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Active Brownian particles: Entropy production and fluctuation response
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Within the Rayleigh-Helmholtz model of active Brownian particles, activity is due to a nonlinear velocity-
dependent force. In the presence of external trapping potential or constant force, the steady state of the system
breaks detailed balance producing a net entropy. Using molecular dynamics simulations, we obtain the probability
distributions of entropy production in these steady states. The distribution functions obey fluctuation theorems
for entropy production. Using the simulation, we further show that the steady-state response function obeys a
modified fluctuation-dissipation relation.
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I. INTRODUCTION

Active systems perform out of equilibrium dynamics by
generating motion utilizing energy from their environment.
This is unlike nonequilibrium state of passive particles, where
the system is driven by external forces. Examples of active
system range from moving animals, to motile cells, motor
proteins, and artificial active Brownian particles (ABP) [1,2],
e.g., self-propelled colloids [3,4], nano-rotors [5], vibrated
granular particles [6,7]. Generation of self-propulsion is often
expressible in terms of nonlinear velocity-dependent forces
that lead to nonzero mean speed at steady state [1]. Properties
of small systems, in or out of equilibrium, are describable
within the framework of stochastic thermodynamics [8–10].
Probability distributions of work done or entropy production
are shown to obey fluctuation theorems in driven passive
systems, e.g., of small assembly of nanoparticles, colloids,
granular matter, and polymers [6,11–17]. While the mean
entropy production in such processes remain positive, occa-
sional fluctuation of negative entropy production is not ruled
out [18–20]. The stochastic entropy production by particles is
associated with their trajectories [21,22]. Fluctuation theorems
have been verified in experiments on colloids [14,23,24],
granular matter [7], and used to find out the free-energy
landscape of RNA [15,25]. Fluctuation theorems have also
been derived for models of molecular motors [26–28] and
used to determine autonomous force or torque generation
by them [29,30]. Recently, fluctuation theorems for entropy
production have been extended for ABPs with velocity-
dependent self-propulsion forces [31]. On the other hand, the
nonequilibrium steady states (NESS) of driven passive Brown-
ian particles are characterized by response functions that obey
modified fluctuation-dissipation relations (MFDR) in terms of
steady-state correlations [32–38]. Theoretical predictions in
this context were verified experimentally [39,40].

In this paper, we consider the Rayleigh-Helmholtz
model [1] of active Brownian particles (ABP) where activity
is generated via a nonlinear velocity-dependent force. Starting
from underdamped Langevin equations, we derive fluctuation
theorems for entropy production by ABPs. We perform
molecular dynamics simulations in the presence of Langevin
thermostat to obtain probability distributions of entropy
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production to find good agreement with the detailed fluctuation
theorem. Finally, we characterize nonequilibrium steady states
of ABPs in terms of a modified fluctuation-dissipation relation.

II. MODEL

The dynamics of an ABP in the presence of a velocity-
dependent active force F (v) can be described in terms of the
Langevin equations of motion:

ẋ = v
(1)

v̇ = −γ v + η(t) + F (v) − ∂xU (x) + f (t).

The Langevin heat bath is characterized by the viscous dissi-
pation −γ v and Gaussian white noise η(t) obeying 〈η(t)〉 = 0,
〈η(t)η(t ′)〉 = 2D0δ(t − t ′), with D0 = γ kBT . Here T denotes
an effective temperature representing both thermal and non-
thermal fluctuations that may arise from chemical processes
leading to activity. In the above equation U (x) denotes a
conservative potential, and f (t) a time-dependent control
force. We use particle mass m = 1 throughout this paper.

