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Abstract

We investigate a variation of the transitivity problem for proximinality prop-
erties of subspaces and intersection properties of balls in Banach spaces. For
instance, we prove that if Z ⊆ Y ⊆ X, where Z is a finite co-dimensional
subspace of X which is strongly proximinal in Y and Y is an M -ideal in X,
then Z is strongly proximinal in X. Towards this, we prove that a finite
co-dimensional proximinal subspace Y of X is strongly proximinal in X if
and only if Y ⊥⊥ is strongly proximinal in X∗∗. We also prove that in an
abstract L1-space, the notions of strongly subdifferentiable points and quasi-
polyhedral points coincide. We also give an example to show that M -ideals
need not be ball proximinal. Moreover, we prove that in an L1-predual space,
M -ideals are ball proximinal.

Keywords: Proximinality, strong proximinality, ideal, semi M -ideal,M -ideal.

1. Preliminaries

In this article, we consider only Banach spaces over the real field R and all
subspaces we consider are assumed to be closed. For a Banach space X; BX ,
SX and B[x, r] denote the closed unit ball, the unit sphere and the closed
ball with centre at x and radius r respectively. We consider every Banach
space X, under the canonical embedding, as a subspace of X∗∗.
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Let K be a non-empty closed subset of a Banach space X. For x ∈ X, let
d(x,K) = inf{‖x− k‖ : k ∈ K} and PK(x) = {k ∈ K : d(x,K) = ‖x− k‖}.
The set K is said to be proximinal in X if PK(x) 6= ∅ for all x ∈ X. A
subspace Y of X is said to be ball proximinal in X if for every x ∈ X,
PBY

(x) 6= ∅ (see [2, 16] for details).
In [10], Godefroy and Indumathi introduced a stronger version of prox-

iminality called ‘strong proximinality’.

Definition 1.1. A proximinal subspace Y of a Banach space X is said to
be strongly proximinal in X if for every x ∈ X and every ε > 0, there exists
a δ > 0 such that PY (x, δ) ⊆ PY (x) + εBY , where PY (x, δ) = {y ∈ Y :
‖x− y‖ < d(x, Y ) + δ}.

In [7], Franchetti and Payá introduced the notion of strong subdifferen-
tiability in Banach spaces which in turn characterizes strongly proximinal
hyperplanes.

Definition 1.2. The norm of a Banach space X is said to be strongly subd-

ifferentiable (in short SSD) at x ∈ X if the one sided limit

d+(x)(y) := lim
t→0+

‖x+ ty‖ − ‖x‖

t

exists uniformly for y ∈ BX . In this case, x is said to be an SSD point of X.
If each x ∈ SX is an SSD-point of X, then the norm of X is said to be SSD.

The following result by Godefroy and Indumathi connects SSD-points
with strongly proximinal subspaces of co-dimension one.

Theorem 1.3 ([10]). Let X be a Banach space. Then, for f ∈ X∗, ker(f)
is strongly proximinal in X if and only if f is an SSD-point of X∗.

In the case of finite co-dimensional strongly proximinal subspaces, we
recall the following result.

Theorem 1.4 ([10]). Let Y be a finite co-dimensional subspace of a Banach

space X. If Y is strongly proximinal in X, then Y ⊥ is contained in the set

of all SSD-points of X∗.

The following notion of a quasi-polyhedral point, introduced in [1] by
Amir and Deutsch, is stronger than the notion of an SSD-point.
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Definition 1.5. A vector x in a Banach space X is said to be a quasi-

polyhedral (in short QP) point of X if there exists a δ > 0 such that JX∗(z) ⊆
JX∗(x) for ‖z − x‖ < δ and ‖z‖ = ‖x‖, where JX∗(x) = {f ∈ BX∗ : f(x) =
‖x‖}.

In [10], Godefroy and Indumathi proved that a QP-point is also an SSD-
point but the converse need not be true.

The next result follows from the proof of Theorem 3.4 of [10].

Theorem 1.6 ([10]). Let Y be a finite co-dimensional subspace of a Banach

space X such that Y ⊥ is contained in the set of all QP-points of X∗ . Then

Y is strongly proximinal in X.

We now recall the notion of an M -ideal in a Banach space which is
stronger than proximinality (in fact, stronger than strong proximinality).

Definition 1.7 ([12, 23]). Let X be a Banach space.

(a) A linear projection P on X is said to be an M-projection (L-projection)
if ‖x‖ = max{‖Px‖, ‖x−Px‖} (‖x‖ = ‖Px‖+ ‖x−Px‖) for all x ∈ X.
A function P : X → X is said to be a semi L-projection if P 2 = P ,
P (λx + P (z)) = λP (x) + P (z) for all λ ∈ R, x, z ∈ X and ‖x‖ =
‖P (x)‖+ ‖x− P (x)‖ for all x ∈ X.

(b) A subspace Y of X is said to be an M-summand (L-summand) in X if
it is the range of an M -projection (L-projection). A subspace Y of X is
said to be a semi L-summand if it is the range of a semi L-projection.

(c) A subspace Y of X is said to be an M-ideal (semi M-ideal) in X if Y ⊥

is an L-summand (semi L-summand) in X∗.

(d) A subspace Y of X is said to be an ideal in X if Y ⊥ is the kernel of a
norm one projection on X∗.

It is well-known that each Banach space is an ideal in its bidual.
We next recall some of the intersection properties of balls which are closely

related to the proximinality properties.

Definition 1.8 ([12]). (a) Let n ∈ N. A subspace Y of a Banach space
X is said to have the (strong) n-ball property if, given n closed balls
{B[ai, ri]}

n
i=1 in X such that

⋂n
i=1 B[ai, ri] 6= ∅ and Y

⋂

B[ai, ri] 6= ∅ for
all i = 1, . . . , n, then Y

⋂

(
⋂n

i=1 B[ai, ri + ε]) 6= ∅ for all (ε ≥ 0) ε > 0.
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(b) A subspace Y of a Banach space X is said to have the (strong) 11
2
-

ball property if the conditions x ∈ X, y ∈ Y, Y ∩ B[x, r] 6= ∅ and
‖x− y‖ ≤ r+ s (r, s > 0) imply that Y ∩B[x, r+ ε]

⋂

B[y, s+ ε] 6= ∅ for
all (ε ≥ 0) ε > 0.

