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ABSTRACT 

 

OIL/WATER NANOEMULSION BIODISTRIBUTION IN MICE UPON 

INTRAVENOUS ADMINISTRATION 

                                                                                  Jiayi Chen 

 

 

 The present study aimed to explore the biodistribution of O/W nanoemulsions 

(NE) upon intravenous administration. Three NEs were prepared with distinctive droplet 

sizes: SE (29 ± 1 nm), ME (214 ± 2 nm) and LE (883 ± 16 nm) without overlapping of 

the size distribution. Kolliphor® HS15 was used as the only surfactant for these three 

NEs, so that their droplets had similar surface structure. The NEs droplet size was stable 

under room temperature for minimum 3 days in phosphate buffer saline (PBS) and in 

mice plasma in vitro for 4-hour at 37°C. A lipophilic fluorescent dye, 1, 1’-dioctadecyl-3, 

3, 3’, 3’-tetramethylindocarbocyanine perchlorate (DiI) was selected as the probe and 

loaded in the SE, ME and LE (designated thereafter as DSE, DME and DLE, 

respectively). A fluorometry for DiI was established with a linear range of 1.0-1000 

ng/mL.  

The processing procedure and assay method for biological samples were developed. DiI 

extraction efficiency was 74.6-93.4%, depending on the tissues. For the biodistribution 

study, tumor-bearing mice received intravenous injection of DiI (2-5 mg/kg) in free 

solution (DS) or in the NEs via tail vein. The mice were sacrificed at sampling time 

points and the biological samples were assayed for DiI concentrations. DS manifested 

early tissues peak concentration (apparent Tmaxs at 0.5 h) followed by rapid decline, with 



 
 

tissue recovery mainly from the liver, spleen and lungs. DSE had a comparable plasma 

profile as DS but lower concentrations in the spleen and lungs as compared to the 

corresponding tissue profiles followed by the administration of DS. DME showed a 

sustained plasma circulation and a long-term non-specific higher tissue uptake with 

significant accumulation in the heart, lung, liver and spleen. DLE displayed a favorable 

accumulation in the RES organs including the lung, spleen, and liver. In conclusion, the 

present study demonstrates that O/W NE exhibits altered biodistribution upon 

intravenous administration. And these features may be utilized as a targeted drug delivery 

and drug redisposition strategy. 
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Chapter 1. Introduction 

 

In this chapter, the following topics are elaborated: 

• How the research idea was formed 

• The literature search and the refinement of the research goals 

• The hypothesis, objective and specific aims 

 

1.1. The formation of the research idea 

Since the emerge of nanotechnology, many scientific areas have benefited significantly from its 

introduction and revolution. For the field of biomedicine and pharmaceutical sciences, though 

mentions of nanoparticles could be traced back as early as late 1970s, the term nanomedicine 

appeared much later at the turn of last century (Astruc, 2015). It was even later in 2005 when the 

term was first clearly defined by the European Science Foundation as “Nanomedicine uses nano-

sized tools for the diagnosis, prevention and treatment of disease and to gain increased 

understanding of the complex underlying patho-physiology of disease. The ultimate goal is to 

improve quality of life.” (European Science Foundation, 2005) The applications of 

nanotechnology were further categorized into three areas of diagnosis, imaging agents and drug 

delivery with nanoparticles (NP) in the size range of 1-1000 nm (Peer et al, 2007). Despite the 

relative short history of biomedical applications of the technology, the growth of academic and 

clinical research interest in nanomedicine has been explosively blossoming, resulted in tens of 

thousands publications per year over the last decade. Nanomedicine holds such an enormous 

promise for healthcare that in the United States, the National Institutes of Health (NIH) has 
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continuously increased their annual funding to Research Project Grant Program (R01) focused on 

nanomedicine ever since 2009, with more than $130 million invested in 2018 alone. It also 

fostered several special initiatives/programs such as the National Cancer Institute (NCI) to 

facilitate clinical translation of nanomedicines (He et al., 2019). 

However, regardless of the tremendous investments and efforts spent, accumulatively there were 

only 50 approved nanodrug products by the FDA as of year 2017 (Ventola, et al., 2017), among 

which polymeric, liposomal and nanocrystal formulations were heavily represented. The extreme 

high attrition rate for nanodrugs was attributed to multiple folds of reasons, of which the hardness 

of characterizations, insignificantly improved efficacy, safety issues, complexity in 

manufacturing, cost-benefit considerations, etc. all pose barriers to the survival of nanodrugs 

against their conventional competitors (Kola and Landis, 2004). 

In such context, a nanoplatform would be highly desired if it could address some of the 

aforementioned obstacles. Indeed, a relative new nano-sized formulation strategy: nanoemulsion 

(NE), has attracted more and more research interest. NEs are oil-in-water (O/W) or water-in-oil 

(W/O) dispersion of two immiscible liquids stabilized by an appropriate surfactant with or 

without other excipients. It is sometimes used interchangeably with submicron emulsion or mini 

emulsion to distinguish from coarse/macro emulsions which have larger droplet sizes over 1 

micron, yet on the other hand differentiate from microemulsions which differ tremendously in 

structural aspects and long term thermodynamic stability (McClements, 2012; Singh et al., 2017). 

NE provides a wide spectrum of formulation advantages such as the enhancement of lipophilic 

drug payload and oral bioavailability, ease of preparation and scale-up, exclusiveness of organic 

solvents and use of Generally Recognized as Safe (GRAS) materials, etc. Extensive researches 

have been conducted to exploit NE by various delivery routes including oral (Soliman et al., 

2016), parenteral (Venkateshwarlu et al., 2010), topical (Hagigit et al., 2010) and intranasal 
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(Shobhit et al., 2016). Currently, a few NE drug products have been approved by the FDA (Ganta 

et al., 2014) while numerous are still undergoing clinical trials (Singh et al., 2017). 

Quoted from Rivera, a nanomaterial should possess properties which neither the bulk material nor 

the atoms or molecules of that same material display. Essentially, nanodrugs are 

“pharmaceuticals engineered on the nanoscale, i.e., pharmaceuticals where the nanomaterial 

plays the pivotal therapeutic role or adds additional functionality to the previous compound”. 

(Rivera et al., 2010) In this sense, as a nanomaterial, NE could possibly alter drug 

pharmacokinetics (PK) profile and/or redisposition in the organ/tissue as compared to the 

corresponding free drug solution after intravenous (i.v.) administration.  

Indeed, our interest on the potential of NE to alter PK and biodistribution was inspired by two 

cases, the first one being the success of the well-known nanodrug product Doxil® (Doxorubicin 

Hydrochloride liposome injection). Doxorubicin has been an anthracycline drug effective for a 

variety of cancers but its cardiotoxicity had held back its use (Alexander et al., 1979). By loading 

the drug into liposomes, Doxil® significantly reduced Doxorubicin cardiotoxicity by the 

elimination of the intensive peak concentration in the heart, which eventually granted its approval 

by the FDA (Papahadjopoulos et al., 1991). In fact, many nanodrug products gained approval not 

by the enhancement of drug efficacy, but because of the reduction of drug or excipients related 

side effects of conventional formulations. The second case is the discovery of the enhanced 

permeability and retention effect (EPR), of which the centric principle was based on 

molecule/particle size. Briefly, Yasuhiro Matsumura and Hiroshi Maeda found that radioactive 

protein with molecular weight (MW) over 65,000 preferably accumulated in tumor tissues 

compared with protein with MW 12,000 after intravenous injection to tumor bearing mice 

(Matsumura and Maeda, 1986). This phenomenon, due to the unique tumor physiological 

properties: hyper-vasculature, enhanced vascular permeability and little recovery of the 
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macromolecules via the blood vessels and lymphatic system, was subsequently utilized as the 

tumor passive targeting strategy (Maeda et al., 2013) and has been guiding the development of 

nanoparticulate drug delivery system (DDS) ever since, though it has become controversial more 

recently (Prabhakar et al., 2013; Nicholas and Bae, 2014).  

Therefore, it would be meaningful to investigate whether NE could alter encapsulated drug 

substances’ PK and biodistribution, and whether the NE droplet size played a role in such change. 

A direct way to address the problem is to administer NEs with different droplet size intravenously 

to investigate the biodistribution. Should the assumption be true, it could be utilized as a targeted 

drug delivery and drug redisposition strategy to increase efficacy and/or to reduce off-target 

organs toxicities. These potential benefits set up the premise for the current study. 

 

1.2. The literature search and the refinement of the research goals 

When we dig into the literature, we found numerous size-dependent biodistribution studies such 

as polymeric NP (He et al., 2010), gold NP (Perrault et al., 2009), liposome (Liu et al., 1992) and 

quantum dot (Popović et al., 2010), etc. The results from other nano DDS have confirmed that the 

particle size is one of the major factors which governed the nanomaterials in vivo biodistribution. 

Surprisingly, despite the recent blossoming research interests on NEs, studies of NE 

biodistribution were quite scattered and for those focusing on the droplet size effect were further 

limited. 

One of the studies on NE droplet size effect on biodistribution was conducted by Attia et al. 

(Attia et al., 2015). In their work, NE with mean droplet size of 55 and 100 nm were prepared by 

use of the same lipid and surfactant at different percentage composition. Their findings suggested 

that 55 nm NE was less uptaken by hepatocytes and macrophages in vitro, and less toxic to the 



 
 

5 
 

mice in vivo which was demonstrated by the longer survival time after intravenous 

administration. The authors attributed this decreased in vivo toxicity to the reduced cellular 

uptake. Notably, no size-dependent impact of NE on biodistributions was observed based on the 

plasma, liver, spleen and kidneys profiles. Nevertheless, this conclusion was questionable 

because the two NEs size distributions significantly overlapped with each other, which very likely 

caused the similar in vivo tissue profiles. 

Another study by Chen and coworkers (Chen et al., 2016) used iodinated NEs with 25, 60 and 

100 nm droplet size to investigate the size-dependent NE biodistribution. Similar cellular uptake 

results were observed that increased size caused increased phagocytic uptake. The in vivo 

computed tomography (CT) results after intravenous administration of NEs demonstrated 

enhanced liver and spleen accumulation as the increase of the size. 

Based on what have been reported in the literature, we speculated that NE droplet size should 

have impact on their in vivo biodistributions like the other nanomaterials. However, this effect has 

not been clearly elucidated because of two reasons. First, the mean droplet size of the NEs studied 

were selected too close which posed the argument that the similar biodistribution could be due to 

the essentially no-significantly-different sizes in the in vivo environment. Secondly, the droplet 

size studied were no more than 100 nm which left the vacuum of the knowledge about the bigger 

size. Besides the liver and spleen, the lungs are also main constitution of the reticuloendothelial 

system (RES) in the body which is responsible to uptake particulate matters (Saba, 1970). 

Therefore, larger nanoparticles could also see preferable dispositions in the lungs (Blanco et al., 

2016). To more clearly address the problem, an extended span of NE droplet size became 

necessary. Hence, a reasonable approach is to develop NEs with droplet size towards the two-end 

of the submicron range, i.e., less than 50 nm and close to 1 micron, and an intermediate size in 

between. However, unlike solid nanoparticles, the liquid droplets usually present much less 
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precise sizes, and this phenomenon would be further magnified as the mean droplet size of NE 

increases. According to our preliminary data, the mean droplet size of a certain NE did not 

necessarily correlate with its actual size distribution, usually due to multi-modal distribution or a 

wide unimodal distribution. In addition, the increased size also deteriorated the stability of NEs 

significantly. All these factors could probably explain the remarkable limitations of the previous 

studies on the size effect of NEs as compared to the studies on the size effect of solid 

nanoparticles. 

To put in short, the present research goal was refined as to focus on the development of more 

defined droplet size NEs with narrow size distribution which significantly differs from each other 

in the sub-micron range, and to investigate the droplet size impact on their in vivo 

biodistributions. 

 

1.3. The hypothesis, objective and specific aims 

Our hypothesis was that O/W NEs could alter encapsulated drug biodistribution and such 

alteration was impacted mainly by the droplet size of the NEs.  

To test the hypothesis, the overall objective of the study was to develop O/W NEs with 

significantly different droplet size and similar droplet surface structure, and to compare their in 

vivo biodistributions. The specific aims of the study were as follows: 

1. To prepare O/W NEs which have distinct size (<50 nm for the small-size NE (SE), ~200 

nm for the medium-size NE (ME) and ~1 micron for the large-size NE (LE)) with narrow 

size distribution. 

