 72G102" + 110G 122° +...)

=475 4+ 27%(—12G4 — 12G4) + (—40Gs — 40Gs) + 2*(—84Gs + 36G

— 84G) + z*(—144G 1o + 120G4Gg + 120G 4G — 144G 1)+
2%(—220G 15 + 252G 4G + 400G3 + 252G 4Gs — 220G 12) + . . .

p(2)? = 4275 + 27%(—24G,) — 80G + 2*(—168Gs + 36G3)+

f(z) =

0(2)” — 4p(2)® + 60G4p(2) + 140G

= {4275 + 27%(—24G4) — 80Gs + 2*(— 168Gy + 36G3)+

24(240G, G — 288G o) + 2°(—440G 15 + 504G, Gg + 400G2) + ...}
—4{27% + 272(6G4 + 3G4) + (10Gs + 5G — 6) + 2*(14Gg + 9G3 + 18G?)
+ 24 (18G10 + 15G4Gg + 30G4G6) + 2°(22G12 + 42G4Gg + 25GE + 42G4 Gy
+ 27G3 + 50G3 + 42G4Gg + 11G12) + ... } + 60G4 {22 + 3G42*+
TGs2® 4+ 9G102% + 11G 122" +13G 142 + .. )} + 140G
22(—168Gs + 36G3 — 56Gs — 108G3 + 180G3) + 2*(240G 4G — 288G — T2G 1o
— 180G 4G6) + 2°(—440G 15 + 504G4Gg + 400GE — 132G12 — 504G, Gy
— 300G — 108G% + 420G4Gsg) + . ..
22(—224Gs + 108G?) + 2*(60G4G — 360G 10) 4 25(—572G 12 + 420G4 Gy
+100G3 — 108G3) + ...
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f(2)is holomorphic at z = 0 and satisfies f(0) = 0. But f(z) is an elliptic function relative to A, and
from above proposition it is holomorphic away from A, so f(z) is a holomorphic elliptic function. Then
above proposition says that f(z) is constant, and the fact that f(0) = 0 implies that f is identically

Zero.
O
So we have proved that Weierstrass p(u) satisfies the defferential equation
2 3 / dp
(0')° =4p" — g200 — g3, where @' = T 2= 60G4, g3 = 140Gs
Thus for every complex number u we get a point
P(u) = (p(u), (¢'(u) (2.1)

on the given curve, in general a point with complex coordinates. So we obtain a map from the complex u

plane to F(C) and we send the points in A, which are the poles of g, to O.

Proposition 2.2.7. [Kob, Prop. 10] The map given by 2.1 is one to one correspondence between C/A and

3

the elliptic curve y*> = x® — gox — g3 in PZ.

2.3 Discriminant

Our goal in this chapter is to prove Nagell-Lutz theorem which says that every torsion element of E(Q)
must have integer co-ordinate, and either y = 0 or y|discriminant.let us recall the notion of discriminant.
Suppose E : y? = 23 + az? + bz + c is rational elliptic curve. Now substitute x = X/d? and y = Y/d® then
the elliptic curve becomes Y? = X3 + d%2aX? + d*bX + dc. So by choosing appropriate d we can make
d?a,d*b and dc as integers.

So from now on we will assume that our cubic curve is given by an equation having integer
coefficients.

The discriminant of f(z) is the quantity :
A = —4a® + a®b® + 18abc — 4b° — 27¢°

if a =0 then A = —4b3 — 27¢2

If we assume f(x) over complex number and 1, as, ag are the roots of polynomial f(z).
Then we can write f(x) as :

f(@) = (z = a1)(z — ag)(z — a3)

And we can check that :

A = (o — az)*(a1 — as)?(az — ag)?

and so the non-vanishing of A tells us that the roots of f(z) are distinct.
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we can also express discriminant in terms of coefficients of cubic equation :

f(z) = (z —a1)(z — a2)(z — as)
=(z—az)(z—a3) + (. —)(z —az) + (z — a1)(z — az)
A= (o — a2)2(a1 - a3)2(a2 - a3)2
(

ar —az)(on — ag)(ar — az)(ae — az)(ar — az)(as — az)
—(o1 —az)(a1 — az)—(a1 — az)(a2 — az)(ar — az)(az — a3)

= —f(a1) f'(a2) ' (a3)
3
A=—T]F ()
=1

Now we will prove one proposition which will be useful for proving Nagell-Lutz theorem.

Proposition 2.3.1. Suppose f(x) is a polynomial over K. Then there are two polynomials F(x),G(z) €
K|x| such that the discriminant of the polynomial f(x)

A =F(z)f(z) + G(2)f'(2)
For proving this proposition we have to introduce resultant of two polynomial and following lemma.

Definition 2.3.2. Let
f(x) = ap + a1 + agx® + -+ + apa”
g(x) =by +b1x—|—62x2 ot bya™

be two polynomial of degree n, m respectively over K. Let o;(1 <i < n) and B;(1 < j < m) be roots of f(x)
and g(x). The resultant R(f,g) of f(x) and g(x) is defined by

If we define f(z) = a, [[\—,(z — ;) and g(x) = by, [[=, (x — ;) then
9)=ayt IT bmlai = 8) = ai [T 9(ei) = (=1)""7, Hf Bi)
ij=1 i=1

So from this we can conclude that

RS f) = a [ £ () (2.2)

Lemma 2.3.3. Suppose f(x) and g(z) are polynomials in K[x]. Then there are polynomials F(x) and G(x)
in K|x|, such that

R(f,9) = F(x)f(z) + G(z)g(x)

Proof. Let
f(2) = ap + a17 + agax® + - + apa™ (an # 0)

g(x) = by + byx + byx?® + -+ + byz™ (bm #0)

be two polynomial of degree n, m respectively over K.
If R(f,g) =0, there is nothing to prove. So let R(f,g) =d#0
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Consider the system of equations
2 f(x) = aprlarx™ 4 - apatt (i=0,1,....,m—1)

2l g(z) = b + byzd T 4+ bt (j=0,1,...,n—1).

These equation can be rewritten as a single matrix equation AX =Y, where

f(x)

ap a1 ... Qnp 1 f(l‘)l‘
ap ... Qp, T

A= o , X = z? , y =
bo by ... b, , 9(x)
b b : g(x)z
0 m xm+n—1 .
g(x)zm!

The missing entries A are all zeros.By the definition of resultant R(f, g) = det(A) = d # 0.

Since d # 0,A™' = (1/d)adj(A), where the matrix adj(A) = (A;;) consists of the cofactors A;; of A .

Obviously, X = (1/d)(adjA)Y . Solving for the first coordinate of X, we obtain

m m+n
d= (ZAljxjfl)f(x) + ( Z Aljxj*mfl)g(x)
J=1 j=m+1
Put .
F(z)= ZAljxj_l and G(z) = Z A1jxj_m_1
i=1 j=m+1
We get

R(f,g) = F(x)f(x) + G(x)g(x)

Proof of lemma 2.3.1. For proving this lemma first we claim that :
1
A= (-1 DR=R(f, f') (a)

an

For proving this claim we will prove that

A= a2 (=) [ ()
=1

Let f(z) = apa™+a,_12" 1+ - -+a;+ag be a polynomial of degree n € K[X], Kisfield. If ay, s, . ..
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are the roots of the polynomial and N =1,2,3,...,n.

f@)=an(x —an)(z — )z —az)...(x — ay)
f@)=a{(z—)(z—a3)...(x —an) + (@ —a1)(z—a3)...(z — ay)
Fx—a)z—a)(z—ag)...(z—a,)+ -+ (z—a1)(x — a9)
oz —an-1)}
f'(fﬂ)Zan{ [ G-an+ [[ G-an+-+ [] (x—an}
1£iEN 1£iEN 1£iEN

= f'(a1) = ay, H (1 — )

1£iEN
= (=1 an(a1 — az)(ar — az) ... (1 — an)
fla2) = ap(ag —ag)(ag —az) ... (ag — ay)
= (=D tan(a; — az)(as —az) ... (a1 — ay)
flag) = an(as — a1)(as — az)(as — aa) ... (a3 — ax)
= (=1)%an(a; — asz)(as — as)(as — aq) ... (a3 — ay)
fag) = an(ag —ag)(ag — az)(ag — az)(ag —as) ... (g — )

= (=1)3an (a1 — ag)(ag — ay)(az — ag)(og — as) ... (g — ay)

fom—1) = (=1)"2an(o1 — ap_1)(o2 — 1) - .. (An—2 — 1) (an_1 — o)

flan) = (=1D)"tan(ar — ap)(as — an_1)(az — apn_1) ... (Qn_1 — )

(—1){1+2+3+'”+("‘1)}a2 H (ai_aj)Q
1<i<j<n

\
—-
=
B
I

@
Il
-

—=
=
—
Q
S
~
Il
T
—_
~—
ES
&
1=
S
33
—
Q
S
Q
<
~
N

s
Il
_

1<i<j<n

n(n—1)

=07 e [ ()
i=1

\
Q
<

= H(ai

1<i<j<n

We know by the definition of discriminant of n degree polynomial that :

1<i<j<n

Substitute the value of

I (ei—ay)?

1<i<j<n

in the definition of discriminant then we get :

A= a2 (-1 " [ f ()

i=1
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and also from the equation 2.2 we have that
R(f,f) = ay ] f/(ew)

n(n—1) "

a1

= [] f/(cs) = a," " R(f, f'). Now substitute the value of [] f’(c;) in the above equation A = a2"2{(-1)~
i=1 i=1 i=1

we g?et :
A= ()CVELRGES) (@

Qn

We know from the lemma 2.3.3 that
R(f,f") = F'(z)f(z) + G'(2) f'(x)
for some polynomial F’(z) and G'(x) in K[z].So On substituting

F(z) = (_1)n(n—1)/2iF1(x) and G(z) = (_1)n(n—1)/2iG/($)

Qn an

in the above expression (a) we get desired result:

A =F(z)f(z)+ G(z)f' (z)
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Example 2.3.4. For cubic curves : y?> = x3 + 4, determine all of the rational points of finite order.

Solution FE:y?=a3+4
Comparing this curve with C : y? = 22 + ax? + bx + c.Then we get

a=0, b=0, c=4, A = —27¢% =432

Possible y values € {0,+1,+2, +3, +4, +6, +£12}

If y =0 then 2® + 4 = 0 = 2 ¢ Z so there is no point with y =0

If y = 41 then 23 + 4 =1 = 2% = —3 = x ¢ Z so there is no point with y = +1

If y =42 then 2° + 4 =4 = 2% = 0 = 2 = 0 € Z so there are two points (0,2) and (0, —2) with y = +2
If y =43 then 2° + 4 =9 = 23 = 5 = 1 ¢ Z so there is no point with y = 43

If y = +4 then 2° + 4 = 16 = 2® = 12 = x ¢ Z so there is no point with y = +4

If y = 46 then 23 4+ 4 = 36 = 2> = 32 = x ¢ Z so there is no point with y = +6

If y = £12 then 23 + 4 = 144 = 23 = 140 = x ¢ Z so there is no point with y = +£12
So all possible points are as follows :

(0,2), (0,—2) and O

Moreover by duplication formula we get :

(0,2) 4+ (0,2) = (0, —2) = 2(0,2) = (0, —2) = order of (0,2) =3

(0,-2) 4+ (0,—2) = (0,2) = 2(0, —2) = (0,2) = order of (0,—2) =3

And order of O =1

2.4 Nagell-Lutz theorem

Theorem 2.4.1 (Nagell-Lutz). Let
v =f(z) =2+ ax® + bz +c

be non-singular cubic curve with a,b,c € Z and let A\ be the discriminant of the cubic polynomial f(x). Let
P = (z,y) be a rational point of finite order. Then x and y are integer; and either y = 0, in which case P

has order 2, or else y divides A\.There is a finite number of such points.
Firstly we will introduce some definitions,Jlemmas and proposition for proving Nagell-Lutz theorem.