The generation of activity by F (v) can be seen easily con-
sidering U (x) = 0 = f (t). In the over-damped limit, the mean
velocity is obtainable from the relation γ 〈v〉 − F (〈v〉) = 0.
Within the Rayleigh-Helmholtz model F (v) = av − bv3 with
a > γ . This leads to three possible fixed points for the steady-
state mean velocity 〈v〉 = 0, ± v0 with v0 = √

(a − γ )/b,
among which 〈v〉 = 0 is unstable and ±v0 are stable fixed
points. At small velocities, v < v0, velocity-dependent force
g(v) = F (v) − γ v = b(v2

0 − v2)v pumps energy into the ki-
netic degrees of freedom to generate self-propulsion [1]. This
model of ABPs has been successfully used to analyze the
bidirectional motion of microtubule interacting with NK11
motor proteins that generate active drive hydrolyzing the
chemical fuel ATP [41,42].

The Fokker-Planck equation corresponding to Eq. (1) is
given by

∂tP (x,v,t) = −∂x(vP ) − ∂v[g(v) + F̄]P

+D0∂
2
vP ≡ −∇.j, (2)

where ∇ = (∂x,∂v) and F̄ = f (t) − ∂xU . For a time-
independent external force f , one may express the total current
j = jr + jd with jr = (vP,F̄P ) the time-reversible part of
the phase-space probability current, jd = (0,g(v)P − D0∂vP )
the dissipative part of the current. The detailed balance
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condition, obeying microscopic time-reversal symmetry, is
satisfied if jd = (0,0) and ∇.jr = 0 [43,44]. The breakdown of
time-reversal symmetry leads to entropy production. Thus, we
consider the detailed balance condition, and its break down in
the following.

A. Equilibrium detailed balance

The condition jd = (0,0) implies

∂vP (x,v) = g(v)

D0
P (x,v), (3)

which has a solution

P (x,v) = p(x) exp[−φ(v)/D0], (4)

where φ(v) is a velocity-dependent potential such that g(v) =
−∂vφ(v). The other condition ∇.jr = 0 can be written as

v∂xP (x,v) + F̄∂vP (x,v) = 0, (5)

in which using P (x,v) = p(x) exp[−φ(v)/D0] one obtains a
solution

p(x) = p0 exp

[
−g(v)

vD0

∫
F̄dx

]
. (6)

If the force F̄ is conservative, F̄ = −∂xU , the solution
has a normalizable form p(x) = p0 exp[U (x) g(v)/vD0]. For
passive particles, g(v) = −γ v leads to Boltzmann distribution
p(x) = p0 exp[−U (x)/kBT ].

On the other hand, if F̄ contains a nonconservative force
f the solution p(x) is proportional to exp[−f x g(v)/vD0],
which is not normalizable as

∫ ∞
−∞ dx exp[−f x g(v)/vD0] is

not bounded above. Thus, nonconservative force does not
support a detailed balance steady state. The requirement that
conservative force, not the nonconservative one, supports
microscopic reversibility is shown in Ref. [45], considering
a many particle system.

As we show now, even conservative force, F̄ = −∂xU , does
not allow detailed balance in ABPs. Using the solution given
by Eqs. (4) and (6) in Eq. (3), one gets a condition

g(v) = −∂vφ(v) + ∂v

(
g(v)

v

)
U (x). (7)

Since g(v) = −∂vφ(v), the above condition is satisfied only if
g(v) ∝ v or U (x) = 0. For passive Brownian particles, g(v) =
−γ v and conservative force always leads to equilibrium
detailed balance. Due to nonlinear velocity dependence in
g(v), for ABPs in potential trap Eq. (7) is not satisfied, and
thus detailed balance is not obeyed.

To summarize the discussion in this section, microscopic
reversibility for ABPs may be broken either by imposing
nonconservative external force f or by trapping the ABPs
in conservative external potential U (x). Both these conditions,
therefore, would lead to entropy production in ABPs and are
considered in this paper.

