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List of Notation

E Elliptic curve

N Set of natural numbers

Z Set of integers

Q Set of rational numbers

R Set of real numbers

C Set of complex numbers.

C Cubic curve

K Field

K̄ Algebraic closed �eld

An(K) n- dimensional a�ne space

P2
K Projective plane over �eld K

P ∗Q Composition law on elliptic curve for ponits P and Q

P +Q Addition law on elliptic curve

O Point at in�nity on a cubic curve

E(Q) Set of all rational points on E

E(R) Set of all real points on E

E(C) Set of all complex points on E

4 Discriminant of a polynomial

Eλ Legendre form of elliptic curve

Z[x] Polynomial with integer coe�cients

Z/nZ Intgers modulo n

E(pv) Rational points with pv in denominator

H(x) Height of a rational number x

H(P ) Height of a point P = (x, y) on a cubic curve

h(P ) logarithm of H(P )

ord Order of a rational number
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Chapter 1

Geometry and Arithmetic

In this chapter we will introduce some de�nitions and facts which will be useful. We will see how to get

rational points on elliptic curve. We will give the composition law on the set of rational points on elliptic

curve by this composition law and we will show that E(Q) is a group. Moreover it is Abelian.

1.1 Algebraic Geometry

In this section we will discuss some de�nitions like a�ne space, a�ne variety, projective space etc which

we will use .

De�nition 1.1.1. Given a �eld K and a positive integer n, we de�ne the n-dimensional a�ne space

An over k to be the set

An(K) = {(a1, . . . , an) : a1, . . . , an ∈ K}

De�nition 1.1.2. Let K be a �eld, and let f1, f2, . . . , fs be polynomials in K[x1, . . . , xn]. Then we set

V (f1, f2, . . . , fs) = {(a1, a2, . . . , an) ∈ Kn : fi(a1, . . . , an) = 0} ∀ 1 ≤ i ≤ s

We call V (f1, f2, . . . , fs) the a�ne variety de�ned by f1, f2, . . . , fs. Thus, an a�ne variety V (f1, . . . , fs) ⊂
Kn is the set of all solutions of the system of equations f1(x1, . . . , xn) = · · · = fs(x1, . . . , xn) = 0.

We begin in the plane R2 with the variety V (x2 + y2 − 1), which is the circle of radius 1 centered at

the origin given by the following �gure 1.1. An interesting example of a curve in R3 is the twisted cubic,

Figure 1.1:

which is the variety V (y − x2, z − x3). For simplicity, we will con�ne ourselves to the portion that lies in
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Figure 1.2:

the �rst octant. To begin, we draw the surfaces y = x2 and z = x3 separately given by the following �gure

1.2. Then their intersection gives the twisted cubic given by the following �gure 1.3.

Figure 1.3:

De�nition 1.1.3. The projective plane is de�ned as the set of all triples (a, b, c), such that a, b and c

are not all 0, and where (a, b, c) is considered to be the same point as (a′, b′, c′) if (a′, b′, c′) = (ta, tb, tc) for

some nonzero t.

In other words, the projective plane is de�ned in terms of an equivalence relation ∼ on all triples of

homogeneous coordinates (a, b, c), such that (a, b, c) ∼ (a′, b′, c′) if and only if a′ = ta, b′ = tb, c′ = tc for

some nonzero t. This equivalence relation allows for the following simpli�ed de�nition of P2
K :

P2
K =

{(a, b, c)| a, b, c ∈ K are not all 0}
∼

This de�nition lends itself to a somewhat more intuitive de�nition of the projective plane. If a triple

(a, b, c) is to be thought of as a vector in R3, then the vector (a, b, c) is considered equivalent to all scalar

multiples of the vector itself. Thus, for any given triple (a, b, c) the set of all triples considered equivalent to

(a, b, c) is the line passing through the origin and (a, b, c). Because all points in a given direction from the

origin are equivalent in projective space, the projective plane can simply be thought of as including the set

of all directions in R3.

An interesting implication is the notion of point at in�nity. Because any two parallel lines in A2 must by

de�nition have the same direction, in projective space the lines must have the point de�ning their direction

in common. This intersection is the basis for the notion of a �point at in�nityâ�� -it is the point at which

two parallel lines traveling in a given direction must intersect in projective space. In order to maintain the

property that two lines may only intersect at one point, there must be a point at in�nity for every given

direction in Thus, projective space can also be de�ned as :

P2 = A2 ∪ { The set of directions in A2}

It is important to remember that both projective space and a�ne space are de�ned over a �eld.

De�nition 1.1.4. A cubic curve in projective space is de�ned as the set of solutions of a polynomial

function F (X,Y, Z) such that

E : F (X,Y, Z) = 0

3



More speci�cally, because such curves exist in projective space, the polynomial F (X,Y, Z) must be

homogeneous of degree d. This means that it must satisfy the property :

F (tX, tY, tZ) = tdF (X,Y, Z),

where d is the degree of the polynomial F .

De�nition 1.1.5. Let F (X,Y, Z) = 0 is an projective plane and let (X0, Y0, Z0) be any point on the curve

such that (
∂F

∂X
(X0, Y0, Z0),

∂F

∂Y
(X0, Y0, Z0),

∂F

∂Z
(X0, Y0, Z0)

)
6= (0, 0, 0)

Such a point is called a non-singular point on the curve . If every point on the curve is non singular then

then we say our curve is non singular. A point which is not non-singular is called a singular point.

De�nition 1.1.6. Let f(x, y) = 0 is an a�ne plane and let (x0, y0) be any point on the curve such that the

partial derivatives do not both vanish,(
∂f

∂x
(x0, y0),

∂f

∂y
(x0, y0)

)
6= (0, 0)

Such a point is called a non-singular point on the curve . If every point on the curve is non singular then

then we say our curve is non singular. A point which is not non-singular is called a singular point.

Homogenization

The question still remains of how curves in P2 might be transformed into curves in A2. Such transforma-

tions are typically carried out through a process known as homogenization. Homogenization maps a curve

E in P2 to a curve in A2 by transforming the function by which E is de�ned, F (X;Y ;Z) into a function

f(x, y). The process for such transformations is rather straightforward. We de�ne f(x, y) by the following

relation :

f(x, y) = F (X,Y, 1)

In such a transformation, every homogeneous triple (a, b, c) that solves the polynomial F is scaled by the

reciprocal of an element of the triple. For example, if the function F is to be homogenized with respect to

Z, the solutions to F are scaled in the following way :

(a, b, c) 7−→
(
a

c
,
b

c
, 1

)
Note that, in projective space, the original triple and the triple to which it is mapped are equivalent

because 1
c is a nonzero scalar applied to each element of the triple. Notice that f(x, y) = F̃ (x, y, 1). So for

dehomogenization of a polynomial F̃ (x, y, z) we have to substitute z = 1 to �nding f(x, y) = 0.

Properties of homogeneous polynomial

Suppose that our polynomials have coe�cients in a �eld K, and if x, y, z ∈ K such that F̃ (x, y, z) = 0.

Notice that

(1) For any λ ∈ K, F̃ (λx, λy, λz) = λnF̃ (x, y, z) (n = total degree of F )

(2) For any non zero λ ∈ K, F̃ (λx, λy, λz) = 0 i� F (x, y, z) = 0

In particular, for z we have F̃ (x, y, z) = 0 i� F (x/z, y/z) = 0

Now we will discuss how to get all rational points on the conic and cubic then we will study about elliptic

curve (particular cubic curve) .

4



1.2 Rational points on conics

A line is said to be a �rational� if we can write its equation by rational coe�cients i.e., ax+ by+ c = 0

is rational if

a, b, c ∈ Q

We can easily check that two rational line intersect at a rational point and line passing through two rational

points is rational

We will say that a conic C : ax2 + bxy + cy2 + dx+ ey + f = 0 is rational if a, b, c, d, e, f ∈ Q. Now we

will describe all rational points on conic completely. Given a rational conic, the �rst question is whether or

not there are any rational points on it. But let us suppose that there is one rational point O on our rational

conic then we can get all of them very simply. We just draw some rational line L and we project the conic

onto the line from this point O and for O itself onto the line given by the �gure 1.4, we use the tangent

line to the conic at O. A line meets a conic in two points, so for every point P on the conic we get a point

Figure 1.4:

Q on the line; and conversely, for every point Q on the line, by joining it to the point O, we get a point

P on the conic. We get a one-to-one correspondence between the points on the conic and points on the

line . If the point P on the conic has rational coordinates, then the point Q on the line will have rational

coordinates because we know line passing through two rational points is rational and intersection point of

two rational line is rational. And conversely, if Q is rational, then the line through P and Q meets the conic

in two points if one of which is rational So the other point is rational. Thus the rational points on the conic

are in one-to-one correspondence with the rational points on the line. Of course, the rational points on the

line are easily described in terms of rational values of some parameter . We will try this procedure for the

unit circle :

x2 + y2 = 1

We will project from the point (−1, 0) onto the y - axis. Let's call the point of intersection (0, t) given by

the following �gure 1.5 on page. we can easily �nd t by x and y and by simple calculation we get :

x =
1− t2

1 + t2
, y =

2t

1 + t2
.

This is the rational parametrization of the circle and now the assertion made above is clear from these

formulas. i.e. if x and y are rational numbers, then t will be a rational number and vice versa. So this is

the way for getting all rational points on the circle by all choice of t. That will give us all points except

(−1, 0) and for (−1, 0) substitute in�nity for t .
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Figure 1.5:

Problem 1.2.1. Show that there is no rational point on the circle :

x2 + y2 = 3

.

Proof. suppose there is a rational point (x, y) then we can write it as

x =
X

Z
, y =

Y

Z

for some integers X,Y, Z which have no common factor. It follows that both X and Y are not divisible by

3. This is true because if 3|X, then 3|Y 2(= 3Z2 −X2) so 3|Y . But then 9 divides X2 + Y 2 = 3Z2, so 3|Z,
contradicting the fact that X,Y, Z have no common factors. Hence 3 does not divide X, and similarly for

Y . Since X and Y are not divisible by 3, we have

X ≡ ±1 mod 3, Y ≡ ±1 mod 3, X2 ≡ Y 2 ≡ 1 mod 3

But then

0 ≡ 3Z2 = X2 + Y 2 ≡ 1 + 1 ≡ 2 mod 3

This contradiction shows that no two rational numbers have squares which add up to 3.

1.3 Geometry of cubic curves

Let

ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2 + hx+ iy + j = 0

be equation for general cubic over �eld K.

We can not use the geometric principle that worked so well for conic because a line generally meets a

cubic in three points. If we have one rational point, we cannot project the cubic onto a line, because each

point on the line would then correspond to two points on the curve
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But there is a geometric principle we can use. If we can �nd two rational points on the curve, then we

can generally �nd a third one. Namely, draw the line connecting the two points you have found. This will

be a rational line, and it meets the cubic in one more point. If we look and see what happens when we try

to �nd the three intersections of a rational line with a rational cubic, we �nd that we come out with a cubic

equation with rational coe�cients. If two of the roots are rational, then the third must be also. We will

work out some explicit examples below, but the principle is clear. So this gives some kind of composition

law : starting with two points P and Q and let P ∗Q denote the third point of intersection of the line with

the cubic given by the following �gure 1.6. Even if we only have one rational point P , we can still generally

Figure 1.6:

get another. By drawing the tangent line to the cubic at P , we are essentially drawing the line through

P and P . The tangent line meets the cubic twice at P , and the same argument will show that the third

intersection point is rational. Then we can join these new point up and get more points. So if we start with

a few rational points, then by drawing lines, we generally get lots of others.

It is very di�cult to determine in �nite number of steps whether a given rational cubic

has a rational point. We will leave this di�cult problem aside, and assume that we have a

cubic which has a rational point O
If we consider the set of all rational points on the cubic, we can say that set has a law of composition.

Given any two points P,Q, we have de�ned a third point P ∗Q. We might ask about the algebraic structure

of this set and this composition law; for example, is it a group ? Unfortunately, it is not a group; to start

with, it is fairly clear that there is no identity element.

We can make it into a group in such a way that the given a rational point O becomes the zero element of

the group. We will denote the group law by + because it is going to be a commutative group. The rule is

as follows :

To add P and Q, take the third intersection point P ∗Q, join it to O ( zero element), and then take the

third intersection point to be P +Q. Thus by de�nition, P +Q = O ∗ (P ∗Q)

In the following �gure 1.7, 1.8, 1.9 we can understand geometrically our group law.

We also want to mention that there is nothing special about our rational point O; if we choose di�erent
O′ to be the zero element of our group,then we get a group with exactly same structure. In fact the map

P 7−→ P + (O′ −O)

is an isomorphism from the group �C with zero element O to the group �C with the zero element O′.

1.4 Elliptic curve

De�nition 1.4.1. An elliptic curve is a pair (E,O) ,where E is a non singular curve and O ∈ E in

projective space (We generally denote the elliptic curve by E , the point O being understood.) The elliptic

curve E is de�ned over �eld K, written E/K, if E is de�ned over �eld K as a curve and O ∈ E

7



Figure 1.7:

Figure 1.8:

Why have we concentrated attention only on the non-singular cubics? The singular cubics

( 1.10) and the non-singular cubics have completely di�erent types of behavior. For instance, the singular

cubics are just as easy to treat as conics. If we project from the singular point onto some line, we see that

the line going through that singular point meets the cubic twice at the singular point, so it meets the cubic

only once more. The projection of the cubic curve onto the line is thus one-to-one. So just like a conic, the

rational points on a singular cubic can be in one-to-one correspondence with the rational points on the line.

In fact, it is very easy to do that explicitly with formulas.

If we let r = y
x , then the equation y2 = x2(x+ 1) becomes

r2 = x+ 1 and so x = r2 − 1 and y = r3 − r

. These operation are inverse of each other, and are de�ned at all rational points except for the singular

point (0, 0) on the curve. So the singular cubics are trivial to analyze as far as rational points go. But one

can prove that and Mordell's theorem does not hold for them means this group is not �nitely generated.

8



Figure 1.9:

1.5 Weierstrass equations

In this section we will transform our elliptic curve into simpli�ed cubic equation known as Weierstrass

equation for an elliptic curve which will help to study more about elliptic curve

Weierstrass equations is a projective cubic curve of the form

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3

with an extra point O′ = [0, 1, 0] over �eld K. After dehomogenization by substituting x = X/Z and

y = Y/Z Weierstrass equations becomes :

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

Figure 1.10:
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There is the extra point at in�nity O′ = [0, 1, 0] on this elliptic curve . As usual,if a1, . . . , a6 ∈ K , then E

is said to be de�ned over �eld K.

By Riemann-Roch theorem We know that every elliptic curve can be written as a Weierstrass plane

cubic, and conversely, every non-singular Weierstrass plane cubic curve is an elliptic curve.

Proposition 1.5.1. [ST92, Prop.3.1] Let E be an elliptic curve de�ned over �eld K

(a) There exist functions x, y ∈ E(K) such that the map

φ : E → P2, φ = [x, y, 1]

gives an isomorphism of E/K onto a curve given by a Weierstrass equation.

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3

satisfying φ(O) = [0, 1, 0]

(b) Any two Weierstrass equations for E as in (a) are related by a linear change of variables of the form

x = u2x′ + r and y = u3y′ + usx′ + t

where u, r, s, t ∈ K and u 6= 0.

If char(K) 6= 2 , then we can simplify the equation by completing the square. Thus the substitution

y 7−→ 1

2
(y − a1x− a3)

gives an equation of the form

E : y2 = 4x3 + b2x
2 + 2b4x+ b6

where

b2 = a2
1 + 4a2, b4 = 2a4 + a1a3, b6 = a2

3 + 4a6

We also de�ne quantities :

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4

c4 = b22 − 24b4

c6 = −b32 + 36b2b4 − 216b6

4 = −b22b8 − 8b34 − 27b26 + 9b2b4b6

j =
c34
4

De�nition 1.5.2. The quantity 4 is known as discriminat of the polynomial f(x) = 4x3 + b2x
2 + 2b4x+ b6

and j is known as j-invariant of elliptic curve.

De�nition 1.5.3. The discriminant of cubic f(x) is the quantity :

4 = (α1 − α2)2(α1 − α3)2(α2 − α3)2

Proposition 1.5.4. (a) The elliptic curve given by a Weierstrass equation is non singular if and only if

4 6= 0

(b) Two elliptic curves are isomorphic over �eld K̄ if and only if they both have the same j-invariant.
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Proof. (a) Let C be given by the Weierstrass equation in projective space:

F (X,Y, Z) = Y 2Z + a1XY Z + a3Y Z
2 −X3 − a2X

2Z − a4XZ
2 − a6Z

3

We will check that the point at in�nity O = [0, 1, 0] is never singular.

Since
∂F

∂Z
(O) = 1 6= 0

For simpli�cation we assume char(K) 6= 2 then we can convert our C as:

C : y2 = 4x3 + b2x
2 + b4x+ b6

The curve C is singular if and only if there ia a point (x0, y0) ∈ C satisfying

2y0 = 12x2
0 + 2b2x0 + 2b4 = 0⇒ y0 = 0

So the singular points are exactly the points of the form (x0, 0) such that x0 is a double root of the

polynomial 4x3 + b2x
2 + 2b4x+ b6. This polynomial has double root if and only if discriminant, which

equals 164, vanishes.

