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Abstract

Data Mining is sorting through data to identify patterns and establish relation-

ships between data points. It’s purpose is to find valuable information hidden

in the data. Due to wide availability of huge amount of data, and the imminent

need for turning such data into useful information and knowledge for broad

applications including market analysis and business management has made re-

search and development on data mining to be flourishing. There are several

parameters of data mining such as Classification, Association and Clustering.

In this thesis we discuss mainly about Clustering.

In this thesis, we first study what clustering is, what are different types

of clusterings and what are clustering techniques. Then, we study what are

the issues in clustering. Since, there are many ways to do clustering we want to

know which clustering displays the correct information of the data. As there are

many definitions of clustering, among one of them is that we consider clustering

to be the range of a function defined on the data set. This function is termed as

clustering function. There are three natural properties that a clustering function

should satisfy. These properties are scale invariance, richness and consistent.

Scale invariant means if we increase the distance between every point in data, the

clustering function should still be able to cluster data. Richness says that every

possible partition of data should be a possible output. Consistent property says

that if the distance between the points within cluster is decreased and distance

between points in different cluster is increased, the clustering function gives

same result. But, it has been proved that there is no clustering function that

satisfies all three properties at the same time. So, instead of studying clustering

function we move towards another notion ′quality measure′. Quality measure is

also a function that maps clustering of the data set to some positive real value.

This value tells us how good our clustering is. Quality measure also has some

basic natural properties and we have discussed these properties in thesis.

Then we study about ′clusterability of data sets′. Clusterability of data

set means that data has a good clusterable structure. There are four types of

clusterability that we study- Variance ratio Clusterability, Separability cluster-

ability, Worst pair ratio clusterability and Center perturbation clusterability.

We study each of these notions and see what value of these notions will give us

better clustering.

And then we study about how to cluster high dimensional data. It is nat-

ural to come across data set which has high dimension. In this thesis we will

mainly study about k− means clustering technique. Since we are dealing with

high dimensional data, and the computational complexity of the clustering algo-
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rithm increases as dimension increases, we need some method of dimensionality

reduction. The method of dimensionality reduction we will study is Principal

Component Analysis(PCA).

Next we will study k− means algorithm, high dimensional clustering algo-

rithm and subset high dimensional clustering algorithm used to cluster high

dimensional data.

We will use normalized mutual information(NMI) and variance ratio cluster-

ability to do comparative study between these algorithms. Mutual Information

is the measurement of how much information the presence/absence of a term

contributes to making the correct classification decision.

In our study we have taken four distance measures that are L1 norm, L2

norm, L∞ norm and Inner Product and calculated the NMI and variance ratio

clusterability across all the algorithms and we concluded that its better to divide

the set into subsets and apply k− means on each disjoint subsets rather then

dividing the set into disjoint subsets and updating the cluster centers using a

single pass algorithm.
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Chapter 1

Introduction

We are in an age often referred to as the information age. In this information

age, because we believe that information leads to power and success, we have

been collecting tremendous amounts of information. Initially, with the advent of

computers and means for mass digital storage, we started collecting and storing

all sorts of data, counting on the power of computers to help sort through

this amalgam of information. Unfortunately, these massive collections of data

stored on disparate structures very rapidly became overwhelming. This initial

chaos has led to the creation of structured databases and database management

systems (DBMS). The efficient database management systems have been very

important assets for management of a large corpus of data and especially for

effective and efficient retrieval of particular information from a large collection

whenever needed.

With the enormous amount of data stored in files, databases, and other

repositories, it is increasingly important to develop powerful means for analysis

and perhaps interpretation of such data and for the extraction of interesting

knowledge that could help in decision-making. Data Mining, also popularly

known as Knowledge Discovery in Databases (KDD), refers to the nontrivial

extraction of implicit, previously unknown and potentially useful information

from data in databases. Data mining is the process of analyzing data from

different perspectives and summarizing it into useful information. Data mining

techniques are deployed to scour large databases in order to find novel and

useful patterns. They also provide capabilities to predict the outcome of future

observation.

The first and simplest analytical step in data mining is to describe the data

summarize its statistical attributes (such as means and standard deviations),

9



10 CHAPTER 1. INTRODUCTION

visually review it using charts and graphs, and look for potentially meaningful

links among variables (such as values that often occur together).

The following describes a typical data mining example: A bank has data

about clients to whom it gave loans in the past. The client data contains

personal data, data describing the financial status and the financial behavior

before and at the time the client was given the loan. The clients are divided

into four classes. The first class contains all those clients who payed back the

loans without any problems; the second class those who payed back with little

problems here and there; the third contains those who should only get a loan

after detailed checks because substantial problems of payback occurred in the

past; and the forth class consists of all those who did not pay back at all. Using

this data table a prediction model is created in order to predict the probability

for each class for new clients. A good reference for concepts of data mining can

be found in [8].

1.1 Issues in data mining

1.1.1 Scalability

Because of advances in data generation and collection, data sets with sizes of

terabytes or even petabytes are becoming common. If data mining algorithms

are to handle these massive data sets, then they must be scalable.

1.1.2 High Dimensionality

It is common to encounter data sets with hundreds or thousands of attributes.

For example consider a data set that contains measurements of temperature

at various locations. If the temperature measurement are taken repeatedly for

an extended period, the number of dimension increases in proportion to the

number of measurements taken. Data analysis techniques that were developed

for low dimensional data often do not work well for such high dimensional data.

Also, for some data analysis algorithms, the computational complexity increases

rapidly as the dimensionality increases.

1.1.3 Heterogeneous and Complex Data

Data mining techniques often needs to handle data with heterogeneous at-

tributes. Examples of such non-traditional types of data include collections
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of Web pages containing semi-structured text and hyperlinks; DNA data with

sequential and three dimensional structure.
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Chapter 2

Cluster Analysis

Suppose one has been assigned a task of arranging the books in a library. One

will classify all the books of a particular subject and place them in a separate

section. Each section containing books related to a particular subject is what

we call as a cluster and the process of doing it is called clustering. We deal

with clustering in almost every aspect of daily life. For example, a group of

diners sharing the same table in a restaurant may be regarded as a cluster of

people. In food stores items of similar nature, such as different types of fruits

or vegetables are displayed in the same or nearby locations. In the following

sections we will see what clustering is all about, what are techniques used for

clustering and what are issues related with it.

2.1 What is Cluster Analysis?

The basic definition of Cluster analysis is that it groups objects of similar kind.

The goal is that the objects within a group be similar (or related) to one another

and different from (or unrelated to) the objects in other groups. The greater

the similarity (or homogeneity) within a group and the greater the difference

between groups, the better or more distinct the clustering.