Within the Rayleigh-Helmholtz model g(v) = (a − γ )v −
bv3, and detailed balance is obtained if both f = 0 and
U = 0; i.e., F̄ = 0. Equation (5) implies ∂xP (x,v) = 0,
which is automatically satisfied by the solution Eq. (4) with
p(x) = constant. Thus, one gets an equilibrium-like solution

FIG. 1. (Color online) Steady-state probability distribution Ps(v)
for ABPs under a constant external force f = 0.2. Points are from
MD simulations, and the line is a plot of Eq. (9).

for the Rayleigh-Helmholtz model:

Ps(v) = N exp[−φ(v)/D0], (8)

where N is the normalization constant, and φ(v) = ψ(v) +
γ v2/2 with ψ(v) = −(a/2)v2 + (b/4)v4 a velocity-dependent
double-well potential characterizing the self-propulsion force
F (v) = −∂vψ(v) of the Rayleigh-Helmholtz model. The
minima of the potential φ(v) are at ±v0.

B. Nonequilibrium steady states

The nonequilibrium steady state in the presence of a
constant external force f , and absence of potential U = 0, may
be solved easily by noting that the force may be incorporated
by redefining the velocity-dependent potential to φ(v) − f v.
The corresponding steady-state distribution is

Ps(v) = N exp{−[φ(v) − f v]/D0}. (9)

A part of the total entropy change between two steady
states is the difference in stochastic system entropy s =
−kB ln Ps [13,21], as will be discussed in the next section,
and thus calculation of steady-state distributions is important
in the context of transient fluctuation theorems.

The Rayleigh-Helmholtz ABPs may also be brought into
nonequilibrium steady state by trapping them within a conser-
vative potential U (x). The analytic form of the corresponding
steady-state solution for general U (x) is not known. Thus, we
use numerical simulations to calculate these distributions.

We perform molecular dynamics (MD) simulations using
the standard velocity-Verlet algorithm with a time step δt =
0.01τ , where τ = 1/γ , and keep the temperature constant at
T = 1.0(D0/γ kB) via a Langevin thermostat. The simulation
method for ABPs is validated by calculating the steady-
state velocity distribution under constant external force and
comparing it against Eq. (9) (see Fig. 1). In all our simulations
we used F (v) = av − bv3 with a = 4 and b = 1. Also, unless
otherwise specified, we used the noise strength D0 = 1.

III. ENTROPY PRODUCTION

The Langevin equation of the Rayleigh-Helmholtz model
of ABPs obeys energy conservation. Multiplying Eq. (1) by
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velocity v and integrating over a small time interval τ0, one
obtains [8]

	E = 	W + 	q, (10)

where 	E denotes the change in mechanical energy E =
(1/2)v2 + U (x), 	W = ∫ τ0 dt v.f (t) is the work done on
the ABPs by external force f (t), and 	q = 	Q + 	Qm

is the total energy absorbed by the mechanical degrees of
freedom of the ABPs: (a) from the Langevin heat bath,
	Q = ∫ τ0 dt v.(−γ v + η), and (b) from the self-propulsion
mechanism, 	Qm = ∫ τ0 dt v.F (v).

In a system of conventional passive Brownian particles,
the stochastic entropy production in any process has two
components. One is the entropy change in the system 	s

where the stochastic system entropy is expressed as s =
−kB ln Ps , with Ps denoting steady-state distribution. The
other contribution comes from the change in entropy in the heat
bath, 	sr = −	q/T [21]. A direct extension of this idea to
ABPs would mean 	sr = −	q/T with 	q = 	Q + 	Qm.
However, as we show below, 	sr for ABPs has further extra
contributions coming from the mechanism of active force
generation and its coupling to the mechanical forces [31].

Consider the time evolution of an ABP from t = 0 to τ0

through a path defined by X = [x(t),v(t),f (t)]. The motion
on this trajectory involves interaction of the particle with
Langevin heat bath and the presence of self propulsion force
F (v). Microscopic reversibility means the probability of such
a trajectory is the same as the probability of the corresponding
time-reversed trajectory. Entropy production requires break
down of such microscopic reversibility.