Remark 2.4.2. An useful observation for our proof is that any rational number can be expressed by the

following formula :

U

m
—Dp
n

where the prime number p does not divide either m or n, where n > 0, and where v is some integer. We

define the order of a rational number to be the integer v :
ord(@p”> =0
n

Lemma 2.4.3. Fiz a prime p. For any point (x,y) € E(Q), if p divides the denominator of x, then p

divides the denominator of y.

Proof. Consider a point (z,y) € F(Q), where there exists a prime p dividing the denominator of z. Because
x and y are rational numbers, we can express them as follows :

m u

xr= —— =
npH Y wp°®
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Because p divides the denominator of x, we have that p > 0. This proof, then, aims to show that ¢ > 0. By

construction, we also know that p + m,n,u,w. By substituting our equations for x and y into the equation
y? = 2% + ax® + bx + ¢, we get :

u? m3 am? bm

w2p20 n3p3;¢ n2p2,u np,u
Finding a common denominator, this becomes :

3. 3n
u? m> + am2np* + bmn2p2Htenp

w2p20' n3p3,u

We can now examine the orders of both sides of this equation. Because p r u? and p + w?, we have :
2 2
u - u —2¢\ __
ord( 7 ) = ord(zp ™) = ~20

For the right side of the equation, we know that prn and thus that p +n3. We also know thatp r m, so it is
true that p+ (m? + am?np* + bmn?p?* + cn3p3#). Thus, we have :

m? + am?np* + bmn2p2“+m3p3”
ord( 33 ) =—-3u
nepH

Because both sides of our equation must have the same order, these two results give us that 20 = 3u In

particular, o > 0, and so p divides the denominator of y. Further, the relation 20 = 3y means that 2|y and
3|o, so we have y = 2v and o = 3v for some integer v > 0.

Similarly, if we assume that p divides the denominator of y, we find by the same calculation that the

exact same result holds, namely, © = 2v and o0 = 3v for some integer v > 0. Thus, if p appears in the

denominator of either x or y, then it is in the denominator of both of them O
Definition 2.4.4. For an elliptic curve E over Q, we define the set E(p”) by :
E(p®) ={(z,y) € E(Q) lord(z) < —2v and ord(y) < —3v}

Intuitively, F(p") is the set of all points of E(Q) in which the denominators of the coordinates of = and
y are divisible by powers of p greater than 2v and 3w, respectively. By convention, we also include the point
at infinity,O, in all sets E(p").

Additionally, it is intuitively clear that E(Q) D E(p) D E(p?) D E(p®) D ... , from the definition of the
sets E(p?).

Lemma 2.4.5. E(p?) is a subgroup of E(Q) for all v.

Proof. We will define two new variables t and s by

Substituting in ¢ and s, our equation for the elliptic curve (y? = 2® + a2? + bz + ¢) becomes :
s =1t + at’s + bts® + ¢s>

Every point (z,y) on E has a unique corresponding point on the graph defined by Equation Notably, this
is with the exception of points of order 2 on E, because these points have y = 0 and therefore make s
undefined. However, the point at infinity O is expressed by a point on the graph of Equation namely, the
point (0,0). Following figure 2.2 shows both graphs in this mapping. Similarly, lines passing through E in
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Figure 2.2:

the (z,y) plane have corresponding lines in the (¢, s) plane. If the equation for a line in the (x,y) plane is
y = Az + v, then dividing the equation by vy gives us an equation for the corresponding line in the (¢, s)

plane :
1 Az 1 A 1
5

voovy Yy v v
For adding two points P; and P, on elliptic curve in ¢ —s plane we connect two points P, and P, on the curve
with a line, and find the third point of intersection (¢3,s3). In our relation, @ is mapped to (0,0), so all we
have to do is draw a line through (¢3,s3) and the origin, and find the third point of intersection. Because
Equation is an odd function, this just means that Py = (—t3, —s3). We can find a general formula for this
addition. Then, by considering only points in E(p”), we can show that this way of defining addition makes
E(p¥) a group. We will define the ring R,, as the set of all rational numbers such that p does not divide
the denominator. Notationally, this means that for all x € R,, we have that ord(z) > 0. The invertible
elements of R, (that is, all elements v that have an inverse v under multiplication in R,) are called the
units of R,, and are in this case those elements with order equal to 0, or those in which both the numerator

and denominator are co-prime to p.

Let (x,y) be a point with rational coordinates in E(p”). By definition, we have that ord(z) < —2v and

ord(y) < —3v, so we can express = and y by the following equations :

m u

T = np2(+) wpP )

for some ¢ > 0. Using our equations for t and s, this yields :

po T e s 1 Wt

Y nu Y U
Thus, for a point to satisfy (x,y) € E(p¥),p® must divide the numerator of ¢, and p3v must divide the
numerator of s, for the associated pair (¢,s). This is equivalent to saying that (¢, s) must satisfy t € p*R,,
and s € p?’”Rp. So, to show that E(p”) is a subgroup, then we can simply show that if an arbitrary power
of p divides the ¢ coordinate of two points P; and P», then the same power of p will divide the ¢ coordinate

of their sum.

Let P, = (t1,51) and Py = (t2,s2) be distinct points on the curve. There are two possible cases to
consider :
(1) t1 = to If ¢4 = to, then Py = —P5 by the addition law, so P; + P, must be an element of E(p"), because
they add to the point (0,0).
(2) t1 # to Let s = at + B be the line passing through P; and P».The slope of the line,a,is given by

S2
ta

attempt to express the slope as a function of the coordinates of P; and P», as well as the coefficients a, b,

o = $2=71. We also know that (t1,s1) and (t2, s2) satisfy the equation s = 3 + at?s + bts? + cs3. So, we can
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and ¢ may subtract the equation for P; from the equation for P :
sy — 81 =ty — 13 +a(tisy — 1351) + b(tass — t157) + c(s5 — s3)
This can be reformulated to include factors in the form of (2 —¢1) and (s2 — s1) :
S9 — 51 = ts — 3+ a(ts — t3)sy + ati(sa — s1) + bty — t1)s3 + bt1(s5 — s3) + c(s3 — 53)
So, factoring out the quantity (t2 —t1), we can find an equation for (to —t1) : after some algebra, the result
is :

o SS9 — 851 - t% +t1t2 +t% +a(t2 +t1)52 +b$%
ta—t; 1 —at? —bti(s2 +s1) — (52 + 5180 + 57)

We will put this result aside for now. Next, we will look at addition on the cubic curve. Let P = (t3,s3)
be the third point of intersection of the line s = at + 3

, which is drawn through P; and P,, and the cubic curve s = 3 + at?s + bts? + ¢s® on which P; and P,
lie. The equation with t1, ¢ and t3 as roots can be found by substituting the equation of the line s = at +

ot + B =t* + at*(at + B) + bt(at + B)3

Expanding, multiplying, and factoring out powers of ¢ gives us :
(14 ac + &®b + ca®)t? + (aff + 2baB + 3ca?B)t* + (bB% + 3caB? —a)t +c¢B° — B =0

It is generally true that the sum of the roots of a cubic equation of the form 0 = ax® + bz? + cx + d is equal
to ’Tb.This convenient fact gives us an equation for the sum ¢; 4 t5 + t3, based solely upon the coefficients

of t3 and t? in the above equation.

aB + 2baB + 3ca’p

t t t3 =
1ttatits 1+ aa + a2b + ca?

This is a powerful result that gives us a way to calculate t3 given only ¢; and t5, and therefore allows us
to find P, + P, for any P;, P, on the curve. We can finally begin to analyze all of the above preliminary
results. First,we will look at our extended formula for,given by Equation :

SS9 — 851 t% + tth + t% + a(tg + tl)SQ + bS%

@ ty — 1 1 —at? — bty (sa+ s1) — c(s3 + s152 + s7)

By definition, we know that t1,?2, 51, s2 are all elements of p”R,. The formula for the numerator,

{2+ tita +1t2 +a(ta +t1)s2 +bs3} , when expanded out, satisfies the condition that every term includes two
of the elements t1,t5, 51, 5o multiplied together. Thus, p?v divides the numerator of «, and it is therefore
an element of p?vR,. The denominator of o is {1 — at? — bt1(s2 + s1) — c(s3 + s152 + s7)} , in which all
terms except for 1 are divisible by p?v by a similar argument. Because of the value 1, the denominator is
co-prime to p, and is therefore a unit in R,. So, looking at « in its entirety, we have that p*v divides the

numerator and not the denominator, giving us the result that « € p*R,,.

From our equation for the line through P; and P,, we know that s; = at; + S.Because s; € p'R,, we
know that s; € p?’”Rp. And, because « € p2”Rp and t; € p'R,, we have that ¢; € pSURp. Therefore, the

equation for the line gives us that 8 € p®"R,. Finally, we can analyze Equation

af} + 2baf + 3ca?

htitztis= 1+ ao + o2b 4 ca?

through a process similar to our analysis of « . Similarly to the denominator of «, the denominator of the
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equation for ¢; + t2 4 t3 is a unit in R,.The term af in the numerator of Equation

af} + 2baf + 3ca?p
1+ ao + o2b + ca?

b4ty +t3 =

gives us that t; + 2 + 13 € p3URp. But we know by assumption that ¢; and t, are elements of p’R,, so t3
must be an element of p” R, as well, implying that —t3 € p,.

Thus, if the t-coordinates of P, and P, are in p"R,, then the t-coordinate of P, + P, is also in p"R,,.
Also, because the curve is symmetric about the origin, we know that if the ¢-coordinate of P is in p” R, then
the ¢-coordinate of —P is also in p”R,,. This shows that E(p”) is closed under both addition and negatives,
making it a subgroup of E(Q).

In proving that E(p?) is a subgroup of E(Q), we also proved a stronger result : that ¢, +ty+t3 € p>* R,,.
So we know that, for any Py, P, € E(pY),

t(Pl) + t(Pg) — t(Pl + PQ) S p?’URp;
where t(P;) denotes the t-coordinate of the (¢, s) pair associated with P. So, the numerator of the sum of
t1,ts and —t3 must be divisible by p3¥. This lends itself to a useful reformulation :
t(Pl + P2) = t(Pl) -+ t(Pg) mod pSURp
We can use this fact to finally prove that points of finite order on E(Q) have integer coordinates. O

Lemma 2.4.6. Given an elliptic curve E, for all prime numbers p, the group E(p) contains no points of
finite order (other than O).