Uses of Clustering

In Biology, cluster analysis is used to identify diseases and their stages. For

example, by examining patients, who are diagnosed as depressed, one finds

that there are several distinct sub-groups of patients with different types of

depression. Biologists have applied clustering to analyze the large amounts of

genetic information that are now available. For example, clustering has been

used to find groups of genes that have similar functions. It is also used for

13
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Information Retrieval, for example, the World Wide Web consists of billions of

Web pages, and the results of a query to a search engine can return thousands of

pages. Clustering can be used to group these search results into a small number

of clusters, each of which captures a particular aspect of the query. The other

use of clustering is to understand earth’s climate. Understanding the Earth’s

climate requires finding patterns in the atmosphere and ocean. To that end,

cluster analysis has been applied to find patterns in the atmospheric pressure

of polar regions and areas of the ocean that have a significant impact on land

climate.

2.2 Different types of Clustering

Hierarchical Clustering: Hierarchical clustering is an agglomerative (top

down) clustering method. As its name suggests, the idea of this method is to

build a hierarchy of clusters, showing relations between the individual members

and merging clusters of data based on similarity.

Partitional Clustering: Partitional clustering decomposes a data set into

a set of disjoint clusters. Given a data set of N points, a partitioning method

constructs K (N ≥ K) partitions of the data, with each partition representing a

cluster. That is, it classifies the data into K groups by satisfying the following

requirements: (1) each group contains at least one point, and (2) each point

belongs to exactly one group.

Exclusive Clustering: In exclusive clustering data is grouped in an exclu-

sive way, so that each data point belongs to only one definite cluster.

Overlapping Clustering: Overlapping clustering allows data objects to be

grouped in 2 or more clusters. A real world example would be the breakdown

of personnel at a school. Overlapping clustering would allow a student to also

be grouped as an employee.

Fuzzy Clustering: In a fuzzy clustering, every object belongs to every

cluster with a membership weight that is between 0 (absolutely doesn’t belong)

and 1 (absolutely belongs). In other words, clusters are treated as fuzzy sets.

Complete Clustering: A complete clustering assigns every object to a

cluster.

Partial Clustering: Partial clustering allows some data objects to be left

alone. The motivation for a partial clustering is that some objects in a data set

may not belong to well-defined groups. Many times objects in the data set may

represent noise or outliers. For example, some newspaper stories may share a

common theme, such as global warming, while other stories are more generic
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or one-of-a-kind. Thus, to find the important topics in last month’s stories, we

may want to search only for clusters of documents that are tightly related by a

common theme.

2.3 Clustering Techniques

2.3.1 Hierarchical Clustering

There are two basic approaches for generating a hierarchical clustering:

Agglomerative: Agglomerative hierarchical clustering is a bottom-up clus-

tering method where clusters have sub-clusters, which in turn have sub-clusters,

etc. It starts with the points as individual clusters and, at each step, merge the

closest pair of clusters. This requires defining a notion of cluster proximity.

Advantages

1. It can produce an ordering of the objects, which may be informative for

data display.

2. Smaller clusters are generated, which may be helpful for discovery.

Disadvantages

1. No provision can be made for a relocation of objects that may have been
′incorrectly′ grouped at an early stage. The result should be examined closely

to ensure it makes sense.

2. Use of different distance metrics for measuring distances between clusters

may generate different results. Performing multiple experiments and comparing

the results is recommended to support the veracity of the original results.

Divisive: Divisive Hierarchical Clustering is a top-down clustering method.

It works in a similar way to agglomerative clustering but in the opposite direc-

tion. It starts with one, all-inclusive cluster and, at each step, split a cluster

until only singleton clusters of individual points remain. In this case we need

to decide which cluster to split at each step and how to do the splitting.

2.3.2 Density Based Clustering

In density-based clustering, clusters are defined as areas of higher density than

the remainder of the data set. Objects in the sparse areas that are required to

separate clusters are usually considered to be noise and border points. DBSCAN

is the most important and efficient algorithm used to find the density based

clusters. In DBSCAN algorithm two core points that are close enough-within a

distance Eps of one another are put in the same cluster. Likewise, any border
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point that is close enough to a core point is put in the same cluster as the core

point. Noise points are discarded.

2.3.3 K-means

In this thesis, we are going to study k −means technique in depth.

Introduction

k-means is one of the simplest unsupervised learning algorithms that solve the

well known clustering problem. The procedure follows a simple and easy way to

classify a given data set through a certain number of clusters (assume k clusters)

fixed a priori. The main idea is to define k centers, one for each cluster. These

centers should be placed in a cunning way because different location causes

different result. So, the better choice is to place them as much as possible far

away from each other. The next step is to take each point belonging to a given

data set and associate it to the nearest center. When no point is pending, the

first step is completed and an early group age is done. Next, we update these

cluster centroids. We update the cluster centroids by taking mean of all the

data points assigned to that centroids. This process continues until the points

stop changing their clusters. In order to determine which centroid is closest

to a particular data point we have to use a proximity measure. There are

several proximity measures in use and typically one is chosen based on the data

type that we are trying to cluster. Manhattan, Euclidean, cosine and Bregman

divergence are all proximity measures that are commonly used. When we take

our proximity measure as Euclidean norm, our objective is to minimize the sum

of squared distance of the cluster to its centroid. The sum of squared error(SSE)

is given by

SSE = ΣKi=1ΣxεCidist
2(x, ci) where,

x is a data point in cluster Ci and ci is the centroid of cluster Ci. So,

k −means clustering is defined as

Definition 1. K-means clustering. Given a matrix Aε Rn×d(representing n

points(rows), described with respect to d features (columns)) and a positive k

denoting the number of clusters, find the n× k indicator matrix Xopt such that

Xopt = arg min
XεX
‖A−AAT ‖2F
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k-means Algorithm

Input: dataset consisting of n points say, x1, x2, · · · , xn, number of clusters k

and threshold ε

1: Randomly take k initial cluster centers c1, c2, · · · , ck.

2: for i = 1 : n

for j = 1 : k

3: Calculate the distance of each data point xi from each initial cluster

center cj .