2. To evaluate the prepared NEs stability for their suitability for the in vivo study. 
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3. To identify an agent to label the NEs.  

4. To validate the assay method for the labeling agent. 

5. To establish a tumor-bearing animal model for the in vivo study. 

6. To establish the in vivo biological sample preparation and assay protocol. 

7. To study and compare the biodistribution of labeled NEs with distinct droplet sizes after 

intravenous administration. 

Specific Aims 1-2 regarding the preparations and characterizations of the NEs are addressed in 

Chapter 2. Specific Aims 3-6 are addressed in Chapter 3, and Specific Aim 7 of the in vivo 

assessments is elaborated in Chapter 4. Finally, in Chapter 5 the entire study is summarized 

together with a few insights and discussions. 
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Chapter 2. Preparation and evaluation of nanoemulsions with 

distinct droplet sizes 

 

In this chapter, the following topics are addressed: 

• The preparation of O/W NEs with distinct droplet size and narrow size distribution 

• The stability of the prepared NEs under certain conditions 

 

2.1. Introduction 

The preparation methods for NE can be categorized into high-energy method, low-energy 

method, and a combination of the two (Mason et al., 2006). Low-energy method usually produces 

ultra-fine droplets, and it is generally limited by oil type and emulsifiers that can be used. It can 

be further classified as spontaneous emulsification (Bouchemal et al., 2004) and phase inversion 

(Fernandez et al., 2004). High energy method, on the other hand, depends on mechanical devices 

to create disruptive forces for size reduction, which is usually implemented by ultra-sonicators, 

high pressure homogenizers or microfluidizers. This method is more versatile in which almost 

any kinds of oils and emulsifiers can be subjected to nano-emulsification. However, the major 

limitation lies in the instrumental cost and the generation of high operational temperatures which 

rules out thermolabile drugs (Singh et al., 2017). 
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2.2. Preparation of O/W NEs with distinct droplet size 

2.2.1. Materials and methodology 

Captex® 8000 (C8 triglyceride), Captex® 1000 (C10 triglyceride), Capmul® MCM NF (C8/C10 

monoglyceride) were kind gifts from Abitec Corporation (Abitec, WI). LabrafacTM Lipophille 

WL1349 was a kind gift from Gattefosse Corporation (Gattefosse, NJ). Kolliphor® RH 40, 

Kolliphor® HS 15, Tween® 80 were purchased from Sigma-Aldrich (St. Louis, MO). Soybean 

oil (Spectrum, NJ), Pluronic F68 (BASF, NJ) and soybean lecithin (Alfa Aesar, MA) were 

purchased through VWR. 

To prepare the NEs with desired droplet size and size distribution, commonly used medium chain 

mono-/di- and triglycerides, long chain triglycerides and commercially available surfactants were 

screened with an emphasis on GRAS ingredients. For the SE, low energy preparation method was 

applied. Briefly, predetermined amount of lipid(s) and surfactant were mixed at 50°C, 300 rpm 

for 2 h to ensure homogeneous preconcentrate (MaxQ 4000, Thermo Fisher Scientific, MA). The 

preconcentrate was cooled down to 37°C prior to be mixed with 37°C distilled water (1:4 w/v). 

The SE was obtained by gently shaking the mixture. 

For the ME and LE, high energy preparation method was utilized. The preparation procedures 

included homogenization and/or ultrasonication individually or in combination. Processing 

parameters such as homogenization speed (5000, 10,000 and 20,000 rpm) and time (2, 5 and 10 

min), and ultrasonication amplitude (20, 30 and 40%), on-duty/rest cycle pattern and on-duty 

duration (2 to 6 min) were evaluated. Lipid(s), surfactant, and distilled water were first weighed 

and homogenized at 30 °C with various speed and time to produce coarse emulsion (VirTis 

Tempest I.Q.2, SP Scientific, PA). The coarse emulsion was subsequently ultrasonicated at 
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various amplitude for different period of on-duty time, with a 10 s/10 s on-duty/rest cycle. Ice 

bath was applied to prevent excessive heat generated during the process (Cole Parmer, IL). 

The prepared NEs were properly diluted before droplet size and polydispersity index (PI) 

determination by dynamic light scattering (DLS, Zetasizer Nano ZS, Malvern, U.K.). 

 

2.2.2. Results and discussions 

A variety of commercially available lipids (medium chain mono/di-glyceride, medium chain 

triglyceride and long chain triglycerides), surfactants (Polysorbate 80, Poloxamer 188, Polyoxyl 

(40)-hydrogenated castor oil, Polyethylene glycol (15)-hydroxystearate and soybean lecithin) 

were screened individually or in combinations.  The criteria for the screening included: (1) The 

capability to produce desired NEs droplet size with narrow distribution; (2) The formulation 

should be able to solubilize the labeling agent at relevant dose for in vivo application; (3) The 

surface of the droplets should be similar across different NEs as best; (4) The NEs need to have 

suitable stability for in vivo assessment; (5) If possible, the ingredients should be approved by 

FDA for parenteral use or GRAS ingredients and (6) Formulations and preparation should be 

simple if possible.  

Intralipid® was invented by the Swedish physician and nutrition researcher Arvid Wretlind, 

(Isaksson, et al., 2002). The product gained approval by the Food and Drug Administration 

(FDA) in 1972 and has been the standard intravenous lipid nutrition medication in the United 

States to the present. It is comprised of GRAS ingredients, i.e., soybean oil (20%) and egg 

lecithin (1.2% w/v), with the latter one exhibiting good emulsifying and O/W interface stabilizing 

effect (Hammond et al., 2005). Besides, the label specifies the mean droplet size of the product of 

0.5 micron (Intralipid® 20% I.V. fat emulsion FDA label). All these features made the well-
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established Intralipid 20% a reasonable starting point, and the composition of soybean oil and 

soybean lecithin along with the preparation parameters were adjusted to achieve desired NE 

droplet sizes. Nevertheless, NEs associated with soy lecithin usually exhibited wide span of size 

distribution (100 nm to 1 micron) and sometimes produced multimodal rather than monomodal 

size distribution. The droplet size was neither resistant to the dilution. For example, despite the 

label claiming a 0.5 micron in size for Intralipid 20%, about 300 nm was observed upon dilution 

in distilled water through 5- to 500-fold. Furthermore, as a long chain triglyceride, soybean oil 

may not be the best lipid to solubilize lipophilic drugs as compared to medium chain glycerides 

(Hippalgaonkar et al., 2010). Subsequently, medium chain mono/di- and triglycerides were tested 

with some synthetic surfactants, with the centric emphasis being the distribution of the NEs size. 

As illustrated in Figure 2.1, both NEs exhibited similar mean sizes, but none of them could be 

further considered as they either presented a multi-modal or a wide unimodal distribution. 

Thereby, rather than simply report the mean droplet size, the individual distribution pattern would 

actually make more sense in the current study and should be presented instead. However, due to 

the limited space, the results are summarized in Table 2.1 in the manner of the range of droplet 

size and polydispersity index (PI) by the mainly tested ingredients and preparation parameters.  

Kolliphor® HS15 (HS, formerly under the name Solutol® HS 15) is a non-ionic surfactant which 

is frequently used in in vitro screening and in vivo efficacy studies of poorly soluble new 

chemical entities (NCE) (Shah et al., 2014). It is synthesized by reacting 12-hydroxystearic acid 

with ethylene oxide in presence of an alkaline catalyst to yield the major components, 

polyethoxylated derivatives (~70%) and the minor components (free polyethylene glycol [PEG], 

~30%). HS provides profound safety and toxicological profile relatively better than polysorbate 

80 and Kolliphor® EL (Wang et al., 2004), which makes it an excellent choice for screening and 

pre-clinical pharmacokinetic (PK) studies of cytotoxic and oncology drugs among many other 
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indications (Ali and Kolter, 2019). Furthermore, it is also approved by FDA in injectable and 

ophthalmic drugs. Besides these unique advantages, more importantly though, when combined 

with the medium chain triglyceride LabrafacTM Lipophille WL1349 (WL) at various percentage, 

it produced desired NE droplet size distributions and thus both of them were selected as the final 

ingredients (Table 2.2).  

The NEs compositions and preparation methods are summarized in Table 2.3. Briefly, for ME 

and LE preparation, a process of homogenization at 10,000 rpm for 10 min yielded coarse 

emulsions of large droplet sizes with multiple peaks. The coarse emulsions had extremely limited 

stabilities that they tended to be phase separated in as short as 15 min. Hence, a subsequent step 

of ultrasonication was applied to reduce the droplet size and to improve uniformity and stability 

as well. As the length of on-duty time and the energy input affected the NE droplet size (Delmas 

et al., 2011), both parameters were evaluated (2, 4 and 6 min for the on-duty time whilst 20, 30 

and 40% amplitude for the energy input). The on-duty run for 6 min with 10s/10s cycle at 20% 

amplitude produced the most uniform NEs of the desired droplet sizes. For SE, Capmul® MCM 

NF (MCM) was also included to further reduce the droplet size. Figure 2.2 depicts the merged 

peaks distribution for one set of SE, ME and LE. They had droplet size distribution of 30 ± 9 nm 

for SE, 212 ± 64 nm for ME and 893 ± 158 nm for LE, respectively. Table 2.4 summarizes the 

droplet size and PI for the triplicate. They had unique droplet distribution which did not overlap 

with each other. This was of significance because it excluded the potential interferences of the 

effect from a “mixed” droplet and made it clear to interpret the further in vivo data. In addition, 

since the major surfactant was constant (HS), the effect of surface charge and chain length could 

also be minimized. (Buszello et al., 2000; Pozzi et al., 2014) 

  



 
 

13 
 

 

 

 

Figure 2.1 The illustration of two NEs with closed mean droplet size yet distinct size 

distribution pattern. 
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Table 2.1 The major screened ingredients, processing parameters, and droplet size 

and polydispersity index range 

Lipid/ 

Surfactant 

Homogenization 

(rpm, time, temperature) 

Ultrasonication 

(Time, 

Amplitude) 

Droplet size 

(nm) 

PI 

Intralipid 20% N/A N/A 243 – 266 0.08 – 0.15 

SO (10-20%) / SL (1.2%) N/A 5 min, 40% 162 – 170 0.18 – 0.26 

SO (20%) / SL (1.2%) 275 rpm, 2 h, 45°C 20 s-5 min, 40-

70% 

185 – 368 0.17 – 0.54 

SO (1-30%) / SL (1.2%) 15,000 rpm, 10 min, 30°C 4 min, 25% 144 – 455 0.20 – 0.27 

SO (20-80%) / RH (20-80%) 275 rpm, 2 h, 45°C N/A 25 – 734 0.06 – 0.65 

SO (5-20%) / Tween80 (1%) 15,000 rpm, 10 min, 30°C 2-4 min, 25% 198 – 724 0.17 – 0.29 

SO (20%) / TW (1%) 10,000 rpm, 10 min, 30°C 1-8 min, 20% 353 – 472 0.01 – 0.27 

SO (50%) / TW (0.25%) 10,000 rpm, 10 min, 30°C 4-8 min, 20% 1384 – 1473 0.05 – 0.43 

SO (20-30%) / HS (20-30%) 15,000 rpm, 5 min, 30°C 4 min, 25% 91 – 175 0.02 – 0.40 

MCM (0.25-20%) / F68 (2%) 275 rpm, 2 h, 45°C 80 s, 40% 129 – 337 0.27 – 0.58 

MCM (0.25-20%) / EL (1%) 275 rpm, 2 h, 45°C 80 s, 40% 93 – 614 0.19 – 0.51 

MCM (0.25-20%) / RH (1%) 275 rpm, 2 h, 45°C 80 s, 40% 61 – 511 0.25 – 0.58 

WL (0.25-20%) / SL (1.2%) 15,000 rpm, 10 min, 30°C 3-4 min, 25-40% 88 – 390 0.11 – 0.38 

WL (2.5-20%) / RH (10%) 275 rpm, 2 h, 45°C N/A 73 – 603 0.25 – 0.92 

WL (1.25-20%) / HS (10%) 275 rpm, 0.5 h, 45°C 5 min, 40% 82 – 504 0.13 – 0.52 

WL (20-50%) / HS (0.25-

10%) 

5,000-20,000 rpm, 2-10 

min, 30°C 

2-6 min, 20% 175 – 1368 0.03 – 0.22 

 