Proof. Let P be a point of finite order m. Let p be some prime number. Because P # O, we know that
m > 1. We will assume that P € E(p) and establish a contradiction. It is possible that P is contained
in some subgroup E(p¥) of E(p). However, P cannot be contained in all such subgroups, because it is
impossible for the denominator of P to be divisible by all arbitrarily large powers of P. Thus, there must
be some v such that P € E(p®), but P ¢ E(p'*!). Pick this p. There are two possible cases to consider :

1: ptm
from above we know that ¢(P1 + P2) = t(P1) 4+ t(P2) mod p*’R,,.

Because P is a point of order m, we are adding it to itself m times. So, our congruence becomes :
t(mP) = mt(P) P*’R,

Because mP = O, and because ¢(O) = 0, this becomes 0 = mt(P) mod p*’R,. We also know

that m is co-prime to p, making it a unit in R,. So, we end up with :
0=t(P) mod p*' R,

which imply thatP € E(p*'R,), contradicting the above assumption that P ¢ E(pv+!).

2: p|m
Because p divides m, we have that m = pn for some n € Z. If we let P’ = nP, then P’ has order p,
and is an element of E(p) because P € E(p) by assumption. Similarly to the first case, this yields
that
0= pt(P") mod p** R,

. Dividing out p, we get this ultimate result :
0=t(P) mod (p*""'R))
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This gives us that P’ € E(p*~!), which contradicts the assumption that P’ ¢ E(p°*!) because
3v—1>v+1.

Therefore, for all primes p, the group E(p) contains no points of finite order greater than 1 O
Corollary 2.4.7. All points of finite order on E(Q) have integer coordinates.

Proof. Let P = (z,y) be a point of finite order on E(Q). We know that P ¢ E(p) for all primes p, so the
denominator of the coordinates of P are not evenly divided by any primes. By definition, a number that
cannot be evenly divided by any prime numbers has to be equal to 1, so the denominators of the coordinates
of P are 1, and the coordinates must be integers. O

Lemma 2.4.8. Let P = (z,y) be a point on our cubic curve such that both P and 2P have integer coordi-

nates. Then either =0 or y|A.

Proof. Let P = (z,y) and 2P = (X,Y)
then by duplication formula we know :

f'(x)

X =\ —a—2z, where \ =
2y

We assume that y # 0 and prove that y|A. Because y # 0, we know that 2P # O.Since z, X and a are all
integers, it follows that \ is also an integer. Since 2y and f'(z) are integers, we see that 2y|f’(z); and, in

particular, y|f'(z). But y*> = f(z), so also y|f(z). Now we use the relation

A =r()f(z) + s(z)f (z).

The coefficients of r and s are integers, so r(z) and s(z) take on integer values when evaluated at the integer
x. It follows that y divides A. O

Theorem 2.4.9 (Nagell-Lutz). Let
v = f(z) =2® +ax® + br +c

be non-singular cubic curve with integer coefficients a,b,c and let A\ be the discriminant of the cubic poly-
nomial f(x). Let P = (z,y) be a rational point of finite order. Then x and y are integer; and either y = 0,

in which case P has order 2, or else y divides A\.There is a finite number of such points.

Proof. From the lemma 2.4.8 and corollary 2.4.7 we conclude that P = (x,y) be a rational point of finite
order. Then x and y are integer; and either y = 0, in which case P has order 2, or else y divides A and set

of all divisors of discriminant A is finite set such points are finte. O
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Chapter 3

The Group of rational points

In this chapter we will prove Mordell’s theorem which says that the set of all rational points on elliptic
curve (E(Q)) is finitely generated group which was our ultimate goal. For proving this theorem we want

the notion of height so also we will define this term.

3.1 Heights

Let 2 = ™ be a rational number written in lowest terms. Then we define the height H(z) to be the

maximum of the absolute values of the numerator and the denominator :
H(x) = H(™) = maa{|ml, |n|}
n

The height of a rational number is positive.
Finiteness property of the height : The set of all rational numbers whose height is less than some fixed

number is a finite set.

Height of rational point of elliptic curve

Let 32 = 2% 4 az? + bx + ¢ be an elliptic curve over Q and P € E(Q) then we define the height of P as :
H(P) = H(x) = H(™ ) = maa{|m],|n|}

further we define
h(P) =logH(P)

So h(P) is always a non negative real number.

3.2 Mordell’s theorem

Theorem 3.2.1 (Mordell’s theorem). Let E be an elliptic curve given by the equation
y? =23+ ax® + bz +c,

where a,b,c € Q. Then the group E(Q) is finitely generated Abelian group.

For proving this theorem we need following theorem and some lemmas.
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3.3 Descent Theorem

Let T’ be a commutative group. Suppose that there is a function
h:T — [0,00)

with the following three properties
(a) for every real number M, the set {P € I": h(P) < M} is finite.

(b) for every Py € T, there is a constant g so that

h(P + Py) < 2h(P) + K VP eT.

(c) there is a constant x so that
h(2P) > 4h(P) — k VP eT.

suppose further that

(d) the subgroup 2I' has finite index in T'.
then T is finitely generated.

Proof. let Q1,Q2, ...,Q, be representatives for the cosets. This means that for any element P € I' there is
an index i;, depending on P, such that
P—-Q; €2l

P—-Q;, =2P for some P el

Now we do the same thing with P;. Continuing this process, we find we can write

P —Q;, =2
Py, — Qi =2Ps
Py —Q = 2P,

mel_QiMZQPm

where Q;,, Qi,, ..., @i, are chosen from the coset representatives Q1,Q2, ..., Q@ and Py, Py,

..., P, are elements of I".From the first equation we have
P=Q; +2P
Now substitute the second equation P; = @;, + 2P, into this to get
Py =Qi, +2Qi, +4P;
Continuing in this fashion, we obtain
P = Qi +2Qi, +4Qi, + - +2™71Qy, +2™P,, (a)
After substituting —@Q); in second lemma in place of Py then we get a constant x; such that
h(P — Q;) < 2h(P) + k; VP el
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We do this for each @;,1 < i <n. Let r’ be the largest of the x}s. Then
MP—Q;)<2n(P)+x" VPel  and 1<i<n

Now from lemma (3)lemma

4h(P;) < h(2Pj) + K = h(Pj—1 — Qi;) + & < 2h(Pj—1) + K" + K
h(Pj) < %h(Pj—l) u IH
3 1 ,
= UPBj-1) = 7 (A(Pj-1) = (" + &)

Prom this we see that if h(Pj_1) > &’ + k then

h(P;) <

e~ w

h(Pj-1)

So in the sequence of points Pi, Ps, Ps, ..., as long as the point P; satisfies the condition h(P;) > k' + &,
then the next point in the sequence has much smaller height, namely, h(P;4+1) < h(P;). But if we start with
a number and keep multiplying it by 3/4, then it approaches zero. So eventually we will find an index m so
that h(Py,) < k + &’

We have now shown that every element P € I" be written in the form
Pr=a1Q1+ a2Q2+a3Q3 + - + anQn + 2R

for certain integers ai,asg,as, ..., a, and some point R € T satisfying the inequality h(R) < x + x’. Hence,
the set
{QlaQ27Q37"'7Qn}U{RE I: h(R) S K/_‘_K//}

generates I' moreover this set is finite so I is finitely generated Abelian group. O
Now we will prove E(Q) satisfies the hypothesis of Descent theorem by following lemmas.
Lemma 3.3.1. For every real number M , the set
{PeEQ):h(P) <M}
is finite.

Proof. Points in the set have only finitely many possibilities for their  coordinate; and for each = coordinate,

there are only two possibilities for the coordinate. O

Lemma 3.3.2. Let Py be a fized rational point on E. There is a constant kg depending on Py and on a,b,c
so that
h(P + Py) < 2h(P) + ko v P e E(Q).

For proving this lemma we will use following remarks.
Remark 3.3.3. If P = (z,y) is a rational point on our curve,then x and y have the form

and Y=

m
r = —
e2

n
e3

for for integers m,n, with e > 0 and ged(m,e) = ged(n,e) = 1.
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Proof. Let x = §; and y =  are in lowest terms with M > 0 and N > 0. Substitute these values of x and

y in the elliptic curve y? = 23 4+ az? 4 bz + ¢ then we get :

M3*n? = N*m? + aN*Mm? + bN>M?*m + cN* M3 (1)
M3n? = N?(m3 4+ aMm? + bM?*m + cM?)

From above we get N?|M3n? but ged(n, N) = 1, so N2|M?3. From equation (1) we get M (M?n? —aN?m? —
bN2Mm — ¢cN?M?) = N?m? = M|N?m3 but ged(M,m) = 1 so M|N? so N? = kM for some k € Z use
this one in equation(1) we get : M3(n? — akm? —bkm — cN?) = N2m? = M3|N?m3 = M?3|/N? and M?|N?
hence M3 = N2 and M|N so let N = eM for some e € Z so

N2 M3 N3 N3
2 _ _ _ 3 _ _ _
CEapTap Mo md e=gp = =N
therefore
n
:cze—z and yze—3

Remark 3.3.4. If P = (z,y) € E(Q), then

In| < KH(P)*/?.

Proof. By the remark 3.3.3, we have z = 73 and y = Z5. On substituting these values in the elliptic curve

y? = 2% + ax?® + bx + ¢ then we get : :
n? = m3 + ae’*m? 4 be*m + ceb.
Take absolute value both side
[n?| = |m3 + ae®m? + be*m + ceb| < |m3| + |ae®m?| + |be*m| + |ce®|
By the definition of height we know that
|m| < H(P) and e? < H(P)

On substitute these values in the equation above expression we get :

n?| < H(P)® + |a|H(P)® + [b|H(P)® + |c| H(P)?
< (1+ la] + [b] + |e[) H (P)?
= VKH(P)?

= |n| < KH(P)3/? as required.

Proof of lemma 3.3.2. Let P = (z,y), Py = (x0,%0) € E(Q) suppose P + Py = (a,b) We know by the

duplication formula that

E=X—a—z—x0 where A=
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¢ = (y — 90)* — (& — z0)*(a + @ + 20)
(x — xp)?
¢ = Aly+ B'2?> +C'z + D
 E2+Fz+G

3

(since y? — 2% =az? + br +c)

on multiplying numerator and denominator by lem of A’, B’,C’, D', E', F'and G’ then we get :

€7Ay+Bx2+Ca:+D
B2+ Fz+G

where A, B,C, D, E, F,G € Z . Now substitute z = m/e? and y = n/e® above then we get :

- An 4+ m? 4+ Cme? 4+ De*
 Em2+ fme? + Get

by the definition of height
H(P + Py) = maz(|An +m? + Cme® + De|,|Em? + fme? + Ge?|)

and
e<H(P):, m<H(P)

and also we have proved that n < K H(P)2. Using these inequalities we get
H(P + Py) = H(E) < maz{|AK]| + |B| + |C| + |D|, |E| + |F| + |G|} H(P)?
Taking the logarithm of both sides gives
h(P + Py) < 2h(P) + ko

where ko=log max{|AK|+|B|+ |C|+|D|,|E|+ |F|+ |G|} depends only on a,b,c and (zg,yo) and does not
depend on P = (z,y). As required. O

Proposition 3.3.5. There is a constant k, depending on a,b, c,so that
h(2P) > 4h(P) — k Y P e E(Q)
For proving this proposition we need following lemmas.