It is well-known that M -ideals are precisely the subspaces having the
3-ball property (see [12]). It is also known that the semi M -ideals are pre-
cisely the subspaces having the 2-ball property (see [17, Theorem 6.10]).
Proposition 3.3 of [6] shows that a subspace having the weakest of the above
intersection properties, namely the 11

2
-ball property, is already a strongly

proximinal subspace. In particular, M -ideals are strongly proximinal.
[12] is a standard reference for any unexplained terminology.

2. Introduction

One of the interesting problems in approximation theory is the transitiv-
ity of various degrees of proximinality and intersection properties of balls.
Precisely, let (P ) be any one of the properties proximinality, strong proximi-
nality, 11

2
-ball property or 2-ball property and let Y and Z be subspaces of X

with Z ⊆ Y ⊆ X such that Z has property (P ) in Y and Y has property (P )
in X. Then is it necessary that Z has property (P ) in X? The motivation for
the study of transitivity problem comes from [20] where Pollul established
the transitivity of proximinality for finite co-dimensional subspaces of c0. In
[5], Dutta and Narayana proved the transitivity of strong proximinality for
finite co-dimensional subspaces of C(K), and in [21], Payá and Yost proved
the transitivity of 2-ball property. More results regarding the transitivity
problem for the property (P) can be found in [5, 6, 14, 20, 21].

On the other hand, it is also known that most of the properties listed
above as (P), in general, are not transitive. Corollary 7 of [14] shows that
proximinality need not be transitive. From [21, Example 6], it follows that
the 11

2
-ball property fails to be transitive. Motivated by these, since each

M -ideal satisfies property (P), our main theme in this paper is to discuss the
following problem, which is a variation of the above mentioned transitivity
problem.

Problem 2.1. Let X, Y, Z be Banach spaces such that Z ⊆ Y ⊆ X and Y
be an M-ideal in X. If (P ) is a property which is shared by all M-ideals and

if Z has property (P ) in Y , does it follow that Z has (P ) in X?
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The solution to Problem 2.1 is known to be positive when property (P )
is the n-ball property (a new and more natural proof is given in Section 4),
but the problem is still open when property (P ) is strong proximinality.

In Section 3, we give an example to show that the strong proximinality
need not be transitive. Moreover, we prove that Problem 2.1 has an affirma-
tive answer when (P) is strong proximinality and Z is of finite co-dimension
in X. In order to prove this, we first prove that a finite co-dimensional prox-
iminal subspace Y of a Banach space X is strongly proximinal in X if and
only if Y ⊥⊥ is strongly proximinal in X∗∗.

In Section 3, we also consider the following problem.
For an SSD-point f of X∗, there always exists a Hahn-Banach extension

of f to X∗∗ which is an SSD-point of X∗∗∗, namely the canonical image of
f in X∗∗∗. But it is not known whether each Hahn-Banach extension of f
to X∗∗ is again an SSD-point of X∗∗∗. Coming to a more general set up, we
consider the following problem.

Problem 2.2. If Y is a subspace of a Banach space X and f ∈ Y ∗ is an

SSD-point of Y ∗, then can we say that all the Hahn-Banach extensions of f
are SSD-points of X∗?

We show that the answer to Problem 2.2 is negative in general (see Ex-
ample 3.15) and is affirmative if the subspace Y is an M -ideal in X.

We now recall that a Banach space X is said to be an L1-predual space

if X∗ is isometric to L1(µ) for some positive measure µ.
In Section 3, we also prove that the converse of Theorem 1.4 and Theo-

rem 1.6 are true for L1-predual spaces.
In Section 4, we discuss the intersection properties of balls in Banach

spaces. We restrict ourselves to the 11
2
-ball property and semi M -ideals. We

give an affirmative answer to Problem 2.1 when (P) is the n-ball property,
where n = 11

2
, 2.

Corollary 2.5 of [16] claims that M -ideals are ball proximinal subspaces.
In Section 4, we disprove this by giving a counterexample and we also prove
that in an L1-predual space, M -ideals are ball proximinal.

In Section 5, we give an example to show that the strong proximinality
assumption on a subspace is not sufficient to guarantee that any proximinal
subspace of it is also proximinal in the bigger space. We also discuss some
examples regarding intersection properties of balls.
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3. Strong Proximinality in Banach Spaces

In this section, we discuss Problem 2.1 with property (P) being strong
proximinality and then we consider Problem 2.2. Moreover, we characterize
finite co-dimensional strongly proximinal subspaces of an L1-predual space.

3.1. A variation of transitivity problem for strong proximinality

In [22, Remark 2.4], it is observed that there exists a proximinal subspace
of c0, which is not proximinal in ℓ∞. Since c0 is an M -ideal in ℓ∞, this
example shows that Problem 2.1 does not have an affirmative answer when
(P) is proximinality. But in [15], it is proved that every finite co-dimensional
proximinal subspace of c0 continues to be proximinal in ℓ∞.

We now prove that for a subspace Y of a Banach space X, strongly
proximinal subspace of Y continue to be strongly proximinal in X under a
stronger assumption on the subspace Y .

Proposition 3.1. Let X = Y ⊕ Z. Let ϕ : R+ × R+ → R+ be a map such

that for each β ∈ R+, ϕ(·, β) is an increasing function on R+ and for any

sequence (αn) in R+, ϕ(αn, β) → ϕ(α, β) implies αn → α. Suppose, for

x ∈ X, ‖x‖ = ϕ(‖y‖, ‖z‖), where x = y+ z with y ∈ Y and z ∈ Z. If W is a

strongly proximinal subspace of Y , then W is a strongly proximinal subspace

of X.

Proof. Let x ∈ X and let x = y + z with y ∈ Y and z ∈ Z. If W is
proximinal in Y , then the proximinality of W in X follows from the fact that
PW (y) ⊆ PW (x). We note that the convergence assumption on ϕ is not used
yet.

Now letW be strongly proximinal in Y . Clearly, d(x,W ) =ϕ(d(y,W ),‖z‖).
Let (wn) be a sequence in W such that ‖x − wn‖ → d(x,W ). Then, by the
assumption on ϕ, ‖y−wn‖ → d(y,W ) and hence, by the strong proximinal-
ity of W in Y , d(wn, PW (y)) → 0. Since PW (y) ⊂ PW (x), d(wn, PW (x)) → 0
and hence the strong proximinality of W in X follows.