(b) We will see that after changing the variables given be proposition 1.5.1 (b) in following way �xing

[0, 1, 0] we get same j-invariant.

x = u2x′ + r and y = u3y′ + u2sx′ + t

where u, r, s, t ∈ K and u 6= 0.

x2 = (u2x′ + r)2 = u4x′2 + r2 + 2ru2x′

x3 = u6x′3 + r3 + 3ru4x′2 + 3r2u2x′

y2 = (u3y′ + u2sx′ + t)2 = u6y′2 + u4s2x′2 + t2 + 2u5sx′y′ + 2ustx′ + 2u3ty′

xy = u5x′y′ + u4sx′2 + u2tx′ + tx′ + u3ry′ + u2srx′ + rt

Now substitute these values in equation in Weierstrass equation for an elliptic curve, then we get :

f(x′, y′) = u6y′2 + u4s2x′2 + t2 + 2u5sx′y′ + 2stu2x′ + 2tu3y′ + a1u
5x′y′ + a1u

4sx′2

+ a1u
2tx′ + a1u

3ry′ + a1u
2srx′ + a1rt+ a3u

3y′ + a3u
2sx′ + a3t− u6s′3

− r3 − 3ru4x′2 − 3r2u2x′ − a2u
4x′2 − a2r

2 − 2a2ru
2x′ − a4u

2x′ − a4r

− a6 = 0

f ′(x′, y′) = y′2 +
1

u
(a1 + 2s)x′y′ +

1

u3
(2t+ ra1a3)y′ − x3 +

1

u2
(s2 + a1s− 3r − a2)x′2

+
1

u4
(2st+ a1t+ a1sr + a3s− 3r2 − 2a2r − a4)x′ +

1

u6
(a1rt+ a3t− r3

− a2r
2 − a4r − a6) = 0
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Now calculation for b′2, b
′
4, b
′
6 and b′8

b′2 = a′1 + 4a′2 =
1

u2
(a1 + 2s)2 +

4

u2
(a2 − sa1 + 3r − s2)

= a2
1 + 4s2 + 4a1s+ 4a2 − 4sa1 + 12r − 4s2

u2b′2 = a2
1 + 4a2 + 12r ⇒ u2b′2 = b2 + 12r

b′4 = 2a′4 + a′1a
′
3

=
2

u4
(a4 − sa3 + 2ra2 − ta1 − ra+ 1s+ 3r2 − 2st) +

1

u
(a1 + 2s)

1

u3
(a3 + ra1 + 2t)

= 2a4 − 2sa3 + 4ra2 − 2ta1 − 2ra1s+ 6r2 − 4st+ a1a3 + ra2
1 + 2a1t+ 2sa3 + 2sra1 + 4st.

u4b′4 = 2a4 + 4a2 + 6r2 + ra2
1 + a1a3 = 2a4 + a1a3 + r(4a2 + a2

1) + 6r2

u4b′4 = b4 + rb2 + 6r2

b′6 = a′23 + 4a′6

=
1

u6
(a3 + ra1 + 2t)2 +

4

u6
(a6 + ra4 + r2a2 + r3 − ta3 − t2rta1

u6b′6 = a2
3 + r2a2

1 + 4t2 + 2ra1a3 + 4ra1t+ 4ta3 + 4a6 + 4ra4 + 4r2a2 + 4r3 − 4ta3 − 4t2

− 4rta1

= a2
3 + r2a2

1 + 2ra1a3 + 4a6 + 4ra4 + 4r2a2 + 4r3

= a2
3 + 4a6 + 2r(2a4 + a1a3) + r2(a2

1 + 4a2) + 4r3

u6b′6 = b6 + 2rb4 + r2b2 + 4r3

b′8 = a2
1a
′
6 + 4a′2a

′
6 − a′1a′3a′4 + a′2a

′2
3 − a′24

=
1

u2
(a1 + 2s)2 1

u6
(a6 + ra4 + r2a2 + r3

t a3 − t2 − rta1) +
4

u2
(a2 − sa1 + 3r − s2)

1

u6
(a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1)− 1

u
(a1 + 2s)

1

u3
(a3 + ra1 + 2t)

1

u4
(a4 − sa3 + 2ra2 − ta1 − rsa1 + 3r2 − 2st) +

1

u2
(a2 − sa1 + 3r − s2)

1

u6
(a3 + ra1 + 2t)2 − 1

u8
(a4 − sa3 + 2ra2 − ta1 − rsa1 + 3r2 − 2st)2

=
1

u8
(a2

1 + 4s2 + 4a1s)(a6 + ra4 + r2a2 + r3
t a3 − t2 − rta1) +

4

u8
(a2 − sa1 + 3r − s2)

(a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1)− 1

u8
(a1a3 + ra2

1 + 2ta1 + 2sa3 + 2sra1

+ 4st)(a4 − sa3 + 2ra2 − ta1 − rsa1 + 3r2 − 2st) +
1

u8
(a2 − sa1 + 3r − s2)

(a2
3 + r2a2

1 + 4t2 + 2a1a3r + 4a1rt+ 4a3t)−
1

u8
((a4 − sa3)2 + (2ra2 − ta1)2+

(3r2 − rsa1 − 2st)2 + 2(a4 − sa3)(2ra2 − ta1) + 2(2ra2 − ta1)(3r2 − rsa1 − 2st)

+ 2(3r2 − rsa1 − 2st)(a4 − sa3))

= a1a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a2

4 + 3r(a2
3 + 4a6) + 3r2(2a4 + a1a3) + r3(a2

1 + 4a4)

+ 3r4

= b8 + 3rb6 + 3r2b4 + r3b2 + 3r4

Now we will see after change of variable which quantities are changing and what is invariant by the

following table.
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ua′1 = a1 + 2s

u2a′2 = s2 + a1s− 3r − a2

u3a′3 = 2t+ ra1a3

u4a′4 = 2st+ a1t+ a1sr + a3s− 3r2 − 2a2r − a4

u6a′6 = a1rt+ a3t− r3 − a2r
2 − a4r − a6

u2b′2 = b2 + 12r

u4b′4 = b4 + rb2 + 6r2

u6b′6 = b6 + 2rb4 + rb2 + 4r3

u8b′8 = b8 + 3rb6 + 3r2b4 + r3b2 + 3r4

u4c′4 = c4

u6c′6 = c6

u124′ = 4
j′ = j

So after change of variable up to isomorphism we got same j-invariant.

For converse, we will assume char(k) 6= 2, 3. Let E and E′ be two elliptic curves over �eld K with the

same j-invariant in form of Weierstrass equation:

E : y2 = x3 +Ax+B,

E′ : y′2 = x′3 +A′x′ +B′

From the assumption j(E) = j(E′) implies that

(4A)3

4A3 + 27B2
=

(4A′)3

4A′3 + 27B′2

So

A3B′2 = A′3B2

We look for an isomorphism of the form (x, y) = (u2x′, u3y′) and we will discuss isomorphism in three

cases:

Case(1 :) A = 0(j = 0). Then B 6= 0, since 4 6= 0, so A′ = 0, and we obtain an isomorphism using

u = (B/B′)1/6.

Case(2 :) B = 0(j = 1728). Then A 6= 0, so B′ = 0, and we obtain an isomorphism using

u = (A/A′)1/4.

Case(3 :) AB 6= 0(j = 0, 1728). Then A′B′ 6= 0, since one of them were 0, then both of them would

be 0, contradicting 4′ 6= 0. Taking u = (A/A′)1/4 = (B/B′)1/6 gives the desired isomorphism.

1.6 Legendre form

Just from j-invariants of elliptic curves we can know they are isomorphic are not. So j-invariant is very

important quantity about elliptic curves. Now we will discuss Legendre form of the elliptic curve where

we can �nd j- invariant explicitly. A Weierstrass equation is in Legendre form if it can be written as :

Eλ : y2 = x(x− 1)(x− λ)
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over algebraic closed �eld K.

Proposition 1.6.1. Let E : y2 = x3 + ax2 + bx + c be an elliptic curve over K̄ in Weierstrass form then

we can transform elliptic curve E into Legendre form.

Proof. Let y2 = x3 + ax2 + bx + c be an elliptic curve over K̄ in Weierstrass form . If α1, α2 and α3 are

the roots of the polynomial. Then y2 = (x− α1)(x− α2)(x− α3) Replace x by (α2 − α1)x′ + α1 and y by

(α2 − α1)3/2y′) we get :

(α2 − α1)3/2y′)2 = ((α2 − α1)x′ + α1 − α1)((α2 − α1)x′ + α1 − α2)((α2 − α1)x′ + α1 − α3)

(α2 − α1)3y′2 = (α2 − α1)x′((α2 − α1)x′ − (α2 − α1))((α2 − α1)x′ − (α3 − α1))

(α2 − α1)3y′2 = (α2 − α1)3x′(x′ − 1)(x′ − α3 − α1

α2 − α1
)

Eλ : y′2 = x′(x′ − 1)(x′ − λ) where λ =
α3 − α1

α2 − α1

Proposition 1.6.2.

j(Eλ) =
28(λ2 − λ+ 1)3

λ2(λ− 1)2

Proof. On comparing Eλ with Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

over �eld K then we get :

a1 = 0, a3 = 0, a2 = −(λ+ 1), a4 = λ, a6 = 0

So value of b2, b4, b6, b8, c4,4, j will be :
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b2 = −4(λ+ 1)

b4 = 2λ

b6 = 0

b8 = λ2

c4 = 16(λ2 − λ+ 1)

4 = 16λ2(λ− 1)2

j =
(16(λ2 − λ+ 1))3

16λ2(λ− 1)2

Hence j-invariant of Eλ is

j(Eλ) =
28(λ2 − λ+ 1)3

λ2(λ− 1)2

Now we are going to de�ne compostion law for rational points on elliptic curve in Weierstrass form.

Composition law on cubic curves

Starting with two points P and Q , we draw the line through P and Q and let P ∗Q denote the third

point of intersection of the line with the cubic. Even if we only have one rational point P, we can still get

another. By drawing the tangent line to the cubic at P , we are essentially drawing the line through P and

P . The tangent line meets the cubic twice at P , and we can't use the same geometric principle that worked

so well for conics because a line generally meets a cubic in three points And if we have one rational point,

we can't project the cubic onto a line, because each point on the line would then correspond to two points

on the curve. argument will show that the third intersection point is rational. Then we can join these new

points up and get more points. So if we start with a few rational points, then by drawing lines, we generally

get lots of others.
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1.7 Explicit formulas for the group law

We start with our equation for the elliptic curve over �eld K :

E : y2 = f(x) = x3 + ax2 + bx+ c

Let P1 = (x1, x2) and P2 = (x2, y2) We may de�ne P1 + P2 = P3, where P3 = (x3, y3). From this

construction, it follows that P1 + P2 = (x3, y3). We de�ne the line connecting P1, P2, and P3 as :

y = λx+ v; where λ = y2−y1
x2−x1

and v = y1 − λx1 = y2 − λx2.

We can substitute the equation for this line into the equation for E, so we have (λx+v)2 = x3 +ax2 +bx+c.

Moving everything to one side and expanding, we get :

0 = x3 + ax2 + bx+ c− (λ2x2 + v2 + 2λvx).

After some factoring, this yields :

0 = x3 + (a− λ2)x2 + (b− 2vλ)x+ (c− v2)

The roots of this equation are x1;x2, and x3, so we can rewrite the left side :

(x− x1)(x− x2)(x− x3) = x3 + (a− λ2)x2 + (b− 2vλ)x+ (c− v2).

So we have that λ2 − a = x1 + x2 + x3. We can use this to �nd formulas for x3 and y3

x3 = λ2 − a− x1 − x2 and y3 = λx3 + v

This equation is called the duplication formula. This is a useful result because it allows us to �nd the

coordinates of P1 + P2 given distinct points P1 and P2 on an elliptic curve. To �nd P1 + P2, all we have to

do is use the duplication formula to �nd the coordinates of P3, and then re�ect over the x-axis by taking

the opposite of y3.

Duplication formula

The formulas we gave earlier involve the slope λ of the line connecting the two points. So suppose that

we have P0 = (x0, y0) and we want to �nd P0 +P0 = 2P0. We need to �nd the line joining P0 to P0. Because

x1 = x2 and y1 = y2, we can't use our formula for λ. But the recipe we described for adding a point to

itself says that the line joining P0 to P0 is the tangent line to the cubic at P0. From the relation y2 = f(x)

we �nd by implicit di�erentiation that

λ =
dy

dx
=
f ′(x)

2y

Sometimes it is convenient to have an explicit expression for 2P in terms of the coordinates for P . If we

substitute λ = f ′(x)
2y into the formulas given earlier, put everything over a common denominator, and replace

y2 by f(x), then we �nd that

x(2P ) =
x4 − 2bx2 − 8cx+ b2 − 4ac

4x3 + 4ax2 + 4bx+ 4c

1.8 Group structure

Now we will show that the set of points on an elliptic curve, combined with the binary relation + on the

curve, forms an Abelian group. We will prove each condition for the group structure independently.
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Closure

Closure property is clear by the de�nition of construction.

Associative law

We will use Bezout's theorem to demonstrate this result, particularly in showing that for any three

rational points on an elliptic curve, denoted P,Q and R, we have that (P + Q) + R = P + (Q + R). We

shall assert Bezout's theorem, and use this result to prove a more speci�c theorem about cubics. It is then

rather simple to prove that associativity holds for the group structure on an elliptic curve.

Theorem 1.8.1 (Bezout's Theorem). For any two polynomials C1 and C2 that do not have a component

in common, where C1 has degree n and C2 has degree m,C1 and C2 intersect at nm distinct points.

Lemma 1.8.2. For any three cubic curves C1, C2, C3 in projective space, where C1 and C2 do not have a

component in common, if C3 passes through eight of the nine intersection points of C1 and C2, then C3 also

passes through the ninth intersection point.

Proof. Let C1 and C2 be two cubic curves. Bezout's theorem gives us that C1 and C2 intersect at 9 distinct

points. Assume that C3 passes through 8 of the 9 intersection points of C1 and C2. Because C1 and C2 are

de�ned in projective space, they are associated with two functions F1 and F2 such that C1 : F1(X,Y, Z) = 0

and C2 : F2(X,Y, Z) = 0. It is therefore possible to create a linear combination of F1 and F2, de�ned by

λF1 +λF2 for some values of λF1 and λF2. Because such a linear combination is de�ned in projective space,

it forms a one-dimensional family. Because C3 is pinned down by 8 points through which it must travel, it

is part of a one-dimensional family. Thus, for some values of λF1 and λF2 , we have F3 = λF1 + λF2 for

C3 : F3(X,Y, Z). If we are to evaluate this relationship at the ninth intersection point of C1 and C2, we

have F1 = F2 = 0 by de�nition. Thus, F3 = 0 at this point, and therefore, C3 passes through the ninth

point of intersection.

We can now use Bezout's theorem to prove the associativity property for the group operation + on

the points on an elliptic curve. To show that P + (Q + R) = (P + Q) + R, it su�ces to show that

P ∗ (Q+R) = (P +Q) ∗R, because this point will simply be re�ected over the x-axis to obtain the desired

result.

Claim :

For any three points P,Q,R on an elliptic curve E,P ∗ (Q+R) = (P +Q) ∗R.

Proof. Let P,Q,R be points on an elliptic curve E. We will now give names to the lines used in de�ning

the relevant points on E :

Let L1 be the line passing through P,Q and P ∗Q.
Let L′1 be the line passing through Q,R, and Q ∗R.
Let L2 be the vertical line passing through O,Q ∗R and Q+R.

Let L′2 be the vertical line passing through O,P ∗Q and P +Q.

Let L3 be the line passing through P +Q and R.

Let L′3 be the line passing through P and Q+R.

Because C is a projective curve, the lines L3 and L′3 must intersect at a single point,denoted A. Furthermore,

because both L3 and L′3 are lines through two points on C, they must intersect C at a third point. Thus,

if A lies on the elliptic curve, then A = P ∗ (Q+R) = (P +Q) ∗R and the associative property holds. Let

D be the set consisting of P,Q,R, the compositions P ∗Q and Q ∗R, the additions P +Q and Q+R, and

the point A. By construction, every point p ∈ D has both a line Li and a line L′i passing through it. We

may de�ne C1 = L1 ∗ L2 ∗ L3 and let C2 = L′1 ∗ L′2 ∗ L′3, so C1 and C2 both pass through all of the nine

points p ∈ D.
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By de�nition, the elliptic curve E passes through the eight points p ∈ (D/A), so E passes through A by

above Lemma, and the associative property holds.

Zero element

The identity element for the binary operation + is the point at in�nity, O. This property is rather clear

intuitively. Recall that for all points P and Q on the elliptic curve, P + Q = O ∗ (P ∗ Q). Thus, for any

point P on the elliptic curve, O+P = O ∗ (O ∗P ). The right side of this equation re�ects the point P over

the x-axis twice, resulting in the point P . Thus,O+P = P , and there is an identity element for the group.

Inverse of a point

The property that every point Q on the elliptic curve must have an inverse is also rather clear to prove

intuitively. For any point Q on the elliptic curve, we de�ne −Q to be the point on the elliptic curve obtained

by re�ecting Q over the x-axis. Thus, Q ∗ (−Q) must be the point at in�nity, implying that Q+ (−Q) = O
and, therefore, that the inverse property holds.

Commutativity

Commutativity is very clear from the de�nition of composition law because line joining P and Q is same

as line joining Q and P
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Hence set of all rational point points on elliptic curve E(Q) with point at in�nity O is Abelian

group.
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Chapter 2

Points of �nite order

In this chapter our aim is to prove Nagell-Lutz theorem which says that (x, y) ∈ E(Q)tor must have

integer coordinate and y is 0 or y divides the discriminant. In this theorem we are using discriminant

and points of �nite order so also we will de�ne discriminant of the polynomial and how looks like torsion

subgruop of E(Q) . So from the theorem we can conlude that we can �nd (x, y) ∈ E(Q)tor in �nite number

step because the set of all divisors of discriminant is �nite.

2.1 Points of order two and three

De�nition 2.1.1. A point P of any group is said to be of order n ∈ N if

nP = P + P + · · ·+ P = 0

but mP 6= 0 for 1 ≤ m < n . If such m does not exist then we say it has in�nite order.

Now we will discuss about points of �nite order of elliptic curves given in Weierstrass form : y2 = f(x) =

x3 +ax2 + bx+ c over the �eld K and here we are considering point at in�nity as zero element for the group

law of elliptic curve.