Lemma 3.3.6. Let ¢(X) and ¢(X) be polynomials with integer coefficients and no common(complex) roots.
Let d be the maximum of the degrees of ¢(X) and ¥ (X).

(a) There is an integer R > 1, depending on ¢ and 1, so that for all rational numbers

ged <nd¢(1:) , n%[)(?j)) divides R.

(b) there are constants k1 and k2, depending on ¢ and ), so that for all rational numbers " which are not
roots of v
ah (2) +m <h om/n)y _ g (%) +
n P(m/n) n

Proof. (a) First we observe that since ¢ and 1) have degree at most d, the quantities ndc/)(%) and ndw(%)
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are both integers.

ndqé(ﬂ) = aomd +am®In4+ -+ adnd

3|33

ndw( ) — bomendfe + blmeflndfeqtl N bend
To each notation ,we will let

d(m,n) = nd¢(m> and P(m,n) = nd¢<@>

n n

So we need to find an estimate for ged(p(m,n),¥((m,n)) which does not depend on m or n. Since
#(X) and ¥ (X) have no common roots, they are relatively prime in the Euclidean ring Q[X] Thus,
they generate the unit ideal, so we can find polynomials F(X) and G(X) with rational coefficients
satisfying

F(X)6(X) + G(X)(X) = 1

Let A be a large enough integer so that AF(X) and AG(X) have integer coefficients. Further, let D
be the maximum of the degrees of F' and G. Note that A and D do not depend on m or n. Now

multiply both sides n by AnP+¢

AnDF(%>¢(%) +AnDG<%>¢(@> _ gD+

n

. This gives

Let v = y(m,n) be the greatest common divisor of ¢(m,n) and (m,n)). We have

AR () yo(5) + {nac () () = an™t

D+d

Since the quantities in braces are integers, we see that ~ divides An , it certainly divides

AnPri=1p(m,n) = AagmnPT + Aaym@~InPre 4. 4 AggnP 241

D+d

But in the sum, every term after the first one contains An as a factor; and we just proved

that + divides AnP+9. It follows that ~ also divides the first term Aagmn?*?=1. Thus, v divides

ged(AnP*e AagmInP+TI=1): and because m and n are relatively prime, we conclude that v divides

an+d—1

Aagm . Notice we have reduced the power of n at the cost of multiplying by ag. Now using

the fact that v divides AagmnP*?=2¢(m,n) and repeating the above argument shows that ~ divides

D+d
0

AaminP+4=2_ The pattern is clear, and eventually we reach the conclusion that v divides Aa ,

which finishes our proof of (a).

(b) Suppose degree of ¢ = d and degree of 1) = e < d then
m
n

”d¢( ) =aom’ +aym? '+ + agn*

ndzb(m) — bomdfe + blmdfeJrl N beTLd
n

denote ndgﬁ(%) by ¢(m,n) and ndz/)< > by ¥(m,n)

So we have to find ged of ¢p(m,n) and ¢(m,n) which does not depend on m or n. Let

(o) _nto(m) o
002 " (%)~ dlm.n)
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from the definition of height of rational point we can write for some K > 1

H(E) > wcmaz{lo(m,n), |4 (m. )]}
e )
> g (Jnto )]+ [ntw(2)] )
o 1 (imtozl+ tuz
H(m/n)* = 2K  max{|ml|¢, |n|¢}

L (o1 + ocz1)
- 2K maz{jm/n|? 1}

)
2K

)

o)1+ [9(0)

where p(t) mas |1}

Since ¢ has degree d and ¢ has degree at most d, we see that p has a non-zero limit as || approaches

infinity. This limit is either |ag|, if ¢ has degree less than d, or |ag| + |bg|, if ¥ has degree equal to d.

Using this fact in the inequality we derived above ,we find that

H() > %H(%)d

the constant C; and R do not depend on m and n ,so taking logarithms gives the desired inequality

h€) = dh( =) —

with k1 =log(2R/C1)

Proof of lemma 3.3.5. From lemma 3.3.1 we can exclude some fixed point for inequality in heights.
Let P = (z,y),and write 2P = (a,b).then by duplication formula we get

/
a=XN —a—2z where )\:f(x)
2y
Substitute value of A above we get
o= (f'(2))? — (82 + 4a) f(x) B xt 4.
B Af(x) T4t t .

Thus, a is the quotient of two polynomials in o with integer coefficients. Since the elliptic curve y? = f(x)

is non-singular by assumption, we know that f(x) and f’(z) have no common (complex) roots. It follows

that the polynomials in the numerator and the denominator of a also have no common roots.

Now use the previous remark for the expression of a we conclude

h(2P) > 4h(P) — k

Proposition 3.3.7. The index [E(Q) : 2E(Q)] is finite.

For proving this proposition we need following lemmas, facts and a little lemma.
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Lemma 3.3.8. Let E and E be the elliptic curves given by the equation s
E:y =2+ ar? +bx+c and E:y?*=2%+az? +bx+e,

where
—2a and b=a%—4b

Is]
Il

Let T = (0,0) € E

(a) There is homomorphism ¢ : E — E defined by

Z;a y(ac;—b)> Z'fP = (xay) 7& 0,T,

O, if P=0 or P=T.

The kernel of ¢ is O, T

(b) Applying the same process to E gives a map ¢E — E. The curve E is isomorphic to E via the map
(z,y) — (z/4,y/8). There is thus a homomorphism v : E — E defined by

L, 150 ), iP = (z,9) # O, T,
o(F) = (496 = ) f (11)77é o
o if P=0OorP=T.

(c) The composition op : E — E is multiplication by two : ¢poyy(P) = 2P.

Proof of (a). ¢ is well defined :

we just have to check that = and y satisfy the equation of E, which is easy :

2+ az® 4 bz = 2(z% — 2a% + (a® — 4b))

I
<
—
&
[N
|
=
=
S
N———
N

|
<

¢ is homomorphism :
we have to show that ¢(Py + Py) = ¢(P1) + ¢(FP2)
case 1 if P;,orP, = O then result is automatically true.

case 2 If one of P, or P, = T then we have to prove
o(P+T)=9¢(P)
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Let P = (z,y),T = (0,0) then

x(P*T):ﬁ—a—m
y? — az? — 2®
_b
o
y(P*T):g(9>
T\
yb
T2

- P4+T= (:v(P*T),y(P*T))
_ (b by
S \az’ 22
case 3 If P, = P, = T then it is clear that

AT +T)=o(T)+¢(T)

Case 4 If P, P, ¢ {O,T} and are distinct .

So in order to prove that ¢ is homomorphism it is now sufficient to show that if
P+P+P;=0

then

O(P1) + ¢(P2)p(P3) = O

because once we know this,then

A(PrL+ Py) = ¢(—P3) = —¢(P3) = ¢(Pr) + ¢(2)

since SN —y(a® - b)
o-P) = ot = ()"

x 2

) = o) = ~o(r)
From the definition of the group law on a cubic curve, the condition P, + P, + P3 = O is equivalent to the
statement that P, P» and P5 are co-linear, so let = Az + v be the line through them. We must show that

#(P1), ¢(Py)andg(Ps) are the intersection of some line with £ The line intersecting E that we take is

v2 — av\ + bA?
v

y=A\r+v where and b=
To check, say, that ¢(P;) = ¢(z1,y1) = (¥1,%1) is on the line y = Az + o, we just substitute and compute

vy + 70 =

U)\—b(&)Q_i_ 02 — av + b2
X1 v
(WA= b)yf + (v — avA + bA?)a?
vr?
_ (U)\(y% - ax%) — by — Azy)(yr — Awy) + UCE%
3
'UIl
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and now using y? — ax? = 2} + bxy and y; — Az = v,we get

A3 + bxy) — b(yr + Az1) + va?

g + 7 =

x?
_ x2(\xy +v) — by
x?
2 —b
_ (21 . )1 _
7
Similarly we can compute for ¢(Ps) and ¢(Ps) Hence ¢ is homomorphism. O

Proof of (b). We noted above that the curve E is given by the equation
E: y? = 2 + dax’® + 16bx

so it is clear that the map (z,y) — (z/4,y/8) is an isomorphism from E to E. From (a) there is a
homomorphism ¢ : £ — E defined by the same equations that define ¢, but with @ and b in place of a
and b. Since the map ¢ : E —» E is the composition of ¢ : £ —» E with the isomorphism £ — E , we
get that ¢ is a well-defined homomorphism from F to E. O

Proof of (¢). Now we will prove that ®o¢ is multiplication by two.

B _ ((@*=b)? (2% —b)(a* + 2ax® + 6bx® + 2abx 4 b?)
2P - 2($,y) - ( 4y2 ) 8y3
and
2 2 2 2
y° y(z® —b) - y° y@* —b)
¢(‘T7y) = (27 JE2 )7 1/1( ay) = (4@'27 8502
So

poy(z,y) = <yz Wz_b))

x2

N
7 N\
858
N N
N———

[\v]
oo
—
e
[V
N———
[\v]

(22 —b)* (a2 = b)(y" — (a® — 46)334))

42/2 ? 8y3x2
_((@®=Db)? (2® —Db)(z" 4 2a2® + 6bx® + 2abx + b?)
B 42 8y?3
pop(x,y) = 2(z,y)
= 2P

A similar computation gives ¢otp(z,y) = 2(z,y). Since ¢ is a homomorphism, we know that
®(2P) = (P + P) = ¢(P) + ¢(P) = 2¢(P)

Now ¢ : E — E is onto as a map of

We just proved that 2P = ¢oyp(P), so we get ¢pop(p(P)) = 2(¢p(P)).
= P. Therefore ¢oy)(P) = 2P. O

complex points, so for any P € E we can find P € E with ¢(P)

It is clear from the formulas that ¢ maps I' into I'; but if you are given a rational point in T, it is not

at all clear if it comes from a rational point in I". If we apply the map ¢ to the rational points I', we get a
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subgroup of the set of rational points I'; we denote this subgroup by ¢(I") and call it the image of T by ¢.
We make the following three claims, which taken together, provide a good description of the image.

Claim 3.3.9. (i) O € ¢(I).

(ii) T = (0,0) € ¢(T) iff b= a®— 4b is perfect square.

(iii) Let P = (z,7y) € T with & # 0. Then P € ¢(T) iff & is the square of a rational number.
Proof. (i) It is clear because O = ¢(O)

(ii) From the formula for ¢ we see that T' € ¢(T') if and only if there is a rational point (z,y) € T such that
y?/x? = 0. Note x # 0, because x = 0 means that (z,y) = T, and ¢(T) is O, not T. SoT € ¢(T) if
and only if there is a rational point (z,y) € T with z # 0 and y = 0. Putting y = 0 in the equation
for I gives

0 =3+ az? + b = 2(2* + ax + b)

This equation has a non-zero rational root if and only if the quadratic equation 22 4+ ax + b has a
rational root, which happens if and only if its discriminant a? — 4b is a perfect square.