Let us first consider the transition probability p+
i (x ′,v′,t +

δt |x,v,t) for an infinitesimal section of the trajectory evolved
during a time interval δt , assuming that the whole tra-
jectory is made up of i = 1, . . . ,N such segments, such
that Nδt = τ0. The Gaussian random noise at ith instant
is described by P (ηi) = (δt/4πD0)1/2 exp(−δt η2

i /4D0). The
transition probability is given by p+

i = Jηi ,vi
〈δ(ẋi − vi)δ(v̇i −

Fi)〉 = Jηi ,vi

∫
dηiP (ηi)δ(ẋi − vi)δ(v̇i − Fi), where the to-

tal force acting on the particle at ith instant of time is
Fi = ηi + g(vi) − ∂xi

U (xi) + fi , with g(vi) = F (vi) − γ vi ,
and Jηi ,vi

= (1/δt)[1 − δt ∂vi
g(vi)/2] (see Appendix). Thus,

we have p+
i = Jηi ,vi

(δt/4πD0)1/2δ(ẋi − vi) exp{− δt
4D0

[v̇i −
g(vi) + ∂xi

U (xi) − fi]2}. The probability of full trajectory is
P+ = ∏N

i=1 p+
i .

Reversing the velocities gives us the time reversed path
X†=[x ′(t ′),v′(t ′),f ′(t ′)]=[x(τ0 − t),−v(τ0−t),f (τ0−t)], the
probability of which can be expressed as P−= ∏N

i=1 p−
i where

p−
i =Jηi ,vi

(δt/4πD0)1/2δ(ẋi−vi) exp{− δt
4D0

[v̇i+g(vi) + ∂xi
U

(xi)−fi]2}, since the velocity-dependent forces are odd
function of velocity g(−vi) = −g(vi), and Jηi ,vi

remains the
same.

The ratio of probabilities of the forward and reverse
trajectories is

P+
P−

= exp

[
δt

D0

N∑
i=1

(
v̇i + ∂xi

U − fi

)
g(vi)

]

= exp

{
1

D0

∫ τ0

0
dt

[
v̇ + ∂U

∂x
− f (t)

]
g(v)

}
.

After simplifications, the ratio can be expressed as [31]

P+
P−

= exp

[
−β

(
	q + 	Qem + 1

γ
	ψ

)]
, (11)

where β = 1/kBT = γ /D0. In the above relation, 	q =
	Q + 	Qm is the heat absorbed, as identified in
the context of energy conservation. The term 	Qem =
(1/γ )

∫ τ0

0 dt F (v).(f (t) − ∂xU ) is a coupling between the
self-propulsion and external forces. 	ψ is the change in a
self-propulsion potential defined through F (v) = −∂vψ(v).

The probability ratio of the forward and reverse trajectories
accounts for the entropy change in the reservoirs P+/P− =
exp(	sr/kB) [21,31]. Thus, we have

	sr = − 1

T

(
	q + 	Qem + 1

γ
	ψ

)
. (12)

Evidently the reservoir entropy change 	sr has contributions
from two extra terms, 	Qem and 	ψ , with respect to the
expression 	sr = −	q/T , inferred from the behavior of
passive Brownian particles.

It is interesting to note that the active force has three
contributions to entropy production. Origin of 	Qm in 	q =
	Q + 	Qm is direct, this is due to work done by the active
force. The contribution through energy transfer 	Qem is due
to coupling of velocity-dependent active force to mechanical
forces. Apart from that, the mechanism of active force
generation through the velocity-dependent potential ψ(v) also
contributes to entropy. The origin and meaning of these terms
have easy interpretation within a simple model of active
particle dynamics v̇ = −γ (v − v0) + η(t) + f (t) considered
in Refs. [46,47]. In this model, friction γ pumps in energy
if v < v0 and dissipates otherwise. The self-propulsion force
F = γ v0 leads to 	Qem = ∫

dtf v0, and 	ψ/γ = −	(vv0).
Thus, in this case 	Qem and 	ψ/γ are equivalent to
work done, and change in internal energy for driven passive
Brownian particles, respectively.

Assuming the initial and final steady-state distributions as
P i

s and P
f
s , respectively, the system entropy change is 	s =

sf − si = kB ln(P i
s /P

f
s ). Thus, the total entropy production is

	st = 	s − 1

T

(
	q + 	Qem + 1

γ
	ψ

)

= 	s − 1

T

(
	E − 	W + 	Qem + 1

γ
	ψ

)
, (13)

where in the last step we used the relation of energy
conservation Eq. (10).