SO: Soybean oil; SL: Soybean lecithin; RH: Kolliphor® RH40; TW: Tween® 80; HS: 

Kolliphor® HS15; MCM: Capmul® MCM NF; F68: Pluronic F68; EL: Kolliphor® EL; WL: 

LabrafacTM lipophile WL1349. N/A: Not applicable; PI: Polydispersity Index. Droplet size and 

PI were determined at 100-fold dilution. 
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Table 2.2 Commercial name, chemical structure and HLB of 

the selected ingredients 

Commercial 

name 
Chemical structure Description 

Capmul® 

MCM NF 

 

 
  

Glyceryl caprylate/caprate;  

Medium chain C8-, C10- 

monoglyceride;  

HLB= 5-6 

 

LabrafacTM 

Lipophile 

WL1349 

 

 
  

Glyceryl tricaprylate/tricaprate; 

Medium chain C8-, C10- triglyceride;  

HLB=1 

Kolliphor® 

HS15 

  

Polyoxyl 15 hydroxystearate;  

Polyglycol mono- and di-esters of 12-

hydroxystearic acid and of about 30% 

of free polyethylene glycol;  

HLB = 14-16 

 

HLB = Hydrophile-lipophile balance 
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Table 2.3 Summary of the NE formulation and sonication specifications 

               Formulation Sonication specifications 

 MCM 

(mg) 
WL (mg) HS (mg) 

H2O    

(q.s., mg) 

Amplitude 

(%) 

On-duty time 

(min) 

SE 250 250 500 5000 N/A N/A 

ME N/A 1200 300 3000 20 6 

LE N/A 1200 15 3000 20 6 

 

N/A = Not applied, MCM = Capmul® MCM NF, WL = LabrafacTM Lipophile WL1349, HS = 

Kolliphor® HS15, SE = Small-sized NE, ME = Medium-sized NE, LE = Large-sized NE 
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Figure 2.2 Droplet size distribution of SE, ME and LE. The droplet sizes were 

determined for SE (grey, 30 ± 9 nm), ME (blue, 212 ± 64 nm) and LE (red, 893 ± 158 nm) by 

dynamic light scattering at 100-fold dilution in distilled water to prevent multiple scattering. The 

peaks were distinct to each other without overlapping to ensure proper interpretation of in vivo 

results. Data were presented as the size distribution for one experimental. 
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Table 2.4 SE, ME and LE mean droplet size and PI determined by DLS 

(Mean ± SD, n=3) 

 Droplet size (nm) PI 

SE 29 ± 1 0.06 ± 0.02 

ME 214 ± 2 0.11 ± 0.02 

LE 883 ± 16 0.11 ± 0.10 
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2.3. The stability tests for the NEs 

2.3.1. Materials and methodology 

The prepared NEs were subjected to the stability tests including stability during storage under 

ambient temperature, stability against serial dilutions and stability in mice plasma in vitro.  

For the stability at ambient temperature, the prepared NEs were sampled for DLS droplet size 

determinations at 100-fold dilution in distilled water every 24 h for 3 days. The droplet size of SE 

and ME was also measured at 3 months while LE was visually observed every day after 3 days 

until phase separation occurred. For the stability against dilutions, the NEs were diluted 5-1000 

folds in pH 7.4 phosphate buffer saline (PBS) prior to droplet size determination by DLS. For the 

stability in mice plasma, 100 µL NEs (without dilution) was incubated with 100 µL mice plasma 

(Rockland antibodies and assays, Pennsylvania) at 100 rpm, 37°C. At sampling time point, a 40 

µL aliquot was sampled and diluted 50-fold in PBS prior to droplet size determination by DLS.  

 

2.3.2. Results and discussions 

2.3.2.1. NEs stability under ambient temperature 

Figure 2.3 shows the droplet size change upon storage time at ambient temperature. Within 3 

days, no significant droplet size changes were observed for all NEs. Notably, the droplet size 

variation for LE started to increase as early as Day 2. Since NE by nature is kinetically stable but 

thermodynamically unstable system (Gupta et al., 2016), the low concentration of HS in LE 

resulted in a faster droplet aggregation which eventually led to the phase separation on Day 7. SE 

and ME on the other hand, were much more stable up to the last observation time at 3 months. 

Apparently, the ultrasonication played a critical role to stabilize the NEs especially LE which 
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otherwise separated in less than 15 min without this process. Though LE had limited 

thermodynamic stability, a 72-h stable system was sufficient for the purpose of the current study. 

 

2.3.2.2. NEs stability against dilutions 

Figure 2.4 illustrates the impact of dilutions on the NEs. SE presented a good stability with no 

droplet size changes at all the tested dilution levels (5- to 1000-fold dilution) with the average 

size ranging from 24 nm to 32 nm. ME demonstrated size variation at 5-fold dilution (110 ± 14 

nm) and 10-fold dilution (155 ± 9 nm). Further dilution of ME from 50- to 1000-fold did not 

cause significant change in size with the mean droplet size ranging from 187 nm to 219 nm. The 

variations at lower dilution for ME and LE were likely due to the multiple scattering phenomenon 

by DLS since they both had much higher lipid concentrations versus SE. Multiple scattering 

refers to the phenomenon wherein photons scattered from the analyte are re-scattered from 

neighboring particles prior to reaching the instrument detector (Malvern technical bulletin). 

Therefore, this phenomenon occurs at higher particle concentration. The net result then, is that 

DLS size measurements in the presence of multiple scattering will be biased toward smaller sizes.  

LE showed variations in size upon dilution. Besides the size changes at lower dilution level (764 

± 310 nm at 5-fold and 1249 ± 198 nm at 10-fold), the droplet size also showed significant 

increase to 1782 ± 542 nm at 1000-fold dilution. This was probably because at this dilution level, 

the relative concentration of HS was not enough to reduce the surface tension, which resulted in 

the aggregation of the droplets. However, the LE droplet size appeared to be stable upon dilutions 

from 20 to 500-fold. And the estimated dilution of the NE after i.v. injection is in this range. 

Therefore, the stability of size at this range of dilution assures the LE size will not change due to 

dilution by plasma in the in vivo studies. 
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2.3.2.3. NEs stability in mice plasma in vitro 

As depicted in Figure 2.5, when incubated at 37 °C under mild shaking condition, ME and LE 

did not show droplet size change for 4 h which could be attributed to the use of Kolliphor® HS15 

(HS). HS is a PEGylated surfactant which comprises of 15 units of PEG monomer as the 

hydrophilic head. Due to the high hydrophilicity, chain flexibility, electrical neutrality, PEG helps 

to sterically stabilize NPs and prevent the interactions with biological components (Gref et al., 

1995; Avgoustakis, et al., 2003). Contrarily, SE droplet size increased from 1 h and became 

comparable to that of ME after 4 h despite the use of HS. This could be due to the much smaller 

size hence significantly larger surface area. The enhanced surface area might facilitate the 

interactions between the droplets and plasma protein.  
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Figure 2.3 The NEs stability under ambient temperature. At sampling time points, the 

NEs were sampled and diluted 100-fold in distilled water prior to droplet size determination by 

DLS. There was no droplet size change over 3 days for all three NEs. However, phase separation 

(*) was observed for LE after 7 days post preparation. SE and ME did not show droplet size 

change until 90 days (Mean ± SD, n=3). 
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Figure 2.4 NEs stability against dilutions in pH 7.4 PBS. Freshly prepared NEs were 

subject to different folds of dilutions in pH 7.4 PBS and the droplet sizes was determined by DLS 

(Mean ± SD, n=3). 
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Figure 2.5 NEs stability in mice plasma in vitro. NE were incubated with mice plasma at 

37°C, 100 RPM in vitro. The droplet size was measured by DLS after 100-fold dilution in PBS 

(Mean ± SD, n=3). *: Significantly different from the droplet size at time 0, P < 0.05. 
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2.4. Summary 

The NEs with distinct droplet sizes, i.e., the small-size NE (SE) of ~30 nm, the medium-size NE 

(ME) of ~200 nm and the large-size NE (LE) of ~ 900 nm, respectively, were successfully 

prepared. Unlike the NEs in the literature, these NEs, especially LE, demonstrated a narrow and 

well-defined droplet size distribution. The corresponding peaks of the three NEs did not overlap 

with each other so that they would not cause interference for the in vivo assessment. The NEs 

were subject to various stability tests. The results suggested that all the NEs demonstrated 

stability for at least 3 days when stored under ambient temperature. In addition, they were also 

stable against 20- to 500-fold dilution in pH 7.4 PBS. When incubated with the mice plasma in 

vitro, SE droplets tended to increase after 1 h whilst ME and LE maintained the initial droplet 

size. 
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Chapter 3. Establishment of DiI fluorometry and biological 

sample preparation protocol 

 

In this chapter, the following topics are addressed: 

• The development and validation of the fluorometry for DiI 

• The establishment of the in vivo animal model 

• The establishment of the preparation protocol and assay for biological samples 

 

3.1. Introduction 

Fluorescence dyes have found use in a wide spectrum of geological, biological and 

pharmaceutical sciences. Compared to fluorescent proteins, they present smaller molecules, better 

photostability and brightness, and the absence of maturation time (Süel et al., 2011). The 

fluorescence marker technology can be used to determine a variety of substances such as 

environmental pollutants, drugs, amino acids and nucleotides (Suzuki et al., 2015). The use of the 

fluorescent dyes extends to immunofluorescence microscopy, flow cytometry, cellular staining, 

tracking and intra-/inter-cellular trafficking, etc. In the field of nanotechnology, fluorescent dyes 

have also seen extensive applications in the evaluations of in vivo biological fate of different 

types of NPs such as polymeric NPs (Reisch et al., 2016), micelles (Wei, 2019) and liposomes 

(Tansi et al., 2015), etc. 
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The capabilities of a fluorescent dye used in the biological studies are mainly dependent on its 

physical properties. The extinction coefficient (the extent to which a fluorophore absorbs light), 

the quantum yield (the emission of fluorescence from an excited fluorophore) and the 

photostability are among the most important considerations when selecting the dyes (Wells et al., 

1990). Some commonly used dyes in pharmaceutical research include fluorescein isothiocyanate 

(FITC), rhodamines and lucifer yellow (LY), etc., each with advantages and limitations (Brelie, 

1993). For example, FITC provides reasonably large extinction coefficient and high quantum 

yields after conjugation with biological molecules, however it also associates with unfavorable 

properties such as aqueous decomposition, limited photostability, pH-sensitivity and overlapping 

emission spectrum with autofluorescence. Rhodamine, on the other hand, though more 

photostable and pH-insensitive, poses significantly lower quantum yield thus much dimmer 

fluorescent signals. Similarly, LY presents intense fluorescence and reasonable photostability 

whilst the extremely broad excitation and emission spectra complicate its detection in the 

presence of other fluorophores. 

Besides the above fluorescent dyes, the group of carbocyanine dyes (cyanines) has been 

developed and remained as the most prevalent fluorophores for in vivo imaging due to the long 

excitation and emission wavelengths which are distinguished from most of the autofluorescence 

generated by endogenous fluorophores from the body (Croce et al., 2014). Among the cyanine 

family, DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate, Figure 3.1), also 

known as DiIC18(3), provides some features such as (1) It diffuses laterally within the entire cell 

and subsequently well retained with little transfer to other cells; (2) It is weakly fluorescent in 

water but highly fluorescent and photostable in lipid membrane; (3) It possesses very bright 

signals with high extinction coefficients (Invitrogen, 2010); (4) It does not appreciably affect cell 

viability,  development, or basic physiological properties (Honig and Hume, 1989). Due to these 
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properties, DiI has been used in cellular staining (Fallatah et al., 2019), in vivo cell tracing 

(Endepols, 2001), ligand-receptor molecular transfer (Xu, 1992), etc. In addition, the water 

insolubility of DiI potentially render its usefulness especially in labeling lipid-based drug delivery 

system (LBDDS) such as NE. All these properties make DiI a good labeling candidate for the 

current study. To the best of our knowledge, DiI has not yet been utilized as a quantitative 

labeling agent for DDS. Therefore, it is important to establish DiI quantitative fluorometry 

method and to evaluate its suitability for the in vivo study purpose. 
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Figure 3.1 Chemical structure of DiI 
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3.2. DiI fluorometry method establishment and validation 

3.2.1. Materials and methodology 

DiI was purchased from Biotium (Biotium Inc., CA). Dimethylsulfoxide (DMSO) was of reagent 

grade (BDH, VWR). DiI Stock Solution (400 µg/mL) was prepared by the dissolution of DiI 

crystals in DMSO. The Standard Working Solutions were subsequently prepared from the Stock 

Solution to produce a DiI concentration range from 1.0 to 1000 ng/mL. Two hundred µL of the 

Standard Working Solutions was added to a well of 96-well black microplate and the 

fluorescence intensity was measured by a Glomax® Fluorescence Microplate Reader (San Luis 

Obispo, CA, USA) with the high sensitivity mode at room temperature. The excitation and 

emission wavelengths were 520 nm and 580-640 nm, respectively. The experiment was 

conducted in triplicate. The fluorescence intensity was plotted versus the DiI concentrations to 

obtain the standard calibration curve. The assay method was validated by accuracy and 

intermediate precision. Briefly, the accuracy of the method was conducted by the determination 

of a set of DiI solutions with known concentrations (5, 20, 50, 200 and 500 ng/mL). The 

measured concentration was compared to the theoretical concentration to obtain the percentage 

recovery. Intermediate precision was evaluated on different days to determine the relative 

standard deviation (%RSD). 