(iii) Let P € ¢(T) is a point with # # 0. From the definition of ¢,Z = y?/2? is square of rational
number conversely Z = w? for some rational number w € Q we have to show that there exist a point
(z1,11) 2 ¢(x1,y1) = (Z,5) We know that ker(¢) = {O, T}.So there will be two points of T' that map

to it .Let _
_1( 2 y) _
r1=s(\w—a+ —), Y1 = 1w
2 w
1 _
IQZ*(MQ*CL*g), Yo = T22w
2 w

T1To = }((wQ —a)? - g—z)

4 w?
1 52
T1x9 = Z((ﬁc —a)? - %)
_ 1(333 —2a§:2—|—a2i—gj2)
4 z
LT1Xg = b

Fr showing that P; = (z;,y;) € T' we have to show that

£

b
=x;+a+ —
- Z;

8
=

And also we have y—z = 4w and x122 = b So w? = x1 + a + x5 and from the definition of z; and -

we can find above expression .

It only remains to check that

o(F;) = (z4,9i)

2 (22— b
% =z and 7%(%’2 ) =y
x; x

The expression follows from % = +w and

1 —b ziw(x? — zix
y1(12 ) _ 1(12 12):w(x17x2)
€Ty Ty
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y2(x2 — b) _ Tow (a3 — 1122)
3 3

= w(z) — x2)
and alsofrom the definition of z; and z»

1 —xe === w(@x —x2) =7

g |

. 2_
So ¥@i=b _ 4 Hence proved.

Lemma 3.3.10. (a) The map o : T — Q*/Q*? defined by
2
a(0)=1 mod Q" ,

2
a(T)=b mod Q" ,
alz,y) =z mod Q*2
is a homomorphism if x # 0.

(b) The kernel of a is the image 1 (T). Hence o induces one-to-one homomorphism

I‘ *
e
pI) Q
(c) Let p1,pa,...,pn be the distinct primes dividing b. Then the image of « is contained in the subgroup of

%:2 consisting of the elements.

{iP?sz --.pi" : each £ equals 0 orl}

(d) The [T : ¢(T)] is at most 2"+

Proof. (a) .
a(~P)=olr,—y) == =a(r,y)" =a(P)} mod @~

For proving « is homomorphism it is enough to show that if P;+P,+P3; = O then a(Py).a(Py).a(P3) =

1 mod Q*2
Suppose that y = Ax+wv is the line passing through P;, P> and P3 .If 21, 22 and z3 are the x coordinate
of the points P;, P, and P3 then from the derivation of duplication formula we know that

X1.22.3 = v? +c
In our curve ¢ =0 so

T1Tox3 = v? € Q*?
z1zoxg =1 mod Q*2

a(P)a(Py)a(Ps) =1 mod Q*?
(b) By the definition of awith the description of ¥ (T") given in the claim 3.3.9 it is clear that kernel of « is

precisely 9 (T).

(c) We know that if = 75 and y = % then

n? = m(m? + ame? + bet)
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Let
d = ged(m, m? 4+ ame? + be*)
So d|b and n? = m(m? + ame? + be?)
So we conclude that every prime dividing mappears to an even power except possibly for the primes

dividing b therefore
m = +(integer)? H Pf

i=1

where £ € {0,1} and P/s are distinct

Hence proved

(d) The subgroup deceived above has precisely 2"*! elements and from (b) we have one-to-one homomor-
phism
r/(0) - Q*/Q™2.

Hence the index of ¢(T) in T is at most 2"*! elements.
O

Lemma 3.3.11. Let A and B be two Abelian groups,and consider two homomorphism ¢(A) — B and
Y : B — A. Suppose that

pod(a) = 2a VaeA pop(b) = 2b VbeB.

Suppose further that ¢(A) has finite index in B ,and 1(B) has finite index in A. Then 2A has finite index

in A. More precisely, the index satisfies
(A:24) < (A:9(B))(B: ¢(A)).

Proof. Since v¢(B) has finite index in A, let a1, as,. .. a, representative for the cosets. Similarly, since ¢(A)

has finite index in B, let by, bs, ..., b, representative for the cosets. We claim that the set
{a; +¢(b;):1<i<n,1<j5<m}

includes a complete set of representatives for the cosets of 24 inside A. includes a complete set of repre-
sentatives for the cosets of 24 inside A. To see this, let a € A. We need to show that a can be written
as the sum of an element of this set plus an element of 2A. Since aq,as,...,a, are representatives for
the cosets of ¢(B) inside A, we can find some a; so that a — a; €' ¥(B), say a — a; = ¥(b). Next, since
b1, b2, ..., by are representatives for the cosets of ¥(A) inside B, we can find some b; so that b —b; € ¢(A)
say b —b; = ¢(a’).Then

a=a; + () = a; + ¢P(b; + ¢(a’))
= a; +9(b;) + ¥ (e(a’))
=a; + ¥(bj) + 2d’

Hence the set
{fai+¢(b;):1<i<n1<j<m}
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is a complete set of representatives for the cosets of 2A inside A. O

Proof of proposition 3.3.7. By the lemmas 3.3.10, 3.3.11 we conclude that
the index [E(Q) : 2E(Q)] is finte O

Theorem 3.3.12 (Mordell’s theorem). Let E be an elliptic curve given by the equation
E:y? =234 az? +bx +c,

where a,b,c € Q. Then the group E(Q) is finitely generated abelian group.

Proof. By change of variable we can transform our elliptic curve E : y? = 2% + az? + bx + ¢, into E' : y? =
23 + ax? + bz over field K(# 2). So E and E’ are isomorphic so proving for E’ is same as for E. From
the lemma 3.3.1, 3.3.2, 3.3.5, 3.3.7 and descent theorem 3.3 we conclude that the group FE(Q) is finitely

generated abelian group. O

3.4 Further developments

We have shown that the group T of rational points on the curve
E:y’=2*4az’ +bz+c

is a finitely generated Abelian group. It follows from the fundamental theorem on Abelian groups that T is
isomorphic, as an abstract group, to a direct sum of infinite cyclic groups and finite cyclic groups of prime
power order. We will let Z denote the additive group of integers, and we will let Z/nZ denote the cyclic

group Z/mZ of integers mod m. Then the structure theorem tells us that I" looks like
r gZT®Zp”f1 @Zpgz D DZLyrs

where r is the rank of elliptic curve.
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Motivation : Elliptic curve cryptography

EPekE
Alice (Q) Bob
chooses secret chooses secret
ae beZ
computes aP computes bP
sends aP to Bob .
receives apP
receives bP sends bP to Alice
computes a(bP) computes b(aP)
— abP Eve = abP

hears P, aP, bP
Can she guess the shared point abP?

Our security of elliptic curve cryptography depends on the question can she guess the shared point abP,
where abP is addition of the point P ab times on elliptic curve.

If we take point P from an elliptic curve whose rank is 0 then this elliptic curve is useless for cryptography
because of Mazur and Mordell’s theorem.In this one she can guess the shared point abP very easily.

So if we take point P from an elliptic curve whose rank is at least 1. For guessing shared point abP is very
very difficult if we take P very large number € Z because point P has infinite order.
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Chapter 4

Congruent Numbers

In this chapter we will discuss classical problem whether a natural number is congruent. We will see

whether a natural number is congruent by the theory of elliptic curves.

4.1 Congruent number

Definition 4.1.1. A natural number n is called congruent number if there exist a right angled triangle

with all three sides rationals and with area n.

Note 4.1.2. Tunnel’s theorem gives an almost complete answer to an ancient problem : find an simple test
to determine whether or not a given natural number is the area of some right angled triangle all of whose

sides are rational numbers.

4.1.1 Method of generating Pythagorean triples

Their central discovery was that there is an easy way to generate all such triangles. Namely, take any
two positive integers a and b with a > b, draw the line in the zy-plane through the point (—1,0) with slope

b/a. Let (z,y) be the second point of intersection of this line with the unit circle.

Y

y—0= (:EJrl)éy:;( +1)

SHES

and (z,y) lies on the circle so

b\ 2
u? 0t =1 u2+(> (u+1)2=1
a

(a® + bH)2® 4+ 2%z + 0% —a® =0

so from the above equation we get

a’® — b?
U
_ 2ab
V= o

then the integers X = a? — b?, Y = 2ab and Z = a? + b? are the sides of a right angular triangle follows
from the equation of circle. So we can get all Pythagorean triples by taking all +ve integers a, b with

a > b.Conversely, can be we find such two number with the help of given rational right angled triangle ?
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Suppose we have rational right angled triangle with sides XY, Z.

xX\* [/Y\?
X2+Y222:><Z> +<Z> =1

Put u = % and v = % . (z,y) be any point on the circle(with center (0,0)and radius 1). Let ¢ be the slope
of the line joining the points (—1,0) and (u,v).

L =2(£+1)andaY =b(X +Z) and X? +Y? = 22

4.1.2 Generalization of congruent number

If any natural number ¢ is a congruent number, then s2¢ is also a congruent number by multiplying
the perpendicular legs each by s. Therefore we can observe that whether or not an number is a congruent
number depends only on its residue class % Every such residue class contains only one square-free number
from which all other elements of that class can be derived, so it is a convention to only speak of square-free

congruent numbers.
Problem 4.1.3. Show that for a,b € QT, b is a congruent number if and only if ab is so.

Proof. a is congruent number .
so by the congruent property there exist a right angular triangle with all rational sides X,Y,Z and with

area a such that )
X2 4v2=22 S XY =b

Now scaling the sides of the triangle by |a| . let X1 = aX,Y; = aY and Z; = aZ then
Xi+ Y = (aX)? + (aY)? = (aZ)* = 2}
and
1 1 , (1 )
- X1V1=-(aX)(aY)=a" | = XY ) =a’b
2 2 2
1
:§&H:&b

so a?b is a congruent number. Now suppose that a?b is congruent number.then there exist a rational right
triangle with sides X;,Y; and Z; such that

X+ YEi=27

1
*X1Y1 = a2b
2
Claim 4.1.4. b is congruent number.
Proof.
1
gxm:&b
11X,
2a a
Let X =31 Y = 317 = Zt then
1
- XY =
2

X1

Y;
X+ =27 = (7)2+ (*1

Z
)2:(71)2:>X2+Y2:Z2
a
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hence b is congruent number. O
O

Theorem 4.1.5 (Tunnel’s Theorem(1983)). Let n be a square-free congruent number, i.e., n is the area of
a right angled triangle. Define A,, By, Cy, D, as follows :

(A) A, =#{(z,y,2) € 23| 22 + y? + 322% = n}
(B) By, =#{(z,y,2) € Z%| 22® + y* + 82* = n}
(C) Cn =#{(z,y,2) € Z®| 82% + y* 4 642> = n}
(D) D, = #{(z,y,z) € Z3| 822 + y*> + 162 = n}
Then

(i) A, = 1B, if n is odd; and

(i) Cn = 3Dy, if n is even.