The probability distribution of the forward process is Pf =
P i

s P+, and that of the reverse process is Pr = P
f
s P−. Thus,

Pr/Pf = exp (−	st/kB), (14)

and 〈exp (−	st/kB)〉= ∫
D[X]Pf exp (−	st/kB)= ∫

D[X]
Pf (Pr/Pf )=1. This relation is known as the integral fluctu-
ation theorem [17] and implies a positive entropy production
on an average 〈	st 〉 � 0.

Equation (14) can be used to obtain the detailed fluctuation
theorem for the probability distribution of entropy production
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ρ(	st ) [13,31],

ρ(	σ )

ρ(−	σ )
= e	σ/kB , (15)

where 	σ denotes an amount of total entropy 	st produced
over a time interval τ0. In the following, using MD simulations
we calculate the steady-state probability distributions of
total entropy productions ρ(	st ) and hence test the detailed
fluctuation theorem.

A. Detailed balance state

In the absence of external potential U (x) = 0 and force
f (t) = 0, the system obeys detailed balance as has been shown
in Sec. II A. Let us denote the initial and final points on a
trajectory evolved over a time τ0 by (xi,vi) to (xf ,vf ). In
this case, the heat absorbed, 	q = 	E = (v2

f − v2
i )/2, and

the steady-state distribution, Ps = N exp[−φ(v)/D0], where
φ(v) = (γ /2)v2 + ψ(v) with ψ(v) = −(a/2)v2 + (b/4)v4.
The corresponding entropy change in the system is 	s/kB =
	φ/D0 = 	ψ/D0 + (β/2)(v2

f − v2
i ) with β = γ /D0. Thus,

the total entropy change is

	st

kB

= 	s

kB

− β

(
	q + 1

γ
	ψ

)

= 	φ

D0
− β

2

(
v2

f − v2
i

) − 	ψ

D0

= 0, (16)

as expected due to detailed balance. There is no difference
between the initial and final steady states, and the probabilities
of forward and reverse trajectories are the same.

B. NESS with constant force

The simplest nonequilibrium steady-state-producing en-
tropy is attained in the presence of a constant external force,
breaking the detailed balance condition for ABPs. In this
case, f 
= 0 and external potential U (x) = 0. We assume a
trajectory from (xi,vi) to (xf ,vf ) evolves over time τ0. The
heat absorbed is 	q = 	E − 	W = (v2

f − v2
i )/2 − f (xf −

xi). The steady-state distribution is given by [Eq.(9)] Ps =
N exp{−[φ(v) − f v]/D0}, where φ(v) = (γ /2)v2 + ψ(v)
with ψ(v) = −(a/2)v2 + (b/4)v4. Thus, the system entropy
change 	s/kB = (	φ − f 	v)/D0 = 	ψ/D0 + (β/2)(v2

f −
v2

i ) − (f/D0)(vf − vi). The total entropy change is

	st

kB

= 	s

kB

− β

(
	q + 	Qem + 1

γ
	ψ

)

= − f

D0

[
(vf − vi) +

∫ τ0

dtF (v)

]
+ βf (xf − xi),

(17)

where in the last step we used the identity β	Qem =
(f/D0)

∫ τ0 dtF (v).
In Fig. 2 we show the probability distributions of en-

tropy production ρ(	st ) calculated from MD simulations of
Rayleigh-Helmholtz ABPs at f = 0.2, using Eq. (17) for
the expression of 	st . The distributions are calculated after
collecting data over various time periods τ0. Appreciable prob-

FIG. 2. (Color online) Probability distribution of total entropy
production ρ(	st ) calculated in the presence of an external force
f = 0.2. The calculations are performed after collecting data over
τ0 = 2.56, 5.12, 10.24, 20.48, 40.96 τ .

ability of negative entropy production is clearly visible. With
increase in τ0, the distributions broaden and the peak positions
shift toward higher values of entropy. From each curve, one
can extract the ratio of probabilities ρ(	σ )/ρ(−	σ ) with
ρ(	σ ) = ρ(	st = 	σ ) and ρ(−	σ ) = ρ(	st = −	σ ). As
is shown in Fig. 3, this ratio obeys the detailed fluctuation
theorem ρ(	σ )/ρ(−	σ ) = exp(	σ/kB).