4: Assign the data points to its closest cluster center to get k clusters say,

C1, C2, · · · , Ck.

end for

end for

5: for i = 1 : k

// Update the cluster centers

6: Update the cluster centers of each cluster by taking mean of clusters

c
′

i = 1
|Ci| ( Σ

xiεCi

xi + ci)

end for

7: Repeat steps 2 to 6

until: SSE = ΣKi=1ΣxεCidist
2(x, ci) ≤ ε
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Chapter 3

Issues in Clustering

There have been many definitions of clustering. One of the definition is to

represent the collection of objects as a set of abstract points, and define distances

among the points to represent similarities, the closer the points, the more similar

they are. The other definition is, given a data set we can think its clustering to

be the range of some function defined on the data. This function is named as

clustering function. So,

Definition 2. [6] A clustering function f is a function that takes a set S of n

points with pairwise distances between them, and returns a partition of S. This

partition is the clustering of S.

The clustering function is ought to satisfy three natural properties.

If d is a distance function, we write α·d to denote the distance function in

which the distance between i and j is α·d(i, j).

Scale Invariance: For any distance function d and any α>0, we have f(d)

= f(α·d).

This is simply the requirement that the clustering function should not be

sensitive to changes in the units of distance measurement, it should not have a

built-in lengthscale.

The second property is that the output of the clustering function should be

rich i.e. every partition of S is a possible output. The formal definition is,

Richness: Range(f) is equal to the set of all partitions of S.

The last property is the Consistency property. The clustering function is

said to have consistency property if we shrink distances between points inside

a cluster and expand distances between points in different clusters, we get the

same result. To make it precise, we introduce the following definition.

19
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Let d and d′ be two distance functions on S. We say that d′ is a Γ transfor-

mation of d if

(a) for all i, j ∈ S belonging to the same cluster of Γ we have d(i, j) <d(i, j);

and

(b) for all i, j ∈ S belonging to different clusters of Γ we have d′(i, j) >d(i, j)

Consistency. Let d and d′ be two distance functions. If f(d) = Γ, and d′

is a Γ-transformation of d, then f(d′) = Γ.

Before telling what is the first issue with clustering, we define what do we

mean by refinement of a partition.

Definition 3. [6] We say that a partition Γ′ is a refinement of a partition Γ if

for every set C ′∈Γ′, there is a set C ∈ Γ such that C ′ ⊆ C.

Define a partial order on the set of all partitions by Γ′≤ Γ, if Γ′ is the

refinement of Γ. Following the terminology of the partially ordered sets we say

that a collection of partitions forms an antichain if it does not contain two

distinct partitions such that one is a refinement of the other.

The issue with the clustering is that for each n > 2, there is no clustering

function f that satisfies Scale Invariance, Richness, and Consistency.

This result is the immediate consequence of the following theorem.

Theorem 1. [6] If a clustering function f satisfies Scale-Invariance and Con-

sistency, then Range(f) is an antichain.

The other issue with clustering is that centroid based clustering functions

do not satisfy consistent property.

In centroid based clustering, we select k of the input points as centroids and

then define clusters by assigning each point in data set to its nearest centroid.

Let S be our data set, T be the set of k centroids and g : R+ → R+ be any

continuous, non-decreasing, and unbounded function. The aim of (k, g) centroid

clustering function is to minimize the objective function Λgd(T ) = Σi∈Sg(d(i, T )),

where d(i, T ) = minj∈T d(i, j). Then the partition of S into k clusters is given

by assigning each point of S to the point of T closest to it.

Theorem 2. [6] For every k ≥ 2, and every function g (continuous, non-

decreasing and unbounded) and for n sufficiently larger relative to k, the (k, g)

centroid clustering function does not satisfy the consistency property.

Now, as we know that there is no such clustering function that will satisfy all

the required properties of clustering, we move towards a different approach. In

this approach instead of axiomatizing the clustering function we define another
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notion quality measure and we axiomatize quality measure to see whether it

satisfies all the properties of clustering.

3.1 Quality of the Clusterable data

Definition 4. [1] A clustering quality measure is a function that maps pairs of

the form(dataset,clustering) to some ordered set(say,the set of non negative real

numbers) so that these values reflect how ′good′ or ′cogent′ that clustering is.

We can cluster the data using different algorithms. Different clustering algo-

rithm will aim to optimize different objective functions and are likely to output

different clusterings of the same data set. Since it is often ambiguous which

objective function is appropriate for clustering the data set, a user need to ap-

ply a clustering quality measure to choose between the outcomes of different

algorithms. In this section we will introduce the measures that will state the

quality of clustering.

There are two approaches that determines the quality of clustering. One is to

axiomatize the clustering functions. Other is to develop the set of requirements

(′axioms′) of clustering quality measures. This section focuses on the second

approach. After introducing the axioms of quality measure we will introduce

what are the properties of quality measure and then we will give examples of

some quality measure that satisfy these axioms and properties.

For x , y ∈ X and clustering C of X, we write x ∼ y whenever x and y are

in the same cluster of clustering C and x � y otherwise.

3.1.1 Axioms of Quality measures

Scale Invariance[1] Quality measure m satisfies scale invariance if for every

clustering C of (X, d), and every positive λ, m(C,X, d) = m(C,X, λd). Iso-

morphism Invariance

This axiom ensures that quality measures are independent of point descrip-

tion. That is, if the labels of all points are permuted, keeping the clustering

fixed, the quality of the clustering should not change.

Definition 5. [1] Clustering Isomorphism. Clusterings C and C ′ over (X, d)

are isomorphic, C w C ′, if there exists a distance preserving isomorphism.

Definition 6. [1] Isomorphism Invariance. Quality measure m is isomorphism

invariant for all clusterings C, C ′ over (X, d) ,m(C,X, d) = m(C ′, X, d).



22 CHAPTER 3. ISSUES IN CLUSTERING

This axiom says that following a permutation on the data point’s labels, the

output of a clustering function should be isomorphic to the output prior to the

permutation.

Weak Local Consistency

Quality measure m is weakly locally consistent if ∀ clusterings C over (X, d),

whenever d′ is a C weakly locally consistent variant of d, then m(C,X, d) ≥
m(C,X, d′).

Note that weak local consistency implies consistency and local consistency.

Co-final Richness Quality measure m satisfies co-final richness if for every

pair of non-trivial clusterings C over (X, d) and C ′ over (X, d′) there exists a

C-consistent variant, d′′, of d such that m(C,X, d′′) ≥ m(C ′, X, d′′).

3.1.2 Properties of quality measures

Consistent properties[1]

Definition 7. (Locally Consistent Variant)[1] Distance function d′ is a C lo-

cally consistent variant of d, for a clustering C over (X, d), if

•For every cluster Cl of C there is a constant cl ≤ 1, such that ∀x, y ∈
Cl, d

′(x, y) = cld(x, y).

•There exists a c ≥ 1 such that for every x, y, d′(x, y) = c·d(x, y).