If the Birch- Swinnerton - Dyer conjecture is true then these equalities imply that n is the congruent number

and conversely.

Proposition 4.1.6. By using the theorem above, let us show that the numbers 1,2,3 and 4,8 are not

congruent numbers but 5,6 and 7 are congruent numbers.

Proof. For n = 1,3, we see that A, = B, = 1. Hence, by Tunnell’s Theorem above, the numbers 1,3 are
not congruent. For n = 2 (resp., n = 4), we see that C,, = D, = 1 (resp., C,, = D,, =2 ). Again by the
same theorem, the numbers 2,4 are also not congruent. Now we will show that 5,6 and 7 are congruent
numbers.

The right angled triangle with sides 9, 40,41 and area 180 = 5.62, so dividing the lengths by 6 produces the
rational right angled triangle with sides 3/2,20/3,41/6 and area 5. That is, 5 is a congruent number.The
number n = 6 is a congruent number as one sees by considering the right angled triangle with sides 3,4
and 5. The right triangle with sides 175,288,337 and area 25200 = 7602, so scaling by 60 produces the
right angled triangle with sides (35/12,24/5,337/60) with area 7. Thus 7 is a congruent number.From the
previous result we know that a is congruent number if and only if ab? is congruent number. So 8 is not

congruent number because 8 = 2.22 O

Note 4.1.7. The simplest rational right angled triangle with area 157 was computed by Don Zagier.

Proposition 4.1.8. Let n be a fized square-free positive integer . Let X,Y,Z x always denote rational
number with X <Y < Z .There is one-one correspondence between right angled triangle with legs X and Y
and hypotenuse Z and area n ; and number x for which x,x £ n are each the square of a rational number .
The correspondence is :

XY, Z - x=(Z/2)?

o X =TT T omY =TT+ VT —n Z = 2.

In particular , n is a congruent number if and only if there exist x such that x, r +n, x — n re squares of

rational numbers.

Proof. Let X,Y,Z is a triple of a right angled triangle and n is the area of this right angled triangle then

we have
X2 4+Yv?2=22
1
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224403517704336969924557513090674863160948472041
891233226892885958802553517896716357001 6480830

6803293487826435051217540
411340519227716149383203

411340519227716149383203
21666555693714761309610

Figure 1.3. The Simplest Rational Right Triangle with Area 157 (computed by D.
Zagier).

If we add or subtract four times the second equation from the first, we obtain :
(X+Y) =2Z%+4n

If then divide both sides by four, we see that © = (Z/2)? has the property that the numbers x + n are
the squares of (X +£Y)/2 . Conversely given x with given correspondence it is easy to check that the n is
congruent number. Finally, to establish that the one-to-one correspondence , it only remains to verify that
no two distinct triples X,Y,Z can lead to same x . For this, let two triples X,Y,Z and X1,Y7,Z; lead to

same x .then

z=(Z/2)*
= (2,/2)?
7% =77

= X?+Y? =X7+Y?

and

then we find

(X +Y)? = (X, £Y))?
X+Y=X+Y,
X-Y=X,-Y
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so we have

X=X, Y=Y and Z=2

4.2 A certain cubic equation

In the proof of proposition 1 we arrived at the equations

(Xj:Y

5 >2 =(Z/2)>+n

whenever X,Y,Z are the sides of right angled triangle with area n.So from these equations, we obtain
(X2 =Y?)/4)? = (Z/2)* —n?

.this shows that the equation u* —n? = v? has a rational solution, namely, u = Z/2 and v = (X2 —Y?)/4.We
next multiply by through u? to obtain u® — n?u? = (uv)2.If we set & = u? = (Z/2)? (this is the same x as
in proposition 1) and further set y = uv = (X2 — Y?)Z/8 , then we have a pair of rational numbers (z,v)

3 2

satisfying the cubic equation : y? = 2% — n’z.

Thus, given a right angled triangle with rational sides X,Y, Z and area n, we obtain a point (z,y) in the xy

3 — n2z. Conversely, can we say that any

-plane having rational coordinates and lying on the curve y? = x
point (z,y) with z,y € Q which lies on the cubic curve must necessarily come from such a right triangle?
Obviously not, because in the first place the z-coordinate z = u? = (Z/2)? must lie in (Q*)? if the point
(z,y) can be obtained as in the last paragraph. To see this, notice that the right angled triangle having
sides X,Y, Z can be obtained starting with a primitive Pythagorean triplet X;, Y7, Z; corresponding to a
right angled triangle with integral sides Xi,Y7,Z; and area s’n, and then dividing the sides by s to get
X,Y,Z. But in a primitive Pythagorean triple X and Y have different parity, and Z is odd. We conclude
that © = (Z/2)? = (Z1/2s)? has denominator divisible by 2 .

Finally a third condition is that the numerator of z have no common factor with n .To see this , suppose

that p > 2 is a prime dividing both z and n. then p divides the numerator of

xj:n:(X;tY)Q (4.1)

implies that
pl(X +Y)/2

and
p(X=Y)/2 = p|X &plY
= p’|XY
1
= p2|§XY =n
but n was assumed as square-free integer. So we got contradiction. Hence, x is co-prime to n.

Note 4.2.1. Now we will show that these three condition is not only necessary but also sufficient .

3

Proposition 4.2.2. Let (z,y) be a point with rational coordinates on the curve y? = x3 —n2z. Suppose that

z satisfies the two conditions : (i) = is the square of a rational number, (ii)denominator of x is even and
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(15i)x is co-prime to n.Then there exists a right triangle with rational sides and area n which corresponds to

z under the correspondence in Proposition 1

Proof. Let u=+/z € Q. We work backwards through the sequence of steps at the beginning of this section.
That is, set v = y/u, so that v? = y?/z = 22 —n? ji.e.,v? +n? = 22. Now let ¢ be the denominator of u i.e.,
the smallest positive integer such that tu € Z. By assumption, t is even. Notice that the denominators of v?
and 2?2 are the same (because n is an integer and v? +n? = z2), and this denominator is t*. Thus, t?v, t?n,
t2x is a primitive Pythagorean triple, with #?n even (primitivity follows from third condition ). By Problem
1 of section 1, there exist integers a and b such that: t?n = 2ab, t?v = a? — b2,t?> = a? + b2. Then the right
triangle with sides 2/t, 2/t, 2 has area ab/t? , as desired. The image of this triangle X = 2/t,Y = 2/t, 7 =2

under the correspondence in Proposition 1 is x = (Z/2)? = u?. This proves Proposition 2. O

Theorem 4.2.3. The number n € N is a congruent number if and only if the rank of the elliptic curve

y? = 2% — n2z is at least one.

Proof. Let n be a congruent. We saw in Proposition 4.2.2 that n z € E(Q) so that z(P) € Q? .Since n is
square-free, we have thatz(P) = 0, £n. Thus, the point P cannot be in E(Q)ors. This proves one direction
of the theorem.

Suppose now that the rank of E(Q) is at least one. This implies that there exists P € E(Q) with y(P) # 0.

By the above proposition 4.1.8 corresponds to a triangle with area n. O
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Chapter 5

Twists of elliptic curves of rank at least

four

5.1 Introduction

In this chapter we give infinite families of elliptic curves over Q such that each curve has infinitely many
non-isomorphic quadratic twists of rank at least 4. Assuming the Parity Conjecture, we also give elliptic

curves over Q with infinitely many non-isomorphic quadratic twists of odd rank at least 5.

Mestre[Me92] showed that every elliptic curve over @ has infinitely many (non-isomorphic) quadratic
twists of rank at least 2 over Q and he gave [Me98],[Me00] several infinite families of elliptic curves over Q
with infinitely many (non-isomorphic) quadratic twists of rank at least 3. Further, he stated [Me98] that if
E is an elliptic curve over Q with torsion subgroup isomorphic to Z/8Z x Z/2Z, then there are infinitely
many (non-isomorphic) quadratic twists of E with rank at least 4 over Q.

Definition 5.1.1. If E : y? = f(z) is an elliptic curve , let E¢ denote dy? = f(z),the quadratic twist of E
by d.

Definition 5.1.2. compositum or composite E1Es of E1 and Ey is the intersection of all subfields of K
containing both Fq and FEs.

Definition 5.1.3. A field extension L/K is called algebraic if every element of L is algebraic over K, i.e.

if every element of L is a root of some non-zero polynomial with coefficients in K.

Definition 5.1.4. A splitting field of a polynomial with coefficients in a field is a smallest field extension

of that field over which the polynomial splits or decomposes into linear factors.

Definition 5.1.5. An algebraic field extension L/K is said to be normal if L is the splitting field of a family
of polynomials in K[X].

Definition 5.1.6. A Galois extension is an algebraic field extension E/F that is normal and separable; or
equivalently, E/F is algebraic, and the field fived by the automorphism group Aut(E/F) is precisely the base

field F'. One says that such an extension is Galois.

Definition 5.1.7. A separable extension is an algebraic field extension E D F such that for every o € E,

the minimal polynomial of over F is a separable polynomial i.e., has distinct roots.

Definition 5.1.8. Galois group Suppose that E is an extension of the field F'. An automorphism of E/F

is defined to be an automorphism of E that fizres F' pointwise. In other words, an automorphism of E/F is
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an isomorphism « from E to E such that o(x) = x. for each x in F. The set of all automorphisms of E/F
forms a group with the operation of function composition. This group is sometimes denoted by Aut(E/F ).
If E/F is a Galois extension, then Aut(E/F) is called the Galois group of (the extension) E over F, and
is usually denoted by Gal(E/F ).

Lemma 5.1.9. Suppose that E is an elliptic curve over F , that Ky, Ko, K3, ..., K, be the extension of
F of degree at most 2 and that for = 1,2,3,...n there are points P; € E(K;) of infinite order. Suppose
also that if K; # F then o(P;) = —P;, where o is the non trivial element of Gal(K/F') .Let K denote the
compositum of K1, Ks, ..., K,. then {Py, Ps,...P,} is an independent set in E(K).

Proof. Let G = Gal(K/F) be a Galois group and define a map x : Gal(K;/F) — {£1} denote the nontrivial
character if K; # F, and the trivial character if K; = F i.e., x(f) = —1if f € F¢and x(f) =1if f € F.
Let e; = > cq Xi(0)o. Then Vi and j,

Consider

ceG

— Z X(0)(x(0)P;) = Z (@)X (o) Py = 0, textifi # j

ceG ceG |G|PJ’ ifi :j

Suppose Zj n;P; = O. Then O = ei(zj n;P;) = |GIn;P; Vi Since P; is of infinite order, n; =0 Vi

In the assumption we have assume that each P; is of infinite order. So from above we conclude that

Definition 5.1.10. If k(t) € Z[t], we say that k(t) is squarefree if k(t) is not divisible by the square of any

non constant polynomial in Z[t).

Definition 5.1.11. Suppose g(t) € Q(t) . A squarefree part of g(t) is squarefree k(t) € Z[t] such that
9(t) = k(t)j(t)* for some j(t) € Q(t).