C. ABPs in potential trap

A system of Rayleigh-Helmholtz ABPs if trapped by an
external potential U (x) (keeping f = 0) gets into a NESS.
This is unlike passive Brownian particles that still remains at
equilibrium with probability distribution described in terms of
Boltzmann weight exp[−βU (x)]. As we have seen in Sec. II B,
the steady-state probability density Ps(x,v) in this case is not
analytically obtainable for a general U (x) and noise strength
D0. We perform MD simulations to find Ps(x,v). For a trajec-
tory between (xi,vi) and (xf ,vf ) evolved over a time τ0, the
corresponding change in the system entropy is thus calculated
using the numerically obtained probability distributions, and

FIG. 3. (Color online) Ratio of probability distributions of posi-
tive and negative entropy production ρ(	st = 	σ )/ρ(	st = −	σ )
calculated from the data described in the legend of Fig. 2. The solid
line is a plot of the function exp(	σ/kB ).
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FIG. 4. (Color online) Probability distributions of total entropy
productions ρ(	st ) calculated in the presence of an external harmonic
potential trap U (x) = (1/2)ω2

0x
2 with ω2

0 = 5. The calculations are
performed after collecting data over τ0 = 2.56, 5.12, 10.24, 20.48 τ .

the relation 	s = kB ln[Ps(xi,vi)/Ps(xf ,vf )]. The change in
the reservoir entropy is given by

	sr

kB

= −β

[
	E − 1

γ

∫ τ0

dtF (v)∂xU (x) + 	ψ

γ

]
, (18)

where E = v2/2 + U (x), and as before, for any function
χ (x,v) the change 	χ (x,v) = χ (xf ,vf ) − χ (xi,vi). In MD
simulations, we use U (x) = (1/2)ω2

0x
2, a harmonic potential

well with strength ω2
0 = 5. Probability distribution of entropy

production ρ(	st ) is shown in Fig. 4. The distribution widens,
and the peak rapidly moves toward very large values of total
entropy as the measurement time τ0 is increased. The detailed
fluctuation theorem is obeyed as is shown in Fig. 5.

IV. LINEAR RESPONSE AT NESS: MODIFIED
FLUCTUATION DISSIPATION RELATION

The steady state of the ABPs may be characterized by linear
response functions. The Fokker-Planck Eq.(2) can be written

FIG. 5. (Color online) Ratio of probability distributions of posi-
tive and negative entropy productions ρ(	st = 	σ )/ρ(	st = −	σ )
calculated from the data described in the legend of Fig. 4. The solid
line shows a plot of exp(	σ/kB ).

as

∂tP (x,v,t) = L(x,v,h)P (x,v,t) = (L0 + f (t)L1)P, (19)

where

L0P = −∂x(vP ) − ∂v[g(v) − ∂xU ]P + D0∂
2
vP

L1P = −∂vP .

As it has been shown earlier, the linear response to f (t) in a
system at steady state described by Ps(x,v) such thatL0Ps = 0
can be expressed as [36–38,48]

δ〈A(t)〉
δf (t ′)

= 〈A(t)M(t ′)〉s , (20)

where 〈. . . 〉s indicates a steady-state average, and M =
−(1/Ps)∂vPs . This is a version of modified fluctuation dis-
sipation relation (MFDR).