Definition 8. (Local Consistency)[1] Quality measure m is locally consistent if

for all clusterings C over (X, d), whenever d′ is a C locally consistent variant

of d, then m(C,X, d) ≥ m(C,X, d′).

Local consistency has limited application in Euclidean spaces, where clus-

tering often takes place. In Euclidean space, if we shrink each cluster uniformly,

the distances between pairs of points in different clusters may change is a non-

uniform manner.

Below is a more flexible version of consistency.

Definition 9. (Weakly Locally Consistent Variant)[1] Distance function d′ is

a C weakly locally consistent variant of d, where C is a clustering over (X, d),

if

•For every cluster Cl of C there is a constant cl ≤ 1, such that ∀ x, y ∈ Cl,
d′(x, y) = cl·d(x, y).

•For every x � y, d′(x, y) ≥ d(x, y).

•For some set of points containing a point pl from every cluster Cl, ∃ a

constant c ≥ 1 such that, for every pl, p
′
l , d′(pl, p

′
l ) = c · d(pl, p

′
l ).
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Richness properties

Definition 10. (Refinement)[1] A clustering C ′ of X is a refinement of clus-

tering C of X if for every cluster Ci of C, ∃ a set of clusters in C ′ that partition

Ci.

Definition 11. (Refinement Preference)[1] Quality measure m is refinement-

preferring if for every clustering C of (X, d) that has a non-trivial refinement,

there exists a non-trivial refinement C ′ of C such that m(C ′, X, d) > m(C,X, d).

For any refinement-preferring measure, given any clustering (that has a non-

trivial refinement) over some data set, there is a non-trivial clustering of the data

set with better quality. Thus, refinement-preferring measures are not rich.

3.1.3 Examples of quality measure

Loss-based quality measures Here, we will present quality measure for a

loss based clustering. One of the example of a loss based clustering is k means

whose objective function is to minimize SSE.

A clustering loss function is a function £: CX × D → R+ ∪ {0}, where CX

is the set of clusterings of data set X, and D is the family of distance functions

over X.

Given a data set and a distance function d, we get clusterings of the set. Let

C, C ′ be the clusterings of (X, d). The loss function assigns to each clustering a

non-negative value. This value will tell us how good our clustering is compared

to other clusterings.

£-Clustering quality

£-Clustering Quality is a quality measure that normalizes clustering loss

function £. Let Call denote the 1-clustering of X, that is, the clustering that

groups all points in X into the same cluster, then £-Clustering Quality of a

clustering C over (X, d) is given by

£-CQ(C,X, d) = £(Call,X,d)
£(C,X,d)

Now while comparing two clusterings of a data set, we expect that clustering

with lower loss to have better clustering quality. Whenever quality measure

satisfy the property that clustering with lower loss are better, we say quality

measure conforms with loss function.

This quality measure satisfies all the properties and axioms listed above.

Center-based quality measures A clustering C = {C1, C2, ..., Ck} is cen-

ter based if there exist points, called centers, c1 ∈ C1, c2 ∈ C2, . . . , ck ∈ Ck,

such that for all x ∈ Ci, d(x, ci) < d(x, cj), for all i 6= j.
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Relative Margin: This quality measure considers the ratio of the distance

from each point in the dataset to its closest center, to the distance from the

point to its second closest center. The smaller the ratio, the more it is sure to

which cluster it belongs. We use average ratio as quality measure.

Let C be a center based clustering over (X, d)

The C-relative point margin of x ∈ X is C-RMX,d(x) = d(x,ci)
d(x,cj) , where ci is

the closest center to x, cj is a second closest center to x.

Relative Margin: The relative margin of a center-based clustering C over

(X, d) is RMX,d(C) = avgx∈X\R C-RMX,d(x) where R is the set of centers in

C. The range of relative margin is [0, 1), and lower relative margin indicates a

better clustering.

The above mentioned quality measures satisfy wide range of clustering tech-

niques and are able to compute the clustering quality of a clustering in low

polynomial time.

Now, we look at whether the given data is efficient enough to give a good

clusterable structure. The next section deals with the study of clusterability of

data sets.

3.2 Clusterability of Data Sets

Clusterability as the name suggests tells that whether the given data set has a

good clusterable structure or not. Several notions of clusterability have been

discussed in the literature. But for each pair of notions, there are data sets that

are arbitrarily well clusterable by one of the notions, but poorly clusterable by

the other notion. Some of the notions of clusterability that have been discussed

in the literature are:

Variance ratio Clusterability

Variance is the measurement of the spread between numbers in a data set,

it measures how far is the each number in the set from the mean. Variance

of a cluster is the expected square distance to the centroids. In order to get a

good clustering we want the variance within a cluster to be as small as possible

and variance between clusters to be as large as possible. To measure the clus-

tering quality [10] introduced a notion called variance ratio given by V Rk(X)

=
max
c∈C

Bc(X)

Wc(X) , where, X is the dataset, C is the set of k-means optimal cluster-

ings of X, BC(X) = Σki=1pi ‖ centerofmass(Xi) − centerofmass(X) ‖2 is the

between-cluster variance of C and WC(X) = Σki=1piσ
2(Xi), the within-cluster

variance of C.
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Definition 12. [2] (Variance Ratio). The variance ratio of X for k is V Rk(X)

= max
c∈C

Bc(X)
Wc(X) , where C is the set of k-means optimal clusterings of X.

The range of variance ratio is [0,∞) and higher values of variance ratio

indicate better clusterability.

Separability Clusterability

The separability notion of clusterability captures how sharp is the drop in

the loss function when moving from a (k− 1)- clustering to a k-clustering. This

notion was introduced in [2].

Definition 13. [2] (Separability). A data set X is (k, ε)- separable if OPTk(X) ≤
OPTk−1(X).

The range of separability is [0, 1). A data set has better separability than

another data set if it is separable for smaller ε.

Worst pair ratio Clusterability

The minimum distance between two points in different clusters of a clustering

C is called the split between the two clusters, and the minimal split between

two clusters is called the split of C; that is, splitC(X) = minx�y ‖ x− y ‖. The

maximum distance between two points within a cluster in C is called the width

of the cluster, and the maximal width of a cluster in C is called the width of C,

widthC(X) = maxx∼y ‖ x− y ‖.

Definition 14. [2] (Worst Pair Ratio). The worst pair ratio of X is WPR(X)

= {max splitC(X)
widthC(X) | C a clustering of X}.

The range of worst pair ratio is [0,∞) and higher values of worst pair ratio

mean better clusterability.