Points of order two

Let P be a non zero element of our group i.e., 2P = 0 ⇒ P = −P and we know if P = (x, y) then

−P = (x,−y) so y co-ordinate of the points of order two will be zero. Let x1, x2 and x3 are the roots of the

polynomial f(x). If P1, P2 and P3 are the points of order two.then

P1 = (x1, 0), P2 = (x2, 0) and P3 = (x3, 0). If we allow complex root x1, x2 and x3 of the polynomial f(x)

then these are exactly three.If we take all these points of order two with zero element 0 of elliptic curve

then the set {O, P1, P2, P3} form a subgroup. So we have a group of order four which means if we add two

non zero elements of this group we get third one i.e., these three points are collinear.And we have Abelian

group of order four so it is direct product of two cyclic group of order two.
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Points of order three

Let P = (x, y) be a point of order three i.e.,

3P = O ⇒ 2P = −P

⇒ x(2P ) = x(−P ) = x(P )

⇒ x4 − 2bx2 − 8cx+ b2 − 4ac

4x3 + 4ax2 + 4bx+ 4c
= x

⇒ g(x) = 3x4 + 4ax3 + 6bx2 + 12cx+ (4ac− b2) = 0

and conversely, if P 6= O and x(2P ) = x(P ),then 2P ± P ⇒ 3P = O. So the points of order three are

exactly the points satisfying x(2P ) = x(P ).

Remark : C has exactly nine points of order dividing 3. These nine points form a group which is a

product of two cyclic groups of order three.

Proof : Let P = (x, y) be any point of order three then x(2P ) = x(P ), we know that x co-ordinate of

2P = f ′(x)2

4f(x) − a− 2x and we get :

g(x) = 2f(x)f ′′(x) − f ′(x)2 for checking all four roots(complex) of g(x) are distinct we have to show that

g(x) and g′(x) have no common roots. Suppose g(x) and g′(x) have common roots then

2f(x)f ′′(x)− f ′(x)2 and 2f(x)f ′′′(x) = 12f(x)

have common root if x is common root of g(x) and g′(x). So x would be common root of f(x) and f ′(x) .So

we got contradiction because elliptic curve E is non singular.Hence g(x) has four distinct complex roots.

Let β1, β2, β3, β4 be the four complex roots of g(x) and for each βi we have λi =
√
f(βi) and λi 6= 0 (because

order of (βi, 0) = 2). Then set {(β1,±λ1), (β2,±λ2), (β3,±λ3), (β4,±λ4)} contains all points of order three
of the elliptic curve. So this set with zero element of elliptic curve form an Abelian group of order nine

having elements of order dividing three.We note that there is only one Abelian group with nine elements

such that every element has order dividing three, namely, the product of two cyclic groups of order three.

2.2 Complex points on elliptic curves

We know by the geometry of elliptic curve E : y2 = x3 + ax2 + bx + c over �eld K have one or two

components, depending on the real roots of f(x) . The points on the curve with complex coordinates form a

group. The points with real coordinates form a subgroup because if two points have real coordinates, then

so do their sum and di�erence. And since we are assuming the coe�cients a,b,c are rational numbers, it is

even true that the rational points form a subgroup of the group of real points. So we have a big group and

some subgroups :

O ⊂ E(Q) ⊂ E(R) ⊂ E(C)

De�nition 2.2.1. Let Λ ⊂ C be a lattice, that is, Λ is a discrete subgroup of C that contains an R-basis
for C

An elliptic function (relative to the lattice Λ) is a meromorphic function f(z) on C that satis�es

f(z + w) = f(z) ∀z ∈ C and ∀w ∈ Λ

The set of all such functions is denoted by C(Λ) . It is clear that C(Λ) is a �eld.
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Figure 2.1: A Cubic Curve with Two Real Components

Remark 2.2.2. A holomorphic elliptic function, i.e., an elliptic function with no poles, is constant. Simi-

larly, an elliptic function with no zeros is constant.

De�nition 2.2.3. Let Λ ⊂ C be a lattice. The Weierstrass ℘-function (relative to Λ ) is de�ned by the

series

℘(z; Λ) =
1

z2
+

∑
w∈Λ,w 6==0

{
1

(z − w)2
− 1

w2

}
The Eisenstein series of weight 2k(Λ) is the series

G2k(Λ) =
∑

w∈Λ,w 6=0

w−2k

Proposition 2.2.4. The series de�ning the Weierstrass ℘-function converges absolutely and uniformly on

every compact subset of C(Λ). The series de�nes a meromorphic function on C having a double pole with

residue 0 at each lattice point and no other poles .

Proposition 2.2.5. A holomorphic elliptic function, i.e., an elliptic function with no poles, is constant

Theorem 2.2.6. (a) The Laurent series for ℘(z) around z = 0 is given by

℘ =
1

z2
+

∞∑
k=1

(2k + 1)G2k+2z
2k
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(b) For all z ∈ C Λ , the Weierstrass ℘-function and its derivative satisfy the relation

℘′(z)2 = 4℘(z)3 − 60G4℘(z)− 140G6

Proof. (a) For all z with |z| < |w| we have

1

(z − w)2
− 1

w2
=

1

w2

(
1

(1− z/w)2
− 1

)
=

∞∑
n=1

(n+ 1)
zn

wn+2

Substituting this formula into the series for ℘(z) and reserving the order of summation gives the

desired result.
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(b) We write out the �rst few terms of various Laurent expansions :

℘(z) = z−2 + 3G4z
2 + 7G8z

6 + 9G10z
8 + 11G12z

10 + 13G14z
12 + . . . )

℘(z)2 = (z−2 + 3G4z
2 + 7G8z

6 + 9G10z8 + 11G12z
10 + 13G14z

12 + . . . )

(z−2 + 3G4z
2 + 7G8z

6 + 9G10z8 + 11G12z10 + 13G14z
12 + . . . )

℘(z)2 = z−4 + 6G4 + z2(5G6 + 5G6) + z4(7G8 + 9G2
4 + 7G8) + z6(9G10+

15G4G6 + 9G10) + z8(11G12 + 21G4G8 + 25G2
6 + 21G4G8 + 11G12) + . . .

℘(z)3 = (z−2 + 3G4z
2 + 7G8z

6 + 9G10z
8 + 11G12z

10 + 13G14z
12 + . . . )

(z−4 + 6G4 + z2(5G6 + 5G6) + z4(7G8 + 9G2
4 + 7G8) + z6(9G10

+ 15G4G6 + 9G10) + z8(11G12 + 21G4G8 + 25G2
6 + 21G4G8 + 11G12) + . . . )

℘(z)3 = z−6 + z−2(6G4 + 3G4) + (10G6 + 5G− 6) + z2(14G8 + 9G2
4 + 18G2

4)+

z4(18G10 + 15G4G6 + 30G4G6) + z6(22G12 + 42G4G8 + 25G2
6+

42G4G8 + 27G3
4 + 50G2

6 + 42G4G8 + 11G12) + . . .

℘(z)′ = −2z−3 + 6G4z + 20G6z
3 + 42G8z

5 + 72G10z
7 + 110G12z

9 + . . .

℘(z)′2 = (−2z−3 + 6G4z + 20G6z
3 + 42G8z

5 + 72G10z
7 + 110G12z

9 + . . . )

(−2z−3 + 6G4z + 20G6z
3 + 42G8z

5 + 72G10z
7 + 110G12z

9 + . . . )

= 4z−6 + z−2(−12G4 − 12G4) + (−40G6 − 40G6) + z2(−84G8 + 36G2
4

− 84G8) + z4(−144G10 + 120G4G6 + 120G4G6 − 144G10)+

z6(−220G12 + 252G4G8 + 400G2
6 + 252G4G8 − 220G12) + . . .

℘(z)′2 = 4z−6 + z−2(−24G4)− 80G6 + z2(−168G8 + 36G2
4)+

f(z) = ℘(z)′2 − 4℘(z)3 + 60G4℘(z) + 140G6

= {4z−6 + z−2(−24G4)− 80G6 + z2(−168G8 + 36G2
4)+

z4(240G4G8 − 288G10) + z6(−440G12 + 504G4G8 + 400G2
6) + . . . }

− 4{z−6 + z−2(6G4 + 3G4) + (10G6 + 5G− 6) + z2(14G8 + 9G2
4 + 18G2

4)

+ z4(18G10 + 15G4G6 + 30G4G6) + z6(22G12 + 42G4G8 + 25G2
6 + 42G4G8

+ 27G3
4 + 50G2

6 + 42G4G8 + 11G12) + . . . }+ 60G4{z−2 + 3G4z
2+

7G8z
6 + 9G10z

8 + 11G12z
10 + 13G14z

12 + . . . )}+ 140G6

= z2(−168G8 + 36G2
4 − 56G8 − 108G2

4 + 180G2
4) + z4(240G4G6 − 288G10 − 72G10

− 180G4G6) + z6(−440G12 + 504G4G8 + 400G2
6 − 132G12 − 504G4G8

− 300G2
6 − 108G3

4 + 420G4G8) + . . .

= z2(−224G8 + 108G2
4) + z4(60G4G6 − 360G10) + z6(−572G12 + 420G4G8

+ 100G2
6 − 108G3

4) + . . .
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f(z)is holomorphic at z = 0 and satis�es f(0) = 0. But f(z) is an elliptic function relative to Λ, and

from above proposition it is holomorphic away from Λ, so f(z) is a holomorphic elliptic function. Then

above proposition says that f(z) is constant, and the fact that f(0) = 0 implies that f is identically

zero.

So we have proved that Weierstrass ℘(u) satis�es the de�erential equation

(℘′)2 = 4℘3 − g2℘− g3, where ℘′ =
d℘

du
, g2 = 60G4, g3 = 140G6

Thus for every complex number u we get a point

P (u) = (℘(u), (℘′(u) (2.1)

on the given curve, in general a point with complex coordinates. So we obtain a map from the complex u

plane to E(C) and we send the points in Λ, which are the poles of ℘, to O.

Proposition 2.2.7. [Kob, Prop. 10] The map given by 2.1 is one to one correspondence between C/Λ and

the elliptic curve y2 = x3 − g2x− g3 in P2
C.

2.3 Discriminant

Our goal in this chapter is to prove Nagell-Lutz theorem which says that every torsion element of E(Q)

must have integer co-ordinate, and either y = 0 or y|discriminant.let us recall the notion of discriminant.

Suppose E : y2 = x3 + ax2 + bx+ c is rational elliptic curve. Now substitute x = X/d2 and y = Y/d3 then

the elliptic curve becomes Y 2 = X3 + d2aX2 + d4bX + d6c. So by choosing appropriate d we can make

d2a, d4b and d6c as integers.

So from now on we will assume that our cubic curve is given by an equation having integer

coe�cients.

The discriminant of f(x) is the quantity :

4 = −4a3 + a2b2 + 18abc− 4b3 − 27c2

if a = 0 then 4 = −4b3 − 27c2

If we assume f(x) over complex number and α1, α2, α3 are the roots of polynomial f(x).

Then we can write f(x) as :

f(x) = (x− α1)(x− α2)(x− α3)

And we can check that :

4 = (α1 − α2)2(α1 − α3)2(α2 − α3)2

and so the non-vanishing of 4 tells us that the roots of f(x) are distinct.

25



we can also express discriminant in terms of coe�cients of cubic equation :

f(x) = (x− α1)(x− α2)(x− α3)

= (x− α2)(x− α3) + (x− α1)(x− α3) + (x− α1)(x− α2)

4 = (α1 − α2)2(α1 − α3)2(α2 − α3)2

= (α1 − α2)(α1 − α3)(α1 − α2)(α2 − α3)(α1 − α3)(α2 − α3)

= −(α1 − α2)(α1 − α3)−(α1 − α2)(α2 − α3)(α1 − α3)(α2 − α3)

= −f ′(α1)f ′(α2)f ′(α3)

4 = −
3∏
i=1

f ′(αi)

Now we will prove one proposition which will be useful for proving Nagell-Lutz theorem.

Proposition 2.3.1. Suppose f(x) is a polynomial over K. Then there are two polynomials F (x), G(x) ∈
K[x] such that the discriminant of the polynomial f(x)

4 = F (x)f(x) +G(x)f ′(x)

For proving this proposition we have to introduce resultant of two polynomial and following lemma.

De�nition 2.3.2. Let

f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n

g(x) = b0 + b1x+ b2x
2 + · · ·+ bmx

m

be two polynomial of degree n,m respectively over K. Let αi(1 ≤ i ≤ n) and βj(1 ≤ j ≤ m) be roots of f(x)

and g(x). The resultant R(f, g) of f(x) and g(x) is de�ned by

R(f, g) = amn b
n
m

n∏
i=1

m∏
j=1

(αi − βj)

If we de�ne f(x) = an
∏n
i=1(x− αi) and g(x) = bm

∏m
j=1(x− βj) then

R(f, g) = amn

n,m∏
i,j=1

bm(αi − βj) = amn

n∏
i=1

g(αi) = (−1)nmbnm

m∏
j=1

f(βj)

So from this we can conclude that

R(f, f ′) = an−1
n

n∏
i=1

f ′(αi) (2.2)

Lemma 2.3.3. Suppose f(x) and g(x) are polynomials in K[x]. Then there are polynomials F (x) and G(x)

in K[x], such that

R(f, g) = F (x)f(x) +G(x)g(x)

Proof. Let

f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n (an 6= 0)

g(x) = b0 + b1x+ b2x
2 + · · ·+ bmx

m (bm 6= 0)

be two polynomial of degree n,m respectively over K.

If R(f, g) = 0, there is nothing to prove. So let R(f, g) = d 6= 0
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Consider the system of equations

xif(x) = a0x
ia1x

i+1 + · · ·+ anx
i+n (i = 0, 1, . . . ,m− 1)

xjg(x) = b0 + b1x
j+1 + · · ·+ bmx

j+m (j = 0, 1, . . . , n− 1).

These equation can be rewritten as a single matrix equation AX = Y , where

A =



a0 a1 . . . an

a0 . . . an

. . .

b0 b1 . . . bn

b0 . . . bm

. . .


, X =



1

x

x2

...

xm+n−1


, Y =



f(x)

f(x)x
...

g(x)

g(x)x
...

g(x)xn−1



The missing entries A are all zeros.By the de�nition of resultant R(f, g) = det(A) = d 6= 0.

Since d 6= 0, A−1 = (1/d)adj(A), where the matrix adj(A) = (Aij) consists of the cofactors Aij of A .

Obviously, X = (1/d)(adjA)Y . Solving for the �rst coordinate of X, we obtain

d =
( m∑
j=1

A1jx
j−1
)
f(x) +

( m+n∑
j=m+1

A1jx
j−m−1

)
g(x)

Put

F (x) =

m∑
j=1

A1jx
j−1 and G(x) =

m+n∑
j=m+1

A1jx
j−m−1

We get

R(f, g) = F (x)f(x) +G(x)g(x)

Proof of lemma 2.3.1. For proving this lemma �rst we claim that :

4 = (−1)n(n−1)/2 1

an
R(f, f ′) (a)

For proving this claim we will prove that

4 = a2n−2
n {(−1)−

n(n−1)
2 a−nn }

n∏
i=1

f ′(αi)

Let f(x) = anx
n+an−1x

n−1+· · ·+a1+a0 be a polynomial of degree n ∈ K[X],Kisfield. If α1, α2, . . . , αn
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are the roots of the polynomial and N = 1, 2, 3, . . . , n.

f(x) = an(x− α1)(x− α2)(x− α3) . . . (x− αn)

f ′(x) = an{(x− α2)(x− α3) . . . (x− αn) + (x− α1)(x− α3) . . . (x− αn)

+ (x− α1)(x− α2)(x− α4) . . . (x− αn) + · · ·+ (x− α1)(x− α2)

. . . (x− αn−1)}

f ′(x) = an

 ∏
16=i∈N

(x− αi) +
∏

16=i∈N

(x− αi) + · · ·+
∏

16=i∈N

(x− αi)


⇒ f ′(α1) = an

∏
1 6=i∈N

(α1 − αi)

= (−1)0an(α1 − α2)(α1 − α3) . . . (α1 − αn)

f ′(α2) = an(α2 − α1)(α2 − α3) . . . (α2 − αn)

= (−1)1an(α1 − α2)(α2 − α3) . . . (α1 − αn)

f ′(α3) = an(α3 − α1)(α3 − α2)(α3 − α4) . . . (α3 − αn)

= (−1)2an(α1 − α3)(α2 − α3)(α3 − α4) . . . (α3 − αn)

f ′(α4) = an(α4 − α1)(α4 − α2)(α4 − α3)(α4 − α5) . . . (α4 − αn)

= (−1)3an(α1 − α4)(α2 − α4)(α3 − α4)(α4 − α5) . . . (α4 − αn)

...
...

...
...

f ′(αn−1) = (−1)n−2an(α1 − αn−1)(α2 − αn−1) . . . (αn−2 − αn−1)(αn−1 − αn)

f ′(αn) = (−1)n−1an(α1 − αn)(α2 − αn−1)(α3 − αn−1) . . . (αn−1 − αn)

⇒
n∏
i=1

f ′(αi) = (−1){1+2+3+···+(n−1)}ann
∏

1≤i<j≤n

(αi − αj)2

n∏
i=1

f ′(αi) = (−1)
n(n−1)

2 ann
∏

1≤i<j≤n

(αi − αj)2

⇒
∏

1≤i<j≤n

(αi − αj)2 = (−1)−
n(n−1)

2 a−nn

n∏
i=1

f ′(αi)

We know by the de�nition of discriminant of n degree polynomial that :

4 = a2n−2
n

∏
1≤i<j≤n

(αi − αj)2

Substitute the value of ∏
1≤i<j≤n

(αi − αj)2

in the de�nition of discriminant then we get :

4 = a2n−2
n {(−1)−

n(n−1)
2 a−nn }

n∏
i=1

f ′(αi)

4 = {(−1)−
n(n−1)

2 an−2
n }

n∏
i=1

f ′(αi) (2.3)
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and also from the equation 2.2 we have that

R(f, f ′) = an−1
n

n∏
i=1

f ′(αi)

⇒
n∏
i=1

f ′(αi) = a−n+1
n R(f, f ′). Now substitute the value of

n∏
i=1

f ′(αi) in the above equation4 = a2n−2
n {(−1)−

n(n−1)
2 a−nn }

n∏
i=1

f ′(αi)

we get :

4 = (−1)n(n−1)/2 1

an
R(f, f ′) (a)

We know from the lemma 2.3.3 that

R(f, f ′) = F ′(x)f(x) +G′(x)f ′(x)

for some polynomial F ′(x) and G′(x) in K[x].So On substituting

F (x) = (−1)n(n−1)/2 1

an
F ′(x) and G(x) = (−1)n(n−1)/2 1

an
G′(x)

in the above expression (a) we get desired result:

4 = F (x)f(x) +G(x)f ′(x)
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Example 2.3.4. For cubic curves : y2 = x3 + 4, determine all of the rational points of �nite order.