For free ABPs U (x) = 0 = f (t), the system goes into
a detailed balance steady state described by the dis-
tribution Ps(v) = N exp[−φ(v)/D0], where φ(v) = −(a −
γ )v2/2 + bv4/4. In this case, M = ∂v[− ln Ps] = g(v)/D0 =
[−(a − γ )v + bv3]/D0, and the response function RA(t,t ′) =
δ〈A(t)〉/δf (t ′) around a steady state, where time translation
invariance is obeyed, is given by

RA(t) = −a − γ

D0
〈A(t)v(0)〉s + b

D0
〈A(t)v3(0)〉s . (21)

For the ABPs, a > γ gives rise to active force generation
leading to a negative coefficient of 〈A(t)v(0)〉s in the MFDR.
Given that the fluctuation-dissipation theorem for passive
Brownian particles is RA(t) = β〈A(t)v(0)〉eq, within equilib-
rium the temperature can be expressed as the ratio kBT =
〈A(t)v(0)〉eq/RA(t). For ABPs, even in a detailed balance state,
the effective temperature T is not expressible as a simple
ratio of fluctuation 〈A(t)v(0)〉s and response RA(t), and the
coefficient of 〈A(t)v(0)〉s cannot be interpreted as an effective
negative temperature.

In order to use the expression Eq. (20), one requires the
detailed knowledge of the steady-state probability distribution.
Interpreting the Gaussian noise η(t) in the same footing as the
externally applied forces, and by expressing the observable
A[x(t),v(t)] as a functional A[η(t)] of the noise history, the
response function can also be written as [33]

RA(t − t ′) =
〈
δA[η]

δη(t ′)

〉
= 1

2D0
〈A(t)η(t ′)〉. (22)

Using the Langevin equation to replace η(t ′), for ABPs under
a potential U (x), one finds

RA(t) = 1

2D0
[〈A(t)v̇(0)〉 − 〈A(t)g[v(0)]〉

+〈A(t)∂xU [x(0)]〉]. (23)

Let us now focus our attention on velocity response Rv(t) in
NESS. Utilizing causality and time-translation symmetry at
the NESS, the above expression can be written as [44]

Rv(t) = − 1

2D0
[〈g[v(t)]v(0)〉 + 〈v(t)g[v(0)]〉

−〈∂xU [x(t)]v(0)〉 − 〈v(t)∂xU [x(0)]〉], (24)
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FIG. 6. (Color online) Response functions and steady-state fluc-
tuations. (a) Direct MD evaluation of response function for Rayleigh-
Helmholtz ABPs, and passive Brownian particles within a harmonic
trap of strength ω2

0 = 5. (b) Comparison of response function of ABPs
Rv(t) against steady-state fluctuations as given by the right-hand side
of Eq. (25).

where g[v(t)] = −γ v(t) + F [v(t)]. For harmonic traps
U (x) = (1/2)ω2

0x
2, the above expression further simplifies,

as 〈x(t)v(0)〉 = −〈v(t)x(0)〉, to

Rv(t) = − 1

2D0
[ 〈g[v(t)]v(0)〉 + 〈v(t)g[v(0)]〉 ]. (25)

Even for U = 0 this relation holds, but the system goes to a
detailed balance state, in which, due to time-reversal symmetry
〈g[v(t)]v(0)〉 = 〈v(t)g[v(0)]〉, and thus

Rv(t) = − 1

D0
〈v(t)g[v(0)]〉, (26)

which is the same as Eq. (21) for velocity response. For passive
free particles, g(v) = −γ v, and one gets back the equilibrium-
response function Rv(t) = β〈v(t)v(0)〉 = exp(−t). However,
when placed within a harmonic trap they are expected to show
an oscillatory response.

Note that δ〈v(t)〉 = ∫ t

−∞ Rv(t − t ′)δf (t ′)dt ′ and replace-
ment of the perturbing force δf (t ′) by a Diract-δ function
δ(t ′) gives δ〈v(t)〉 = Rv(t). Thus, in MD simulations, velocity
response is calculated by following the change in velocity
due an impulsive force of unit magnitude. In Fig. 6(a) we
show the comparison between the response functions Rv(t)
evaluated from MD simulations of harmonically trapped pas-
sive Brownian particles with that of the Rayleigh-Helmholtz
ABPs. Activity clearly leads to longer lasting oscillations. In
the nonequilibrium steady state that the ABPs maintain, our
simulations show 〈g[v(t)]v(0)〉 
= 〈v(t)g[v(0)]〉, which is due
to the absence of time-reversal symmetry. We find a good
agreement between the directly calculated response function
Rv(t) with that of the steady-state fluctuations expressed by
the right-hand side of Eq. (25) [see Fig. 6(b)]. The correlation
functions are calculated from a separate MD simulation
performed in the absence of external force.