As an immediate consequence of Proposition 3.1, it follows that if Y
is an L-summand in X, then any strongly proximinal subspace W of Y is
strongly proximinal in X. When Y is an M-summand in X, the proof of
Proposition 3.1 shows that W is proximinal in X if it is so in Y , but this
proposition does not give any conclusion regarding the strong proximinality of
W in X even if W is strongly proximinal in Y as the convergence assumption

6



on ϕ need not be satisfied in this case. So we consider this case separately
as our next result.

For a Banach space X, let C(X) denote the class of non-empty, bounded
and closed subsets of X. Then the Hausdorff metric on C(X) is given by

h(A,B) = max

{

sup
x∈A

d(x,B), sup
z∈B

d(z, A)

}

for A,B ∈ C(X).

Proposition 3.2. Let X be a Banach space and Y be an M-summand in

X. If W is strongly proximinal in Y , then W is strongly proximinal in X.

Proof. Let W be strongly proximinal in Y . Clearly, W is proximinal in X.
Let x ∈ X and let x = y + z with y ∈ Y and z ∈ Z. Then it follows that
d(x,W ) = max{d(y,W ), ‖z‖} and PW (y) ⊆ PW (x). Let ε > 0.

Suppose ‖z‖ > d(y,W ). Then PW (x) = B[y, ‖z‖] ∩ W and PW (x, η) =
B(y, ‖z‖+ η)∩W for all η > 0. Since ‖z‖ > d(y,W ), by [15, Fact 3.2], there
exists a δ > 0 such that for u ∈ Y with ‖u − y‖ < 2δ and for β > 0 with
|β − ‖z‖| < 2δ, we get

h(B(y, ‖z‖)
⋂

W, B(u, β)
⋂

W ) < ε, (1)

where h is the Hausdorff metric on C(Y ). Now, by putting u = y and
β = ‖z‖ + δ in (1), we get h (B(y, ‖z‖)

⋂

W,B(y, ‖z‖+ δ)
⋂

W ) < ε. Thus
B(y, ‖z‖+ δ)

⋂

W ⊆ (B(y, ‖z‖)
⋂

W )+ εBX and hence PW (x, δ) ⊆ PW (x)+
εBX .

Now suppose ‖z‖ ≤ d(y,W ). Then PW (x) = PW (y) and PW (x, δ) =
PW (y, δ). Since W is strongly proximinal in Y , there exists a δ > 0 such
that PW (y, δ) ⊆ PW (y) + εBY . Thus PW (x, δ) ⊆ PW (x) + εBX and hence
the result follows.

We now recall some notation from [13] in order to state a characterization
of finite co-dimensional strongly proximinal subspaces in Banach spaces.

Let X be a Banach space and let {f1, . . . , fn} be a set of linearly indepen-
dent functionals in X∗. Let M1 = M∗

1 = ‖f1‖, JX(f1) = {x ∈ BX : f1(x) =
‖f1‖} and JX∗∗(f1) = {x∗∗ ∈ BX∗∗ : x∗∗(f1) = ‖f1‖}.

Now suppose, for an i ∈ {2, . . . , n}, JX(f1, . . . , fi−1) is defined and is a
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non-empty set. Then define

Mi = sup{fi(x) : x ∈ JX(f1, . . . , fi−1)},

M∗
i = sup{x∗∗(fi) : x

∗∗ ∈ JX∗∗(f1, . . . , fi−1)},

JX(f1, . . . , fi) = {x ∈ JX(f1, . . . , fi−1) : fi(x) = Mi},

JX∗∗(f1, . . . , fi) = {x∗∗ ∈ JX∗∗(f1, . . . , fi−1) : x
∗∗(fi) = M∗

i }.

For ε > 0, let JX(f1, ε) = {x ∈ BX : f1(x) > ‖f1‖ − ε}.
For i = 2, . . . , n, define

JX(f1, . . . , fi, ε) = {x ∈ JX(f1, . . . , fi−1, ε) : fi(x) > Mi − ε}.

Using a weak∗-compactness argument, one can see that JX∗∗(f1, . . . , fi) 6=
∅ for i = 1, . . . , n. In [13, Theorem 1], it is proved that if Y is a finite
co-dimensional proximinal subspace of X, then JX(f1, . . . , fi) 6= ∅ for i =
1, . . . , n and for every basis {f1, . . . , fn} of Y ⊥.

Throughout this section, we use the following characterization of finite
co-dimensional strongly proximinal subspace.

Theorem 3.3 ([10]). Let Y be a finite co-dimensional proximinal subspace

of a Banach space X. Then Y is strongly proximinal in X if and only if for

any basis {f1, . . . , fn} of Y ⊥,

lim
ε→0

[sup{d(x, JX(f1, . . . , fi)) : x ∈ JX(f1, . . . , fi, ε)}] = 0

for 1 ≤ i ≤ n.

In other words, a necessary and sufficient condition for the strong prox-
iminality of a finite co-dimensional subspace Y of X is: if {f1, . . . , fn} is a
basis of Y ⊥ and i ∈ {1, . . . , n}, then, for every ε > 0, there exists a δε > 0
such that d(x, JX(f1, . . . , fi)) < ε whenever x ∈ JX(f1, . . . , fi, δε).

We now exhibit some relations between the notations defined above.

Proposition 3.4. Let Y be a finite co-dimensional strongly proximinal sub-

space of a Banach space X and let {f1, . . . , fn} ⊆ SY ⊥ be a basis of Y ⊥.

For 1 ≤ i ≤ n, let Mi, M
∗
i , JX(f1, . . . , fi) and JX∗∗(f1, . . . , fi) be defined as

above. Then, for 1 ≤ i ≤ n,

(a) Mi = M∗
i ,
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(b) JX∗∗(f1, . . . , fi) = JX(f1, . . . , fi)
w∗

.

Proof. (a). Clearly, M1 = M∗
1 and M2 ≤ M∗

2 . Let i ∈ {1, . . . , n}. Now sup-
pose that Mj = M∗

j for 1 ≤ j ≤ i. Then Mi+1 ≤ M∗
i+1. Since JX∗∗(f1, . . . , fi)

is weak∗-compact, fi+1 attains its supremum over JX∗∗(f1, . . . , fi) at some el-
ement x∗∗

0 ∈ JX∗∗(f1, . . . , fi). Let (xα) be a net in BX such that xα → x∗∗
0 in

weak∗-sense. Since x∗∗
0 ∈ JX∗∗(f1, . . . , fi), x

∗∗
0 (fj) = M∗

j = Mj for 1 ≤ j ≤ i.
Hence, for 1 ≤ j ≤ i, fj(xα) → Mj. Since Y is strongly proximinal in X, by
Theorem 3.3, it follows that d(xα, JX(f1, . . . , fi)) → 0. Now let (zα) be a net
in JX(f1, . . . , fi) such that ‖xα − zα‖ → 0. Then zα → x∗∗

0 in weak∗-sense.
Since fi+1(zα) → x∗∗

0 (fi+1) = M∗
i+1, we get M∗

i+1 = limα fi+1(zα) ≤ Mi+1.
Now the result follows by induction.