Center Perturbation Clusterability

In a center-based clustering, each point in a cluster is closer to its own cluster

center than to the center of any other cluster. If the given data set has a ′good′

clusterable structure, perturbing the centers won’t affect the clusterability of

data set.

Given a loss function L, let OPTL,k(X) = min{L(C) | C is a k-clustering of

X}, the loss of a k-clustering of X that minimizes L.

Definition 15. [2] (ε-close). Two center-based clusterings, C and C ′ of X, are

ε-close, if there exist centers c1, c2, . . . , ck of C, and centers c′1, c′2, . . . ,

c′k of C ′, such that for all i ≤ k, ‖ ci - c′i ‖ ≤ ε.

Definition 16. [2] (Center Perturbation Clusterability). A data set X is (ε,

δ)-CP clusterable for k (for ε, δ ≥ 0), if for every clustering C of X that is ε

-close to some optimal k-clustering of X, L(C) ≤ (1+ δ)OPTL,k(X).
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Now, after studying quality measures and clusterability of data sets, we look

at the ways by which we can make our algorithm strong enough so that it can

handle noise.

3.3 Robustness in the presence of noise

The important feature of the clustering algorithm is that it should be able to

cluster all the points in the data. However, it is the often the case that datasets

one wishes to cluster contains a significant subset which is unstructured, such

a subset is referred as noise, which tends to disrupt clustering algorithms and

makes it difficult to detect the cluster structure of remaining points. We want

our clustering algorithm to be noise robust, this can be done by transforming

the original algorithm to robustified algorithm. Till now, two such robustified

paradigms have been introduced. Before introducing these paradigms, we define

some notations.

We consider a scenario in which the input dataset X consists of two part:

a clusterable subset I, which is also called the un-noised data, and an added

noise set X \ I (the identity of which is not known to the clustering algorithm).

We consider two clustering algorithms, the original one, A , and its robustified

transformation Rp(A) that is obtained by using our paradigm with a robusti-

fying parameter p. A robustifying parameter, p, denotes the degree to which

an algorithm should be robustified to noise; For example, the number of extra

clusters that can be used or a notion of distance beyond which a point is con-

sidered an outlier. A robustifying paradigm, Rp(A), is a function that takes

a clustering algorithm A and returns a robustified clustering algorithm Rp(A)

based on the robustifying parameter p. We refer to A as the ground clustering

algorithm of Rp(A).

Definition 17. [4] p-Increased Paradigm. The p-Increased Paradigm is a ro-

bustifying paradigm, RIp(·), that takes as input a (k; g)-centroid algorithm and

returns a (k + p; g)- centroid algorithm.

The next paradigm is parameterized by the distance after which a point

should be considered an outlier. To define this paradigm, we first introduce a

class of algorithms. Given a space E and distance function d, the δ-truncated

distance function corresponding to d is the function d′ such that d′(x; y) =

min{δ, d(x, y)} for x, y ∈ E. The (k, g)-δ-truncated algorithm is an objective

based algorithm that, given X ⊆ E, first optimizes the function.
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Definition 18. (δ-Truncated Paradigm)[4]. The δ-Truncated Paradigm is a

robustifying paradigm, RTδ(.), that takes as input a (k, g)-centroid algorithm

and returns a (k, g) δ-truncated algorithm.

3.3.1 Measures of Robustness

Previously, robustness of the algorithm to the addition of noise was measured

by comparing the output of the same algorithm on both noised and un-noised

data. This approach lead to pessimistic results about the possibility of achieving

noise robustness. The approach that works well for measuring the robustness

of the algorithm is by comparing the output of a robustified algorithm on noisy

data to the output of its corresponding ground algorithm on the unnoised data.

Before defining the robustness measures based on this approach, we fix some

notations.

Let A denote any clustering algorithm (ground clustering) and A′ = Rp(A)

be the robustifying paradigm with parameter p corresponding to A. Given I ⊆
X, A(I) denotes the clustering of I using ground algorithm, and A′(x) denotes

the clustering of X by the robustified algorithm. We consider I to be robust

(to X \ I) with respect to the Rp(A) algorithm if certain properties of A(I) are

preserved in A′(X). For any x ∈ X, we use µ(x) and µ′(x) to denote the centers

of A(I) and A′(X), respectively, to which x belongs.

Cluster centers are commonly used to compress and represent data. The

distances between points and their corresponding centers can be viewed as the

distortion of such a compression. Therefore, it is essential to have clustering

algorithms where this value does not grow significantly in the presence of noise.

The first robustness measure measures how much this distortion is affected by

the addition of noise to the input data.

• α-distance-robust. A subset I ⊆ X is α-distance-robust with respect to

A′ if for all y ∈ I, d(y, µ) ≤ d(y, µ(y′)) + α.

An algorithm is considered robust, if it separates the input using some low-

cost clusters that cover the un-noised data. The next robusteness measure

captures this property by computing minimal cost of a subset of clusters that

covers at least | I | points in total.

• β-cost-robust. Let Λ be an objective (cost) function. I ⊆ X is a β-cost-

robust with respect to A′ for Λ , if there exists C∗ ⊆ A′(X), such that |
⋃
C∗|

≥ | I | and Λ(C∗) ≤ Λ(A(I)) + β.
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3.4 Purity and Normalized Mutual Information

Typical objective functions in clustering formalize the goal of attaining high

intra-cluster similarity (documents within a cluster are similar) and low inter-

cluster(documents from different clusters are dissimilar). This is an internal

criterion for the quality of a clustering. An alternative to internal criteria is di-

rect evaluation in the application of interest. We will discuss about two external

quality measures, Purity and Normalized Mutual Information[5].

To compute purity, each cluster is assigned to the class which is most frequent

in the cluster, and then the accuracy of this assignment is measured by counting

the number of correctly assigned documents and dividing by total number of

documents.

Formally:

purity(Ω, C) = 1
N Σkmaxj |ωk ∩ cj |

where Ω = ω1, ω2, · · · , ωk is the set of clusters and C = c1, c2, · · · , cj is the

set of classes.

High purity is easy to achieve when the number of clusters is large, in particu-

lar, purity is 1 if each document gets its own cluster. Thus, we cannot use purity

to trade off the quality of the clustering against the number of clusters. A mea-

sure that allows us to make this tradeoff is normalized mutual information or NMI

Before stating what is normalized mutual information, we will define what

do we mean by mutual information.

Definition 19. Mutual Information. Mutual Information is the measurement

of how much information the presence/absence of a term contributes to making

the correct classification decision. Mutual Information is denoted by I and is

given by

I(Ω;C) = Σ
k

Σ
j
P (wk ∩ cj)log P (wk∩cj)

P (wk)P (cj)

= Σ
k

Σ
j

|wk∩cj |
N log

N |wk∩cj |
|wk||cj |

whereP (wk), P (cj)andP (wk ∩ cj) are the probabilities of a document being

in cluster wk, class cj and in the intersection of wk and cj respectively.