V. CONCLUSION

Using molecular dynamics simulations, we obtained prob-
ability distributions of entropy production in nonequilibrium
steady states of the Rayleigh-Helmholtz ABPs. We identified
the conditions under which ABPs break detailed balance
and start to produce entropy. We showed that the entropy
production obeys the detailed fluctuation theorem. Further,
we verified a modified fluctuation-dissipation relation for
the steady-state response. Given the close relation of the
Rayleigh-Helmholtz model to the bidirectional motion of
microtubules influenced by NK11 motors [41], our predictions
are amenable to experimental verification.
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APPENDIX : PROBABILITY OF A TRAJECTORY

It is simpler to consider an over-damped Langevin dynamics
first. Let us assume the position of a particle evolves via

γ ẋ = η(t) + F , (A1)

where F is the total nonstochastic force acting on the particle,
and the Gaussian white noise is characterized by 〈η(t)〉 =
0, 〈η(t)η(0)〉 = 2D0δ(t), with D0 = γ kBT . Discretizing the
equation with t = i δt , using Stratonovich rule,

xi = xi−1 + βD

2
(Fi + Fi−1)δt + ξiδt, (A2)

where D = kBT /γ and ξi = ηi/γ . The Gaussian
random noise ξ (t) follows the distribution P (ξi) =
(δt/4πD) exp(−δtξ 2

i /4D). Thus, the transition probability
P (xi |xi−1) = Jξi ,xi

P (ξ ) where the Jacobian

Jξi ,xi
= det

(
∂ξi

∂xi

)
= 1

δt

(
1 − δt

2γ
∂xi

Fi

)
. (A3)

Using Eq. (A2) to replace ξi , we find

P (xi |xi−1) = Jξi ,xi

√
δt

4πD
e− δt

4D
[ x′−x

δt
+βDF]2

. (A4)

This transition probability is easily obtainable from the
probability of velocity calculated at ith instant 〈δ(ẋ − v)〉,
where v = (η + F)/γ ,

〈δ(ẋ − v)〉 =
∫

dξ

√
δt

4πD
e− δt

4D
ξ 2

δ(ẋ − v)

=
√

δt

4πD
e− δt

4D
[ẋ+βDF]2

. (A5)

Identifying ẋ = (xi − xi−1)/δt , the transition probability, or
the probability of a segment of the trajectory between (xi−1,t)
and (xi,t + δt) is P (xi |xi−1) = Jξi ,xi

〈δ(ẋ − v)〉. The whole
trajectory is obtainable by adding a series of such segments.
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The probability weight associated with the whole trajectory is
P+ = ∏

i P (xi |xi−1) [22].
A direct extension of this idea to under-damped Langevin

equation is straightforward. The dynamics is described by

ẋ = v
(A6)

v̇ = g(v) + η(t) + F ,

where g(v) contains all the velocity-dependent forces, and
F denotes the velocity-independent forces. Similarly, as
in the above calculation, the probability of ith segment

of the trajectory p+
i ≡ P (xi,vi |xi−1,vi−1) = Jηi ,vi

〈δ(ẋ −
v)δ{v̇ − [g(v) + F]}〉, which gives

p+
i = Jηi ,vi

δ(ẋ − v)

√
δt

4πD0
e
− δt

4D0
[v̇+γ v−F]2

, (A7)

where [31]

Jηi ,vi
= 1

δt

[
1 − δt

2
∂vi

g(vi)

]
. (A8)

The probability associated with a full trajectory is P+ =∏
i p

+
i .
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