Solution E : y2 = x3 + 4

Comparing this curve with C : y2 = x3 + ax2 + bx+ c.Then we get

a = 0, b = 0, c = 4, 4 = −27c2 = 432

Possible y values ∈ {0,±1,±2,±3,±4,±6,±12}
If y = 0 then x3 + 4 = 0 =⇒ x /∈ Z so there is no point with y = 0

If y = ±1 then x3 + 4 = 1 =⇒ x3 = −3 =⇒ x /∈ Z so there is no point with y = ±1

If y = ±2 then x3 + 4 = 4 =⇒ x3 = 0 =⇒ x = 0 ∈ Z so there are two points (0, 2) and (0,−2) with y = ±2

If y = ±3 then x3 + 4 = 9 =⇒ x3 = 5 =⇒ x /∈ Z so there is no point with y = ±3

If y = ±4 then x3 + 4 = 16 =⇒ x3 = 12 =⇒ x /∈ Z so there is no point with y = ±4

If y = ±6 then x3 + 4 = 36 =⇒ x3 = 32 =⇒ x /∈ Z so there is no point with y = ±6

If y = ±12 then x3 + 4 = 144 =⇒ x3 = 140 =⇒ x /∈ Z so there is no point with y = ±12

So all possible points are as follows :

(0, 2), (0,−2) and O
Moreover by duplication formula we get :

(0, 2) + (0, 2) = (0,−2) =⇒ 2(0, 2) = (0,−2) =⇒ order of (0, 2) = 3

(0,−2) + (0,−2) = (0, 2) =⇒ 2(0,−2) = (0, 2) =⇒ order of (0,−2) = 3

And order of O = 1

2.4 Nagell-Lutz theorem

Theorem 2.4.1 (Nagell-Lutz). Let

y2 = f(x) = x3 + ax2 + bx+ c

be non-singular cubic curve with a, b, c ∈ Z and let 4 be the discriminant of the cubic polynomial f(x). Let

P = (x, y) be a rational point of �nite order. Then x and y are integer; and either y = 0, in which case P

has order 2, or else y divides 4.There is a �nite number of such points.

Firstly we will introduce some de�nitions,lemmas and proposition for proving Nagell-Lutz theorem.

Remark 2.4.2. An useful observation for our proof is that any rational number can be expressed by the

following formula :
m

n
pv

where the prime number p does not divide either m or n, where n > 0, and where v is some integer. We

de�ne the order of a rational number to be the integer v :

ord
(m
n
pv
)

= v

Lemma 2.4.3. Fix a prime p. For any point (x, y) ∈ E(Q), if p divides the denominator of x, then p

divides the denominator of y.

Proof. Consider a point (x, y) ∈ E(Q), where there exists a prime p dividing the denominator of x. Because

x and y are rational numbers, we can express them as follows :

x =
m

npµ
y =

u

wpσ
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Because p divides the denominator of x, we have that µ > 0. This proof, then, aims to show that σ > 0. By

construction, we also know that p . m,n, u, w. By substituting our equations for x and y into the equation

y2 = x3 + ax2 + bx+ c, we get :

u2

w2p2σ
=

m3

n3p3µ
+

am2

n2p2µ
+
bm

npµ
+ c

Finding a common denominator, this becomes :

u2

w2p2σ
=
m3 + am2npµ + bmn2p2µ+cn3p3µ

n3p3µ

We can now examine the orders of both sides of this equation. Because p . u2 and p . w2, we have :

ord
( u2

w2p2σ

)
= ord

( u2

w2
p−2σ

)
= −2σ

For the right side of the equation, we know that p . n and thus that p . n3. We also know thatp . m, so it is

true that p . (m3 + am2npµ + bmn2p2µ + cn3p3µ). Thus, we have :

ord
(m3 + am2npµ + bmn2p2µ+cn3p3µ

n3p3µ

)
= −3µ

Because both sides of our equation must have the same order, these two results give us that 2σ = 3µ In

particular, σ > 0, and so p divides the denominator of y. Further, the relation 2σ = 3µ means that 2|µ and

3|σ, so we have µ = 2v and σ = 3v for some integer v > 0.

Similarly, if we assume that p divides the denominator of y, we �nd by the same calculation that the

exact same result holds, namely, µ = 2v and σ = 3v for some integer v > 0. Thus, if p appears in the

denominator of either x or y, then it is in the denominator of both of them

De�nition 2.4.4. For an elliptic curve E over Q, we de�ne the set E(pv) by :

E(pv) = {(x, y) ∈ E(Q) |ord(x) ≤ −2v and ord(y) ≤ −3v}

Intuitively, E(pv) is the set of all points of E(Q) in which the denominators of the coordinates of x and

y are divisible by powers of p greater than 2v and 3v, respectively. By convention, we also include the point

at in�nity,O, in all sets E(pv).

Additionally, it is intuitively clear that E(Q) ⊃ E(p) ⊃ E(p2) ⊃ E(p3) ⊃ . . . , from the de�nition of the

sets E(pv).

Lemma 2.4.5. E(pv) is a subgroup of E(Q) for all v.

Proof. We will de�ne two new variables t and s by

t =
x

y
s =

1

y

Substituting in t and s, our equation for the elliptic curve (y2 = x3 + ax2 + bx+ c) becomes :

s = t3 + at2s+ bts2 + cs3

Every point (x, y) on E has a unique corresponding point on the graph de�ned by Equation Notably, this

is with the exception of points of order 2 on E, because these points have y = 0 and therefore make s

unde�ned. However, the point at in�nity O is expressed by a point on the graph of Equation namely, the

point (0, 0). Following �gure 2.2 shows both graphs in this mapping. Similarly, lines passing through E in
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Figure 2.2:

the (x, y) plane have corresponding lines in the (t, s) plane. If the equation for a line in the (x, y) plane is

y = λx + v, then dividing the equation by vy gives us an equation for the corresponding line in the (t, s)

plane :
1

v
=
λ

v

x

y
+

1

y
⇒ s = −λ

v
t+

1

v

For adding two points P1 and P2 on elliptic curve in t−s plane we connect two points P1 and P2 on the curve

with a line, and �nd the third point of intersection (t3, s3). In our relation, O is mapped to (0, 0), so all we

have to do is draw a line through (t3, s3) and the origin, and �nd the third point of intersection. Because

Equation is an odd function, this just means that P3 = (−t3,−s3). We can �nd a general formula for this

addition. Then, by considering only points in E(pv), we can show that this way of de�ning addition makes

E(pv) a group. We will de�ne the ring Rp as the set of all rational numbers such that p does not divide

the denominator. Notationally, this means that for all x ∈ Rp, we have that ord(x) ≥ 0. The invertible

elements of Rp (that is, all elements u that have an inverse v under multiplication in Rp) are called the

units of Rp, and are in this case those elements with order equal to 0, or those in which both the numerator

and denominator are co-prime to p.

Let (x, y) be a point with rational coordinates in E(pv). By de�nition, we have that ord(x) ≤ −2v and

ord(y) ≤ −3v, so we can express x and y by the following equations :

x =
m

np2(v+i)

u

wp3(v+i)

for some i ≥ 0. Using our equations for t and s, this yields :

t =
x

y
=
mw

nu
pv+i s =

1

y
=
w

u
p3(v+i)

Thus, for a point to satisfy (x, y) ∈ E(pv), pv must divide the numerator of t, and p3v must divide the

numerator of s, for the associated pair (t, s). This is equivalent to saying that (t, s) must satisfy t ∈ pvRp
and s ∈ p3vRp. So, to show that E(pv) is a subgroup, then we can simply show that if an arbitrary power

of p divides the t coordinate of two points P1 and P2, then the same power of p will divide the t coordinate

of their sum.

Let P1 = (t1, s1) and P2 = (t2, s2) be distinct points on the curve. There are two possible cases to

consider :

(1) t1 = t2 If t1 = t2, then P1 = −P2 by the addition law, so P1 +P2 must be an element of E(pv), because

they add to the point (0, 0).

(2) t1 6= t2 Let s = αt + β be the line passing through P1 and P2.The slope of the line,α,is given by

α = s2−s1
t2−t1 .We also know that (t1, s1) and (t2, s2) satisfy the equation s = t3 + at2s+ bts2 + cs3. So, we can

attempt to express the slope as a function of the coordinates of P1 and P2, as well as the coe�cients a, b,

32



and c may subtract the equation forP1 from the equation for P2 :

s2 − s1 = t32 − t31 + a(t22s2 − t21s1) + b(t2s
2
2 − t1s2

1) + c(s3
2 − s3

1)

This can be reformulated to include factors in the form of (t2 − t1) and (s2 − s1) :

s2 − s1 = t32 − t31 + a(t22 − t21)s2 + at21(s2 − s1) + b(t2 − t1)s2
2 + bt1(s2

2 − s2
1) + c(s3

2 − s3
1)

So, factoring out the quantity (t2− t1), we can �nd an equation for (t2− t1) : after some algebra, the result

is :

α =
s2 − s1

t2 − t1
=

t22 + t1t2 + t21 + a(t2 + t1)s2 + bs2
2

1− at21 − bt1(s2 + s1)− c(s2
2 + s1s2 + s2

1)

We will put this result aside for now. Next, we will look at addition on the cubic curve. Let P3 = (t3, s3)

be the third point of intersection of the line s = αt+ β

, which is drawn through P1 and P2, and the cubic curve s = t3 + at2s+ bts2 + cs3 on which P1 and P2

lie. The equation with t1, t2 and t3 as roots can be found by substituting the equation of the line s = αt+β

:

αt+ β = t3 + at2(αt+ β) + bt(αt+ β)3

Expanding, multiplying, and factoring out powers of t gives us :

(1 + aα+ α2b+ cα3)t3 + (aβ + 2bαβ + 3cα2β)t2 + (bβ2 + 3cαβ2 − α)t+ cβ3 − β = 0

It is generally true that the sum of the roots of a cubic equation of the form 0 = ax3 + bx2 + cx+ d is equal

to −ba .This convenient fact gives us an equation for the sum t1 + t2 + t3, based solely upon the coe�cients

of t3 and t2 in the above equation.

t1 + t2 + t3 =
aβ + 2bαβ + 3cα2β

1 + aα+ α2b+ cα3

This is a powerful result that gives us a way to calculate t3 given only t1 and t2, and therefore allows us

to �nd P1 + P2 for any P1, P2 on the curve. We can �nally begin to analyze all of the above preliminary

results. First,we will look at our extended formula for,given by Equation :

α =
s2 − s1

t2 − t1
=

t22 + t1t2 + t21 + a(t2 + t1)s2 + bs2
2

1− at21 − bt1(s2 + s1)− c(s2
2 + s1s2 + s2

1)

By de�nition, we know that t1, t2, s1, s2 are all elements of pvRp. The formula for the numerator,

{t22 + t1t2 + t21 +a(t2 + t1)s2 + bs2
2} , when expanded out, satis�es the condition that every term includes two

of the elements t1, t2, s1, s2 multiplied together. Thus, p2v divides the numerator of α, and it is therefore

an element of p2vRp. The denominator of α is {1 − at21 − bt1(s2 + s1) − c(s2
2 + s1s2 + s2

1)} , in which all

terms except for 1 are divisible by p2v by a similar argument. Because of the value 1, the denominator is

co-prime to p, and is therefore a unit in Rp. So, looking at α in its entirety, we have that p2v divides the

numerator and not the denominator, giving us the result that α ∈ p2vRp.

From our equation for the line through P1 and P2, we know that s1 = αt1 + β.Because s1 ∈ pvRp, we
know that s1 ∈ p3vRp. And, because α ∈ p2vRp and t1 ∈ pvRp, we have that t1 ∈ p3vRp. Therefore, the

equation for the line gives us that β ∈ p3vRp. Finally, we can analyze Equation

t1 + t2 + t3 =
aβ + 2bαβ + 3cα2β

1 + aα+ α2b+ cα3

through a process similar to our analysis of α . Similarly to the denominator of α, the denominator of the
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equation for t1 + t2 + t3 is a unit in Rp.The term αβ in the numerator of Equation

t1 + t2 + t3 =
aβ + 2bαβ + 3cα2β

1 + aα+ α2b+ cα3

gives us that t1 + t2 + t3 ∈ p3vRp. But we know by assumption that t1 and t2 are elements of pvRp, so t3
must be an element of pvRp as well, implying that −t3 ∈ pvp.

Thus, if the t-coordinates of P1 and P2 are in pvRp, then the t-coordinate of P1 + P2 is also in pvRp.

Also, because the curve is symmetric about the origin, we know that if the t-coordinate of P is in pvRp, then

the t-coordinate of −P is also in pvRp. This shows that E(pv) is closed under both addition and negatives,

making it a subgroup of E(Q).

In proving that E(pv) is a subgroup of E(Q), we also proved a stronger result : that t1 + t2 + t3 ∈ p3vRp.

So we know that, for any P1, P2 ∈ E(pv),

t(P1) + t(P2)− t(P1 + P2) ∈ p3vRp;

where t(P1) denotes the t-coordinate of the (t, s) pair associated with P . So, the numerator of the sum of

t1, t2 and −t3 must be divisible by p3v. This lends itself to a useful reformulation :

t(P1 + P2) ≡ t(P1) + t(P2) mod p3vRp

We can use this fact to �nally prove that points of �nite order on E(Q) have integer coordinates.

Lemma 2.4.6. Given an elliptic curve E, for all prime numbers p, the group E(p) contains no points of

�nite order (other than O).

Proof. Let P be a point of �nite order m. Let p be some prime number. Because P 6= O, we know that

m > 1. We will assume that P ∈ E(p) and establish a contradiction. It is possible that P is contained

in some subgroup E(pv) of E(p). However, P cannot be contained in all such subgroups, because it is

impossible for the denominator of P to be divisible by all arbitrarily large powers of P . Thus, there must

be some v such that P ∈ E(pv), but P /∈ E(pv+1). Pick this p. There are two possible cases to consider :

1: p - m
from above we know that t(P1 + P2) ≡ t(P1) + t(P2) mod p3vRp.

Because P is a point of order m, we are adding it to itself m times. So, our congruence becomes :

t(mP ) ≡ mt(P ) p3vRp

Because mP = O, and because t(O) = 0, this becomes 0 ≡ mt(P ) mod p3vRp. We also know

that m is co-prime to p, making it a unit in Rp. So, we end up with :

0 ≡ t(P ) mod p3vRp

which imply thatP ∈ E(p3vRp), contradicting the above assumption that P /∈ E(pv+1).

2: p | m
Because p divides m, we have that m = pn for some n ∈ Z. If we let P ′ = nP , then P ′ has order p,

and is an element of E(p) because P ∈ E(p) by assumption. Similarly to the �rst case, this yields

that

0 ≡ pt(P ′) mod p3vRp

. Dividing out p, we get this ultimate result :

0 ≡ t(P ′) mod (p3v−1Rp)
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This gives us that P ′ ∈ E(p3v−1), which contradicts the assumption that P ′ /∈ E(pv+1) because

3v − 1 > v + 1.

Therefore, for all primes p, the group E(p) contains no points of �nite order greater than 1

Corollary 2.4.7. All points of �nite order on E(Q) have integer coordinates.

Proof. Let P = (x, y) be a point of �nite order on E(Q). We know that P /∈ E(p) for all primes p, so the

denominator of the coordinates of P are not evenly divided by any primes. By de�nition, a number that

cannot be evenly divided by any prime numbers has to be equal to 1, so the denominators of the coordinates

of P are 1, and the coordinates must be integers.

Lemma 2.4.8. Let P = (x, y) be a point on our cubic curve such that both P and 2P have integer coordi-

nates. Then either = 0 or y|4.

Proof. Let P = (x, y) and 2P = (X,Y )

then by duplication formula we know :

X = λ2 − a− 2x, where λ =
f ′(x)

2y

We assume that y 6= 0 and prove that y|4. Because y 6= 0, we know that 2P 6= O.Since x,X and a are all

integers, it follows that λ is also an integer. Since 2y and f ′(x) are integers, we see that 2y|f ′(x); and, in

particular, y|f ′(x). But y2 = f(x), so also y|f(x). Now we use the relation

4 = r(x)f(x) + s(x)f ′(x).

The coe�cients of r and s are integers, so r(x) and s(x) take on integer values when evaluated at the integer

x. It follows that y divides 4.

Theorem 2.4.9 (Nagell-Lutz). Let

y2 = f(x) = x3 + ax2 + bx+ c

be non-singular cubic curve with integer coe�cients a, b, c and let 4 be the discriminant of the cubic poly-

nomial f(x). Let P = (x, y) be a rational point of �nite order. Then x and y are integer; and either y = 0,

in which case P has order 2, or else y divides 4.There is a �nite number of such points.

Proof. From the lemma 2.4.8 and corollary 2.4.7 we conclude that P = (x, y) be a rational point of �nite

order. Then x and y are integer; and either y = 0, in which case P has order 2, or else y divides 4 and set

of all divisors of discriminant 4 is �nite set such points are �nte.
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Chapter 3

The Group of rational points

In this chapter we will prove Mordell's theorem which says that the set of all rational points on elliptic

curve (E(Q)) is �nitely generated group which was our ultimate goal. For proving this theorem we want

the notion of height so also we will de�ne this term.