(b). Since f1 is an SSD-point of X∗, JX(f1)
w∗

= JX∗∗(f1). Clearly,

JX(f1, f2)
w∗

⊆ JX∗∗(f1, f2). Let φ ∈ JX∗∗(f1, f2) and choose a net (xα) in BX

such that xα → φ in weak∗-sense. Since f1(xα) → φ(f1), d(xα, JX(f1)) → 0.
Choose a net (yα) in JX(f1) such that ‖xα − yα‖ → 0. Hence yα → φ in
weak∗-sense. Since f2(yα) → φ(f2) = M2, d(yα, JX(f1, f2)) → 0. Hence there
exists a net (zα) ⊆ JX(f1, f2) such that ‖yα− zα‖ → 0, which in turn implies

that zα → φ in weak∗-sense. i.e., JX(f1, f2)
w∗

= JX∗∗(f1, f2). By a similar
argument, we can prove (b) for i > 2.

Remark 3.5. Proposition 3.4(b) is a generalization of [10, Remark 1.2(2)].

Remark 3.6. Our next result generalizes a known fact related to the strongly
proximinal hyperplanes in Banach spaces (see [10, Remark 1.2(1)]). Precisely,
[10, Remark 1.2(1)] can be obtained by putting n = 1 in Lemma 3.7. We
follow the idea used in the proof of [11, Fact 2] to prove our next result.

Lemma 3.7. Let Y be a finite co-dimensional strongly proximinal subspace

of a Banach space X. Let {f1, . . . , fn} ⊂ SY ⊥ be a basis of Y ⊥. Then, for

x ∈ BX and 1 ≤ i ≤ n, d(x, JX(f1, . . . , fi)) = d(x, JX∗∗(f1, . . . , fi)).

Proof. If n = 1, then the conclusion follows from [10, Remark 1.2(1)].
Since no new ideas are required for n > 2, we only prove the case n = 2.

Hence we have to show that for x ∈ BX , d(x, JX(f1, f2)) = d(x, JX∗∗(f1, f2)).
Let d = d(x, JX∗∗(f1, f2)). Since JX∗∗(f1, f2) is weak

∗-compact, it is prox-
iminal in X∗∗. Choose φ ∈ JX∗∗(f1, f2) such that ‖x− φ‖ = d.

Since Y is strongly proximinal in X, for every ε > 0, there exists a δε > 0
such that d(x, JX(f1, f2)) < ε whenever x ∈ JX(f1, f2, δε).

9



Now let ε > 0 be arbitrary. Choose an ε′ > 0 such that 0 < ε′ <
min{δε/22 ,

ε
2(d+1)

}. Let E = span{x, φ} ⊆ X∗∗ and F = span{f1, f2} ⊆ X∗.
Then, by principle of local reflexivity, there exists a bounded linear map
T : E → X such that T (x) = x, (1 − ε′) ≤ ‖T (z∗∗)‖ ≤ (1 + ε′) if z∗∗ ∈ SE

and fi(T (z
∗∗)) = z∗∗(fi) for i = 1, 2.

Now let x1 =
Tφ

‖Tφ‖
. Then

‖x− x1‖ ≤ ‖x− Tφ‖+ ‖Tφ−
Tφ

‖Tφ‖
‖

= ‖T (x− φ)‖+ |1− ‖Tφ‖|

≤ (1 + ε′)d+ ε′

= d+ ε′(1 + d) < d+
ε

2

and for i = 1, 2; by Proposition 3.4(a), we have

fi(x1) = fi

(

Tφ

‖Tφ‖

)

≥
M∗

i

1 + ε′
=

Mi

1 + ε′
= Mi−

Miε
′

1 + ε′
> Mi−ε′ > Mi−δε/22 .

Thus x1 ∈ JX(f1, f2, δε/22) and d(x1, JX∗∗(f1, f2)) ≤ d(x1, JX(f1, f2)) <
ε/22. Let φ1 ∈ JX∗∗(f1, f2) be such that ‖x1 − φ1‖ < ε/22. Then, again
by principle of local reflexivity, there exists an element x2 ∈ BX such that
‖x1 − x2‖ < ε/22 and fi(x2) > Mi − δε/23 .

Proceeding inductively, we obtain a sequence (xn) in BX such that ‖xn−
xn−1‖ < ε/2n and fi(xn) > Mi − δε/2n+1 for all n ∈ N and i = 1, 2. Without
loss of generality, we assume that δε/2n → 0.

Clearly, (xn) is a Cauchy sequence and hence there exists a z ∈ BX such
that z = limn→∞ xn. Now fi(z) = Mi for i = 1, 2 and hence z ∈ JX(f1, f2).
Also ‖x − xn‖ ≤ d + ε/2 + . . . + ε/2n for all n ∈ N. Now, letting n → ∞,
it follows that ‖x− z‖ ≤ d + ε. Since ε > 0 is arbitrary and z ∈ JX(f1, f2),
d(x, JX(f1, f2)) ≤ d = d(x, JX∗∗(f1, f2)) and hence the result follows.

Combining [7, Theorem 1.2] and [10, Lemma 1.1], we get the following
result.

Proposition 3.8. Let X be a Banach space and f ∈ X∗. Then f is an

SSD-point of X∗ if and only if f is an SSD-point of X∗∗∗.

Remark 3.9. If Y is a finite co-dimensional subspace of a Banach space X,
then dim(Y ⊥) = dim(X∗∗/Y ⊥⊥) and therefore dimension of Y ⊥ in X∗ equals
the dimension of Y ⊥⊥⊥ in X∗∗∗.
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Now, by combining Theorem 1.3 and Proposition 3.8, it follows that a
hyperplane Y in a Banach space X is strongly proximinal in X if and only if
Y ⊥⊥ is strongly proximinal in X∗∗. Our next result generalizes this to finite
co-dimensional subspaces.