 

3.2.2. Results and discussions 

Figure 3.2 shows the linear regression curve for DiI standard solutions. The assay method had a 

linear range of 1.0 to 1000 ng/mL with a correlation coefficient of 0.9998 indicating a good 

correlation between DiI concentration in DMSO and its corresponding fluorescence intensity. The 

percentage recovery for the accuracy test of five known concentration standards (5, 20, 50, 200 
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and 500 ng/mL) was found to be 95.7 ± 4.2% (Table 3.1). In addition, the intermediate precision 

results indicated a 1.7% to 2.7% RSD (Table 3.2) throughout the concentrations within the linear 

range. The data demonstrated that the established fluorometry method for DiI was valid and 

reproducible. Furthermore, the lowest DiI concentration of 1.0 ng/mL which exhibited three times 

signal-noise ratio was comparable to that of Rhodamine-B of 0.5 ng/mL (Huang et al., 2016) and 

FITC of 2.2 ng/mL (Imasaka et al., 1977). This high sensitivity rendered practical use for the 

analysis of in vivo biological samples in which compounds of interest are usually presented in the 

concentration range of µg/mL, though the interference from the sample matrix should be 

carefully evaluated. 
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Figure 3.2 DiI standard calibration curve in DMSO (Mean ± SD, n=3). 
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Table 3.1 Accuracy of DiI fluorometry method (Mean ± SD, n=3) 

Nominal Concn. 

(ng/mL) 

Calculated Concn. 

(ng/mL) 
Recovery (%) 

5 5.1 ± 0.1 101.8 ± 1.8 

20 19.2 ± 0.6 96.0 ± 2.8 

50 48.0 ± 0.3 96.1 ± 0.6 

200 188.3 ± 1.3 94.2 ± 0.6 

500 451.2 ± 9.6 90.2 ± 1.9 

MEAN ± SD (n=5) 95.7 ± 4.2 
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Table 3.2 Intermediate precision of DiI fluorometry method (n=3) 

DiI Concn. (ng/mL) RSD (%) 

1 2.7 

4 2.3 

10 1.7 

40 1.7 

100 1.9 

400 1.7 

1000 1.9 
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3.3. The characterizations of DiI 

3.3.1. Materials and methodology 

Mice plasma (directly from non-hemolyzed blood from healthy and fasted donor) was purchased 

from Rockland Immunochemicals, Inc. (Pottstown, PA, USA) The stability of DiI in mice plasma 

was evaluated by incubation of 100 µL of DiI Standard Solution in Ethyl Alcohol (40 µg/mL) 

with 1.9 mL mouse plasma. The mixture was vortexed for 10 s and 10 µL aliquot was 

immediately assayed to determine the DiI concentration at time 0. The plasma was then shaken at 

200 rpm under 37°C in the dark. At each sampling time point (0.25, 0.5, 1 and 2 h), 10 µL aliquot 

was diluted in DMSO prior to the fluorescence intensity measurement. DiI concentration at each 

time point was presented as the percentage versus the concentration at time 0.  

The solubility of DiI in WL was determined by the addition of an excessive amount of DiI in WL. 

The mixture was shaken at 25°C for 72 hours. The mixture was subsequently centrifuged at 

15,700 g for 5 min and the supernatant was properly diluted in DMSO prior to the fluorometric 

assay.  

The partition coefficient of DiI in WL and MCM versus water was evaluated. Briefly, one mg of 

DiI was dissolved in 5 g of the lipids, respectively. Subsequently, equivalent volume of deionized 

water was added, and the mixture was shaken at 37°C, 200 rpm for 24 hours. The mixture was 

transferred to a separatory funnel to equilibrate and separate the two phases and each phase was 

assayed for DiI after proper dilution in DMSO. The Log partition coefficient was calculated 

based on the DiI concentration in each phase.  

The above experiments were conducted in triplicate. 
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DiI loaded NEs were prepared according to the formulations and subsequent preparation 

procedures described in Section 2.1.1., except for that DiI was first dissolved in WL to achieve a 

concentration of 2.5 mg DiI/g WL. The droplet size of DiI labeled NEs were measured by DLS at 

100-fold dilution in pH 7.4 PBS.  

 

3.3.2. Results and discussions 

Figure 3.3 depicts the stability of DiI in mice plasma. There was no degradation of DiI in 2 h 

indicating its photostability in mice plasma. In addition, DiI was characterized for lipophilicity. 

DiI had a 5.51 ± 0.09 mg/g WL solubility. Figure 3.4 illustrates DiI partition coefficient between 

WL/MCM and water. The high lipophilicity of DiI (log P = 4.31 ± 0.03, n=3) in WL versus water 

ensured the complete encapsulation of the dye in the NE droplets. These findings together 

suggested that DiI was a suitable fluorescent dye to label NEs. Finally, DiI was loaded into the 

NEs. Figure 3.5 shows the visual appearance of the DiI loaded SE (DSE), DiI loaded ME (DME) 

and DiI loaded LE (DLE), respectively. Table 3.3 summarizes the droplet size of DiI loaded NEs. 

The NEs droplet size was not affected by the loading of DiI. DSE had a final DiI concentration of 

0.2 mg/mL, whilst DME and DLE 1 mg/mL, respectively.  
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Figure 3.3 DiI stability in mice plasma. DiI was incubated with mice plasma at 37°C for 2 h 

in dark (Mean ± SD, n=3). 
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Figure 3.4 Partition coefficient of DiI in WL and MCM versus water (Mean ± SD, 
n=3). 
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Figure 3.5 Photos of DiI-loaded NEs. DiI loaded SE (DSE, 0.2 mg/mL) had a transparent 

appearance whilst DiI loaded ME (DME, 1 mg/mL) and LE (DLE, 1 mg/mL) were milky. 
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Table 3.3 DSE, DME and DLE mean droplet size and PI determined by DLS 

(Mean ± SD, n=3) 

 Droplet size (nm) PI 

SE 29 ± 2 0.06 ± 0.01 

ME 197 ± 3 0.16 ± 0.02 

LE 843 ± 101 0.34 ± 0.13 
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3.4. Tumor-bearing mice model 

3.4.1. Cell culture 

RPMI 1640 medium with L-glutamine, Hanks’ balance salt solution (HBSS), MEM vitamin, 

sodium pyruvate were purchased from Hyclone (Hyclone, UT). Fetal bovine serum 

(MilliporeSigma, MA), non-essential amino acids (Sigma Aldrich, MO), trypsin/EDTA (ATCC, 

VA), trypan blue (Nano Entek, South Korea), cell strainer (40 µm, Greiner Bio-One, Austria) 

were purchased through VWR. The complete medium (CM) was prepared under sterile condition 

according to Table 3.4 (Overwijk and Restifo, 2001)  

B16F10 melanoma cell was purchased from the National Cancer Institute (NCI). Upon arrival, 

the cell was rapidly thawed in 37°C water bath for 1.5 min until movement of ice clump occurred. 

The cell suspension was diluted in CM and centrifuged at 660 g for 10 min at 4°C (Eppendorf 

5804R, Germany). The cell pellet was resuspended in 3 mL CM which yielded 7.36×105 mL-1 

with 92% viability determined by trypan blue staining using a hemocytometer (Countess II FL, 

Life Technologies, CA). The cells were subcultured in CM at 37°C with 5% CO2 and were split 

at 1:10 to 1:5 ratio when 50% confluent. Cells with more than 95% viability were cryopreserved 

in 90% CM and 10% DMSO and stored in nitrogen vapor for future use. 

 

3.4.2. Mice inoculation 

Female C57BL/6J mice of 8-week old were purchased from Taconic Biosciences (Germantown, 

NY) and housed at the Animal Care Center at St. John’s University. The mice inoculation 

procedures were according to the protocol established by the NCI. (Overwijk and Restifo, 2001) 

Briefly, B16F10 melanoma cells were harvested by trypsin/EDTA at less than 50% confluence to 
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ensure the cells under logarithmic growth phase. Cells were resuspended in ice-cold HBSS and 

passed through disposable cell strainer to remove clumps. The final concentration was adjusted to 

1 × 106 cell/mL with a viability > 90%. The cell suspension 100 µL was injected subcutaneously 

(105 cells/mouse) into the right flank of the mice. The tumor size was measured every day after 7 

days by a caliper and calculated by Eq. (1): 

Tumor size = ½ × L × W2                                      Eq. (1) 

Where L was the length and W was the width of the tumor. (Tomayko and Reynolds, 1989) 

When the tumor volume reached 120 mm3 or any dimension of the tumor measured 18 mm, the 

further experiments were then carried out. 
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Table 3.4 The complete medium for B16F10 melanoma 

Medium Final concentration Volume (mL) 

RPMI1640 w/ L-glutamine - 500 

Fetal bovine serum (FBS) 10% v/v 55 

Non-essential amino acids 

(100×) 
100 µM 5.5 

Sodium pyruvate (100 mM) 1 mM 5.5 

MEM vitamin (100×) - 7.5 
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3.5. Biological sample preparation and DiI extraction protocol 

3.5.1. Materials and methodology 

Subcutaneous B16F10 melanoma bearing female C57BL/6J mice were anesthetized by 2.5% 

isoflurane inhalation. The blood was collected by cardiac puncture and then centrifuged at 2,000 

g, 4°C for 10 min to obtain the plasma. The mice were then sacrificed by carbon dioxide 

asphyxiation. The major organs including the heart, liver, spleen, lungs, kidneys, stomach, small 

intestine, colon, brain and tumor were collected. The tissues were wiped, weighed and 

homogenized by Pyrex® Tenbroeck homogenizer (Corning, NY) in deionized water at 1:4 or 1:9 

(w/v). The tissue homogenate and plasma were spiked with DiI standard solution by a HPLC 

manual syringe (ThermoFisher Scientific, Waltham, MA) at 0.1, 1, 10 and 50 µg*g-1 (DiI/tissue), 

respectively. Non-spiked tissue homogenates were used as the blank references. The spiked 

homogenates were extracted by two protocols. In the first protocol, equivalent volume of Ethyl 

Acetate (EA) was added to the homogenate, and the mixture were vortexed at 2,000 rpm for 30 

min (Scientific Industries, NY) followed by centrifugation at 15,700 g for 5 min. The supernatant 

was diluted in DMSO and subjected to the fluorometry method. In the second protocol, 

equivalent volume of EA was added to the homogenate, and the mixture was vortexed at 2,000 

rpm for 10 min followed by centrifugation at 15,700 g for 5 min. The supernatant was collected 

and replaced by equivalent volume of EA. The mixture was vortexed again at 2,000 rpm for 10 

min and centrifuged with the same condition to obtain the second supernatant. Both aliquots of 

the supernatant were diluted respectively in DMSO prior to fluorescence measurement. The 

extraction efficiency was presented as the percentage recovery of DiI. The experiments for the 

two protocols were individually conducted for at least three times. One-way analysis of variance 

(ANOVA) and two-tail paired t-test were conducted and a P < 0.05 was considered as 

significantly different. 
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3.5.2. Results and discussions 

The mice were inoculated with 105 B16F10 melanoma subcutaneously. Tumor became visible 

usually after 7 days and reached 120 mm3 in 10 to 14 days. To evaluate the extraction efficiency 

of DiI from various biological samples, we investigated two extraction protocols. The first 

protocol involved a single extraction on the spiked or blank tissues for 30 min (Figure 3.6) whilst 

the second protocol utilized a double extraction each for 10 min (Figure 3.7). Despite the longer 

total vortex time in the single extraction method, DiI recovery from all the biological samples fell 

in the range from 60 to 75% with the RSD ranging mainly from 10.9% to 24.9%. Nevertheless, 

when the double extraction was applied, though the total vortex time was shortened, DiI recovery 

were found mainly above 80% and for certain tissues over 90% with the RSD ranging mainly 

from 3.2% to 11.3%. This contrast suggested the double extraction protocol was capable of 

extracting DiI more efficiently and precisely from the various biological samples.  