3.1 Heights

Let x = m
n be a rational number written in lowest terms. Then we de�ne the height H(x) to be the

maximum of the absolute values of the numerator and the denominator :

H(x) = H
(m
n

)
= max{|m|, |n|}

The height of a rational number is positive.

Finiteness property of the height : The set of all rational numbers whose height is less than some �xed

number is a �nite set.

Height of rational point of elliptic curve

Let y2 = x3 + ax2 + bx+ c be an elliptic curve over Q and P ∈ E(Q) then we de�ne the height of P as :

H(P ) = H(x) = H
(m
n

)
= max{|m|, |n|}

further we de�ne

h(P ) = logH(P )

So h(P ) is always a non negative real number.

3.2 Mordell's theorem

Theorem 3.2.1 (Mordell's theorem). Let E be an elliptic curve given by the equation

y2 = x3 + ax2 + bx+ c,

where a, b, c ∈ Q. Then the group E(Q) is �nitely generated Abelian group.

For proving this theorem we need following theorem and some lemmas.
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3.3 Descent Theorem

Let Γ be a commutative group. Suppose that there is a function

h : Γ −→ [0,∞)

with the following three properties

(a) for every real number M , the set {P ∈ Γ : h(P ) ≤M} is �nite.

(b) for every P0 ∈ Γ, there is a constant κ0 so that

h(P + P0) ≤ 2h(P ) + κ ∀P ∈ Γ.

(c) there is a constant κ so that

h(2P ) ≥ 4h(P )− κ ∀P ∈ Γ.

suppose further that

(d) the subgroup 2Γ has �nite index in Γ.

then Γ is �nitely generated.

Proof. let Q1, Q2, . . . , Qn be representatives for the cosets. This means that for any element P ∈ Γ there is

an index i1, depending on P , such that

P −Qi1 ∈ 2Γ

P −Qi1 = 2P1 for some P1 ∈ Γ

Now we do the same thing with P1. Continuing this process, we �nd we can write

P1 −Qi2 = 2P2

P2 −Qi3 = 2P3

P3 −Qi4 = 2P4

...

Pm−1 −Qim = 2Pm

where Qi1 , Qi2 , . . . , Qim are chosen from the coset representatives Q1, Q2, . . . , Qm and P1, P2,

. . . , Pm are elements of Γ.From the �rst equation we have

P = Qi1 + 2P1

Now substitute the second equation P1 = Qi2 + 2P2 into this to get

P1 = Qi1 + 2Qi2 + 4P2

Continuing in this fashion, we obtain

P1 = Qi1 + 2Qi2 + 4Qi3 + · · ·+ 2m−1Qm + 2mPm (a)

After substituting −Qi in second lemma in place of P0 then we get a constant κi such that

h(P −Qi) ≤ 2h(P ) + κi ∀P ∈ Γ
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We do this for each Qi, 1 ≤ i ≤ n. Let κ′ be the largest of the κ′is. Then

h(P −Qi) ≤ 2h(P ) + κ′ ∀P ∈ Γ and 1 ≤ i ≤ n

Now from lemma (3)lemma

4h(Pj) ≤ h(2Pj) + κ = h(Pj−1 −Qij ) + κ ≤ 2h(Pj−1) + κ′ + κ

h(Pj) ≤
1

2
h(Pj−1) +

κ′ + κ

4

=
3

4
h(Pj−1)− 1

4
(h(Pj−1)− (κ′ + κ))

Prom this we see that if h(Pj−1) ≥ κ′ + κ then

h(Pj) ≤
3

4
h(Pj−1)

So in the sequence of points P1, P2, P3, . . . , as long as the point Pj satis�es the condition h(Pj) ≥ κ′ + κ,

then the next point in the sequence has much smaller height, namely, h(Pj+1) ≤ h(Pj). But if we start with

a number and keep multiplying it by 3/4, then it approaches zero. So eventually we will �nd an index m so

that h(Pm) ≤ κ+ κ′

We have now shown that every element P ∈ Γ be written in the form

P1 = a1Q1 + a2Q2 + a3Q3 + · · ·+ anQn + 2mR

for certain integers a1, a2, a3, . . . , an and some point R ∈ Γ satisfying the inequality h(R) ≤ κ+ κ′. Hence,

the set

{Q1, Q2, Q3, . . . , Qn} ∪ {R ∈ Γ : h(R) ≤ κ+ κ′}

generates Γ moreover this set is �nite so Γ is �nitely generated Abelian group.

Now we will prove E(Q) satis�es the hypothesis of Descent theorem by following lemmas.

Lemma 3.3.1. For every real number M , the set

{P ∈ E(Q) : h(P ) ≤M}

is �nite.

Proof. Points in the set have only �nitely many possibilities for their x coordinate; and for each x coordinate,

there are only two possibilities for the coordinate.

Lemma 3.3.2. Let P0 be a �xed rational point on E. There is a constant κ0 depending on P0 and on a, b, c

so that

h(P + P0) ≤ 2h(P ) + κ0 ∀ P ∈ E(Q).

For proving this lemma we will use following remarks.

Remark 3.3.3. If P = (x, y) is a rational point on our curve,then x and y have the form

x =
m

e2
and y =

n

e3

for for integers m,n, with e > 0 and gcd(m, e) = gcd(n, e) = 1.
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Proof. Let x = m
M and y = n

N are in lowest terms with M > 0 and N > 0. Substitute these values of x and

y in the elliptic curve y2 = x3 + ax2 + bx+ c then we get :

M3n2 = N2m3 + aN2Mm2 + bN2M2m+ cN2M3 (1)

M3n2 = N2(m3 + aMm2 + bM2m+ cM3)

From above we get N2|M3n2 but gcd(n,N) = 1, so N2|M3. From equation (1) we get M(M2n2−aN2m2−
bN2Mm − cN2M2) = N2m3 ⇒ M |N2m3 but gcd(M,m) = 1 so M |N2 so N2 = kM for some k ∈ Z use

this one in equation(1) we get : M3(n2−akm2− bkm− cN2) = N2m3 ⇒M3|N2m3 ⇒M3|N2 and M2|N2

hence M3 = N2 and M |N so let N = eM for some e ∈ Z so

e2 =
N2

M2
=
M3

M2
= M and e3 =

N3

M3
=
N3

N2
= N

therefore

x =
m

e2
and y =

n

e3

Remark 3.3.4. If P = (x, y) ∈ E(Q), then

|n| ≤ KH(P )3/2.

Proof. By the remark 3.3.3, we have x = m
e2 and y = n

e3 . On substituting these values in the elliptic curve

y2 = x3 + ax2 + bx+ c then we get :

n2 = m3 + ae2m2 + be4m+ ce6.

Take absolute value both side

|n2| = |m3 + ae2m2 + be4m+ ce6| ≤ |m3|+ |ae2m2|+ |be4m|+ |ce6|

By the de�nition of height we know that

|m| ≤ H(P ) and e2 ≤ H(P )

On substitute these values in the equation above expression we get :

|n2| ≤ H(P )3 + |a|H(P )3 + |b|H(P )3 + |c|H(P )3

≤ (1 + |a|+ |b|+ |c|)H(P )3

=
√
KH(P )3

⇒ |n| ≤ KH(P )3/2 as required.

Proof of lemma 3.3.2. Let P = (x, y), P0 = (x0, y0) ∈ E(Q) suppose P + P0 = (a, b) We know by the

duplication formula that

ξ = λ2 − a− x− x0 where λ =
y − y0

x− x0
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ξ =
(y − y0)2 − (x− x0)2(a+ x+ x0)

(x− x0)2

ξ =
A′y +B′x2 + C ′x+D

E′x2 + F ′x+G′
(since y2 − x3 = ax2 + bx+ c)

on multiplying numerator and denominator by lcm of A′, B′, C ′, D′, E′, F ′and G′ then we get :

ξ =
Ay +Bx2 + Cx+D

Ex2 + Fx+G

where A,B,C,D,E, F,G ∈ Z . Now substitute x = m/e2 and y = n/e3 above then we get :

ξ =
An+m2 + Cme2 +De4

Em2 + fme2 +Ge4

by the de�nition of height

H(P + P0) = max(|An+m2 + Cme2 +De4|, |Em2 + fme2 +Ge4|)

and

e ≤ H(P )
1
2 , m ≤ H(P )

and also we have proved that n ≤ KH(P )
3
2 . Using these inequalities we get :

H(P + P0) = H(ξ) ≤ max{|AK|+ |B|+ |C|+ |D|, |E|+ |F |+ |G|}H(P )2

Taking the logarithm of both sides gives

h(P + P0) ≤ 2h(P ) + κ0

where κ0=log max{|AK|+ |B|+ |C|+ |D|, |E|+ |F |+ |G|} depends only on a, b, c and (x0, y0) and does not

depend on P = (x, y). As required.

Proposition 3.3.5. There is a constant κ, depending on a, b, c,so that

h(2P ) ≥ 4h(P )− κ ∀ P ∈ E(Q)

For proving this proposition we need following lemmas.

Lemma 3.3.6. Let φ(X) and ψ(X) be polynomials with integer coe�cients and no common(complex) roots.

Let d be the maximum of the degrees of φ(X) and ψ(X).

(a) There is an integer R ≥ 1, depending on φ and ψ, so that for all rational numbers m
n

gcd

(
ndφ

(m
n

)
, ndψ

(m
n

))
divides R.

(b) there are constants κ1 and κ2, depending on φ and ψ, so that for all rational numbers m
n which are not

roots of ψ

dh
(m
n

)
+ κ1 ≤ h

(
φ(m/n)

ψ(m/n)

)
≤ dh

(m
n

)
+ κ2

Proof. (a) First we observe that since φ and ψ have degree at most d, the quantities ndφ
(
m
n

)
and ndψ

(
m
n

)
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are both integers.

ndφ
(m
n

)
= a0m

d + a1m
d−1n+ · · ·+ adn

d

ndψ
(m
n

)
= b0m

end−e + b1m
e−1nd−e+1 + · · ·+ ben

d

To each notation ,we will let

φ(m,n) = ndφ
(m
n

)
and ψ(m,n) = ndψ

(m
n

)
So we need to �nd an estimate for gcd(φ(m,n), ψ((m,n)) which does not depend on m or n. Since

φ(X) and ψ(X) have no common roots, they are relatively prime in the Euclidean ring Q[X] Thus,

they generate the unit ideal, so we can �nd polynomials F (X) and G(X) with rational coe�cients

satisfying

F (X)φ(X) +G(X)ψ(X) = 1

Let A be a large enough integer so that AF (X) and AG(X) have integer coe�cients. Further, let D

be the maximum of the degrees of F and G. Note that A and D do not depend on m or n. Now

multiply both sides n by AnD+d. This gives

AnDF
(m
n

)
φ
(m
n

)
+AnDG

(m
n

)
ψ
(m
n

)
= AnD+d

Let γ = γ(m,n) be the greatest common divisor of φ(m,n) and ψ(m,n)). We have{
nDAF

(m
n

)}
φ
(m
n

)
+
{
nDAG

(m
n

)}
ψ
(m
n

)
= AnD+d

Since the quantities in braces are integers, we see that γ divides AnD+d. , it certainly divides

AnD+d−1φ(m,n) = Aa0m
dnD+d−1 +Aa1m

d−1nD+d + · · ·+Aadn
D+2d−1

But in the sum, every term after the �rst one contains AnD+d as a factor; and we just proved

that γ divides AnD+d. It follows that γ also divides the �rst term Aa0m
dnD+d−1. Thus, γ divides

gcd(AnD+d, Aa0m
dnD+d−1); and because m and n are relatively prime, we conclude that γ divides

Aa0m
dnD+d−1. Notice we have reduced the power of n at the cost of multiplying by a0. Now using

the fact that γ divides Aa0m
dnD+d−2φ(m,n) and repeating the above argument shows that γ divides

Aa2
0m

dnD+d−2. The pattern is clear, and eventually we reach the conclusion that γ divides AaD+d
0 ,

which �nishes our proof of (a).

(b) Suppose degree of φ = d and degree of ψ = e ≤ d then

ndφ

(
m

n

)
= a0m

d + a1m
d−1 + · · ·+ adn

d

ndψ

(
m

n

)
= b0m

d−e + b1m
d−e+1 + · · ·+ ben

d

denote ndφ
(
m
n

)
by φ(m,n) and ndψ

(
m
n

)
by ψ(m,n)

So we have to �nd gcd of φ(m,n) and ψ(m,n) which does not depend on m or n. Let

ξ =
φ(mn )

ψ(mn )
=
ndφ(mn )

ndψ(mn )
=
φ(m,n)

ψ(m,n)
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from the de�nition of height of rational point we can write for some K ≥ 1

H(ξ) ≥ 1

K
max{|φ(m,n)|, |ψ(m,n)|}

=
1

K
max

{∣∣∣ndφ(
m

n
)
∣∣∣ , ∣∣∣ndψ(

m

n
)
∣∣∣}

≥ 1

2K

( ∣∣∣ndφ(
m

n
)
∣∣∣+
∣∣∣ndψ(

m

n
)
∣∣∣ )

H(ξ)

H(m/n)d
≥ 1

2K

(
|ndφ(mn )|+ |ndψ(mn |

)
max{|m|d, |n|d}

=
1

2K

(
|φ(mn )|+ |ψ(mn |

)
max{|m/n|d, 1}

=
p(t)

2K
where p(t) =

|φ(t)|+ |ψ(t)|
max{|t|d, 1}

Since φ has degree d and φ has degree at most d, we see that p has a non-zero limit as |t| approaches
in�nity. This limit is either |a0|, if φ has degree less than d, or |a0|+ |b0|, if ψ has degree equal to d.

Using this fact in the inequality we derived above ,we �nd that

H(ξ) ≥ C1

2R
H
(m
n

)d
the constant C1 and R do not depend on m and n ,so taking logarithms gives the desired inequality

h(ξ) ≥ dh
(m
n

)
− κ1

with κ1 = log(2R/C1)

Proof of lemma 3.3.5. From lemma 3.3.1 we can exclude some �xed point for inequality in heights.

Let P = (x, y),and write 2P = (a, b).then by duplication formula we get

a = λ2 − a− 2x where λ =
f ′(x)

2y

Substitute value of λ above we get

a =
(f ′(x))2 − (8x+ 4a)f(x)

4f(x)
=

x4 + . . .

4x3 + . . .

Thus, a is the quotient of two polynomials in x with integer coe�cients. Since the elliptic curve y2 = f(x)

is non-singular by assumption, we know that f(x) and f ′(x) have no common (complex) roots. It follows

that the polynomials in the numerator and the denominator of a also have no common roots.

Now use the previous remark for the expression of a we conclude

h(2P ) ≥ 4h(P )− κ

Proposition 3.3.7. The index [E(Q) : 2E(Q)] is �nite.

For proving this proposition we need following lemmas, facts and a little lemma.
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Lemma 3.3.8. Let E and Ē be the elliptic curves given by the equation s

E : y2 = x3 + ax2 + bx+ c and Ē : y2 = x3 + āx2 + b̄x+ c̄,

where

ā = −2a and b̄ = a2 − 4b

Let T = (0, 0) ∈ E

(a) There is homomorphism φ : E → Ē de�ned by

φ(P ) =


(
y2

x2 ,
y(x2−b)
x2

)
if P = (x, y) 6= O, T,

O, if P = O or P = T.

The kernel of φ is O, T

(b) Applying the same process to Ē gives a map φ̄Ē −→ ¯̄E. The curve ¯̄E is isomorphic to E via the map

(x, y) −→ (x/4, y/8). There is thus a homomorphism ψ : Ē −→ E de�ned by

ψ(P̄ ) =


(

ȳ2

4x̄2 ,
ȳ(x̄2−b̄)

8x̄2

)
, ifP̄ = (x̄, ȳ) 6= Ō, T̄ ,

O if P̄ = Ō or P̄ = T̄ .

(c) The composition ψoφ : E −→ E is multiplication by two : φoψ(P ) = 2P.

Proof of (a). φ is well de�ned :

we just have to check that x and y satisfy the equation of Ē, which is easy :

x̄3 + ax̄2 + bx̄ = x̄(x̄2 − 2ax̄+ (a2 − 4b))

=
y2

x2

(
y4

x4
− 2a

y2

x2
+ (a2 − 4b)

)
=
y2

x2

(
(y2 − ax2)2 − 4bx4

x4

)
=
y2

x6

(
(x3 + bx)2 − 4bx4

)
=

(
y(x2 − b)2

x2

)2

= ȳ2

φ is homomorphism :

we have to show that φ(P1 + P2) = φ(P1) + φ(P2)

case 1 if P1, orP2 = O then result is automatically true.

case 2 If one of P1 or P2 = T then we have to prove

φ(P + T ) = φ(P )
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Let P = (x, y), T = (0, 0) then

x(P ∗ T ) =
y2

x2
− a− x

=
y2 − ax2 − x3

x2

=
b

x

y(P ∗ T ) =
y

x

( b
x

)
=
yb

x2

⇒ P + T =
(
x(P ∗ T ), y(P ∗ T )

)
=

(
b

x
,− by

x2

)
case 3 If P1 = P2 = T then it is clear that

φ(T + T ) = φ(T ) + φ(T )

Case 4 If P1, P2 /∈ {O, T} and are distinct .