Proposition 5.1.12. Suppose f(x) € Q[z] is a separable cubic, and E is the elliptic curve y*> = f(x). Let
hi(t) = t, suppose we have non-constant ha(t) ..., h.(t) € Q(t), let k;(t) be a squarefree part of f(hi(t))/f(t),
and suppose that ki(t),...,k.(t) are distinct modulo (Q*)%. Then

1. the rank of the rank of ESM)(Q(t, \/ka(t), \/k2(t), ...,/ kr(t))) is at least r;

2. if C is the curve defined by the equations s? = k;(t) for i = 1,...,r, then for all but at most finitely
many rational points (1,071,...,0,) € C(Q), the rank of EYM)(Q) is at least r.

Proof. Apply Lemma 2.1 to the elliptic curve EU(®)) over the field F' = Q(t), with K; = F(\/k;(t)) (so K; =
F). Since the polynomials k; are squarefree and distinct modulo (Q*)2, the fields K; are distinct. For

i=1,...,7, let
Py = (hi(t), Vf(hi(8)) [ f(2)) € BYO(Q(t, V/ki(1)))-

Note that P; has infinite order, since its x-coordinate is not constant. Now (i) follows. O

5.2 Rank >4

From now on we consider elliptic curves of the form
v =x(x—1)(z — )
where A € Q — {0, 1}
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Definition 5.2.1. we fix a numbering of the linear fractional transformation h;(t) € Q(t) that permute the
set {0,1, A}, along with corresponding squarefree parts k;(t):

ha(t) =t kp(t) =1
ha(t) = it Ba(t) = (1 M) (A~ 2)t — )
ha(t) = (2j;)§71’ ka(t) = (1 = A)((A=2)t = A)
ha(t) = 57 alt) = (1= N)((A—2)t — 3)
ha(t) = (2—75_)/1—1’ ka(t) = (1= A)((A=2)t = A)
ha(t) = g5 ka(t) = (1= A)((A = 2)t = \)

Theorem 5.2.2. Suppose a € Q — {1,—1,0}and let n = a®>. Then

fo(@) = z(z = 1)(z —n)

and let E,, be y* = f(z). Let C,, be the curve
v? = (n+ 1%t +4n(20° + 30 + Du® +2(7n" + T + 20 + 0 + Du? + 4(20° + ' = 202 —nu + (° — 1)?

and let ) = 21 — )T, (u)
T T3+ D2+ 1— 1)

where
T, (u) = (n+ 1)%u +2n(2n% 4+ 3n + Du +2(3n* + 303 + > +n+ D)u® +2n(n* — 1)(2n+ Du+n° —2n3 + 1
Then:

1. E, and C,, are elliptic curves over Q;
2. rank(C,(Q)) > 1;

3. for all but possibly finitely many (u,v) € Cy,(Q), the quadratic twist of E, by f, ot,(u) has rank at
least 4 over Q;

4. there are infinitely many non-isomorphic quadratic twists of E, of rank at least 4 over Q.

Proof. From the theorem 4.2(a) of [RS01] by noticing that when 7 = /\2—;\1 , then

) _ Xand ky(r) = @_&V#

We wanted k2(7) and ks(7) to be squares. Note that % = a? if and only if A\ = ;—ZZ , and when these
hold then kg(/\%\l) and k3(52) are both squares, and (52, (A — 1)a, A\(A — 1)a) € C,2 = C,, . Further, we

A1 A1
found that

Q(f, mv \/F(t)) = Q(u)

with ¢t = t,(u) as in the statement of this theorem. The curve C, in the statement of this theorem is
v? = ky(t,(u)). We observed that (0,7* — 1) € C,,(Q). We have

Q(Cy) = Qu, \/katy () = QUt, Vka(t), VEs(2), VEa ()

By Proposition 5.1.12 (or Corollary 2.2 of [RS01] with g;(t) = k;(t) f,(t)) the rank of E,J;”Ot”(u) (Q(Cy) is at
least 4. By Proposition 5.1.12, the E,J;”Ot"(u))(Q) is at least 4 for all but finitely many (u,v) € C,(Q). More
explicitly, for i = 1,...,4, write f, o h;(t) = f,,(£)k;(t)7:(t)* with j;(¢t) € Q(¢). Then the points

(hi oty w), s © by ks © Ly ) € ES1020) (Q(u,0))
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are

(ty(u

o —(n+ 1w +n’ -1 3
hy o ty( ((n+1)u2+2(772_1)u+773_1))) )

h oty —(+ D’ 4P 1 )3
2 ((n+ Du2 + 22 +n+ Du+13 — 1))
9 N3
i o)

From the lemma 5.1.9 they give four independent points in E,Sf""t”(“))((@(c,,)). O

5.3 Root number

Definition 5.3.1. If E is an elliptic curve over Q, let Ng denote the conductor of E, let wg denote the
global root number, i.e., the sign in the functional equation for L(E,s), and let wg,, denote the local root

number at a prime p < oo. Write wg(d) for wgw and write wg ,(d) for wgw -
Definition 5.3.2. If o € Qx and n € Z* , then:

1. a =1 mod*n means that « — 1 € nZ for all primes l|n;

2. a =1 mod*noo means that o =1 mod*n and o > 0.

Lemma 5.3.3. Suppose E is an elliptic curve over Q,d,d € Q*, and there exists 5 € Q* such that
B%d/d’ = 1mod*8Ngeo. Then wr(d) = wg(d').

Proof. Taking the squarefree parts of d and d , we can reduce to the case where d and d are squarefree
integers. If p < oo and p { dNg , then E(9) has good reduction over Q,, so wg ,(d) = 1 (see Proposition
2(iv) of [R93]). Similarly for d’ . Thus,

=[] wep@= ] wes(d

p<oo PldNEoo

If d/d' is a square in Q; , then E@ and E) are isomorphic over Qp , so wg, p(d) = wg,p(d) for all p > co.
In particular, since d/d’ > 0, it follows that wg o (d) = wE o (d). If p|]2Ng , then d/d’ is a square in Q*p
(since A?d/d’ = 1mod*8Ng), so wg ,(d) = wg ,(d). If p|2Ng , then p divides d if and only if p divides d
(since 2ord,(8) + ord,(d) = ord,(d), and d and d are squarefree). Thus,

Hp|dNEoo wE;P(d) - Hp\d,p|2NE ’lUE,p(d)
Hp|glNEoo wgp(d’) Hp\d,ppNE wE p(d)

Suppose p t Ng , so E has good reduction at p. Since E and E(d) has good reduction at p. If E and
E(d) are isomorphic over Q,(d), E® has good reduction over Q,(d). If p|d, then Q,(v/d) is the smallest
extension of Q, over which E(9) has good reduction (and similarly for d ). By (iii) and (v) of Proposition
2 of [R93] with e = 2, we have



if p|/d and p{2Ng , where %is the Jacobi symbol. So from above we have

-1
wp(d) _ ledvp|2NE P

1
wp(d) led7P|2NE P

where f = d/ged(d,2Ng) and f = d’/ged(d’,2Ng). Note that f/f' = d/d’ . Then 82f/f = 1mod*4, so

_ 11
f = f(mod4), so F=7 O

Lemma 5.3.4. Suppose E and B are elliptic curves over Q, B(Q) has infinite order,P € B(Q),r is a

rational function in Q(B), and P is not a zero or pole of r. Then there exist a Q € B(Q) of infinite order
and an open neighborhood U of O in B(R) such that if k € Z and kQ € U then wg(r(P+kQ)) = wg(r(P)).

Lemma 5.3.5. Suppose B is an elliptic curve over Q,Q € B(Q) is a point of infinite order, and U is an
open subset of the identity component B(R)? of B(R). Then {k € Z : kQ € U} is infinite.

Proof. Replacing Q by 2Q, we may assume that Q € B(R)? . Note that B(R)? is isomorphic to the unit
circle in C*, so every infinite subgroup is dense. Thus {kQ : k € Z} is dense in B(R)" , and the lemma
follows. -

5.4 Rank >5

Theorem 5.4.1. Suppose a € Q — {0,1,1} and n = a® . Suppose E,, [, , and t, are as in Theorem 5.2.2.
If wg, (fyty(u1)) = =1 for some (u1,v1) € B,(Q), and the Parity Conjecture holds for all quadratic twists

of £, , then E, has infinitely many non-isomorphic quadratic twists of odd rank > 5 over Q.

Proof. Let P = (uy,v1), and let 7(z) = f, ot, o x(z) € Q(B,), where the function x gives the z-coordinate
of a point. By Lemmas 5.3.4 and 5.3.5 with E = F,, and B = B, , there are ) € B,(Q) and infinitely many
k € Z such that

wg, (r(P +kQ)) = wg, (r(P)) = -1,

so by the Parity Conjecture, E;(PJer)(Q) has odd rank.

By Theorem 5.2.2, for all but finitely many k € Z, the rank of E7(,T(P+kQ))(Q) is at least 4. Thus for
infinitely many k, the rank of Er(,T(P+kQ))(Q) is at least 5. As argued in the proof of Theorem 5.2.2, for each
squarefree d € Q*, the set of v € Q such that f;, ot,(u) and d differ by a rational square is finite, since the
hyperelliptic curve f, ot,(u) = dz? has only finitely many rational solutions (u,z). Thus there are infinitely

many non-isomorphic quadratic twists of £, of odd rank at least 5 over Q. O
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Chapter 6

The Selmer group, the Shafarevitch-Tate
group

6.1 Group cohomology
Firstlly we will define some basic definition which we will use in this chapter.

Definition 6.1.1 (Topological group). A topological group G is a group that is also a topological space such
that the product map:

p:GxG—G

(9,9") — g9’

and the inverse map
i1:GG— G

-1

gr—yg

are continuous functions (with respect to the topology).

Definition 6.1.2 (Profinite group). A Profinite group is a compact, Hausdorff and totally disconnected
topological group.

Definition 6.1.3 (Group cohomology H®). Let G be a profinite group. Let A be a (discrete, left) G-module
and that the map G x A — A is continuous when A is given the discrete topology. Define A® and H°(G, A)

by

A9 =HY(G,A):=={acA:ga=a VgecG}

. The subgroup AC is known as the subgroup of G-invariants of A.°
Definition 6.1.4. Let A be a G module. The group of i-cochains(from G to M ) is defined by
CYG,M) = {maps f: G — M}
The group of i-cocycles (from G to M ) is given by
ZHG, M) ={f € CHG, M) : f(gh)=hf(g)+f(h)Y f,g€C}
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The group of i-coboundaries (from G to M) is defined by
BY(G,M) = {f € C(G, M) : there exist an m € M such that f(g) = gm —m Vg € G}

It is clear that BY(G, M) C Z'(G, M).

6.2 Cohomology group ( H':i > 0)

The i-th cohomology group of the G-module M is the quotient group

ZYG, M)
BY(G, M)

Remark 6.2.1. Notice that if the action of G on M is trivial, then
HY(G, M) =M HY(G, M) = Hom(G, M).
Definition 6.2.2. In the context of group theory, a sequence
Go— G —>Gy---— Gy

of groups and group homomorphisms is called exact if the image of each homomorphism is equal to the

kernel of the next. Note that the sequence of groups and homomorphisms may be either finite or infinite.