Due to the complexity of in vivo biological sample matrix and the autofluorescence from various 

endogenous fluorophore (Croce and Bottiroli, 2014), it was important to evaluate and eliminate 

such interferences. The blank tissues therefore served for this purpose and underwent the same 

extraction protocols. The results showed that the EA extracts showed similar signal as the blank 

solvent reading which suggested the good specificity of the extraction protocols and the 

developed fluorometry. 

Statistical analysis was performed for the double extraction method to investigate whether there 

were differences among concentration levels for a given tissue and if there were differences 

among tissues within a given concentration level. The results demonstrated there was no 

significant difference in the mean extraction ratio of any given tissue among the concentration 

groups (0.1, 1, 10 and 50 µg/g tissue). This indicated the extraction method was consistent and 

reliable to extract DiI at least within the tested concentration range. However, various tissue 
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spiked with the same concentration of DiI exhibited different mean extraction ratio from 70.2% to 

97.0%. Such difference could be due to the difference of the lipophilic compositions in the tissue. 

For example, glial cells and lipophilic endocannabinoids are mostly abundant in the central 

nervous system (Scheller and Kirchhoff, 2016). In contrast, the stomach is uniquely comprised of 

three layers of highly content of smooth muscle. Due to such tissue variance, the grand mean 

(n=12) of the extraction ratio from a certain tissue was determined and would be further used 

individually as shown in Table 3.5. 
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Table 3.5 DiI extraction efficiency from biological tissues  

(Mean ± SD, n=12) 

Tissue Extraction efficiency (%) 

Heart 79.5 ± 3.0 

Liver 76.8 ± 1.2 

Spleen 82.6 ± 4.1 

Lungs 83.0 ± 2.6 

Kidneys 87.0 ± 2.5 

Stomach 74.6 ± 3.2 

Small Intestine 80.2 ± 2.4 

Colon 78.5 ± 2.0 

Brain 93.4 ± 1.0 

Tumor 84.3 ± 4.2 

Plasma 90.1 ± 2.9 
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Figure 3.6 Biological sample DiI extraction ratio by the single extraction protocol 

(Mean ± SD, n=6). 
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Figure 3.7 Biological sample DiI extraction ratio by the double extraction protocol 

(Mean ± SD, n=3). There was no significant difference of the extraction ratio from a 

given tissue among concentration groups. However, tissues within the same concentration 

group exhibited different mean extraction ratios. 
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3.6. Summary 

A fluorometry method for DiI was established and validated for accuracy and intermediate 

precision. DiI demonstrated high sensitivity with a linear range of 1.0 to 1000 ng/mL. DiI was 

characterized for its lipophilicity, with a log P of 4.31 and 2.00 in WL/H2O and MCM/H2O 

system, respectively. The stability of DiI in mice plasma was investigated in vitro and found to be 

stable for the 2-h experimental period. In addition, DiI-loaded NEs were prepared, which showed 

same droplet size and stability as the blank NEs. Furthermore, B16F10 melanoma bearing 

C57BL/6J mice model was established. Finally, the biological sample preparation and DiI 

extraction protocol were developed and evaluated. DiI extraction ratio from various tissues was 

determined to be 79.5% for the heart, 76.8% for the liver, 82.6% for the spleen, 83.0% for the 

lungs, 87.0% for the kidneys, 74.6% for the stomach, 80.2% for the small intestine, 78.5% for the 

colon, 93.4% for the brain, 84.3% for the tumor and 90.1% for the plasma. 

 

 

 

 

 

 

 

 

 



 
 

51 
 

 

Chapter 4. The in vivo biodistribution of the DiI-loaded 

nanoemulsions  

In this chapter, the following topics are elaborated: 

• The in vivo biodistribution experimental procedure and bioassay 

• DiI concentration-time profiles in various tissues after intravenous injection of DiI 

solution (DS), DSE, DME and DLE 

• The interpretation of the biodistribution data and the evaluation of NE size-dependent 

biodistribution 

 

4.1. Materials and methodology  

Female C57BL/6J mice of 8-week old were purchased from Taconic Biosciences (Germantown, 

NY) and housed at the Animal Care Center at St. John’s University. The mice were inoculated 

with B16F10 melanoma subcutaneously according to Section. 3.4.2. When the tumor volume 

reached 120 mm3 or any dimension of the tumor measured 18 mm (usually in 10 to 14 days), the 

following experiments were carried out. The mice were randomly and evenly divided into 4 

groups (21 mice/group). The mice were restrained in a mice restrainer, and then injected through 

the tail vein with DiI solution in 19% ethanol (DS), DSE, DME and DLE at the DiI dose of 5, 2, 5 

and 5 mg/kg, respectively. Sterile dextrose for injection (5%) (D5W, Baxter, IL) was used as the 

diluent in the formulations instead of distilled water. DSE was given at a lower dose due to its 

higher viscosity not suitable for direct intravenous administration thus a dilution was performed. 
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At each sampling time point (0.25, 0.5, 1, 2, 4, 6 and 10 h) post injection, three mice from each 

group were anesthetized with 2.5% isoflurane inhalation. The blood was collected by cardiac 

puncture and centrifuged at 2,000 g, 4 °C for 10 min to obtain the plasma (P). The mice were then 

immediately euthanized by carbon dioxide asphyxiation. The major organs including heart (H), 

liver (V), spleen (S), lungs (L), kidneys (K), stomach (T), small intestine (I), colon (C), brain (B) 

and tumor (U) were collected and all the biological samples were stored under -20 °C until 

analysis.  

DiI concentration in the biological samples was determined by the established protocol (See 

Section 3.5.). Briefly, the organs were weighed and homogenized with deionized water at 1:4, 

w/v. Two hundred and fifty µL of the homogenized sample was mixed with equivalent volume of 

EA and vortexed for 10 min at 2000 rpm followed by centrifuge at 15,700 g for 5 min. The 

supernatant was collected and replaced by equivalent volume of fresh EA. The mixture was 

vortexed for another 10 min at 2,000 rpm and a subsequent 5-min centrifuge at 15,700 g to obtain 

the second supernatant. Both aliquots of the supernatant were then diluted in DMSO and subject 

to the fluorometry method. DiI concentration in tissues was determined by the corresponding 

tissue extraction ratio (See Table 3.5) and the concentration-time profile was plotted.  

The major pharmacokinetics (PK) parameters were calculated by Phoenix® WinNonlin® 

(Certara, NJ). One-way analysis of variance (ANOVA) and two-tail paired t-test were conducted 

where applicable and a p < 0.05 was considered as significantly different. 

 

4.2. DiI concentration-time profiles in tissues 

Figure 4.1 through Figure 4.4 depict the DiI concentration-time profiles in various tissues 

followed by the administration of DS, DSE, DME and DLE, respectively. The comparison and 
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discussions in the following sections will be mainly focused on the observed concentrations and 

the apparent maximum concentrations (Cmax). Lists of the calculated PK parameters such as area 

under the curve (AUC), mean residence time (MRT) and detailed discussions, can be found in the 

Appendix.  

 

4.2.1. DiI tissue concentration-time profiles after i.v. administration of DS  

As a lipophilic compound with small molecular weight, DiI showed a rapid concentration decline 

in the plasma when given in the solution form (Figure 4.1). After 2 h, it was completely cleared 

from the plasma. Such fast plasma clearance could be partially due to the rapid tissue distribution, 

evidenced by the higher than plasma concentration in the liver, spleen and lungs at as early as the 

first sampling time point (0.25 h). It could also be possibly due to the partial precipitation of DiI 

upon instant dilution in the plasma. DiI concentrations in these tissues all peaked within 0.5 h 

with apparent Cmax of 16.34, 32.68 and 15.52 µg/g in the liver, spleen and lungs, respectively. In 

addition, a remaining DiI concentration was observed within these tissues in the late stage which 

could be due to the portion uptaken by the tissues and this process could be implemented by the 

two 18-carbon chains which firmly anchor in the cell membrane (Honig and Hume, 1986). On the 

other hand, it was observed that the distribution of DiI in heart, kidney, stomach, small intestine, 

colon and tumor was much less than that in liver, spleen and lung, with the apparent Cmax in these 

tissues ranging from 0.23–2.74 µg*g-1.  

 

4.2.2. DiI tissue concentration-time profiles after i.v. administration of DSE  

When DSE was administered intravenously to the mice, DiI plasma concentration dropped 

quickly but maintained, though low, at a constant level throughout the experiment period (Figure 
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4.2). Such “sustaining” effect was also seen in the various tissues: DiI concentrations showed 

more or less stable levels up to 10 h despite their peak concentrations occurred almost all early at 

0.25 h. In certain tissues such as the liver, spleen, stomach, colon and tumor, the DiI 

concentration at last sampling point (10 h) was higher than the previous one, indicating that the 

terminal elimination phase had not been reached at the end of the experiment (10 h). In addition, 

the apparent Cmax in liver and spleen was 1.44 and 1.13 µg*g-1, respectively, which were higher 

than the apparent Cmax in other tissues (0.08–0.74 µg*g-1).  

 

4.2.3. DiI tissue concentration-time profiles after i.v. administration of DME  

Different from the rapid plasma clearance after administration of DS and DSE, DiI plasma 

concentration demonstrated a much slower decrease rate when it was incorporated in the DME 

(Figure 4.3). The estimated initial plasma concentration at time zero was 29.19 µg*mL-1, which 

dropped down but then maintained at about 20 µg*mL-1 during the period of 0.25–1 h, and at 

about 6–8 µg*mL-1 during the period of 2–10 h. This prolonged plasma level rendered more 

chance and/or time of DiI to be distributed and accumulated in various tissues. As the result, high 

tissue concentrations were observed at late stage, with the concentration-time profile in a few 

tissues (liver, spleen, small intestine, colon and tumor) not reaching the final elimination phase at 

the end of the experiment (10 h), the Tmax in liver, spleen and tumor being 10 h.  

DME mainly distributed to the liver, spleen and lungs. The apparent Cmax in these tissues are in 

the order of lung > spleen > liver (37.39–20.65 µg*g-1). These apparent Cmaxs were much higher 

than the apparent Cmax in other tissues (0.46–10.01 µg*g-1), but similar as the estimated Cmax in 

plasma (29.19 µg*mL-1). The apparent Cmax in heart was 10.01 µg*g-1, which was in the middle 

between the apparent Cmaxs of the highly distributed tissues and the slightly distributed tissues 

ranging from 0.46–3.83 µg*g-1.  
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4.2.4. DiI tissue concentration-time profiles after i.v. administration of DLE  

From the concentration-time profiles (Figure 4.4), it can be seen that after the administration of 

DLE the plasma concentration decreased from the estimated 0-time 39.43 µg*mL-1 to about 20 

µg*mL-1 at 0.5 h and then remained around 10–15 µg*mL-1 during the period of 1–4 h, and 

thereafter became almost zero. In most tissues, DiI concentration peaked at 2 h, and diminished to 

almost zero at 6 h, which was correlated with the plasma profile.  

The organs with the highest distribution of DiI were spleen, lung and liver. The apparent Cmax in 

these organs was 69.44, 41.53 and 28.91 µg*g-1, respectively, which were  higher than the Cmax in 

the other tissues (0.66–5.63 µg*g-1), but close to the estimated apparent Cmax in plasma (39.43 

µg*mL-1). Among the lowly distributed tissues, the apparent Cmax in heart and kidney was 5.63 

and 4.85 µg*g-1, respectively, which were still much higher than the apparent Cmax in brain, colon, 

small intestine, stomach and tumor (0.66-2.27 µg*g-1).  