So in order to prove that φ is homomorphism it is now su�cient to show that if

P1 + P2 + P3 = O

then

φ(P1) + φ(P2)φ(P3) = Ō

because once we know this,then

φ(P1 + P2) = φ(−P3) = −φ(P3) = φ(P1) + φ(P2)

since

φ(−P ) = φ(x,−y) =

((−y
x

)2

,
−y(x2 − b)

x2

)
= −φ(x, y) = −φ(P )

From the de�nition of the group law on a cubic curve, the condition P1 + P2 + P3 = O is equivalent to the

statement that P1, P2 and P3 are co-linear, so let = λx+ v be the line through them. We must show that

φ(P1), φ(P2)andφ(P3) are the intersection of some line with Ē The line intersecting Ē that we take is

y = λ̄x+ v where and v̄ =
v2 − avλ+ bλ2

v

To check, say, that φ(P1) = φ(x1, y1) = (x̄1, ȳ1) is on the line y = λ̄x+ v̄, we just substitute and compute

λ̄v1 + v̄ =
vλ− b
v

( y1

x1

)2

+
v2 − avλ+ bλ2

v

=
(vλ− b)y2

1 + (v2 − avλ+ bλ2)x2
1

vx2
1

=
(vλ(y2

1 − ax2
1)− b(y1 − λx1)(y1 − λx1) + vx2

1

vx2
1
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and now using y2
1 − ax2

1 = x3
1 + bx1 and y1 − λx1 = v,we get

λ̄v1 + v̄ =
λ(x3

1 + bx1)− b(y1 + λx1) + vx2
1

x2
1

=
x2

1(λx1 + v)− by1

x2
1

=
(x2

1 − b)y1

x2
1

= ȳ1

Similarly we can compute for φ(P2) and φ(P3) Hence φ is homomorphism.

Proof of (b). We noted above that the curve ¯̄E is given by the equation

¯̄E : y2 = x3 + 4ax2 + 16bx

so it is clear that the map (x, y) −→ (x/4, y/8) is an isomorphism from ¯̄E to E. From (a) there is a

homomorphism φ̄ : Ē −→ ¯̄E de�ned by the same equations that de�ne φ, but with ā and b̄ in place of a

and b. Since the map ψ : Ē −→ E is the composition of φ̄ : Ē −→ ¯̄E with the isomorphism ¯̄E −→ E , we

get that ψ̄ is a well-de�ned homomorphism from Ē to E.

Proof of (c). Now we will prove that ψoφ is multiplication by two.

2P = 2(x, y) =

(
(x2 − b)2

4y2
,

(x2 − b)(x4 + 2ax3 + 6bx2 + 2abx+ b2)

8y3

)
and

φ(x, y) =

(
y2

x2
,
y(x2 − b)

x2

)
, ψ(x̄, ȳ) =

(
ȳ2

4x̄2
,
ȳ(x̄2 − b)

8x̄2

)
So

φoψ(x, y) = ψ

(
y2

x2
,
y(x2 − b)

x2

)

=


(
y(x2−b)
x2

)2

4

(
y2

x2

)2 ,

y(x2−b)
x2

((
y2

x2

)2

− (a2 − 4b)

)
8
(
y2

x2

)2


=

(
(x2 − b)2

4y2
,

(x2 − b)(y4 − (a2 − 4b)x4)

8y3x2

)
=

(
(x2 − b)2

4y2
,

(x2 − b)(x4 + 2ax3 + 6bx2 + 2abx+ b2)

8y3

)
φoψ(x, y) = 2(x, y)

= 2P

A similar computation gives φoψ(x, y) = 2(x, y). Since φ is a homomorphism, we know that

φ(2P ) = φ(P + P ) = φ(P ) + φ(P ) = 2φ(P )

We just proved that 2P = φoψ(P ), so we get φoψ(φ(P )) = 2(φ(P )). Now φ : E −→ Ē is onto as a map of

complex points, so for any P̄ ∈ Ē we can �nd P ∈ E with φ(P ) = P̄ . Therefore φoψ(P̄ ) = 2P̄ .

It is clear from the formulas that φ maps Γ into Γ̄; but if you are given a rational point in Γ̄, it is not

at all clear if it comes from a rational point in Γ. If we apply the map φ to the rational points Γ, we get a
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subgroup of the set of rational points Γ; we denote this subgroup by φ(Γ) and call it the image of Γ by φ.

We make the following three claims, which taken together, provide a good description of the image.

Claim 3.3.9. (i) Ō ∈ φ(Γ).

(ii) T̄ = (0, 0) ∈ φ(Γ) i� b̄ = a2 − 4b is perfect square.

(iii) Let P̄ = (x̄, ȳ) ∈ Γ̄ with x̄ 6= 0. Then P̄ ∈ φ(Γ) i� x̄ is the square of a rational number.

Proof. (i) It is clear because Ō = φ(O)

(ii) From the formula for φ we see that T̄ ∈ φ(Γ) if and only if there is a rational point (x, y) ∈ Γ such that

y2/x2 = 0. Note x 6= 0, because x = 0 means that (x, y) = T , and φ(T ) is Ō, not T̄ . SoT̄ ∈ φ(Γ) if

and only if there is a rational point (x, y) ∈ Γ with x 6= 0 and y = 0. Putting y = 0 in the equation

for Γ gives

0 = x3 + ax2 + bx = x(x2 + ax+ b)

This equation has a non-zero rational root if and only if the quadratic equation x2 + ax + b has a

rational root, which happens if and only if its discriminant a2 − 4b is a perfect square.

(iii) Let P̄ ∈ φ(Γ) is a point with x̄ 6= 0. From the de�nition of φ, x̄ = y2/x2 is square of rational

number conversely x̄ = w2 for some rational number w ∈ Q we have to show that there exist a point

(x1, y1) 3 φ(x1, y1) = (x̄, ȳ) We know that ker(φ) = {O, T}.So there will be two points of Γ that map

to it .Let

x1 =
1

2

(
w2 − a+

ȳ

w

)
, y1 = x1w

x2 =
1

2

(
w2 − a− ȳ

w

)
, y2 = x22w

Now we will claim that Pi = (xi, yi) ∈ Γ and that φ(Pi) = (xi, yi) ∀ i = 1, 2.Now

x1x2 =
1

4

(
(w2 − a)2 − ȳ2

w2

)
x1x2 =

1

4

(
(x̄− a)2 − ȳ2

x̄

)
=

1

4

( x̄3 − 2ax̄2 + a2x̄− ȳ2

x̄

)
x1x2 = b

Fr showing that Pi = (xi, yi) ∈ Γ we have to show that

y2
i

x2
i

= xi + a+
b

xi

And also we have yi
xi

= ±w and x1x2 = b So w2 = x1 + a + x2 and from the de�nition of x1 and x2

we can �nd above expression .

It only remains to check that

φ(Pi) = (xi, yi)

y2
i

x2
i

= x̄ and
yi(x

2
i − b)
x2
i

= ȳ

The expression follows from yi
xi

= ±w and

y1(x1 − b)
x2

1

=
x1w(x2

1 − x1x2)

x2
1

= w(x1 − x2)
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y2(x2 − b)
x2

2

=
x2w(x2

2 − x1x2)

x2
2

= w(x1 − x2)

and alsofrom the de�nition of x1 and x2

x1 − x2 =
ȳ

w
⇒ w(x1 − x2) = ȳ

So yi(x
2
i−b)
x2
i

= ȳ Hence proved.

Lemma 3.3.10. (a) The map α : Γ −→ Q∗/Q∗2 de�ned by

α(O) = 1 mod Q∗
2

,

α(T ) = b mod Q∗
2

,

α(x, y) = x mod Q∗
2

is a homomorphism if x 6= 0.

(b) The kernel of α is the image ψ(Γ̄). Hence α induces one-to-one homomorphism

Γ

ψ(Γ̄)
↪→ Q∗

Q∗2

(c) Let p1, p2, . . . , pn be the distinct primes dividing b.Then the image of α is contained in the subgroup of
Q∗
Q∗2 consisting of the elements.

{±pξ11 p
ξ2
2 . . . pξnn : each ξ equals 0 or1}

(d) The [Γ : φ(Γ̄)] is at most 2n+1

Proof. (a)

α(−P ) = α(x,−y) = x =
1

x
= α(x, y)−1 = α(P )−1 mod Q∗2

For proving α is homomorphism it is enough to show that if P1+P2+P3 = O then α(P1).α(P2).α(P3) =

1 mod Q∗2

Suppose that y = λx+v is the line passing through P1, P2 and P3 .If x1, x2 and x3 are the x coordinate

of the points P1, P2 and P3 then from the derivation of duplication formula we know that

x1.x2.x3 = v2 + c

In our curve c = 0 so

x1x2x3 = v2 ∈ Q∗2

x1x2x3 = 1 mod Q∗2

α(P1)α(P2)α(P3) = 1 mod Q∗2

(b) By the de�nition of αwith the description of ψ(Γ̄) given in the claim 3.3.9 it is clear that kernel of α is

precisely ψ(Γ̄).

(c) We know that if x = m
e2 and y = n

e3 then

n2 = m(m2 + ame2 + be4)
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Let

d = gcd(m,m2 + ame2 + be4)

So d|b and n2 = m(m2 + ame2 + be4)

So we conclude that every prime dividing mappears to an even power except possibly for the primes

dividing b therefore

m = ±(integer)2
n∏
i=1

P ξii .

where ξ ∈ {0, 1} and P ′is are distinct

α(P ) = x ≡ m

e2
= ±

n∏
i=1

P ξii mod Q∗2.

Hence proved

(d) The subgroup deceived above has precisely 2n+1 elements and from (b) we have one-to-one homomor-

phism

Γ/ψ(Γ̄)→ Q∗/Q∗2.

Hence the index of ψ(Γ̄) in Γ is at most 2n+1 elements.

Lemma 3.3.11. Let A and B be two Abelian groups,and consider two homomorphism φ(A) −→ B and

ψ : B −→ A. Suppose that

ψoφ(a) = 2a ∀ a ∈ A φoψ(b) = 2b ∀ b ∈ B.

Suppose further that φ(A) has �nite index in B ,and ψ(B) has �nite index in A. Then 2A has �nite index

in A. More precisely, the index satis�es

(A : 2A) ≤ (A : ψ(B))(B : φ(A)).

Proof. Since ψ(B) has �nite index in A, let a1, a2, . . . an representative for the cosets. Similarly, since φ(A)

has �nite index in B, let b1, b2, . . . , bm representative for the cosets. We claim that the set

{ai + ψ(bj) : 1 ≤ i ≤ n, 1 ≤ j ≤ m}

includes a complete set of representatives for the cosets of 2A inside A. includes a complete set of repre-

sentatives for the cosets of 2A inside A. To see this, let a ∈ A. We need to show that a can be written

as the sum of an element of this set plus an element of 2A. Since a1, a2, . . . , an are representatives for

the cosets of ψ(B) inside A, we can �nd some ai so that a − ai ∈′ ψ(B), say a − ai = ψ(b). Next, since

b1, b2, . . . , bm are representatives for the cosets of ψ(A) inside B, we can �nd some bj so that b− bj ∈ φ(A)

say b− bj = φ(a′).Then

a = ai + ψ(b) = ai + ψ(bj + φ(a′))

= ai + ψ(bj) + ψ(φ(a′))

= ai + ψ(bj) + 2a′

Hence the set

{ai + ψ(bj) : 1 ≤ i ≤ n, 1 ≤ j ≤ m}
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is a complete set of representatives for the cosets of 2A inside A.

Proof of proposition 3.3.7. By the lemmas 3.3.10, 3.3.11 we conclude that

the index [E(Q) : 2E(Q)] is �nte

Theorem 3.3.12 (Mordell's theorem). Let E be an elliptic curve given by the equation

E : y2 = x3 + ax2 + bx+ c,

where a, b, c ∈ Q. Then the group E(Q) is �nitely generated abelian group.

Proof. By change of variable we can transform our elliptic curve E : y2 = x3 + ax2 + bx+ c, into E′ : y2 =

x3 + ax2 + bx over �eld K(6= 2). So E and E′ are isomorphic so proving for E′ is same as for E. From

the lemma 3.3.1, 3.3.2, 3.3.5, 3.3.7 and descent theorem 3.3 we conclude that the group E(Q) is �nitely

generated abelian group.

3.4 Further developments

We have shown that the group Γ of rational points on the curve

E : y2 = x3 + ax2 + bx+ c

is a �nitely generated Abelian group. It follows from the fundamental theorem on Abelian groups that Γ is

isomorphic, as an abstract group, to a direct sum of in�nite cyclic groups and �nite cyclic groups of prime

power order. We will let Z denote the additive group of integers, and we will let Z/nZ denote the cyclic

group Z/mZ of integers mod m. Then the structure theorem tells us that Γ looks like

Γ ∼= Zr ⊕ Zpv11 ⊕ Zpv22 ⊕ · · · ⊕ Zpvss

where r is the rank of elliptic curve.
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Motivation : Elliptic curve cryptography

Our security of elliptic curve cryptography depends on the question can she guess the shared point abP ,

where abP is addition of the point P ab times on elliptic curve.

If we take point P from an elliptic curve whose rank is 0 then this elliptic curve is useless for cryptography

because of Mazur and Mordell's theorem.In this one she can guess the shared point abP very easily.

So if we take point P from an elliptic curve whose rank is at least 1. For guessing shared point abP is very

very di�cult if we take P very large number ∈ Z because point P has in�nite order.
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Chapter 4

Congruent Numbers

In this chapter we will discuss classical problem whether a natural number is congruent. We will see

whether a natural number is congruent by the theory of elliptic curves.

4.1 Congruent number

De�nition 4.1.1. A natural number n is called congruent number if there exist a right angled triangle

with all three sides rationals and with area n.

Note 4.1.2. Tunnel's theorem gives an almost complete answer to an ancient problem : �nd an simple test

to determine whether or not a given natural number is the area of some right angled triangle all of whose

sides are rational numbers.

4.1.1 Method of generating Pythagorean triples

Their central discovery was that there is an easy way to generate all such triangles. Namely, take any

two positive integers a and b with a > b, draw the line in the xy-plane through the point (−1, 0) with slope

b/a. Let (x, y) be the second point of intersection of this line with the unit circle.

y − 0 =
y

x
(x+ 1)⇒ y =

y

x
(x+ 1)

and (x, y) lies on the circle so

u2 + v2 = 1 u2 +

(
b

a

)2

(u+ 1)2 = 1

(a2 + b2)x2 + 2b2x+ b2 − a2 = 0

so from the above equation we get

x =
a2 − b2

a2 + b2

y =
2ab

a2 + b2

then the integers X = a2 − b2, Y = 2ab and Z = a2 + b2 are the sides of a right angular triangle follows

from the equation of circle. So we can get all Pythagorean triples by taking all +ve integers a, b with

a > b.Conversely, can be we �nd such two number with the help of given rational right angled triangle ?
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Suppose we have rational right angled triangle with sides X,Y ,Z.

X2 + Y 2 = Z2 ⇒
(
X

Z

)2

+

(
Y

Z

)2

= 1

Put u = X
Y and v = Y

Z . (x,y) be any point on the circle(with center (0,0)and radius 1). Let a
b be the slope

of the line joining the points (−1,0) and (u,v).
Y
Z = b

a

(
X
Z + 1

)
and aY = b(X + Z) and X2 + Y 2 = Z2

4.1.2 Generalization of congruent number

If any natural number q is a congruent number, then s2q is also a congruent number by multiplying

the perpendicular legs each by s. Therefore we can observe that whether or not an number is a congruent

number depends only on its residue class Q+

(Q+)2 Every such residue class contains only one square-free number

from which all other elements of that class can be derived, so it is a convention to only speak of square-free

congruent numbers.

Problem 4.1.3. Show that for a,b ∈ Q+, b is a congruent number if and only if a2b is so.

Proof. a is congruent number .

so by the congruent property there exist a right angular triangle with all rational sides X,Y ,Z and with

area a such that

X2 + Y 2 = Z2 1

2
XY = b

Now scaling the sides of the triangle by |a| . let X1 = aX,Y1 = aY and Z1 = aZ then

X2
1 + Y 2

1 = (aX)2 + (aY )2 = (aZ)2 = Z2
1

and

1

2
X1Y1 =

1

2
(aX)(aY ) = a2

(
1

2
XY

)
= a2b

⇒ 1

2
X1Y1 = a2b

so a2b is a congruent number. Now suppose that a2b is congruent number.then there exist a rational right

triangle with sidesX1,Y1 and Z1 such that

X2
1 + Y 2

1 = Z2
1

1

2
X1Y1 = a2b

Claim 4.1.4. b is congruent number.

Proof.

1

2
X1Y1 = a2b

1

2

X1

a

Y1

a
= b

Let X = X1

b , Y = X1

b Z = Z1

a then
1

2
XY = b

X2
1 + Y 2

1 = Z2
1 ⇒ (

X1

a
)2 + (

Y1

a
)2 = (

Z1

a
)2 ⇒ X2 + Y 2 = Z2
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hence b is congruent number.

Theorem 4.1.5 (Tunnel's Theorem(1983)). Let n be a square-free congruent number, i.e., n is the area of

a right angled triangle. De�ne An, Bn, Cn, Dn as follows :

(A) An = #
{

(x, y, z) ∈ Z3| 2x2 + y2 + 32z2 = n
}

(B) Bn = #
{

(x, y, z) ∈ Z3| 2x2 + y2 + 8z2 = n
}

(C) Cn = #
{

(x, y, z) ∈ Z3| 8x2 + y2 + 64z2 = n
}

(D) Dn = #
{

(x, y, z) ∈ Z3| 8x2 + y2 + 16z2 = n
}

Then

(i) An = 1
2Bn if n is odd; and

(ii) Cn = 1
2Dn if n is even.

If the Birch- Swinnerton - Dyer conjecture is true then these equalities imply that n is the congruent number

and conversely.

Proposition 4.1.6. By using the theorem above, let us show that the numbers 1, 2, 3 and 4, 8 are not

congruent numbers but 5, 6 and 7 are congruent numbers.

Proof. For n = 1, 3, we see that An = Bn = 1. Hence, by Tunnell's Theorem above, the numbers 1, 3 are

not congruent. For n = 2 (resp., n = 4), we see that Cn = Dn = 1 (resp., Cn = Dn = 2 ). Again by the

same theorem, the numbers 2, 4 are also not congruent. Now we will show that 5, 6 and 7 are congruent

numbers.