These two equations are equivalent for the maximum likelihood estimates

of the probablities(i.e., the estimate of each probability is the corresponding

relative frequency).

So, normalized mutual information or NMI is given by

NMI(Ω, C) = I(Ω,C)
[H(Ω)+H(C)]/2 where,

H is the entropy given by

H(Ω) = −Σ
k
P (wk)logP (wk)
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= −Σ
k

|wk|
N log |wk|

N

where, again, the second equation is based on maximum likelihood estimates

of the probabilities.

I(Ω;C) measures the amount of information by which our knowledge about

the classes increases when we are told what the clusters are. The minimum of

I(Ω;C) is 0 if the clustering is random with respect to class membership. In

that case, knowing that a document is in a particular cluster does not give us

any new information about what its class might be.
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Chapter 4

Clustering of high

dimensional data

Now we will study clustering of high dimensional data where the number of

samples is smaller than the dimensionality of data.

Density Estimation helps in obtaining information and gaining understand-

ing about the distribution of the underlying data set. Since, clustering can also

be done using density estimation, analyzing the number of samples required for

accurately recovering the underlying distributions, referred to the problem of

sample complexity, is a challenging open problem.

It is well known that the number of samples needed for accurate density

estimation is at least exponential in the dimensionality. So, the problem that

arises is,

Is it possible to achieve accurate clustering results when the data dimension-

ality is larger than the number of samples to be clustered?

The problem of computationally expensive was partially solved in [3] where

the authors studied a special case of this problem where data points were sam-

pled from a mixture of two isotropic Gaussians. The authors showed that when

the cluster centers are d dimensional s-sparse vectors (i.e. there are no more

than s non-zero entries), the sample complexity can be reduced to O(s2 log d).

But now, the result has been proved for more general case. It has been shown

that when there are K clusters, K > 2, data points that are sampled from a mix-

ture of K ≥ 2 spherical Gaussians with s-sparse centers, require only O(s log d)

samples to reliably estimate the cluster centers. And finally it has been proved

that it is indeed possible to reliably cluster high-dimensional data even when

31
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the number of samples is smaller than the dimensionality as long as the cluster

centers are sparse.

Since, we are dealing with high dimensional data, we will study a method

that can lower the dimension of the data and still gives efficient results.

4.1 Principal Component Analysis

4.1.1 Introduction

PCA is the method used to reduce the number of features that represent data.

The benefits of this dimensionality reduction include providing a simpler repre-

sentation of the data, reduction in memory, and faster classification. In PCA we

project the data from a higher dimension to a lower dimensional manifold such

that the error incurred by reconstructing the data in the higher dimension is

minimized. Principal component analysis uses an orthogonal transformation to

convert a set of observations of possibly correlated variables into a set of values

of linearly uncorrelated variables called principal components. This transforma-

tion is defined in such a way that the first principal component has the largest

possible variance (that is, accounts for as much of the variability in the data

as possible), and each succeeding component in turn has the highest variance

possible under the constraint that it is orthogonal to (i.e., uncorrelated with)

the preceding components.

It is useful when we have data on number of variables (possibly large number

of variables), and believe that there is some redundancy in those variables.

Here, redundancy means that some of the variables are correlated with one

another, possibly because they are measuring the same construct. Because of

this redundancy, it is possible to reduce the observed variables into a smaller

number of principal components, that will account for most of the variance in

the observed variables.

4.1.2 Idea behind PCA

The main idea behind principal component analysis is to first find a direction

that corresponds to maximal variance between the data points. The data is

then projected on the hyperplane orthogonal of that direction. We obtain a

new data set, and find a new direction of maximal variance. We may stop the

process when we have collected enough directions.
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4.1.3 Assumptions of PCA

1. Linearity. PCA assumes the data set to be linear combinations of the vari-

ables.

2. PCA assumes that directions of maximum variance contains features rep-

resenting the data but there is no guarantee that the directions of maximum

variance will contain good features for discrimination.

3. PCA assumes that components with larger variance correspond to inter-

esting dynamics and lower ones correspond to noise.

4.1.4 PCA Interpretation

PCA can be interpreted in two different ways.

1.Maximize the variance of projection along each component.

2.Minimize the reconstruction error (ie. the squared distance between the

original data and it’s estimate).

PCA is mathematically defined as an orthogonal linear transformation that

transforms the data to a new coordinate system such that the greatest variance

by some projection of the data comes to lie on the first coordinate (called the first

principal component), the second greatest variance on the second coordinate,

and so on. The principal components are orthogonal because they are the

eigenvectors of the covariance matrix, which is symmetric. When we have a set

of data points, we deconstruct the set into eigenvectors and eigenvalues. An

eigenvector is a direction, and an eigenvalue is a number, which tells how much

variance is there in the data in that direction. The eigenvector with the highest

eigenvalue is therefore the principal component.

4.1.5 Computing PCA using covariance method

Definition 20. Covariance. Covariance is a measure of how changes in one

variable are associated with changes in a second variable. Specifically, covariance

measures the degree to which two variables are linearly associated.

Let X and Y be two vectors of dimension n. Then, the covariance between

X and Y is given by

cov(X,Y ) =
Σn

i=1(Xi−X̄)(Yi−Ȳ )
n−1

Suppose we have a dataset consisting of n observations where each observa-

tion has m variables and we want to reduce the data so that each observation

can be described with only l variables,i.e, l < m. Given below is the algorithm

for computing PCA using covariance matrix.
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Step 1. Compute the covariance matrix C. C will be a m ×m symmetric

matrix where each entry cij is the covariance between variable i and variable j.

Step 2. Compute eigenvalues and corresponding eigenvectors of the covari-

ance matrix C.

Step 3. Sort the eigenvectors by decreasing eigenvalues and choose k eigen-

vectors with the largest eigenvalues to form a m× k dimensional matrix. These

eigenvectors are the principal components.

Step 4. Use this m × k eigenvector matrix to transform the observations

onto the new subspace.

Next, we study a method for doing feature selection.