Theorem 3.10. If Y is a finite co-dimensional proximinal subspace of a

Banach space X, then Y is strongly proximinal in X if and only if Y ⊥⊥ is

strongly proximinal in X∗∗.

Proof. Suppose that Y is strongly proximinal inX. Let {f1, . . . , fn} ⊂ SY ⊥⊥⊥

be a basis of Y ⊥⊥⊥. As Y ⊥ is finite dimensional, Y ⊥⊥⊥ = Y ⊥. Thus
{f1, . . . , fn} is also a basis of Y ⊥.

Now let i ∈ {1, . . . , n} and let ε > 0. Since Y is strongly proximinal
in X, there exists a δ > 0 such that d(x, JX(f1, . . . , fi)) < ε whenever x ∈
JX(f1, . . . , fi, δ). Then, for x∗∗ ∈ JX∗∗(f1, . . . , fi, δ), x

∗∗(fj) > Mj − δ for
1 ≤ j ≤ i. Let (xα) be a net in BX such that xα → x∗∗ in weak∗-sense.
Now, without loss of generality, we assume that fj(xα) > Mj − δ for all
α and for 1 ≤ j ≤ i. Hence there exists an element zα ∈ JX(f1, . . . , fi)
such that ‖xα − zα‖ < ε. Passing to a subnet of (zα), if necessary, we
may assume that zα → φ in weak∗-sense for some φ ∈ JX∗∗(f1, . . . , fi). Thus
(xα−zα) → (x∗∗−φ) in the weak∗-sense. Then ‖x∗∗−φ‖ ≤ limα‖xα−zα‖ ≤ ε.
Therefore d(x∗∗, JX∗∗(f1, . . . , fi)) ≤ ‖x∗∗ − φ‖ < ε. Hence, by Theorem 3.3,
Y ⊥⊥ is strongly proximinal in X∗∗.

Conversely, suppose that Y ⊥⊥ is a strongly proximinal subspace of X∗∗.
Let {f1, . . . , fn} ⊂ SY ⊥ be a basis of Y ⊥ and let ε > 0. Since Y ⊥⊥⊥ =
Y ⊥, {f1, . . . , fn} is also a basis of Y ⊥⊥⊥. Let i ∈ {1, . . . , n}. Clearly,
JX(f1, . . . , fi, δ) ⊆ JX∗∗(f1, . . . , fi, δ). Since Y ⊥⊥ is strongly proximinal in
X∗∗, there exists a δ > 0 such that d(x∗∗, JX∗∗(f1, . . . , fi)) < ε whenever
x∗∗ ∈ JX∗∗(f1, . . . , fi, δ). Then, for x ∈ JX(f1, . . . , fi, δ), by Lemma 3.7,
d(x, JX(f1, . . . , fi)) = d(x, JX∗∗(f1, . . . , fi)) < ε and this completes the proof.

We now give an example to show that the strong proximinality need not
be transitive. Before going to the proof, we now recall a characterization of
SSD-points of ℓ∞.

Theorem 3.11 ([8, Theorem 5]). An element x ∈ ℓ∞ is an SSD-point of ℓ∞
if and only if sup{|x(n)| : |x(n)| 6= ‖x‖} < ‖x‖.
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Example 3.12. There exist two subspaces Z and Y of finite co-dimension

in ℓ1 such that Z is strongly proximinal in Y and Y is strongly proximinal

in ℓ1, but Z is not strongly proximinal in ℓ1.

Proof. Let f = (0, 1, 1, . . .) and g = (1,−1
2
,−1

3
, . . .). Then, by Theorem 3.11,

f and g are SSD-points of ℓ∞ and hence, by [6, Theorem 2.1], f and g are
QP-points of ℓ∞. Let Z = ker(f) ∩ ker(g) and Y = ker(f). Since f is a
QP-point of ℓ∞, Y is strongly proximinal in ℓ1. Also, since g attains its norm
on Y and g is a QP-point of ℓ∞, by the proof of [6, Proposition 4.2], g|Y is
a QP-point of Y ∗. Hence Z = ker(g|Y ) is strongly proximinal in Y . Since,
by Theorem 3.11, f + g ∈ Z⊥ is not an SSD-point of ℓ∞, it follows from
Theorem 1.4 that Z is not strongly proximinal in ℓ1.

Our next theorem shows that for an M -ideal Y in a Banach space X, a
strongly proximinal subspace of Y having finite co-dimension in X remains
to be strongly proximinal in X.

Theorem 3.13. Let X be a Banach space and Z be a finite co-dimensional

proximinal subspace of X. Let Y be an M-ideal in X and Z ⊆ Y ⊆ X. If Z
is strongly proximinal in Y , then Z is strongly proximinal in X.

Proof. Let Z be strongly proximinal in Y . Then, by Theorem 3.10, it follows
that Z⊥⊥ is strongly proximinal in Y ⊥⊥. Since Y ⊥⊥ is an M -summand in
X∗∗, by Proposition 3.2, Z⊥⊥ is strongly proximinal in X∗∗. Then, again by
Theorem 3.10, Z is strongly proximinal in X.

We do not know whether we can replace the M -ideal assumption in The-
orem 3.13 by the semi M -ideal assumption. The idea used in the proof of
Theorem 3.13 will not be useful in the semi M -ideal case as the bidual of a
semi M -ideal is again a semi M -ideal, which we will prove in Lemma 4.2.

Remark 3.14. We do not know whether the finite co-dimensionality as-
sumption on Y in Theorem 3.13 is necessary. The answer is not known even
if the strong proximinality in Theorem 3.13 is replaced by proximinality.

3.2. SSD-points and Hahn-Banach extensions

For a subspace Y of a Banach space X, one can ask about the strong
subdifferentiability of Hahn-Banach extensions of an SSD-point of Y ∗. To
begin with, we give an example to show that all the Hahn-Banach extensions
of an SSD-point of Y ∗ need not be SSD-points of X∗.
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Example 3.15. There exist a subspace Y of ℓ1 and an SSD-point of Y ∗ such

that one of its Hahn-Banach extensions is not an SSD-point of ℓ∞.

Proof. Let f , g, Z and Y be as in Example 3.12. Since g|Y is an SSD-point
of Y ∗ and f + g is a Hahn-Banach extension of g|Y , the conclusion follows
from Example 3.12.

We now prove that for an M -ideal Y in a Banach space X, the Hahn-
Banach extension of an SSD-point of Y ∗ to X is an SSD-point of X∗.