The right angled triangle with sides 9, 40, 41 and area 180 = 5.62, so dividing the lengths by 6 produces the

rational right angled triangle with sides 3/2, 20/3, 41/6 and area 5. That is, 5 is a congruent number.The

number n = 6 is a congruent number as one sees by considering the right angled triangle with sides 3, 4

and 5. The right triangle with sides 175, 288, 337 and area 25200 = 7602, so scaling by 60 produces the

right angled triangle with sides (35/12, 24/5, 337/60) with area 7. Thus 7 is a congruent number.From the

previous result we know that a is congruent number if and only if ab2 is congruent number. So 8 is not

congruent number because 8 = 2.22

Note 4.1.7. The simplest rational right angled triangle with area 157 was computed by Don Zagier.

Proposition 4.1.8. Let n be a �xed square-free positive integer . Let X,Y, Z, x always denote rational

number with X < Y < Z .There is one-one correspondence between right angled triangle with legs X and Y

and hypotenuse Z and area n ; and number x for which x, x± n are each the square of a rational number .

The correspondence is :

X,Y, Z → x = (Z/2)2

x→ X =
√
x+ n−

√
x− n, Y =

√
x+ n+

√
x− n,Z = 2

√
x.

In particular , n is a congruent number if and only if there exist x such that x, x + n, x− n re squares of

rational numbers.

Proof. Let X,Y ,Z is a triple of a right angled triangle and n is the area of this right angled triangle then

we have

X2 + Y 2 = Z2

1

2
XY = n
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If we add or subtract four times the second equation from the �rst, we obtain :

(X ± Y )2 = Z2 ± 4n

If then divide both sides by four, we see that x = (Z/2)2 has the property that the numbers x ± n are

the squares of (X ± Y )/2 . Conversely given x with given correspondence it is easy to check that the n is

congruent number. Finally, to establish that the one-to-one correspondence , it only remains to verify that

no two distinct triples X,Y ,Z can lead to same x . For this, let two triples X,Y ,Z and X1,Y1,Z1 lead to

same x .then

x = (Z/2)2

x = (Z1/2)2

Z2 = Z2
1

⇒ X2 + Y 2 = X2
1 + Y 2

1

and

1

2
XY =

1

2
X1Y1

then we �nd

(X ± Y )2 = (X1 ± Y1)2

X + Y = X1 + Y1

X − Y = X1 − Y1
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so we have

X = X1, Y = Y1 and Z = Z1

4.2 A certain cubic equation

In the proof of proposition 1 we arrived at the equations(
X ± Y

2

)2

= (Z/2)2 ± n

whenever X,Y ,Z are the sides of right angled triangle with area n.So from these equations, we obtain

(
(X2 − Y 2)/4

)2
= (Z/2)4 − n2

.this shows that the equation u4−n2 = v2 has a rational solution, namely, u = Z/2 and v = (X2−Y 2)/4.We

next multiply by through u2 to obtain u6 − n2u2 = (uv)2.If we set x = u2 = (Z/2)2 (this is the same x as

in proposition 1) and further set y = uv = (X2 − Y 2)Z/8 , then we have a pair of rational numbers (x, y)

satisfying the cubic equation : y2 = x3 − n2x.

Thus, given a right angled triangle with rational sides X,Y, Z and area n, we obtain a point (x, y) in the xy

-plane having rational coordinates and lying on the curve y2 = x3 − n2x. Conversely, can we say that any

point (x, y) with x,y ∈ Q which lies on the cubic curve must necessarily come from such a right triangle?

Obviously not, because in the �rst place the x-coordinate x = u2 = (Z/2)2 must lie in (Q+)2 if the point

(x, y) can be obtained as in the last paragraph. To see this, notice that the right angled triangle having

sides X,Y, Z can be obtained starting with a primitive Pythagorean triplet X1, Y1, Z1 corresponding to a

right angled triangle with integral sides X1, Y1, Z1 and area s2n, and then dividing the sides by s to get

X,Y, Z. But in a primitive Pythagorean triple X and Y have di�erent parity, and Z is odd. We conclude

that x = (Z/2)2 = (Z1/2s)
2 has denominator divisible by 2 .

Finally a third condition is that the numerator of x have no common factor with n .To see this , suppose

that p > 2 is a prime dividing both x and n. then p divides the numerator of

x± n =

(
X ± Y

2

)2

(4.1)

implies that

p|(X + Y )/2

and

p (X − Y ) /2 ⇒ p|X & p|Y

⇒ p2|XY

⇒ p2|1
2
XY = n

but n was assumed as square-free integer. So we got contradiction. Hence, x is co-prime to n.

Note 4.2.1. Now we will show that these three condition is not only necessary but also su�cient .

Proposition 4.2.2. Let (x,y) be a point with rational coordinates on the curve y2 = x3−n2x. Suppose that

x satis�es the two conditions : (i) x is the square of a rational number, (ii)denominator of x is even and
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(iii)x is co-prime to n.Then there exists a right triangle with rational sides and area n which corresponds to

x under the correspondence in Proposition 1

Proof. Let u =
√
x ∈ Q . We work backwards through the sequence of steps at the beginning of this section.

That is, set v = y/u, so that v2 = y2/x = x2−n2 ,i.e.,v2 +n2 = x2. Now let t be the denominator of u i.e.,

the smallest positive integer such that tu ∈ Z. By assumption, t is even. Notice that the denominators of v2

and x2 are the same (because n is an integer and v2 + n2 = x2), and this denominator is t4. Thus, t2v, t2n,

t2x is a primitive Pythagorean triple, with t2n even (primitivity follows from third condition ). By Problem

1 of section 1, there exist integers a and b such that: t2n = 2ab, t2v = a2 − b2, t2 = a2 + b2. Then the right

triangle with sides 2/t, 2/t, 2 has area ab/t2 , as desired. The image of this triangle X = 2/t, Y = 2/t, Z = 2

under the correspondence in Proposition 1 is x = (Z/2)2 = u2. This proves Proposition 2.

Theorem 4.2.3. The number n ∈ N is a congruent number if and only if the rank of the elliptic curve

y2 = x3 − n2x is at least one.

Proof. Let n be a congruent. We saw in Proposition 4.2.2 that n x ∈ E(Q) so that x(P ) ∈ Q2 .Since n is

square-free, we have thatx(P ) = 0,±n. Thus, the point P cannot be in E(Q)tors. This proves one direction

of the theorem.

Suppose now that the rank of E(Q) is at least one. This implies that there exists P ∈ E(Q) with y(P ) 6= 0.

By the above proposition 4.1.8 corresponds to a triangle with area n.
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Chapter 5

Twists of elliptic curves of rank at least

four

5.1 Introduction

In this chapter we give in�nite families of elliptic curves over Q such that each curve has in�nitely many

non-isomorphic quadratic twists of rank at least 4. Assuming the Parity Conjecture, we also give elliptic

curves over Q with in�nitely many non-isomorphic quadratic twists of odd rank at least 5.

Mestre[Me92] showed that every elliptic curve over Q has in�nitely many (non-isomorphic) quadratic

twists of rank at least 2 over Q and he gave [Me98],[Me00] several in�nite families of elliptic curves over Q
with in�nitely many (non-isomorphic) quadratic twists of rank at least 3. Further, he stated [Me98] that if

E is an elliptic curve over Q with torsion subgroup isomorphic to Z/8Z × Z/2Z, then there are in�nitely

many (non-isomorphic) quadratic twists of E with rank at least 4 over Q.

De�nition 5.1.1. If E : y2 = f(x) is an elliptic curve , let Ed denote dy2 = f(x),the quadratic twist of E

by d.

De�nition 5.1.2. compositum or composite E1E2 of E1 and E2 is the intersection of all sub�elds of K

containing both E1 and E2.

De�nition 5.1.3. A �eld extension L/K is called algebraic if every element of L is algebraic over K, i.e.

if every element of L is a root of some non-zero polynomial with coe�cients in K.

De�nition 5.1.4. A splitting �eld of a polynomial with coe�cients in a �eld is a smallest �eld extension

of that �eld over which the polynomial splits or decomposes into linear factors.

De�nition 5.1.5. An algebraic �eld extension L/K is said to be normal if L is the splitting �eld of a family

of polynomials in K[X].

De�nition 5.1.6. A Galois extension is an algebraic �eld extension E/F that is normal and separable; or

equivalently, E/F is algebraic, and the �eld �xed by the automorphism group Aut(E/F ) is precisely the base

�eld F . One says that such an extension is Galois.

De�nition 5.1.7. A separable extension is an algebraic �eld extension E ⊃ F such that for every α ∈ E,
the minimal polynomial of over F is a separable polynomial i.e., has distinct roots.

De�nition 5.1.8. Galois group Suppose that E is an extension of the �eld F . An automorphism of E/F

is de�ned to be an automorphism of E that �xes F pointwise. In other words, an automorphism of E/F is
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an isomorphism α from E to E such that α(x) = x. for each x in F . The set of all automorphisms of E/F

forms a group with the operation of function composition. This group is sometimes denoted by Aut(E/F ).

If E/F is a Galois extension, then Aut(E/F ) is called the Galois group of (the extension) E over F , and

is usually denoted by Gal(E/F ).

Lemma 5.1.9. Suppose that E is an elliptic curve over F , that K1,K2,K3, . . . ,Kn be the extension of

F of degree at most 2 and that for = 1, 2, 3, . . . n there are points Pi ∈ E(Ki) of in�nite order. Suppose

also that if Ki 6= F then σ(Pi) = −Pi, where σ is the non trivial element of Gal(K/F ) .Let K denote the

compositum of K1,K2, . . . ,Kn. then {P1, P2, . . . Pn} is an independent set in E(K).

Proof. Let G = Gal(K/F ) be a Galois group and de�ne a map χ : Gal(Ki/F )→ {±1} denote the nontrivial
character if Ki 6= F, and the trivial character if Ki = F i.e., χ(f) = −1 if f ∈ F c and χ(f) = 1 if f ∈ F .
Let ei =

∑
σ∈G χi(σ)σ. Then ∀i and j,

Consider

ei(Pj) =
∑
σ∈G

χ(σ)(σ(Pj))

=
∑
σ∈G

χ(σ)(χ(σ)Pj) =
∑
σ∈G

χ(σ)χj(σ)Pj =

0, textifi 6= j

|G|Pj , ifi = j

Suppose
∑
j njPj = O. Then O = ei(

∑
j njPj) = |G|niPi ∀i Since Pi is of in�nite order, ni = 0 ∀i

In the assumption we have assume that each Pi is of in�nite order. So from above we conclude that

ni = 0 ∀ i.

De�nition 5.1.10. If k(t) ∈ Z[t], we say that k(t) is squarefree if k(t) is not divisible by the square of any

non constant polynomial in Z[t].

De�nition 5.1.11. Suppose g(t) ∈ Q(t) . A squarefree part of g(t) is squarefree k(t) ∈ Z[t] such that

g(t) = k(t)j(t)2 for some j(t) ∈ Q(t).

Proposition 5.1.12. Suppose f(x) ∈ Q[x] is a separable cubic, and E is the elliptic curve y2 = f(x). Let

h1(t) = t, suppose we have non-constant h2(t) . . . , hr(t) ∈ Q(t), let ki(t) be a squarefree part of f(hi(t))/f(t),

and suppose that k1(t), . . . , kr(t) are distinct modulo (Q∗)2. Then

1. the rank of the rank of E(f(t))(Q(t,
√
k2(t),

√
k2(t), . . . ,

√
kr(t))) is at least r;

2. if C is the curve de�ned by the equations s2
i = ki(t) for i = 1, . . . , r, then for all but at most �nitely

many rational points (τ, σ1, . . . , σr) ∈ C(Q), the rank of E(f(t))(Q) is at least r.

Proof. Apply Lemma 2.1 to the elliptic curve E(f(t)) over the �eld F = Q(t), with Ki = F (
√
ki(t)) (so K1 =

F ). Since the polynomials ki are squarefree and distinct modulo (Q∗)2, the �elds Ki are distinct. For

i = 1, . . . , r, let

Pi = (hi(t),
√
f(hi(t))/f(t)) ∈ E(f(t))(Q(t,

√
ki(t))).

Note that Pi has in�nite order, since its x-coordinate is not constant. Now (i) follows.

5.2 Rank ≥ 4

From now on we consider elliptic curves of the form

y2 = x(x− 1)(x− λ)

where λ ∈ Q− {0, 1}
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De�nition 5.2.1. we �x a numbering of the linear fractional transformation hi(t) ∈ Q(t) that permute the

set {0, 1, λ}, along with corresponding squarefree parts ki(t):

h1(t) = t k1(t) = 1

h2(t) = t−λ
(2−λ)t−1 , k2(t) = (1− λ)((λ− 2)t− λ)

h2(t) = t−λ
(2−λ)t−1 , k2(t) = (1− λ)((λ− 2)t− λ)

h2(t) = t−λ
(2−λ)t−1 , k2(t) = (1− λ)((λ− 2)t− λ)

h2(t) = t−λ
(2−λ)t−1 , k2(t) = (1− λ)((λ− 2)t− λ)

h2(t) = t−λ
(2−λ)t−1 , k2(t) = (1− λ)((λ− 2)t− λ)

Theorem 5.2.2. Suppose a ∈ Q− {1,−1, 0}and let η = a2. Then

fη(x) = x(x− 1)(x− η)

and let Eη be y2 = f(x). Let Cη be the curve

v2 = (η + 1)2u4 + 4η(2η2 + 3η + 1)u3 + 2(7η4 + 7η3 + 2η2 + η + 1)u2 + 4(2η5 + η4 − 2η2 − η)u+ (η3 − 1)2

and let

tη(u) =
2(1− η)Tη(u)

3((η + 1)u2 + 1− η3)2

where

Tη(u) = (η+ 1)2u4 + 2η(2η2 + 3η+ 1)u3 + 2(3η4 + 3η3 + η2 + η+ 1)u2 + 2η(η3 − 1)(2η+ 1)u+ η6 − 2η3 + 1

Then:

1. Eη and Cη are elliptic curves over Q;

2. rank(Cη(Q)) ≥ 1;

3. for all but possibly �nitely many (u, v) ∈ Cη(Q), the quadratic twist of Eη by fη ◦ tη(u) has rank at

least 4 over Q;

4. there are in�nitely many non-isomorphic quadratic twists of Eη of rank at least 4 over Q.

Proof. From the theorem 4.2(a) of [RS01] by noticing that when τ = 2λ
λ+1 , then

k3(τ)

k2(τ)
= λ2and k2(τ) =

(λ− 1)2(2λ+ 1)

λ+ 1

We wanted k2(τ) and k3(τ) to be squares. Note that −2λ+1
λ+1 = a2 if and only if λ = 1−a2

2+a2 , and when these

hold then k2( 2λ
λ+1 ) and k3( 2λ

λ+1 ) are both squares, and ( 2λ
λ+1 , (λ− 1)a, λ(λ− 1)a) ∈ Ca2 = Cη . Further, we

found that

Q(t,
√
k2(t),

√
k3(t)) = Q(u)

with t = tη(u) as in the statement of this theorem. The curve Cη in the statement of this theorem is

v2 = k4(tη(u)). We observed that (0, η3 − 1) ∈ Cη(Q). We have

Q(Cη) = Q(u,
√
k4(tη(u)) = Q(t,

√
k2(t),

√
k3(t),

√
k4(t))

By Proposition 5.1.12 (or Corollary 2.2 of [RS01] with gi(t) = ki(t)fη(t)) the rank of Efη◦tη(u)
η (Q(Cη) is at

least 4. By Proposition 5.1.12, the Efη◦tη(u))
η (Q) is at least 4 for all but �nitely many (u, v) ∈ Cη(Q). More

explicitly, for i = 1, . . . , 4, write fη ◦ hi(t) = fη(t)ki(t)ji(t)
2 with ji(t) ∈ Q(t). Then the points

(hi ◦ tη(u), ji ◦ tη(u)
√
ki ◦ tη(u) ∈ E(fη(tη(u))

η (Q(u, v))
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are

(tη(u), 1)(
h1 ◦ tη(u),

(
−(η + 1)u2 + η3 − 1

a((η + 1)u2 + 2(η2 − 1)u+ η3 − 1))

)3
)

(
h2 ◦ tη(u),

(
−(η + 1)u2 + η3 − 1

a((η + 1)u2 + 2(η2 + η + 1)u+ η3 − 1))

)3
)

(
h1 ◦ tη(u),

(
−(η + 1)u2 + η3 − 1

v

)3
)

From the lemma 5.1.9 they give four independent points in E
(fη◦tη(u))
η (Q(Cη)).

5.3 Root number

De�nition 5.3.1. If E is an elliptic curve over Q, let NE denote the conductor of E, let wE denote the

global root number, i.e., the sign in the functional equation for L(E, s), and let wE,p denote the local root

number at a prime p ≤ ∞. Write wE(d) for wE(d) and write wE,p(d) for wE(d),p.

De�nition 5.3.2. If α ∈ Q× and n ∈ Z+ , then:

1. α ≡ 1 mod×n means that α− 1 ∈ nZ for all primes l|n;

2. α ≡ 1 mod×n∞ means that α ≡ 1 mod×n and α > 0.

Lemma 5.3.3. Suppose E is an elliptic curve over Q, d, d′ ∈ Q∗, and there exists β ∈ Q∗ such that

β2d/d′ ≡ 1mod×8NE∞. Then wE(d) = wE(d′).

Proof. Taking the squarefree parts of d and d , we can reduce to the case where d and d are squarefree

integers. If p < ∞ and p - dNE , then E(d) has good reduction over Qp, so wE,p(d) = 1 (see Proposition

2(iv) of [R93]). Similarly for d′ . Thus,

wE(d) =
∏
p≤∞

wE,p(d) =
∏

p|dNE∞

wE,p(d)

If d/d′ is a square in Q∗p , then E(d) and E(d′) are isomorphic over Qp , so wE , p(d) = wE,p(d) for all p ≥ ∞.