  

In summary, based on the DiI concentration-time profiles in the tissues followed by the 

intravenous administration of DS, DSE, DME and DLE, a common observation for each 

formulation was that DiI preferably distributed to the RES organs including the liver, spleen and 

lungs. The heart and kidneys, on the other hand showed much less DiI accumulation though they 

are highly perfused. Furthermore, the stomach, small intestine, colon and brain showed limited 

exposures to DiI, presumably due to the less blood flow or because of the blood brain barrier. 

Finally, DiI did not show significant distribution in the tumor tissue with the exception of the case 

by DME administration. In the following sections, further interpretation of the distribution 

patterns and the comparison among the formulations will be discussed.  
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Figure 4.1 DiI tissue concentration-time course after intravenous bolus injection of 5 

mg/kg DiI in solution (DS) in C57BL/6J mice (Mean ± SEM, n=3). 
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Figure 4.2 DiI tissue concentration time course after intravenous bolus injection of 2 

mg/kg DiI loaded in small-size nanoemulsion (DSE) in C57BL/6J mice (Mean ± SEM, 

n=3). 
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Figure 4.3 DiI tissue concentration time course after intravenous bolus injection of 5 

mg/kg DiI loaded in medium-size nanoemulsion (DME) in C57BL/6J mice (Mean ± 

SEM, n=3). 
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Figure 4.4 DiI tissue concentration time course after intravenous bolus injection of 5 

mg/kg DiI loaded in large-size nanoemulsion (DLE) in C57BL/6J mice (Mean ± SEM, 

n=3). 
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4.3. The comparison between individual NE versus solution in various tissues 

To illustrate the impact of NEs with different droplet sizes and how they alter the PK and 

biodistribution of the loaded DiI, the DSE, DME and DLE were first individually compared with 

the free solution. Figure 4.5 through Figure 4.15 present the DiI concentration-time profiles of 

the four formulations in each tissue.  

 

4.3.1. The plasma 

Figure 4.5 depicts the plasma profiles after the administration of DS, DSE, DME and DLE. It can 

be seen that DSE and DS resulted in very similar plasma profiles, with the consideration that the 

DSE had only less than half of the dose as DS. However, DME resulted in significantly (p < 0.05) 

higher plasma concentrations than DSE and DS at all the sampling time points except for at 1 h 

(yet about 20-fold higher). And DLE caused the similar plasma profile as DME except at the last 

two time points, where the plasma concentration decreased almost to zero as the DSE and DS. 

The phenomenon that the free solution dosage form (DS) resulted in much lower plasma 

concentration profile than DME and DLE could be due to multiple reasons (the low plasma 

concentration profile of DSE compared to DME and DLE is discussed in Sections 4.4.2.). First 

and most possibly, the free DiI was rapidly cleared from the plasma. As discussed previously, the 

liver, spleen and lungs already showed higher DiI concentrations at 0.25 h than that of the plasma 

indicating a fast distribution had occurred. The extrapolated Cmax at time 0 for DS, DME and DLE 

was 24.01, 29.19 and 39.43 µg/mL, respectively. These similar 0–time concentrations were 

expected as the doses were same. However, there were significant differences in concentrations at 

0.25 h and further time points indicate the possibility of the fast plasma clearance of DiI given as 

free solution. Secondly, a portion of DiI in the ethanol solution could immediately precipitated 
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because of the quick dilution in the blood after administration. Another possibility was that a 

portion of DiI partitioned into the cellular components of the blood which was therefore excluded 

from the plasma assay. But this was unlikely to happen when DS was given due to the slow 

staining rate of the dye into live tissues, not to mention in the dynamic flow of the blood stream 

(Invitrogen, 2010).  

 

4.3.2. The heart 

As shown in Figure 4.6, DiI peaked fast within 0.5 h followed by a rapid clearance from the heart 

resulting negligible concentration after 1 h when given in the DS. DSE demonstrated comparable 

concentration course in the heart as DS. Contrarily, DME and DLE, especially the former one, 

increased significantly the apparent Cmax of DiI in the heart, being 1.1-fold and 2.7-fold increase 

for DLE and DME, respectively. Since the heart is mostly comprised of myocardium and the 

blood perfusion is the major determinant for drug distribution into its tissue, the drug 

concentration in the heart usually correlates well with the corresponding heart concentration when 

given as the free solution form. The modification by drug delivery system could sometimes lead 

to the change in the PK of the drug in the heart, such as the case of the liposomal Doxorubicin 

(Papahadjopoulos et al., 1991). In the current study, increased DiI concentration was observed in 

the heart at each time point followed by DME administration, compared to the solution or other 

NEs. To the best of our knowledge, there lacks literature report on the heart distribution of NEs 

prepared with HS. It has been reported, however, that HS based micellar solutions altered the 

encapsulated drugs heart disposition as compared to the free drug solutions, though the results 

were somewhat contradictory (Ma et al., 2012; Lu et al., 2014). Therefore, at this point, it is hard 

to give an explanation on the favorable heart accumulation by DME. Nevertheless, this 
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observation is worth of further investigation and could possibly arise as a heart targeting drug 

delivery strategy.  

4.3.3. The liver, the spleen and the lungs 

The comparison for distribution in the liver, spleen and lungs tissues are grouped and discussed 

together (Figure 4.7, 4.8 and 4.9), as they are all highly perfused and also abundant with the RES 

thereby responsible for the particulate matters clearance, though the lungs play this role to a lesser 

extent (Baas et al., 1994). Indeed, DiI was mainly recovered from these tissues regardless of the 

formulations. However, when DME and DLE were administered, there was a further remarkable 

increase of the DiI distribution in these tissues as compared to the DS.  

It is interesting to see that the pattern of the concentration-time profile following DS 

administration was different from those after DME and DLE administration. The apparent peak 

concentration after DS administration occurred at 0.25 h (lung) and at 0.5 h (liver and spleen), 

and then rapidly decreased to negligible level at 2 h. This was probably due to 1) fast distribution 

of DiI as in a solution form into these tissues, and 2) DiI precipitated out after dosing in the blood 

circulation and the precipitate was captured by the RES system. And then DiI was quickly 

metabolized in these organs, especially maybe in the liver. The apparent peak concentration after 

DME and DLE administration reached at later time period than DS, which represented gradual 

accumulation in the organs of DiI when delivered in NE form which prolonged the residence time 

in the blood circulation. This was supported by the comparison of apparent plasma Cmaxs, since 

compared to DS, DME and DLE increased the plasma Cmax only 1.2- and 1.6-folds, respectively 

(Figure 4.16). 

Another interesting finding was observed from DSE. As mentioned earlier, unlike DME and 

DLE, DSE did not achieve significant increase in plasma exposure as compared to DS. In fact, 
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DSE actually decreased spleen and lungs exposures as compared to DS. The apparent Cmax in the 

liver, spleen and lungs decreased by 78%, 91.4% and 92.3%, respectively. In addition, DiI was 

not significantly recovered from the other tissues after DSE administration. The following 

discussion may help to explain this phenomenon. 

As demonstrated by Braet et al., noncontinuous endothelia with vascular fenestrations measuring 

50 to 100 nm is present in the liver which leads to nonspecific accumulation of particles larger 

than that (Braet et al., 2007). Similarly, splenic filtration accounts for retention of particles bigger 

than 200 nm, due to the 200-500 nm size range of inter-endothelial cell slits (Chen and Weiss, 

1973). The lung capillaries have even larger size cutoff in the micrometer range (2 to 5 μm). 

Although these are human anatomy parameters and no mouse parameters are found in the 

literature, it could be reasoned that the ~30 nm DSE might pass through the intercellular 

fenestrations in these mouse tissues freely, resulting significant lower accumulation. The present 

finding is in agreement with Attia et al. in whose study the NE with 55-nm size yielded reduced 

in vivo hepatic toxicity in rats and the authors attributed this to the reduced cellular uptake of the 

NE observed in vitro (Attia et al., 2016).  

 

4.3.4. The kidneys 

The distribution of DiI into the kidneys was generally low for all the formulations. DLE achieved 

the highest apparent Cmax around 5 µg*g-1, followed by DME (~4 µg*g-1), DS (~1 µg*g-1) and 

DSE (<1 µg*g-1). The apparent Tmax was 0.25, 0.5, 0.5 and 2 h for DSE, DS, DME and DLE, 

respectively. DME maintained the concentration within the range of 0.94-1.77 µg*g-1 during the 

period of 6-10 h, while the other three resulted in negligible concentrations.  
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4.3.5. The stomach, the small intestine, the colon and the brain 

The rest body tissues under investigation including the gastrointestinal tract (GIT) tissues and the 

brain were grouped and discussed together as they all showed limited DiI exposure (Figure 4.11 

through Figure 4.14). DS resulted in the concentration in the range of 0.11-0.40 µg*mL-1 in all 

the GIT tissues. DSE resulted in the concentration range in the GIT tissues similar to that by DS. 

DME and DLE achieved relatively higher concentration than DS, but still only in the range of 

0.30-2.35 µg*g-1 in the GIT tissues. Compared to DS, DME increased the apparent Cmax in the 

GIT tissues by 2.5-6.8 folds, and DLE achieved 1.8-4.0- fold increase. The overall low DiI 

distribution into these GIT tissues was probably because of the low blood perfusion.  

The distribution of DiI in the brain tissue was even lower than that in the GIT tissues for all the 

three NEs, with the majority concentrations being less than 0.2 µg*g-1. The apparent Cmax by 

DME and DLE was 0.46 and 0.66 µg*g-1, respectively, while only 0.1 µg*g-1 by DSE. Since the 

brain DiI concentration after the administration of the DS was not determined, it is impossible to 

compare DS vs the three NEs. Nevertheless considering the brain has a moderate to high blood 

perfusion similar as that of the liver (Gjedde and Gjedde, 1980), the absolute low DiI distribution 

in brain after the i.v. administration of the NEs indicates that the blood brain barrier (BBB) 

played a major role to prevent the NE droplets from entering the central nervous system (CNS). 

 

4.3.6. The tumor 

In the current study, DiI accumulation in the subcutaneous B16F10 melanoma was also studied to 

evaluate the potential formulation benefit for the enhanced tumor targeting effect. In general, the 

distribution of DiI in the tumor was low for all the formulations. DSE resulted in similar 

concentration profile (below 0.5 µg*g-1 throughout the entire experimental time) as DS. DLE 
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caused a 4.8--fold increase in apparent Cmax, as compared to DS. DME further profoundly 

enhanced DiI tumor disposition demonstrated by a 7.7- fold improved Cmax. Notably, DiI peaked 

in the tumor at 2 h post the injection of DLE and then dropped to negligible level at 6 h and 10 h. 

However, following DME administration, the accumulation in tumor continued to the last 

sampling point, resulted in the highest concentration (3.01 µg*g-1) at the end of the experiment.  

It has been well known that to fully utilize the EPR effect for NPs accumulation in tumor through 

passive diffusion, the prerequisites are first an optimal particle size to exert enhanced permeation 

as well as reduced lymphatic drainage, and secondly a sufficiently long circulation time to carry 

out such accumulation (Ma et al., 2012). As DME possesses both of the features of ~200 nm in 

size and the longest plasma circulation evidenced by the significant higher plasma concentration 

at the last sampling point, it indeed showed the most significant tumor uptake as compared to the 

other three dosage forms. 

 

As the summary of Section 4.3, NEs altered the biodistribution of DiI to various degrees. 