Our next result is a particular case of [7, Proposition 2.1], but for the
sake of completeness, we outline the proof below.

Proposition 3.16. Let Y be a semi L-summand in a Banach space X and

let y ∈ Y be an SSD-point of Y . Then y is also an SSD-point of X.

Proof. Let P : X → X be a semi L-projection with range Y . Then

d+(y)(x) = d+(y)(Px) + ‖x− Px‖.

Now the conclusion follows from the following equation.

‖y + tx‖ − 1

t
− d+(y)(x) = ‖Px‖

(

‖y + t‖Px‖ Px
‖Px‖

‖ − 1

‖Px‖t
− d+(y)(

Px

‖Px‖
)

)

.

Since, by [12, Chapter I, Remark 1.13], for an M -ideal Y in X, X∗ =
Y ∗
⊕

1 Y
⊥, the following corollary is immediate from Proposition 3.16.

Corollary 3.17. If Y is an M-ideal in a Banach space X and f ∈ Y ∗ is an

SSD-point of Y ∗, then the unique Hahn-Banach extension of f to X is also

an SSD-point of X∗.

3.3. Strong proximinality in L1-predual spaces

Since a QP-point is an SSD-point and also since the converse need not be
true, it is natural to ask about the class of Banach spaces where the notions
of an SSD-point and a QP-point coincide. We now show that for a positive
measure µ, these two notions coincide in L1(µ).

Proposition 3.18. For a positive measure µ, an SSD-point of L1(µ) is also
a QP-point of L1(µ).
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Proof. Let f ∈ L1(µ) be an SSD-point. Since L1(µ) is an L-summand in its
bidual, by Proposition 3.16, f is an SSD-point of L1(µ)

∗∗ = C(K)∗ (up to an
isometry) for some compact Hausdorff space K. Then, by [5, Theorem 2.1],
f is a QP-point of L1(µ)

∗∗ and hence f is a QP-point of L1(µ).

Now it follows from the proof of Example 3.12 that the sum of two SSD-
points in a Banach space need not be an SSD-point. But in our next result,
we prove that the sum of two SSD-points of L1(µ) is an SSD-point of L1(µ).

Corollary 3.19. For a positive measure µ, sum of two SSD-points of L1(µ)
is an SSD-point of L1(µ).

Proof. Let f and g be two SSD-points of L1(µ). Since L1(µ) is an L-summand
in its bidual, by Proposition 3.16, f and g are SSD-points of L1(µ)

∗∗ =
C(K)∗ (up to an isometry) for some compact Hausdorff space K. Since, by
[5, Theorem 2.1], SSD-points of C(K)∗ are precisely the finitely supported
measures, f + g is an SSD-points of C(K)∗ = L1(µ)

∗∗. Hence f + g is an
SSD-point of L1(µ).

Our next result characterizes finite co-dimensional strongly proximinal
subspaces of L1-predual spaces. The following result also shows that the
converse of Theorem 1.4 and Theorem 1.6 are true in L1-predual spaces.

Proposition 3.20. Let X be an L1-predual space and Y be a finite co-

dimensional proximinal subspace of X. Then the following are equivalent:

(i) Y is strongly proximinal in X.

(ii) Y ⊥ ⊆ {x∗ ∈ X∗ : x∗ is an SSD-point of X∗}.

(iii) Y ⊥ ⊆ {x∗ ∈ X∗ : x∗ is a QP-point of X∗}.

Proof. The implication (i) ⇒ (ii) follows from Theorem 1.3 and the impli-
cation (ii) ⇒ (i) follows from Proposition 3.18 and Theorem 1.6. Finally,
(ii) ⇐⇒ (iii) follows from Proposition 3.18.

If Y is a finite co-dimensional strongly proximinal subspace of a Banach
space X, then, by Theorem 1.4, Y is the intersection of finitely many strongly
proximinal hyperplanes. Our next result shows that the converse of this is
true in L1-predual spaces.
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Corollary 3.21. Let X be an L1-predual space and let Y1, . . . , Yn be strongly

proximinal subspaces of finite co-dimension in X. Then
⋂n

i=1 Yi is strongly

proximinal in X.

Proof. Let Y =
⋂m

i=1 Yi. For 1 ≤ i ≤ m, let fi,1, . . . , fi,ni
be SSD-points

of X∗ such that Yi =
⋂ni

k=1 ker(fi,k). Thus Y =
⋂

i,k ker(fi,k) and hence,

by Corollary 3.19, Y ⊥ = span{fi,k : 1 ≤ i ≤ m, 1 ≤ k ≤ ni} ⊆ {f ∈
X∗ : f is an SSD-point of X∗}. Hence, by Proposition 3.20, Y is strongly
proximinal in X.

4. Intersection Properties of Balls in Banach spaces

In this section, we consider Problem 2.1 with property (P) being 11
2
-ball

property or 2-ball property. We also disprove Corollary 2.5 of [16] which
states that M -ideals are ball proximinal. Moreover, we prove that in an
L1-predual space, M -ideals are ball proximinal.

4.1. A variation of transitivity problem for n-ball property with n = 11
2
, 2

We now prove a variation of transitivity problem for n-ball property with
n ∈ N.

Lemma 4.1. Let Y be an M-summand in a Banach space X and Z be a

subspace of Y . Let n ∈ N.

(a) If Z has the (strong) n-ball property in Y , then Z has the (strong)
n-ball property in X.

(b) If Z has the (strong) 11
2
-ball property in Y , then Z has the (strong)

11
2
-ball property in X.

Proof. (a) Let Z has the n-ball property in Y . Let ε > 0 and {B[xi, ri]}1≤i≤n

be a family of n balls in X such that

B[xi, ri] ∩ Z 6= ∅ for all i = 1, . . . , n and
n
⋂

i=1

B[xi, ri] 6= ∅.

Let x ∈
⋂n

i=1 B[xi, ri] and P : X → X be an M-projection with range Y .
Then Px ∈

⋂n
i=1 B[Pxi, ri] and B[Pxi, ri] ∩ Z 6= ∅. Then, by the n-ball

property of Z in Y , there exists an element z ∈ Z
⋂

(∩n
i=1B[Pxi, ri + ε]).

Hence ‖z − xi‖ ≤ max{‖z − Pxi‖, ‖xi − Pxi‖} ≤ ri + ε for 1 ≤ i ≤ n. Thus
Z has the n-ball property in X.
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If Z has the strong n-ball property in Y , then the strong n-ball property
of Z in X follows by taking ε = 0 in the above proof.