In particular, since d/d′ > 0, it follows that wE,∞(d) = wE,∞(d). If p|2NE , then d/d′ is a square in Q∗p
(since β2d/d′ ≡ 1mod×8NE), so wE,p(d) = wE,p(d). If p|2NE , then p divides d if and only if p divides d

(since 2ordp(β) + ordp(d) = ordp(d), and d and d are squarefree). Thus,∏
p|dNE∞ wE,p(d)∏
p|dNE∞ wE,p(d

′)
=

∏
p|d,p|2NE wE,p(d)∏
p|d,p|2NE wE,p(d)

Suppose p - NE , so E has good reduction at p. Since E and E(d) has good reduction at p. If E and

E(d) are isomorphic over Qp(d), E(d) has good reduction over Qp(d). If p|d, then Qp(
√
d) is the smallest

extension of Qp over which E(d) has good reduction (and similarly for d ). By (iii) and (v) of Proposition

2 of [R93] with e = 2, we have

wE , p(d) =
−1

p
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if p|d and p - 2NE , where −1
m is the Jacobi symbol. So from above we have

wE(d)

wE(d′)
=

∏
p|d,p|2NE

−1
p∏

p|d,p|2NE
−1
p

where f = d/gcd(d, 2NE) and f = d′/gcd(d′, 2NE). Note that f/f ′ = d/d′ . Then β2f/f ′ ≡ 1mod×4, so

f ≡ f ′(mod4), so 1
f = 1

f ′

Lemma 5.3.4. Suppose E and B are elliptic curves over Q, B(Q) has in�nite order,P ∈ B(Q), r is a

rational function in Q(B), and P is not a zero or pole of r. Then there exist a Q ∈ B(Q) of in�nite order

and an open neighborhood U of O in B(R) such that if k ∈ Z and kQ ∈ U then wE(r(P +kQ)) = wE(r(P )).

Lemma 5.3.5. Suppose B is an elliptic curve over Q, Q ∈ B(Q) is a point of in�nite order, and U is an

open subset of the identity component B(R)0 of B(R). Then {k ∈ Z : kQ ∈ U} is in�nite.

Proof. Replacing Q by 2Q, we may assume that Q ∈ B(R)0 . Note that B(R)0 is isomorphic to the unit

circle in C∗, so every in�nite subgroup is dense. Thus {kQ : k ∈ Z} is dense in B(R)0 , and the lemma

follows.

5.4 Rank ≥ 5

Theorem 5.4.1. Suppose a ∈ Q− {0, 1, 1} and η = a2 . Suppose Eη, fη , and tη are as in Theorem 5.2.2.

If wEη (fη.tη(u1)) = −1 for some (u1, v1) ∈ Bη(Q), and the Parity Conjecture holds for all quadratic twists

of Eη , then Eη has in�nitely many non-isomorphic quadratic twists of odd rank ≥ 5 over Q.

Proof. Let P = (u1, v1), and let r(z) = fη ◦ tη ◦ x(z) ∈ Q(Bη), where the function x gives the x-coordinate

of a point. By Lemmas 5.3.4 and 5.3.5 with E = Eη and B = Bη , there are Q ∈ Bη(Q) and in�nitely many

k ∈ Z such that

wEη (r(P + kQ)) = wEη (r(P )) = −1,

so by the Parity Conjecture, Er(P+kQ)
η (Q) has odd rank.

By Theorem 5.2.2, for all but �nitely many k ∈ Z, the rank of E(r(P+kQ))
η (Q) is at least 4. Thus for

in�nitely many k, the rank of E(r(P+kQ))
η (Q) is at least 5. As argued in the proof of Theorem 5.2.2, for each

squarefree d ∈ Q∗, the set of u ∈ Q such that fη ◦ tη(u) and d di�er by a rational square is �nite, since the

hyperelliptic curve fη ◦ tη(u) = dz2 has only �nitely many rational solutions (u, z). Thus there are in�nitely

many non-isomorphic quadratic twists of Eη of odd rank at least 5 over Q.
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Chapter 6

The Selmer group, the Shafarevitch-Tate

group

6.1 Group cohomology

Firstlly we will de�ne some basic de�nition which we will use in this chapter.

De�nition 6.1.1 (Topological group). A topological group G is a group that is also a topological space such

that the product map:

p : G×G −→ G

(g, g′) 7−→ gg′

and the inverse map

i : G −→ G

g 7−→ g−1

are continuous functions (with respect to the topology).

De�nition 6.1.2 (Pro�nite group). A Pro�nite group is a compact, Hausdor� and totally disconnected

topological group.

De�nition 6.1.3 (Group cohomology H0). Let G be a pro�nite group. Let A be a (discrete, left) G-module

and that the map G×A −→ A is continuous when A is given the discrete topology. De�ne AG and H0(G,A)

by

AG = H0(G,A) := {a ∈ A : ga = a ∀ g ∈ G}

. The subgroup AG is known as the subgroup of G-invariants of A.`

De�nition 6.1.4. Let A be a G module. The group of i-cochains(from G to M) is de�ned by

C1(G,M) = {maps f : G→M}

The group of i-cocycles (from G to M ) is given by

Z1(G,M) = {f ∈ C1(G,M) : f(gh) = hf(g) + f(h) ∀ f, g ∈ G}
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The group of i-coboundaries (from G to M) is de�ned by

B1(G,M) = {f ∈ C1(G,M) : there exist an m ∈M such that f(g) = gm−m ∀g ∈ G}

It is clear that B1(G,M) ⊆ Z1(G,M).

6.2 Cohomology group ( Hi : i > 0)

The i-th cohomology group of the G-module M is the quotient group

Z1(G,M)

B1(G,M)

Remark 6.2.1. Notice that if the action of G on M is trivial, then

H0(G,M) = M H1(G,M) = Hom(G,M).

De�nition 6.2.2. In the context of group theory, a sequence

G0 → G1 → G2 · · · → Gn

of groups and group homomorphisms is called exact if the image of each homomorphism is equal to the

kernel of the next. Note that the sequence of groups and homomorphisms may be either �nite or in�nite.

Remark 6.2.3. 1. The sequence 0 → A → B is exact at A if and only if the map from A to B has

kernel 0, i.e. if and only if that map is a monomorphism (one-to-one).

2. the sequence B → C → 0 is exact at C if and only if the image of the map from B to C is all of C,

i.e. if and only if that map is an epimorphism (onto).

3. A consequence of these last two facts is that the sequence 0→ X → Y → 0 is exact if and only if the

map from X to Y is an isomorphism.

Remark 6.2.4. Suppose that

0→ A→ B → C → 0

is an exact sequence of G-modules. This means that the morphisms respect the G-actions, and that it is

exact as a sequence of abelian groups. Then there is an exact sequence

0→ AG → BG → CG (1)

but one cannot always append → 0 to the right end. In other words, the functor A→ AG is only left exact.

Theorem 6.2.5. There exists a collection of functors Hi(G,−) for i ≥ 0 such that for every exact sequence

0→ B → C → 0

where A,B and C are of G module, the sequence 1 extends to a long exact sequence
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0→ H0(G,A)→ H0(G,B)→ H0(G,C)→

H1(G,A)→ H1(G,B)→ H1(G,C)→

H2(G,A)→ . . . ,

functorially with respect to the exact sequence. Functorially means that given a morphism of exact sequences,

that is, a commutative diagram such as

0 // A //

��

B //

��

C

��

// 0

0 // A′ // B′ // C ′ // 0,

there is a morphism of the associated long exact sequences; that is, the diagram

0 // H0(G,A) //

��

H0(G,B) //

��

H0(G,C)

��

// H1(G,A) //

��

. . .

0 // H0(G,A′) // H0(G,B′) // H0(G,C ′) // H1(G,A′) // . . . ,

commutes.

Remark 6.2.6. Let m is an integer not divisible by the characterstic of k and µm denotes the group of

m-th root of unity then by using Hilbert 90 theorem we can see that

H1(Gk, µm) ' k∗/(k∗)m

De�nition 6.2.7. A valuation on a �eld K is a function φ : K → R ≥ 0 satisfying:

1. φ(x) = 0 iff x = 0;

2. φ(xy) = φ(x)φ(y) ∀ x, y ∈ K;

3. there exists C ∈ R > 0 suc that

φ(x+ y) ≤ Cmax{φ(x), φ(y)} ∀ x, y ∈ K.

The smallest constant C that can be taken in (iii) is the norm of the valuation φ. It obviously can not be

smaller than 1. Note that if φ is a valuation on K of the norm C then x 7−→ φ(x)r de�nes a valuation of

norm Cr on K for each r ∈ R > 0.

6.3 Restriction

If H ⊆ G is a closed subgroup, and A is a G-module, then A can also be considered as an H-module,

and there exist restriction homomorphisms

Hi(G,A)
Res−−→ Hi(H, A)

for each i ≥ 0. On H0, Res is simply the inclusion AG ↪→ AH . On H1 , Res maps the class of the 1-cocycle

ξ : G → A to the class of ξ|H : H → A. For us, the following special case will be important. Let k be a
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number �eld. Let kv denote the completion of k at a place v. If we identify k̄ with the algebraic closure of

k inside kv , then we have an injection

Gv := Gal(k̄v/kv) ↪→ Gk := Gal(k̄/k)

σ → σ|k

whose image is a decomposition group at v. Let A be an abelian variety over k. The composition

H1(k,A) := H1(Gk, A(k̄))
Res−−→ H1(Gv, A(k̄))→ H1(Gv, A(k̄v)) =: H1(kv, A)

is denoted Resv

De�nition 6.3.1 (Perfect �eld). a �eld K is said to be perfect if every irreducible polynomial over K has

distinct roots or every irreducible polynomial over K is separable.

6.4 Twists (also known as k-forms)

Let k be a perfect �eld. Let V be an object over k, for example a variety equipped with some extra

structure de�ned over k. We assume that the objects form a category, and that there is a notion of base

extension: that is, given an object V over k and a �eld extension L of k, there should be an associated object

VL over L. A twist or k-form of V is an object W over k such that there exists a (structure-preserving)

isomorphism Wk̄ ' Vk̄ of objects over k. Then there is an injection

{twists of V } ↪→ H1(Gk,Aut(Vk̄))

that in many situations is a bijection. Where we write �twists of V � we identify two twists if they are

isomorphic over k.

6.5 The Shafarevich-Tate group

From now on, we assume that k is a number �eld, and that A is an abelian variety over k. Recall that

there is a restriction map Res v : H1(k,A)→ H1(kv, A) for each place v of k (�nite or in�nite). If we identify

elements of H1 with torsors, then Resv takes a k-torsor X under A to the base extension X ×k kv . De�ne
the Shafarevich-Tate group X(k,A) ofA over k as

ker
[
H1(k,A)

Res−−→
∏

place v of k

H1(kv, A)
]

where Res =
∏
v Resv. Call a k-torsor X under A locally trivial if it is in the kernel of every map Resv , or

equivalently if X(kv) is nonempty for every v. Then one can describe X(k,A) geometrically as the set of

isomorphism classes of locally trivial k-torsors X under A.

Conjecture For every number �eld k and every abelian variety A over k, the group X(k,A) is �nite.

6.6 The Selmer Group

Fix an integer m ≥ 2. For any abelian group B, let Bm denote the kernel of the multiplication-by-m

map B → B. Suppose that A is an abelian variety over a perfect �eld k. Then the m-torsion subgroup of
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A is the Gk-module Am := A(k̄)m. The long exact sequence associated to

0→ Am → A(k̄)
m−→ A(k̄)→ 0

from which we extract the top row of

0 // A(k)
m

//

��

H1(k,Am)

ρ̄

((

ρ //

Res

��

H1(k,A)m

Res

��

// 0

0 // ∏
v
A(kv)
m

// ∏
v H1(kv, Am) // ∏

v H1(kv, A)m // 0,

The bottom row is the product of the analogous sequences over each completion kv. The �rst vertical map

is induced by the inclusions A(k) ↪→ A(kv) for each v, and the other vertical maps are restriction maps. The

diagonal dotted map ρ̄ is the composition in either direction. The diagram commutes. If we could prove

that H1(k,Am) were �nite, then (2) would show that A(k)/m is �nite too, and we would have proved the

Weak Mordell-Weil Theorem. But unfortunately, it turns

out that H1(k,Am) is in�nite whenever A is nonzero. Therefore we must bound the image ofA(k)/m in

H1(k,Am) by using (2) to see that this image equals ker(ρ). Unfortunately, it is not known how to decide,

given an element of H1(k,Am), whether its image in H1(k,A)m is zero or not, just as it is not known how to

decide whether a general element of H1(k,A) is zero or not. Therefore we instead bound ker(ρ) by the larger

group ker(ρ̄): this helps, since given ξ ∈ H1(k,Am), we can decide whether ξ ∈ ker(ρ̄) as follows: compute

a torsor X representing its image in H1(k,A), and use the method discussed in the previous section to test

whether X is locally trivial. The m-Selmer group Selm(A/k) is de�ned as ker(ρ̄ ), or equivalently as the set

of ξ ∈ H1(k,Am) whose restriction Resv ∈ H1(kv, Am) is in the image of A(kv)
m → H1(kv, Am) for every v.

If we apply the Snake Lemma to

0 // A(k)
m

//

��

H1(k,Am)

ρ̄

��

// H1(k,A)m

Res

��

// 0

0 // 0 // ∏
v H1(kv, Am)

∏
v H1(kv, A)m // 0,

the �rst half of the snake (i.e., the sequence of kernels of the vertical maps) is the fundamental exact sequence

0→ A(k)

m
→ Selm(A/k)→Xm → 0,

where X := X(k,A). In particular, the image of A(k)/m in H1(k,Am) is contained in Selm(A/k).

6.7 Computing the Selmer group

Theorem 6.7.1. The group Selm(A/k) is �nite and computable (in theory)

Corollary 6.7.2. The groups A(k)/m and Xm are �nite (but not necessarily computable).

6.8 2-descent on an elliptic curve with rational 2-torsion

In this section we show how to compute Sel2(A/k) in the case where A = E is an elliptic curve over Q
with E2 ⊆ E(Q). Then E has an equation

y2 = (x− e1)(x− e2)(x− e3)
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where e1, e2, e3 ∈ Z are distinct. Let Pi = (ei, 0) ∈ E(Q) and let O denote the identity of E (the point at

in�nity). Then

E2 = {O,P1, P2, P3} = Z/2Z× Z/2Z = µ2 × µ2

as GQ -modules, with P1 ↔ (1,−1) and P2 ↔ (−1, 1).So from Hilbert 90 theorem, H1(Q, µ2) ' Q∗/Q∗2,
so H1(Q, E2) ' (Q∗/Q∗2)⊕2. If p is a prime such that e1, e2, e3 are distinct modulo p, then E has good

reduction at p. Hence we may take as the set S of bad places in the previous section, the set consisting of

the archimedean place ∞ and the primes dividing 2(e1 − e2)(e2 − e3)(e3 − e1). We then have the following

facts:

1. If ξ ∈ H1(Q, E2) corresponds to the image of (a, b) ∈ (Q/Q∗2)⊕2 (where a, b ∈ Q∗2), then ξ is unami�ed

at a prime p if nd only if p is unrami�ed in the quadratic extension Q(
√
a) and Q(

√
b) of Q.

2. The composition

E(Q)→ E(Q)/2 ↪→ H1(Q, E2) ' (Q∗/Q∗2)⊕2

maps a point (x, y) in E(Q) other than O,P1, P2 to (x− e1, x− e2) ∈ (Q∗/Q∗2)⊕2.

It follows from (1) that ξ ∈ H1(Q, E2) is unrami�ed outside S if and only if ξ is represented by some pair

(a, b) of elements in the subgroup 〈−1, S〉 of Q∗/Q∗2 generated by −1 and the �nite primes of S. Thus

Sel2(E/Q) ⊆ H1(Q, E2;S) ' 〈−1, S〉⊕2 ⊂ (Q∗/Q∗2)⊕2

To decide which (a, b) ∈ 〈−1, S〉⊕2 actually belong to Sel2(E/Q), check whether Xa,b has points over R and

over Qp for all �nite primes p ∈ S

Example 6.8.1. Let E be the elliptic curve y2 = x3 − x over Q. Let r be the rank of E(Q). We will

compute r, Sel2(E/Q), and X(Q, E)2 . Take e1 = −1, e2 = 0, e3 = 1. Then we may take S = {∞, 2}. The

homomorphism

E(Q)/2→ Sel2(E/Q) ⊆ H1(Q, E2;S) ' 〈−1, 2〉⊕2 ⊂ (Q∗/Q∗2)⊕2

maps

O → (1, 1)

P1 = (−1, 0)→ (2,−1)

P2 = (0, 0)→ (1,−1)

P3 = (1, 0)→ (2, 1)

so at least these images are contained in Sel2(E/Q). Now, for the other (a, b) ∈ 〈−1, 2〉⊕2 we must check

whether Xa,b has points over R and Q2 . An a�ne piece of Xa,b is given by the equations

x+ 1 = az2
1 , x = bz2

2 , x− 1 = abz2
3 ,

and it will su�ce to check this piece for points over R and Q2 , because when a smooth curve over a local

�eld has a point, the implicit function theorem implies that the curve has an analytic neighborhood of such

points. If a < 0 and Xa,b has a real point, the �rst equation shows that it satis�es x ≤ 1, the second equation

shows that b < 0, and the third equation yields a sign contradiction. Thus

{(1, 1), (2, 1), (1, 1), (2, 1)} ⊆ Sel2(E/Q) ⊆ 〈2〉 × 〈−1, 2〉.

But Sel2(E/Q) is a group, so it equals either the group of order 4 on the left, or the group of order 8 on the

right. A calculation shows that X1,2(Q2) is empty, so Sel2(E/Q) = {(1, 1), (2,−1), (1,−1), (2, 1)} . Since

E(Q)/2→ Sel2(E/Q) is surjective, X(Q, E)2 = 0. Finally, since E2 ⊆ E(Q),#(E(Q)/2) = 22+r . On the

other hand, #(E(Q)/2) ≤ 4, so r = 0.
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