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Abstract—In this paper, we obtain the maximum likelihood
(ML) decision for a decode and forward (DF) cooperative system
in Nakagami-m fading in the presence of co-channel interference
at the relay as well as the destination. Through simulation results,
we first show that conventional ML designed for interference
free systems fails to combat the deleterious effect of interference.
An optimum ML decision for combating interference is then
derived for integer m. This receiver is shown to be superior
to conventional ML through bit error rate (BER) performance
simulations. Further, our results also indicate that optimum ML
preserves relay diversity in the presence of interference.

Index Terms—Cooperative diversity, co-channel interference,
decode and forward, ML

I. INTRODUCTION

The performance of a cooperative system in interference

limited networks has attracted attention recently. In [1], [2],

expressions for the outage probability in an interference

limited amplify and forward (AF) cooperative system are

derived. [3], [4] have investigated outage probability for DF

systems employing relay selection. The BER is also derived

for the system considered in [4]. In [5], [6], an interference

limited Nakagami-m fading channel is considered for DF

cooperation. The outage probability was then evaluated for

this system. [7], [8] extended the ML decision rule for higher

order modulation schemes and investigated their performance.

However, they did not account for the effect of interference

on the performance of the cooperative system.

A. Motivation

In Fig. 2, the performance of conventional ML [9] in

the presence of varying levels of interference is shown

for Nakagami-m fading. Clearly, the figure indicates that

conventional ML is susceptible to interference. While this

is expected, this motivates the quest for an optimum ML

scheme that performs better in the presence of interference.

B. Approach

This problem is addressed in this paper for Nakagami-m
fading for integer m. First, an optimum ML detector is derived

Fig. 1. Cooperative diversity system with a relay and an interferer.
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Fig. 2. Conventional ML performance deteriorates with increasing interfer-
ence.

for interference mitigation. The decision rule is derived using

the Maximum Likelihood criterion for cooperative systems

introduced in [9]. Through simulations, it is then shown that

the performance of optimum ML is better than conventional

ML. The effect of interference on relay diversity is also

investigated for the optimum ML receiver.
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II. SYSTEM MODEL

The cooperative system in Figure 1 is considered, with

system equations

yd,s =
√

ξshd,sxs + zd,s

yr,s =
√

ξshr,sxs +
√

ξihr,ix
(1)
i + zr,s

yd,r =
√

ξrhd,rxr +
√

ξihd,ix
(2)
i + zd,r (1)

and variables described in Table I, without loss of generality.

We assume that full channel state information (CSI) is

available for the signal fades, while only partial CSI in

the form of the second order statistics is available for the

interference. We have one interferer each, in the s − r and

r − d links.

h Nakagami fading coefficient
m,Ω Nakagami fading figures
ξ Transmit power at a node
y Received symbol at a node
x Transmitted symbol at a node

s, r, d Source relay and destination subscripts
i Interferer subscript
l Relay location
z Additive white Gaussian noise (AWGN)
N0 Two sided noise power spectral density

TABLE I
NOTATION USED THROUGHOUT THE PAPER

Definition II.1. The probability density function (PDF) of a

Nakagami distributed random variable X ∼ Nakagami(m,Ω)
is given by

pX(x) =
2mm

Γ(m)Ωm
x2m−1e−

mx2

Ω , x,Ω > 0,m > 0.5 (2)

In (1), hk,j ∼ Nakagami(mk.j ,Ωkj), zk,j ∼ N (0, N0/2),
where k, j ∈ {s, r, d, i}.

III. DECISION RULES

Lemma III.1. For X ∼ Nakagami(m,Ω), a > 0,
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where EX is the expectation with respect to X and

Γ (·) ,Γ (·, ·) are the Gamma and incomplete Gamma functions

[10].

Proof. See Appendix A.

Theorem III.1. The ML decision made at the relay is

xr = max
xs

pyrs
(yrs|xs, hrs) (4)

where pyrs
(yrs|xs, hrs) is given in (5) and

Yrs = yrs −
√
ξshrsxs.

Proof. See Appendix B.
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Fig. 3. Optimum ML outperforms conventional ML. mk,l = 2, k,l ∈ {s, r, d}
, mj,i = 1 lr,s = 0.8, lj,i = 0.7, j ∈ {r, d}
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Fig. 4. Performance of optimum ML for varying interference levels. mk,l =
2, mj,i = 1 k,l ∈ {s, r, d, i} and lj,i = 0.4, 0.6, 1 respectively. j ∈ {r, d}.

Theorem III.2. ML decision at the destination is given by

x̂s = max
xs

pyds,ydr
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Proof. See Appendix C.
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Fig. 5. Diversity performance of optimum ML in the presence of interference.
mk,l , k,l ∈ {s, r, d} values of 1,2 and 3 and mp,i = 1, p ∈ {d, r}
respectively for lr,s = 0.8, lj,i = 0.7, j ∈ {r, d}

IV. RESULTS AND DISCUSSION

The simulation setup is similar to the one in [11]. Conven-

tional ML refers to the decision rule in [9] while optimum ML

refers to the decision rules derived in this paper. For simplicity,

the transmit powers of the interferers is kept constant. Also,

the location of the interference node relative to the relay

is equal to location of the interference node relative to the

destination. The cooperating links are assumed to experience

similar fading. Similar assumption is made for the interfering

links as well, though their fading figures are taken to be less

than those of the cooperating links. All these assumptions have

been made for generating simulation results, but the decision

rule is valid for different fading parameters and node locations.

Fig. 3 shows that the BER performance of optimum ML

outperforms conventional ML, justifying the effort involved

in designing a new receiver. The performance of the optimum

receiver for varying interference levels is shown in Fig. 4. In

Fig. 5, the BER is plotted for increasing fading figures on the

cooperative links. The fading figures of the interfering links

are kept constant. The results indicate that relay diversity is

preserved by optimum ML in the presence of interference. This

observation, however, needs to be substantiated theoretically.

V. CONCLUSION

In this paper, we have shown that for a DF cooperative

system, the performance of conventional ML deteriorates

in the presence of interference. To mitigate the effect of

interference, an optimal ML decision rule was obtained for

Nakagami-m fading. Through simulation results, it was shown

that optimum ML outperforms conventional ML. Also, results

indicate that relay diversity is preserved by optimal ML despite

interference. While the usefulness of optimum ML decision

has been established, simpler suboptimal receivers with similar

performance need to be designed for practical systems.



APPENDIX A

Substituting from (2),
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From (10) and (11), we obtain (3).

APPENDIX B
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Using Lemma III.1 in (13), (12) can be expressed as (5).

APPENDIX C

The decision for xs at the destination is obtained by

maximizing
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