Remark 6.2.3. 1. The sequence 0 — A — B is exact at A if and only if the map from A to B has

kernel 0, i.e. if and only if that map is a monomorphism (one-to-one).

2. the sequence B — C' — 0 is exact at C if and only if the image of the map from B to C is all of C,

i-e. if and only if that map is an epimorphism (onto).

3. A consequence of these last two facts is that the sequence 0 — X — Y — 0 is ezxact if and only if the

map from X to Y is an isomorphism.

Remark 6.2.4. Suppose that
0>A—-B—-C—=0

is an exact sequence of G-modules. This means that the morphisms respect the G-actions, and that it is

ezact as a sequence of abelian groups. Then there is an exact sequence

0— A¢ - B¢ — C¢ (1)

but one cannot always append — 0 to the right end. In other words, the functor A — A% is only left exact.

Theorem 6.2.5. There exists a collection of functors H (G, —) for i > 0 such that for every exact sequence
0—-B—-C—=0

where A, B and C are of G module, the sequence 1 extends to a long exact sequence
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functorially with respect to the exact sequence. Functorially means that given a morphism of exact sequences,

that is, a commutative diagram such as

0 A B C 0
0 A’ B’ c’ 0,

there is a morphism of the associated long exact sequences; that is, the diagram

0 —HG,A) ——H°(G, B) ——H°(G,C) ——HY (G, A) —— . ..

l l l l

0——HG,A') ——HG,B') ——=HG,C") —=HYG,A') —— ...,
commutes.

Remark 6.2.6. Let m is an integer not divisible by the characterstic of k and p., denotes the group of

m-th root of unity then by using Hilbert 90 theorem we can see that
HY (G, pim) = K/ (K*)™
Definition 6.2.7. A wvaluation on a field K is a function ¢ : K — R > 0 satisfying:
1. ¢(z)=01iff z =0;

2. ¢(zy) = d(x)p(y) V z,y € K;

3. there exists C € R > 0 suc that
o(x +y) < Cmax{p(z), ¢(y)} ¥V z,y € K.

The smallest constant C' that can be taken in (i) is the norm of the valuation ¢. It obviously can not be
smaller than 1. Note that if ¢ is a valuation on K of the norm C then x — ¢(x)" defines a valuation of
norm C" on K for each r € R > 0.

6.3 Restriction

If H C G is a closed subgroup, and A is a G-module, then A can also be considered as an H-module,

and there exist restriction homomorphisms
H (G, A) 2 Hi(H, A)

for each ¢ > 0. On H°, Res is simply the inclusion A® < A" . On H' , Res maps the class of the 1-cocycle
& : G — A to the class of |y : H — A. For us, the following special case will be important. Let k be a
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number field. Let k, denote the completion of k at a place v. If we identify k with the algebraic closure of

k inside k, , then we have an injection
G, = Gal(k,/k,) — G}, := Gal(k/k)

o— ol
whose image is a decomposition group at v. Let A be an abelian variety over k. The composition

HY(k, A) := H (G, A(k)) Res, HY(G,, A(k)) — HYG,, A(k,)) =: H (ky, A)

is denoted Res,

Definition 6.3.1 (Perfect field). a field K is said to be perfect if every irreducible polynomial over K has

distinct roots or every irreducible polynomial over K is separable.

6.4 Twists (also known as k-forms)

Let k be a perfect field. Let V' be an object over k, for example a variety equipped with some extra
structure defined over k. We assume that the objects form a category, and that there is a notion of base
extension: that is, given an object V over k and a field extension L of k, there should be an associated object
Vi, over L. A twist or k-form of V is an object W over k such that there exists a (structure-preserving)
isomorphism Wp ~ Vi of objects over k. Then there is an injection

{twists of V} — H' (G}, Aut(V%))

that in many situations is a bijection. Where we write “twists of V” we identify two twists if they are

isomorphic over k.

6.5 The Shafarevich-Tate group

From now on, we assume that k is a number field, and that A is an abelian variety over k. Recall that
there is a restriction map Res v : H'(k, A) — H!(k,, A) for each place v of k (finite or infinite). If we identify
elements of H' with torsors, then Res, takes a k-torsor X under A to the base extension X xy k, . Define
the Shafarevich-Tate group X (k, A) ofA over k as

ker[H'(k, 4) 2% T Hl(k:v,A)}

place v of k

where Res = [], Res,. Call a k-torsor X under A locally trivial if it is in the kernel of every map Res, , or
equivalently if X (k,) is nonempty for every v. Then one can describe X (k, A) geometrically as the set of
isomorphism classes of locally trivial k-torsors X under A.

Conjecture For every number field k and every abelian variety A over k, the group II(k, A) is finite.

6.6 The Selmer Group

Fix an integer m > 2. For any abelian group B, let B,, denote the kernel of the multiplication-by-m

map B — B. Suppose that A is an abelian variety over a perfect field k. Then the m-torsion subgroup of

65



A is the Gy-module A,, := A(k)m. The long exact sequence associated to
0— A, — Ak) 2 Ak) — 0

from which we extract the top row of

HY(k, Ap) —L—> HY(k, A)y —— 0

e
0 Hv Alk,) Hv Hl(kv’ Am) — Hv Hl(k’lNA)m I 07

m

The bottom row is the product of the analogous sequences over each completion k,. The first vertical map
is induced by the inclusions A(k) — A(k,) for each v, and the other vertical maps are restriction maps. The
diagonal dotted map p is the composition in either direction. The diagram commutes. If we could prove
that H'(k, A,,) were finite, then (2) would show that A(k)/m is finite too, and we would have proved the
Weak Mordell-Weil Theorem. But unfortunately, it turns

out that H'(k, A,,) is infinite whenever A is nonzero. Therefore we must bound the image of A(k)/m in
H!(k, A,,) by using (2) to see that this image equals ker(p). Unfortunately, it is not known how to decide,
given an element of H!(k, A,,), whether its image in H!(k, A),, is zero or not, just as it is not known how to
decide whether a general element of H!(k, A) is zero or not. Therefore we instead bound ker(p) by the larger
group ker(p): this helps, since given & € H!(k, A,,), we can decide whether ¢ € ker(p) as follows: compute
a torsor X representing its image in H!(k, A), and use the method discussed in the previous section to test
whether X is locally trivial. The m-Selmer group Sel™(A/k) is defined as ker(p ), or equivalently as the set
of & € HY(k, A,,) whose restriction Res, € H!(k,, A,,) is in the image of Alky) H!(k,, A,,) for every v.

m

If we apply the Snake Lemma to

0 Alk) H (k, Ap,) H (k, A)py —— 0
i P chs
Y
0 0 I1, B (ky, Ap) == 1, H' (ky, A),, — 0,

the first half of the snake (i.e., the sequence of kernels of the vertical maps) is the fundamental exact sequence
Ak
0— Alk) — Sel™(A/k) — 1L, — 0,
m

where 111 := III(k, A). In particular, the image of A(k)/m in H(k, A,,) is contained in Sel™(A/k).

6.7 Computing the Selmer group
Theorem 6.7.1. The group Sel™(A/k) is finite and computable (in theory)

Corollary 6.7.2. The groups A(k)/m and I, are finite (but not necessarily computable).

6.8 2-descent on an elliptic curve with rational 2-torsion

In this section we show how to compute Sel*(A/k) in the case where A = E is an elliptic curve over Q
with Es C E(Q). Then F has an equation

y? = (z —e1)(z — ex)(z — e3)

66



where e1, e, e3 € Z are distinct. Let P; = (e;,0) € F(Q) and let O denote the identity of E (the point at
infinity). Then
Eg = {O,Pl,PQ,Pg} = Z/QZ X Z/2Z = U2 X 2

as Gg -modules, with Py «» (1,—1) and P, <> (—1,1).So from Hilbert 90 theorem, H'(Q, u2) ~ Q*/Q*?,
so HY(Q, Es) ~ (Q*/Q*?)®2. If p is a prime such that e, ey, e3 are distinct modulo p, then E has good
reduction at p. Hence we may take as the set S of bad places in the previous section, the set consisting of
the archimedean place oo and the primes dividing 2(e; — e2)(e2 — e3)(e3 — e1). We then have the following

facts:

1. If ¢ € HY(Q, E») corresponds to the image of (a,b) € (Q/Q*?)®?2 (where a,b € Q*?), then ¢ is unamified
at a prime p if nd only if p is unramified in the quadratic extension Q(y/a) and Q(v/) of Q.

2. The composition
E(Q) = E(Q)/2 — HY(Q, Ez) ~ (Q*/Q**)®*
maps a point (z,y) in F(Q) other than O, Py, P, to (x — e, 7 — e3) € (Q*/Q*2)®2,

It follows from (1) that ¢ € HY(Q, E») is unramified outside S if and only if ¢ is represented by some pair
(a,b) of elements in the subgroup (—1,S) of Q*/Q*? generated by —1 and the finite primes of S. Thus

Sel*(E/Q) C HY(Q, Ey; S) ~ (—1,5)%% ¢ (Q*/Q*?)®?

To decide which (a,b) € (—1,5)%? actually belong to Sel*(E/Q), check whether X, ; has points over R and
over Q, for all finite primes p € S

Example 6.8.1. Let E be the elliptic curve y?> = x> — x over Q. Let r be the rank of E(Q). We will
compute r,5el*(E/Q), and II(Q, E)y . Take ey = —1,e5 = 0,e3 = 1. Then we may take S = {o0,2}. The
homomorphism

E(Q)/2 — Sel’(E/Q) C HY(Q, Ex; S) =~ (—1,2)®? C (Q*/Q*?)®?

maps
0 — (1,1)

Py = (_170) — (25 _1)

P2 = (O?O) - (la_l)

so at least these images are contained in Sel>(E/Q). Now, for the other (a,b) € (—1,2)%2 we must check
whether X has points over R and Qy . An affine piece of X, is given by the equations

r+1=az?, x=022, v—1=abz2,

and it will suffice to check this piece for points over R and Qo , because when a smooth curve over a local
field has a point, the implicit function theorem implies that the curve has an analytic neighborhood of such
points. If a < 0 and X,y has a real point, the first equation shows that it satisfies x < 1, the second equation
shows that b < 0, and the third equation yields a sign contradiction. Thus

{(1,1),(2,1),(1,1), (2, 1)} € SeP(B/Q) € (2) x (~1,2).

But SelZ(E/Q) is a group, so it equals either the group of order 4 on the left, or the group of order 8 on the
right. A calculation shows that X12(Qso) is empty, so Sel*(E/Q) = {(1,1),(2,—1),(1,-1),(2,1)} . Since
E(Q)/2 — Sel*(E/Q) is surjective, III(Q, E)y = 0. Finally, since Ey C E(Q), #(E(Q)/2) = 22" . On the
other hand, #(E(Q)/2) <4, sor =0.
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