Compared to DS, DSE caused a minimum increase in biodistribution in some tissues but decrease 

in other tissues. However, DME and DLE enhanced the biodistribution in all tissues with 

remarkable increase in several tissues. Therefore, in the next section, the three NEs are compared 

to further elucidate the formulation impact on the NE biodistribution patterns. 
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Figure 4.5 DiI concentration-time course in the plasma after intravenous bolus 

injection of DiI solution (DS, 5 mg DiI/kg), small-size nanoemulsion (DSE, 2 mg 

DiI/kg), medium-size nanoemulsion (DME, 5 mg DiI/kg) and large-size nanoemulsion 

(DLE, 5 mg DiI/kg). (Mean ± SEM, n=3; Significantly different from DS (a) and DLE 

(b), p < 0.05) 
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Figure 4.6 DiI concentration-time course in the heart after intravenous bolus injection 

of DiI solution (DS, 5 mg DiI/kg), small-size nanoemulsion (DSE, 2 mg DiI/kg), 

medium-size nanoemulsion (DME, 5 mg DiI/kg) and large-size nanoemulsion (DLE, 5 

mg DiI/kg). (Mean ± SEM, n=3; Significantly different from DS (a) and DLE (b), p < 

0.05) 
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Figure 4.7 DiI concentration-time course in the liver after intravenous bolus injection 

of DiI solution (DS, 5 mg DiI/kg), small-size nanoemulsion (DSE, 2 mg DiI/kg), 

medium-size nanoemulsion (DME, 5 mg DiI/kg) and large-size nanoemulsion (DLE, 5 

mg DiI/kg). (Mean ± SEM, n=3; Significantly different from DS (a) and DLE (b), p < 

0.05) 
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Figure 4.8 DiI concentration-time course in the spleen after intravenous bolus 

injection of DiI solution (DS, 5 mg DiI/kg), small-size nanoemulsion (DSE, 2 mg 

DiI/kg), medium-size nanoemulsion (DME, 5 mg DiI/kg) and large-size nanoemulsion 

(DLE, 5 mg DiI/kg). (Mean ± SEM, n=3; Significantly different from DS (a) and DLE 

(b), p < 0.05) 
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Figure 4.9 DiI concentration-time course in the lungs after intravenous bolus injection 

of DiI solution (DS, 5 mg DiI/kg), small-size nanoemulsion (DSE, 2 mg DiI/kg), 

medium-size nanoemulsion (DME, 5 mg DiI/kg) and large-size nanoemulsion (DLE, 5 

mg DiI/kg). (Mean ± SEM, n=3; Significantly different from DS (a) and DLE (b), p < 

0.05) 
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Figure 4.10 DiI concentration-time course in the kidneys after intravenous bolus 

injection of DiI solution (DS, 5 mg DiI/kg), small-size nanoemulsion (DSE, 2 mg 

DiI/kg), medium-size nanoemulsion (DME, 5 mg DiI/kg) and large-size nanoemulsion 

(DLE, 5 mg DiI/kg). (Mean ± SEM, n=3; Significantly different from DS (a) and DLE 

(b), p < 0.05) 
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Figure 4.11 DiI concentration-time course in the stomach after intravenous bolus 

injection of DiI solution (DS, 5 mg DiI/kg), small-size nanoemulsion (DSE, 2 mg 

DiI/kg), medium-size nanoemulsion (DME, 5 mg DiI/kg) and large-size nanoemulsion 

(DLE, 5 mg DiI/kg). (Mean ± SEM, n=3; Significantly different from DS (a) and DLE 

(b), p < 0.05) 
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Figure 4.12 DiI concentration-time course in the small intestine after intravenous 

bolus injection of DiI solution (DS, 5 mg DiI/kg), small-size nanoemulsion (DSE, 2 mg 

DiI/kg), medium-size nanoemulsion (DME, 5 mg DiI/kg) and large-size nanoemulsion 

(DLE, 5 mg DiI/kg). (Mean ± SEM, n=3; Significantly different from DS (a) and DLE 

(b), p < 0.05) 
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Figure 4.13 DiI concentration-time course in the colon after intravenous bolus 

injection of DiI solution (DS, 5 mg DiI/kg), small-size nanoemulsion (DSE, 2 mg 

DiI/kg), medium-size nanoemulsion (DME, 5 mg DiI/kg) and large-size nanoemulsion 

(DLE, 5 mg DiI/kg). (Mean ± SEM, n=3; Significantly different from DS (a) and DLE 

(b), p < 0.05) 
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Figure 4.14 DiI concentration-time course in the brain after intravenous bolus 

injection of small-size nanoemulsion (DSE, 2 mg DiI/kg), medium-size nanoemulsion 

(DME, 5 mg DiI/kg) and large-size nanoemulsion (DLE, 5 mg DiI/kg). (Mean ± SEM, 

n=3) 
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Figure 4.15 DiI concentration-time course in the tumor after intravenous bolus 

injection of DiI solution (DS, 5 mg DiI/kg), small-size nanoemulsion (DSE, 2 mg 

DiI/kg), medium-size nanoemulsion (DME, 5 mg DiI/kg) and large-size nanoemulsion 

(DLE, 5 mg DiI/kg). (Mean ± SEM, n=3; Significantly different from DS (a) and DLE 

(b), p < 0.05) 
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Figure 4.16 The comparison of dose normalized DiI apparent maximum 

concentrations (Cmax) in various tissues after intravenous bolus injection of DiI loaded 

small-, medium- and large-size nanoemulsion (DSE, DME and DLE) versus DiI solution 

(DS), respectively. 
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4.4. Discussions on O/W NE biodistribution upon intravenous administration 

4.4.1. Potential factors contributed to the NE biodistribution 

In the literature, extensive research has been conducted to study the factors which may impact the 

PK and biodistribution of solid NPs. The particle size, shape/morphology, surface charge, 

PEGylation and targeting ligands of the NP are widely known factors which determine the in vivo 

behavior of the NPs (Alexis et al., 2008; Ernsting et al., 2013; Blanco et al., 2015). Therefore, it is 

necessary to discuss the variables involved in the current study which might contributed to the 

NEs biodistributions.  

Firstly, the shape of the liquid droplets was spherical in nature which should not be a concern. 

Secondly, the non-ionic surfactant HS was used without other ligands associated throughout all 

the NEs in the current study. The exclusive use of HS herein as the sole surfactant helped to 

minimize the effect from the droplet surface related variables. Notably, unlike solid NPs, it was 

not practical to obtain NEs with different droplet sizes yet at same surfactant concentrations, 

hence the inconsistent PEG concentration on the droplet surface of the developed NEs could have 

impact on their biodistributions.  

Besides the previous factors, the number of the droplets administered could also be a variable 

thus deserves a discussion. It has been reported that the highest ever tested single injected lipid 

dose for Intralipid® 10% was 10 g/kg (i.e., 1% mice weight) which was well tolerated by the 

mice, and because of that even higher dose was irrelevant to be tested (Product monograph for 

INTRALIPID® lipid injectable emulsion). This could probably explain why the approaches taken 

in the literature when studying the NPs size effect on biodistribution universally used constant 

drug/dye dose or surface area rather than the number of the NPs, as the number of NPs commonly 

administered falls far below the threshold the animals could tolerate. Similarly, the total lipid 
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used in the current study did not exceed 0.2% of the mice body weight, which makes it 

reasonable to assume that the lipid given also follows linear kinetics where the number of 

droplets would not impact on distribution. Moreover, the comparison of the three NEs in the 

current study shows no correlation between biodistribution and number of droplets. In general, 

the trend of the biodistribution change from DSE (with largest number of droplets) to DME was 

opposite to that from DME to DLE (with fewest number of droplet). For example, both DSE and 

DLE exhibited lower heart concentrations than DME.  

Based on the above discussion, the biological fate of the studied NEs should therefore be possibly 

impacted by their droplet size and the surface PEG density combinedly and the factors are related 

to each other and cannot be completely separated. 

 

4.4.2. The biodistribution of SE 

As discussed previously, though DSE had a dose normalized apparent Cmax comparable to other 

NEs, it contrarily showed limited plasma exposure. Neither did it accumulate in the RES tissues 

including the liver, spleen and lungs. In addition, the other tissues under investigation did not 

manifest major DiI recovery. Hence, the question where DSE has distributed in the body needs an 

answer. Since the renal filtration cutoff size is 5.5 nm (Choi et al., 2007) and even considering the 

mice kidney glomeruli pore radius as large as 9.6 nm (Jeansson and Haraldsson, 2003), DSE is 

still much larger in size which excludes the possibility by glomerular filtration. Herein, the 

following two kinds of possible in vivo fate of DSE are proposed.  

Moghimi et al. demonstrated that the endothelium of bone marrow sinusoids could remove 

particles from circulation by intercellular routes through the fenestrate in the endothelial wall and 

this route was strongly dependent on the particle size (Moghimi, 1995) because the size of the 
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fenestrate was reportedly 85-150 nm (Huang, 1971). Non-targeting liposomes were demonstrated 

to accumulate three-fold higher in bone marrow of dog when their size was reduced from 1200 to 

400 nm (Schettini et al., 2006). Similarly, non-ionic poloxamer-407 coated polymeric NPs less 

than 150 nm in size were found to have an enhanced bone marrow disposition in rabbits (Porter et 

al., 1992). As DSE is much smaller than these NPs in the literature, chances were that the 

majority of the droplets could pass through the fenestrations presented in the RES organs which 

resulted in the reduced accumulation in these tissues. Also considering the blood flow rate 

through the capillary bed in the bone marrow is 51 mL*(100 g)-1*min-1 in the rabbit (Cumming, 

1962) which is as rapid as the perfusion of 54 mL*(100 g)-1*min-1 into the brain (Kety and 

Schmidt, 1946), DSE could possibly show significant disposition in the bone marrow.  

The second hypothesis is associated with the fenestrations presented in the blood vessel 

epithelium. There are three main types of endothelium: continuous (lacking fenestrations), 

fenestrated and discontinuous (Risau, 1998; Robert and Palade, 2000). The fenestrations are more 

abundant in the endothelium of organs where a higher rate of exchange between intra- and 

extravascular compartments is required, such as in the gastrointestinal or peritubular renal 

capillaries (Simon and Filip, 2009). These fenestrations retain permeability to the 

macromolecules to some extent, and especially in discontinuous endothelia, larger fenestrations 

may allow passage of lipid particles such as chylomicrons (75-600 nm) and cellular debris 

(Levick and Smaje, 1987). Once these entities pass through the fenestra, they would be collected 

by the nearby lymphatic vessels to the lymph nodes or circulating in the lymphatic system. 

Thereby, DSE droplets could undergo this pathway and end up in the lymphatic system. Yet these 

speculations require further investigation.  
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4.4.3. The biodistribution of ME and LE 

DME and DLE both resulted in substantially distinct concentration-time profiles in the various 

tissues from DSE, but similar to each other with some differences. To further illustrate how DME 

and DLE altered the biodistribution of DiI, the point-to-point comparison of the tissue 

concentration ratio at each sampling time were utilized and the results are presented in Table 4.1. 

The advantage of this approach was that it did not rely on any assumption, yet practically the 

concentration in specific tissues is the determinant factor for the pharmacodynamic (PD) effect 

for most of the drugs. Furthermore, statistical analysis could also be performed.  

As shown in Table 4.1, the mean concentrations in the tissues by DME and DLE were first 

compared statistically. Values presented with underscore indicate the significant differences at 

95% confidence. Due to the large variations, many comparisons did not yield statistical 

differences though the mean value suggested potential difference. The increase of sample size 

could possibly address the issue. Herein though, the biodistribution pattern was analyzed by the 

color coding. The mean tissue concentration ratios of DME:DLE were grouped by four regions. A 

more than 2-fold in favor of DME was red-shaded, followed by the yellow area of favored DME 

but within 2-fold, then the blue area of favored DLE within 2-fold and lastly the blank area of 

favored DLE with more than 2-fold. The results demonstrated foremost that DME distributed in 

various tissues universally higher than DLE at 0.5 h and from 6 h and on. This non-specific 

enhanced tissue exposure should be due to the earlier peak at 0.5-1 h and the prolonged blood 

circulation of DME. On one side, it could be a useful formulation to deliver lipophilic anticancer 

drugs to the tumor by EPR; opposingly, as elaborated by Bittner, the change in PK by HS 

especially its non-specific high organ dispositions could possibly increase the encapsulated drugs 

toxicity (Bittner et al., 2003). This side effect could be elevated in certain tissues such as the heart 

based on our observation. As suggested by the color coding, DME had a higher heart distribution 
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compared to DLE almost throughout the test period. Secondly, DLE peaked at 2 h which caused a 

higher concentration in all the tissues than DME though this peak rapidly decreased ever since. 

Thirdly, the clear region of the liver, spleen and lungs from 0.25 to 2 h (except for 0.5 h) indicates 

a favorable distribution into these tissues by DLE and such pattern could be extended to 4 h just 

with less extent. As discussed previously, the vascular fenestration of the endothelia presented in 

the liver and spleen serves as a passive “mesh” (Braet et al., 2007; Chen and Weiss, 1973). 