4.2 LASSO

LASSO is a regression method proposed by R.Tibershani in 1996. Similar to

ordinary least squares regression, LASSO minimizes the residual sum of squares

but poses a constraint to the sum of absolute values of the coefficients being

less then a constant. This simple modification also allows LASSO to perform

variable selection because the shrinkage of the coefficients is such that some

coefficients can be shrunk exactly to zero. The lasso estimator β is defined by

β = argmin
∑n
i=1(yi −

∑p
j=1 βjxij)

2 + λ
∑p
j=1 |βj |

or equivalently,

β = argmin
∑n
i=1(yi −

∑p
j=1 βjxij)

2 subject to
∑p
j=1 |βj | ≤ t

where n is the number of objects, p is the number of variables and λ is a

parameter, which can be tuned in order to set the shrinkage level, the higher

the λ is, the more coefficients are shrunk to zero.

4.2.1 Selection of Tuning Parameter

Selection of tuning parameter is very important as it has a big influence on the

performance of the estimator. Cross-validation is considered the simplest and

most widely used method for the minimization of the prediction error. The most

common forms of cross-validation are k−fold and leave one-out cross-validation.

4.2.2 k− fold cross-validation

In k−fold cross-validation, the original sample is randomly partitioned into k

equal size subsamples. Of the k subsamples, a single subsample is retained as

the validation data for testing the model, and the remaining k1 subsamples are

used as training data. The cross-validation process is then repeated k times (the
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folds), with each of the k subsamples used exactly once as the validation data.

The k results from the folds are then averaged to produce a single estimation.

Suppose the data consists of n observations.

4.2.3 Leave one-out cross-validation

The choice k = n in k−fold cross-validation is known as leave one-out cross-

validation, in this case we have n subsamples and for the ith subsample, the fit

is computed using all the data after omitting ith observation.
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Chapter 5

Algorithms for clustering

high dimensional data

Given below is the datasets we have used for implementing our clustering algo-

rithms.

5.1 Yale Dataset

The Yale dataset consists of 165 grayscale images in GIF format of 15 individ-

uals. There are 11 images of each individual one per subject, one per different

facial expression or configuration: center-light, with glasses, happy, left-light,

without glasses, normal, right-light, sad, sleepy, surprise and wink.

As each image is a matrix of pixel values, the size of matrix of each image

in yale dataset is 243× 320. After vectorizing the image, we get 1-dimensional

vector of size 1× 77760. So, the size of total dataset is 165× 77760.

Download link :

http : //vision.ucsd.edu/datasets/yalefacedatasetoriginal/yalefaces.zip

Following is the one of the image from the Yale dataset.

5.2 Algorithms

We have applied PCA on each of the algorithm to reduce the dimension of the

dataset and to lower the computational complexity of the algorithm and all the

algorithms have been implemented in MATLAB.

37
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Figure 5.1: Image from Yale dataset

5.2.1 High dimensional clustering algorithm

An efficient clustering algorithm was designed that only needs to go through all

the data points once to obtain an accurate estimation of cluster centers. This is

in contrast to many clustering algorithms, such as k-means which require going

through the data set multiple times before the final centers can be determined.

We will state what that algorithm is and how it works. LetD = {x1, x2, ..., xn}
be the set of n data points to be clustered into K clusters, where each xi ∈ Rd

is a vector of d dimensions. The proposed algorithm is an iterative procedure.

Without loss of generality, we assume n = T (2m − 1) for some integers T and

m. The algorithm first randomly divides the collection of n data points into m

subsets, denoted by S1,...,Sm, with | Si | = T2i−1. The initial guess for cluster

centers is denoted by ĉ1
1,...,ĉk

1 Given the initial cluster centers, the algorithm

iteratively updates them. At each iteration t, it uses the data points in St,

and identify, for each data point xti ∈ St, its closest cluster k̂i
t

by using some

suitable distance metric.

After computing the cluster memberships, next step is to update the cluster

centers, given the estimated cluster centers at iteration t, {ĉkt}Kk=1, we denote

by ŜK
t

the subset of data points in St that are assigned to ĉk
t. At iteration

t+ 1, we take the new cluster center as the average of data points in ŜK
t

N = Istack;

m = 4;

K = 15;

T = 11;

[coeff,score,latent,tsquared,explained,mu] = pca(N);

n = N * coeff(:,1:150);

[idx clustercenters] = kmeans(n,15);
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c = clustercenters;

f = randperm(165);

S = [ ];

ma = [ ];

arr=[ ];

IP=[ ];

ar=[ ];

B=[ ];

for i = 0 : 3

A=[ ];

X=[ ];

N=[ ; ];

q = 11 ∗ (2i − 1);

p = 11 ∗ (2i);

for j = q+1:1:q+p

for l=1:K

ma(j,l)= sum(n(f(j),:).*c(l,:));

end

[Y,arr] = max(ma(j,:));

A = [A arr];

end

for l=1:K

J=numel(find(A==l));

X=[X J];

N(l,1:J)= find(A==l);

if X(l)==0

c(l,:)=c(l,:);

else

c(l,:)=sum( n(f(N(l,1:J)),:))/X(l);

end

end

clear A;

clear X;

clear N;

clear S;

end

for i = 1:165

for l=1:K
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IP(i,l) = sum(n(i,:).*c(l,:));

end

[Y1 ar] = max(IP(i,:));

B = [B ar];

end

for d = 1:165

for j = 1:15

distancematrix(d,j) = norm(n(d, :)− c(j, :))2;

end

end

[M,I] = min(distancematrix’);

5.2.2 k-means

This algorithm is the implementation of what we have studied in 5.2.2

n = Istack./255; //n is the dataset

K = 15; //number of clusters

datadim = length(n(1,:)); //dimension of data

nbData = length(n(:,1)); //number of points in data

Matrix = [ ];

distancematrix = [ ];

//initializing the centroids randomly

datamin = min(n);

datamax = max(n);

datadiff = datamax - datamin ;

centroid = 255*rand(K, datadim);

for i=1 : 1 : length(centroid(:,1))

centroid( i , : ) = centroid( i , : ) .* datadiff;

centroid( i , : ) = centroid( i , : ) + datamin;

end // end init centroids

posdiff = 10000000;

while posdiff > 160.0

assignment = [ ]; //assign each datapoint to the closest centroid

for d = 1 : nbData;

mindiff = ( n( d, :) - centroid( 1,:) );

mindiff = mindiff * mindiff’;

curAssignment = 1;

for c = 2 : K;
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diff2c = ( n( d, :) - centroid( c,:) );

diff2c = diff2c * diff2c’;

if( mindiff ≥ diff2c)

curAssignment = c;

mindiff = diff2c;

end

end

assignment = [ assignment; curAssignment]; //assign the d-th dataPoint

end

// for the stoppingCriterion

oldPositions = centroid;

centroid = zeros(K, datadim); // recalculate the positions of the centroids

pointsInCluster = zeros(K, 1);

for d = 1: length(assignment);

centroid( assignment(d),:) = centroid( assignment(d),:) + n(d,:);

pointsInCluster( assignment(d), 1 ) = pointsInCluster( assignment(d), 1

) + 1;

end

for c = 1: K;

if( pointsInCluster(c, 1) = 0)

centroid( c , : ) = centroid( c, : ) / pointsInCluster(c, 1);

else

//set cluster randomly to new position

centroid( c , : ) = (rand( 1, datadim) .* datadiff) + datamin;

end

end

//stoppingCriterion

for i = 1:length(centroid(:,1))