A similar proof also works for (b).

Our next result is an analogue of Theorem 3.10 in the context of n-ball
property with n = 11

2
, 2.

Lemma 4.2. Let Y be a subspace of a Banach space X and let n = 11
2
, 2.

Then Y has the n-ball property in X if and only if Y ⊥⊥ has the n-ball property
in X∗∗.

Proof. Suppose that Y has the 2-ball property in X. Then Y is a semi
M -ideal in X and hence Y ⊥ is a semi L-summand in X∗. Then, by [17,
Theorem 6.14], Y ⊥⊥ is a semi M -ideal in X∗∗ and hence Y ⊥⊥ has 2-ball
property in X∗∗.

Conversely, suppose that Y ⊥⊥ has the 2-ball property in X∗∗. Let ε > 0
and let {B[xi, ri]}i=1,2 be two balls in X such that B[xi, ri] ∩ Y 6= ∅ for i =
1, 2 and B[x1, r1] ∩ B[x2, r2] 6= ∅.

Since Y ⊥⊥ is a weak∗-closed subspace of X∗∗, Y ⊥⊥ has the strong 2-
ball property in X∗∗. Hence there exists an element x∗∗ ∈ Y ⊥⊥ such that
‖x∗∗ − xi‖ ≤ ri for i = 1, 2.

Let E = span{x1, x2, x
∗∗} and r = max{r1, r2}. Then, by an extended

version of principle of local reflexivity (see [4, Theorem 3.2]), there exists
a bounded linear map Tε : E → X such that Tε(z) = z for z ∈ E ∩ X,
Tε(E ∩Y ⊥⊥) ⊂ Y and ‖Tε‖ ≤ 1+ ε

r
. Now take z = Tε(x

∗∗). Then z ∈ Y and
‖z − xi‖ ≤ ri + ε for i = 1, 2. Hence Y has the 2-ball property in X.

The case n = 11
2
is the (ii)⇔ (iv) of [24, Theorem 3].

Corollary 4.3. Let Y be a semi M-ideal in a Banach space X. Then Y is

a semi M-ideal in X∗∗ if and only if Y is an M-ideal in Y ∗∗.

Proof. Suppose Y is a semi M -ideal in X∗∗. Then Y is a semi M -ideal in
Y ⊥⊥ = Y ∗∗ and hence, by [18, Corollary 3.4], Y is an M -ideal in Y ∗∗.
Conversely, suppose that Y is anM -ideal in Y ∗∗. Since Y is a semiM -ideal in
X, by Lemma 4.2, Y ⊥⊥ is a semi M -ideal in X∗∗. Then, by [21, Theorem 5],
Y is a semi M -ideal in X∗∗.

Our next theorem is a particular case of [21, Theorem 5] but our argu-
ments are completely different and should be of interest.
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Theorem 4.4. Let Z and Y be subspaces of a Banach space X such that

Z ⊆ Y ⊆ X and Y is an M-ideal in X. Let n = 11
2
, 2. If Z has the n-ball

property in Y , then Z has the n-ball property in X.

Proof. Case 1: n = 11
2
.

Since Z ⊂ Y ⊂ X, Z⊥⊥ ⊂ Y ⊥⊥ ⊂ X∗∗. Then, by Lemma 4.2, Z⊥⊥

has the 11
2
-ball property in Y ⊥⊥ and by Lemma 4.1, Z⊥⊥ has the 11

2
-ball

property in X∗∗. Then, by Lemma 4.2, Z has the 11
2
-ball property in X.

Case 2: n = 2.
Since Z ⊂ Y ⊂ X, Z⊥⊥ ⊂ Y ⊥⊥ ⊂ X∗∗. Then, by Lemma 4.2, Z⊥⊥ is

a semi M -ideal in Y ⊥⊥ and by Lemma 4.1, Z⊥⊥ is a semi M -ideal in X∗∗.
Then, by Lemma 4.2, Z is a semi M -ideal in X.

Remark 4.5. We do not know the analogue of Theorem 4.4 in the context
of the strong 11

2
-ball property and the strong 2-ball property.

4.2. M-ideals and Ball Proximinality

In [16], it is proved that a subspace has the strong 11
2
-ball property if

and only if it is ball proximinal and has 11
2
-ball property. In Corollary 2.5 of

[16], it is incorrectly assumed that M -ideals have the strong 11
2
-ball property,

which is not the case, as shown by Example 13 of [24]. Hence Corollary 2.5 of
[16] which states that the M -ideals are ball proximinal is incorrect. However,
it is well-known that M -ideals have the 11

2
-ball property and therefore it

follows from the results of [16] that an M -ideal is ball proximinal if and only
if it has the strong 11

2
-ball property.

We now give a class of Banach spaces where M -ideals are ball proximinal.

Definition 4.6 ([19]). Let X be a Banach space and n ∈ N. Then X has the
n.2.I.P. if any pairwise intersecting family of n balls in X actually intersect.

It is well-known that a Banach space is an L1-predual space if and only
if it has the 4.2.I.P. (see [19] for details).

It follows from [17, Proposition 6.5] that an M -ideal in an L1-predual
space has the strong 3-ball property. Our next result generalizes this to any
Banach space having the 3.2.I.P.

Theorem 4.7. If X has the 3.2.I.P., then every M-ideal in X satisfies the

strong 3-ball property. In particular, an M-ideal in an L1-predual space has

the strong 3-ball property.
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Proof. Let Y be an M -ideal in X and let {B[xi, ri]}
3
i=1 be a family of 3 closed

balls satisfying B[xi, ri] ∩ Y 6= ∅ for 1 ≤ i ≤ 3 and
⋂3

i=1 B[xi, ri] 6= ∅.
Also, let ε > 0. Since Y is an M -ideal in X, there exists an element

y0 ∈ Y such that y0 ∈
⋂3

i=1 B[xi, ri + ε]. Now fix an i ∈ {1, 2, 3}. Then
{B[xj, rj] : 1 ≤ j ≤ 3, j 6= i} ∪ {B[y0, ε]} is a pairwise intersecting family
of 3 closed balls in X. Since X has the 3.2.I.P., the intersection of these
three balls is non-empty. Since Y is an M -ideal in X, there exists an element
yi ∈ Y such that

‖yi − xj‖ ≤rj +
ε

6
for 1 ≤ j ≤ 3 and j 6= i and

‖yi − y0‖ ≤ε+
ε

6
.