Matrix(i,1) = norm(centroid(i,:) - oldPositions(i,:));

end posdiff = max(Matrix);

end

// calculating the closest centroid

for d = 1:nbData

for j = 1:length(centroid(:,1))

distancematrix(d,j) = norm(n(d,:)-centroid(j,:));

end

end

[M, I] = min(distancematrix′);
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5.2.3 Subset High dimensional clustering algorithm

To improve the results of k−means algorithm, we modified it using the concepts

from High Dimensional Clustering Algorithm(H.D.C.A). First, we randomly

take k initial centers and randomly divide the initial dataset into m subsets as

in H.D.C.A. Then using the data points from the first subset we update our

initial cluster centers using k−means algorithm. Next, we apply k− means to

updated centroids and data points from second subset, and repeat this process

till m subsets.

N = Istack;

m = 4;

K = 15;

T = 11;

[coeff,score,latent,tsquared,explained,mu] = pca(N);

n1 = N * coeff(:,1:155);

n = n1./255;

[idx clustercenters] = kmeans(n,15);

centroid = clustercenters;

f = randperm(165);

datadim = length(n(1,:));

nbData = length(n(:,1));

Matrix = [ ];

distancematrix = [ ];

datamin = min(n);

datamax = max(n);

datadiff = datamax - datamin ;

posdiff = 10000;

while posdiff > 160.0

assignment = [];

for i = 0: 1 : 3;

q = 11 ∗ (2i − 1);

p = 11 ∗ (2i);

for d = q+1:1:q+p

mindiff = ( n( d, :) - centroid( 1,:) );

mindiff = mindiff * mindiff’;

curAssignment = 1;

for c = 2 : K;

diff2c = ( n( d, :) - centroid( c,:) );

diff2c = diff2c * diff2c’;
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if( mindiff ≥ diff2c)

curAssignment = c;

mindiff = diff2c;

end

end

assignment = [ assignment; curAssignment];

end

oldPositions = centroid;

centroid = zeros(K, datadim);

pointsInCluster = zeros(K, 1);

for d = 1: length(assignment);

centroid( assignment(d),:) = centroid( assignment(d),:) + n(d,:);

pointsInCluster( assignment(d), 1 ) = pointsInCluster( assignment(d), 1 )

+ 1;

end

for c = 1: K;

if( pointsInCluster(c, 1) = 0)

centroid( c , : ) = centroid( c, : ) / pointsInCluster(c, 1);

else

centroid( c , : ) = (rand( 1, datadim) .* datadiff) +

datamin;

end

end

for i = 1:length(centroid(:,1))

Matrix(i,1) = norm(centroid(i,:) - oldPositions(i,:));

end

posdiff = max(Matrix);

end

clear assignment;

end

for d = 1:nbData

for j = 1:length(centroid(:,1))

distancematrix(d,j) = norm(n(d,:)-centroid(j,:));

end

end

[M,I] = min(distancematrix’);
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5.2.4 Results

We have implemented all three algorithms using four distance measures that are

L1 norm, L2 norm, L∞ norm and Inner product. A good reference for different

families of distance measures can be found in [7]. We calculated NMI, Variance

ratio clusterability for all the algorithms, and took the average values of 3-4

runs. All the values have been shown in the table below

Norm/Measure k−means H.D.C.A S.H.D.C.A

L1/NMI 0.6442 0.4190

L1/V.R.C 4.8× 1028 1× 1028

L2/NMI 0.7787 0.5992 0.6116

L2/V.R.C 4.5× 1022 6× 1028 8× 1027

L∞/NMI 0.7456 0.6329 0.7753

L∞/V.R.C 5× 1028 2.9× 1028 1.37× 1028

Inner product/NMI 0.3949 0.3482

Inner product/V.R.C 7× 1027 2.5× 1027



Chapter 6

Conclusions

In this work, we have studied the theoretical foundations of clustering. We

started with what is cluster analysis and then studied some clustering tech-

niques. Then we get into what are issues in clustering and how to conclude

whether our clustering is good or not. For this, we studied some measures such

as variance ratio clusterability, worst pair ratio clusterability and separability

clusterability that tell how good is our clustering. Then we studied how to

cluster high dimensional data.

Since, dealing with high dimensional data is computationally expensive, we

looked into a method called Principal Component Analysis that can lower the

dimension of the data and still gives efficient results. Principal component

analysis uses an orthogonal transformation to convert a set of observations of

possibly correlated variables into a set of values of linearly uncorrelated variables

called principal components. Then we studied some algorithms to cluster high

dimensional data. To implement our algorithms we took a standard database

called the Yaledata base which consists of 165 grayscale images of 15 different

people. The first algorithm we looked at is k−means algorithm, the main idea

of k−means algorithm is to define k centers, one for each cluster,then each point

is assigned to its nearest cluster center. Next, we update these cluster centers

by taking mean of all the data points assigned to that centers. This process

continues until the points stop changing their clusters.Then we studied high

dimensional clustering algorithm in which we first randomly take user defined

number of clusters and then randomly divide the dataset into subsets and at

each step we update our cluster centers using the points in these subsets. Then

we studied a modified algorithm using the concepts from k− means and high

dimensional clustering algorithm. In this algorithm first we randomly take k
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initial centers and randomly divide the initial dataset into m subsets as in

H.D.C.A. Then using the data points from the first subset we update our initial

cluster centers using k−means algorithm. Next, we apply k− means to updated

centroids and data points from second subset, and repeat this process till m

subsets. Then to do comparative study between all these algorithms we took two

measures called Normalized mutual information and variance ratio clusterability

and calculated their values for all the algorithms using four distance measures

that are L1 norm, L2 norm, L∞ norm and Inner Product. From the table we

have made, we can see that k− means gives best results followed by subset high

dimensional clustering algorithm and high dimensional clustering algorithm.

From this, we conclude that its better to divide the set into subsets and apply

k− means on each disjoint subsets rather then dividing the set into disjoint

subsets and updating the cluster centers using a single pass algorithm.
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