We now follow the technique used in [19, Lemma 4.2] for the rest of the proof.
Let y = 1

3

∑3
i=1yi. Then, for 1 ≤ j ≤ 3, we get

‖y − y0‖ ≤2ε and

‖y − xj‖ ≤
1

3







∑

1≤i≤3
i 6=j

‖yi − xj‖+ ‖yj − xj‖







≤
1

3

(

2(rj +
ε

6
) + ‖yj − y0‖+ ‖y0 − xj‖

)

≤rj +
5

6
ε.

Now let z0 = y0 and z1 = y. Suppose we have constructed z1, . . . , zm such
that

‖zk − zk−1‖ ≤2

(

5

6

)k−1

ε for 1 ≤ k ≤ m and

‖zk − xj‖ ≤rj +

(

5

6

)k

ε for 1 ≤ k ≤ m and 1 ≤ j ≤ 3.

Now fix an i ∈ {1, 2, 3}. Then {B[xj, rj] : 1 ≤ j ≤ 3, j 6= i} ∪ {B[zm, (
5
6
)mε]}

is a pairwise intersecting family of 3 closed balls in X. Then, by arguing as
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above, there exists a zm,i ∈ Y such that

‖zm,i − xj‖ ≤rj +
1

6

(

5

6

)m

ε for 1 ≤ j ≤ 3 and j 6= i and

‖zm,i − zm‖ ≤

(

5

6

)m

ε+
1

6

(

5

6

)m

ε.

Now let zm = 1
3

∑3
i=1zm,i. Then, for 1 ≤ j ≤ 3, we get

‖zm+1 − zm‖ ≤ 2

(

5

6

)m

ε and ‖zm+1 − xj‖ ≤ rj +

(

5

6

)m+1

ε.

Thus, by induction, there exists a Cauchy sequence (zm) in Y such that

‖zm − xj‖ ≤ rj +

(

5

6

)m

ε for 1 ≤ j ≤ 3.

Now let z = lim
m→∞

zm. Then z ∈
⋂3

j=1B[xj, rj] ∩ Y and hence the theorem

follows.

Combining Theorem 4.7 and [16, Theorem 2.4], we get the following corol-
lary.

Corollary 4.8. If X has the 3.2.I.P., then every M-ideal in X is ball prox-

iminal. In particular, M-ideals in L1-predual spaces are ball proximinal.

5. Some Examples

Our first example shows that the strong proximinality assumption on a
subspace is not sufficient to guarantee that any proximinal subspace of it is
also proximinal in the bigger space.

Example 5.1. There exist two subspaces Z and Y of finite co-dimension in

C[0, 1] such that Z is proximinal in Y and Y is strongly proximinal in C[0, 1],
but Z is not proximinal in C[0, 1].

Proof. Let k ∈ [0, 1] \ {0, 1, 1
2
, 1
3
, . . .}. Let µ, ν ∈ C[0, 1]∗ be defined as µ =

∑∞
n=1

1
2n
δ 1

n

and ν = 1
2
(δ0 − δk). Then ‖µ‖ = ‖ν‖ = 1. Now take Z =

ker(µ)∩ ker(ν) and Y = ker(ν). Since supp(ν) is finite, by [5, Theorem 2.1],
ker(ν) is strongly proximinal in C[0, 1]. Since 1 ∈ ker(ν) and µ(1) = 1, µ|ker(ν)
is a norm-attaining functional on ker(ν). Hence ker(µ)∩ker(ν) = ker(µ|ker(ν))
is a proximinal subspace of ker(ν). Since ν is not absolutely continuous with
respect to µ on supp(µ), by [9], ker(µ)∩ker(ν) is not proximinal in C[0, 1].
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Our next example is a variant of Example 5.1. In fact, it shows that the
notion of strong proximinality need not pass through ideals.

Example 5.2. There exist two subspaces Z and Y of finite co-dimension in

C[0, 1] such that Z is strongly proximinal in Y and Y is an ideal in C[0, 1],
but Z is not proximinal in C[0, 1].

Proof. Let µ, ν and k be as in the proof of Example 5.1. Take Z = ker(µ) ∩
ker(ν) and Y = ker(µ). Choose a continuous function g : [0, 1] → [−1, 1] such
that g( 1

n
) = g(0) = 1 for n ≥ 2 and g(1) = g(k) = −1. Then g ∈ ker(µ)

and ν(g) = 1. Since ν|ker(µ) attains its norm over ker(µ), ker(µ) ∩ ker(ν) =
ker(ν|ker(µ)) is proximinal in ker(µ). Let λ = −

∑∞
n=2

1
2n
δ 1

n

. Then ker(µ) =

ker(λ − δ1) and ‖λ‖ ≤ 1 and hence, by [3], ker(µ) is an L1-predual space.
Then, by [23, Proposition 1], ker(µ) is an ideal in C[0, 1]. Since ν is not
absolutely continuous with respect to µ on supp(µ), by [9], ker(µ)∩ ker(ν) is
not proximinal in C[0, 1].

Our next example shows that the semi M -ideals may not pass through
L-summands.

Example 5.3. There exist a Banach space X which is an L-summand in

X∗∗ and a semi M-ideal Y in X such that Y is not a semi M-ideal in X∗∗.

Proof. Take X = ℓ1. Then X is an L-summand in its bidual. For the con-
stant sequence 1 ∈ ℓ∞, Y = ker(1) is a semi M -ideal in ℓ1 (see [12, Chapter I,
Remark 2.3]). But ker(1) is not a semi M -ideal in (ℓ∞)∗. For, if ker(1) is a
semi M -ideal in (ℓ∞)∗, then ker(1) is a semi M -ideal in ker(1)⊥⊥. Then, by
[18, Corollary 3.4], ker(1) is an M -ideal in ker(1)⊥⊥. Since, by [12, Chap-
ter III, Corollary 3.3.C and Theorem 3.4], a non-reflexive subspace which is
an M -ideal in its bidual contains a subspace isomorphic to c0, ker(1) is re-
flexive . But this is a contradiction as ℓ1 cannot have an infinite dimensional
reflexive space. Hence ker(1) is not a semi M -ideal in (ℓ∞)∗.

Remark 5.4. Since each Banach space is an ideal in its bidual, Example 5.3
also shows that semi M -ideals may not pass through ideals.
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