Therefore, the larger droplet of DLE could be much easily trapped in these tissues whilst DME 

alleviated such effect due to the closeness of size to the cutoff. The reticuloendothelial system 

(RES) is also responsible for clearing particulate matters such as bacteria, fungi, viruses and 

dying cells from the circulation (Aschoff, 1924). As the droplet size increases, chances are that 

they could be more easily recognized thus subsequently end up mainly in the liver, spleen and 

lungs which are the major constituents of RES.  
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Table 4.1 The tissue mean concentration ratio of DME versus DLE 

Tissue 

Time (h) 

0.25 0.5 1 2 4 6 10 

Plasma 0.761 1.273 1.953 0.344 0.694 *19.884 11.926 

Heart 1.611 6.352 2.927 0.599 2.096 34.259 29.989 

Liver 0.159 2.639 0.335 0.206 0.674 27.214 12.647 

Spleen 0.324 6.127 0.542 0.097 0.729 115.887 18.333 

Lung 0.166 15.331 0.156 0.029 1.078 109.623 13.094 

Kidney 0.747 3.226 1.493 0.195 0.693 8.357 11.177 

Stomach 0.622 1.825 1.213 0.454 1.467 5.854 9.268 

Intestine 12.528 1.990 1.095 0.427 2.192 4.901 8.681 

Colon 1.000 0.830 1.257 0.364 1.095 3.436 4.216 

Brain 1.126 0.697 0.772 0.296 0.701 2.224 1.881 

Tumor 0.496 1.597 0.588 0.264 1.143 5.280 28.358 

* Value presented with underscore indicates a significant difference at P < 0.05 (n=3).  

DME/DLE: >2 (red), 1-2 (yellow), 0.5-1 (blue) and <0.5 (blank). 
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4.5. Summary 

DiI concentration-time profiles in various tissues were obtained after intravenous injection of DS, 

DSE, DME and DLE. The characteristics of the biodistribution pattern of the studied NEs are 

summarized in Table 4.2.  
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Table 4.2 The characteristics of the studied NE biodistributions 

 
Small-size NE 

(~30 nm) 

Medium-size NE 

(~200 nm) 

Large-size NE  

(~900 nm) 

Plasma 

circulation 
Not prolonged Significantly prolonged Not prolonged 

Plasma 

concentration 
Low High Intermediate 

RES organs 

(Liver, spleen 

and lungs) 

accumulation 

Very low 

Significantly enhanced, 

more profound in a 

long period of time 

Highly enhanced in the 

early hours, rapidly 

cleared then  

Preferably 

distributed 

organ 

Not found 
The RES organs and 

the heart 

The RES organs 

especially the spleen 

and the lungs 

Subcutaneous 

tumor 

accumulation 

Not significant Highly enhanced 
Intermediately 

enhanced 
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Chapter 5. Conclusion and perspectives 

 

In this chapter: 

• The current study is concluded and 

• Some perspectives originated from this study are provided. 

 

5.1. Conclusion 

In the current study, DiI loaded NEs with defined droplet sizes (~30, 200 and 900 nm) were 

prepared and tested in vivo for their biodistributions in C57BL/6J mice. The biodistributions of 

the NEs were impacted by their droplet size and surface PEG density. DSE did not show 

significant exposure to the tissues of interest and the biological fate required further 

investigations. DME showed a prolonged blood circulation, non-specific higher tissue 

accumulation than the other size NEs especially in the heart and tumor. DLE demonstrated a 

preferable accumulation in the liver, spleen and lung and subsequently quickly cleared from these 

organs. 

 

5.2. Perspectives 

Our current study has explored the intravenous NEs in vivo biodistribution patterns in C57BL/6J 

mice. The results suggest that the droplet size and surface PEG density contributed to the NEs 

biological fate. It needs to be pointed out that the distinct tissue uptake by different formulations 

should be carefully extrapolate to the other animal models or human. Species-dependent organ 
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specificity for liposome was previously observed (Sou et al., 2011). The inter-species difference 

is largely attributed to the significant different circulation time, and this effect is amplified 

especially in the small rodents such as mice and rats as compared to hamster, rabbit and rhesus 

monkey. Another important physiological difference between animal models is the balance 

between organ/tissue to body weight ratio. Research has shown the spleen-to-body weight ratio of 

the rat is 3 times greater than that of the primate and 9 times greater than the that of the rabbit. 

This variation of mass balance of mononuclear phagocytic system (MPS) is therefore a crucial 

factor determining the biodistribution of liposomes between rats and rabbits (Sou et al., 2005).  

Despite that the species difference should be scrutinized, yet the current study intrigues several 

potential follow-up research threads. First of all, it would be interesting to investigate the 

biological fate of small-size NE. Should SE truly end up in the bone marrow and lymphatic 

system, its containment in the circulatory system could be potentially useful in reducing systemic 

especially hepatic and renal toxicity of anticancer drugs in the treatment of blood-originated 

cancer such as leukemia and bone-related cancer. On the other hand, the favorable disposition of 

LE in the liver, spleen and lungs could be utilized as a size-dependent passive targeting strategy. 

Drugs which yield PD effect in these organs, such as Triclabendazole for fascioliasis and 

antibiotics for pulmonary infections, etc., could be encapsulated in LE for liver and lung targeted 

delivery, respectively. Secondly, for stage III liver and lung cancer, since the cancer has advanced 

to the nearby lymph nodes, the liver/lung targeting effect by LE could be possible to treat the 

whole organ and inhibit its distal metastasis. Further evaluation and comparison of the treatment 

efficacy of anticancer drug loaded ME and LE for liver/lung locally invaded tumor is hence 

desired to test the hypothesis. Notably, for these drug delivery purposes, LE should be optimized 

in such a way that the droplet size be reduced with wider size distributions acceptable for the 

improved formulation stability. Indeed, our preliminary results demonstrated that soybean lecithin 
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was an excellent NE stabilizer which simultaneously produce mean droplet size ranging from 300 

to 500 nm. In this regard, the commercialized intravenous lipid nutrition could possibly serve the 

same purpose as the potential DDS for liver/lung targeted drug delivery. And lastly, the enhanced 

heart distribution by ME could similarly open up certain research potential for heart targeted 

delivery.  
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Appendices 

The PK parameters from the current study were summarized in appendices. The parameters were 

obtained by non-compartmental analysis (NCA) with the aid of Phoenix® WinNonlin® (Certara, 

NJ). Linear trapezoidal and linear interpolation method with a uniform weighting were used to 

run the calculations. The PK parameters from DS, DSE, DME and DLE were summarized in 

Table A.1 through Table A.4, respectively. Figure A.1 illustrates the extent of the change in 

dose normalized DiI area under the curve (AUC0-10h) in various tissues by DSE, DME and DLE 

versus DS, respectively. Table A.5 compares DME and DLE by the ratio of plasma-normalized 

tissue AUC0-10h to show the intrinsic tissue affinity of the formulations.  
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Table A.1 Major apparent PK parameters in tissues followed by intravenous bolus 

administration of 5 mg/kg DiI in solution (DS) in C57BL/6J mice. 

 Cmax Tmax MRT0-10h MRT0-∞ AUC0-10h AUC0-∞ 

 
(µg*mL-1 or 

µg*g-1) 
(h) (h) (h) 

(µg*mL-1*h or 

µg*g-1*h) 

(µg*mL-1*h or 

µg*g-1*h) 

Plasma 24.01 0.0 1.97 3.34 7.45 8.30 

Heart 2.74 0.5 2.55 4.16 2.27 2.59 

Liver 16.34 0.5 3.97 10.87 23.28 38.40 

Spleen 32.68 0.5 3.77 8.45 35.92 51.05 

Lung 15.52 0.25 3.17 4.18 14.49 15.93 

Kidney 0.96 0.5 3.87 8.85 1.78 2.66 

Stomach 0.30 0.5 4.75 8.47 1.62 2.31 

Small Intestine 0.40 0.5 4.50 14.79 1.23 2.54 

Colon 0.23 0.25 4.92 19.48 1.03 2.64 

Tumor 0.39 0.5 4.79 19.22 1.12 2.81 
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Table A.2 Major apparent PK parameters in tissues followed by intravenous bolus 

administration of 2 mg/kg DiI in small-size nanoemulsion (DSE) in C57BL/6J mice. 

 Cmax Tmax MRT0-10h MRT0-∞ AUC0-10h AUC0-∞ 

 
(µg*mL-1 or 

µg*g-1) 
(h) (h) (h) 

(µg*mL-1*h or 

µg*g-1*h) 

(µg*mL-1*h or 

µg*g-1*h) 

Plasma 19.23 0.0 2.32 15.57 5.80 10.66 

Heart 0.74 0.25 4.28 45.01 1.52 7.14 

Liver 1.44 0.25 5.43 N/A* 11.18 N/A 

Spleen 1.13 0.25 5.41 N/A 5.99 N/A 

Lung 0.48 0.25 4.76 68.59 1.56 11.38 

Kidney 0.33 0.25 4.79 49.26 1.59 8.51 

Stomach 0.25 4.0 5.50 N/A 1.86 N/A 

Small Intestine 0.22 0.25 5.01 39.04 1.37 6.27 

Colon 0.21 10.0 6.00 N/A 1.17 N/A 

Brain 0.08 0.25 5.02 67.36 0.59 4.38 

Tumor 0.16 0.25 5.46 N/A 1.01 N/A 

*N/A: Not available. 
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Table A.3 Major apparent PK parameters in tissues followed by intravenous bolus 

administration of 5 mg/kg DiI in medium-size nanoemulsion (DME) in C57BL/6J 

mice. 

 Cmax Tmax MRT0-10h MRT0-∞ AUC0-10h AUC0-∞ 

 
(µg*mL-1 or 

µg*g-1) 
(h) (h) (h) 

(µg*mL-1*h or 

µg*g-1*h) 

(µg*mL-1*h or 

µg*g-1*h) 

Plasma 29.19 0.0 3.92 9.01 79.69 120.25 

Heart 10.01 1.0 4.76 32.57 50.33 192.91 

Liver 20.65 10.0 5.97 N/A* 146.67 N/A 

Spleen 31.03 4.0 5.58 N/A 198.67 N/A 

Lung 37.39 0.5 4.58 5.19 128.58 138.80 

Kidney 3.83 0.5 4.84 17.92 14.92 35.97 

Stomach 2.35 0.5 5.31 69.78 10.34 82.98 

Small Intestine 2.20 0.5 5.37 N/A 8.77 N/A 

Colon 0.81 0.5 5.43 N/A 4.14 N/A 

Brain 0.46 0.5 4.37 10.49 1.37 2.24 

Tumor 3.01 10.0 7.01 N/A 11.88 N/A 

*N/A: Not available. 
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Table A.4 Major apparent PK parameters in tissues followed by intravenous bolus 

administration of 5 mg/kg DiI in large-size nanoemulsion (DLE) in C57BL/6J mice. 

 Cmax Tmax MRT0-10h MRT0-∞ AUC0-10h AUC0-∞ 

 
(µg*mL-1 or 

µg*g-1) 
(h) (h) (h) 

(µg*mL-1*h or 

µg*g-1*h) 

(µg*mL-1*h or 

µg*g-1*h) 

Plasma 39.43 0.0 2.11 2.21 66.76 67.39 

Heart 5.63 2.0 2.55 2.65 18.10 18.29 

Liver 28.91 2.0 2.96 3.09 126.65 128.50 

Spleen 69.44 2.0 2.73 2.76 220.79 221.46 

Lung 41.53 2.0 2.48 2.48 140.41 140.55 

Kidney 4.85 2.0 2.71 2.83 14.57 14.76 

Stomach 1.50 2.0 2.90 3.47 5.88 6.22 

Small Intestine 1.11 0.5 3.12 4.19 4.09 4.52 

Colon 0.97 0.5 3.34 4.97 2.81 3.28 

Brain 0.66 0.5 3.00 4.00 1.60 1.76 

Tumor 2.27 2.0 2.80 3.07 6.62 6.81 
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Figure A.1 The comparison of dose normalized DiI apparent area under the curve 

(AUC0-10h) in various tissues after intravenous bolus injection of DiI loaded small-, 

medium- and large-size nanoemulsion (DSE, DME and DLE) versus DiI solution (DS), 

respectively. 
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Table A.5 The ratio of plasma-normalized tissue apparent AUC0-10h by DME versus 

DLE 

Tissue 
Plasma normalized AUC0-10h  Normalized 

ratio DME DLE 

Plasma N/A* N/A N/A 

Heart 0.653 0.293 2.23 

Liver 1.902 2.048 0.93 

Spleen 2.493 3.307 0.75 

Lung 1.667 2.271 0.73 

Kidney 0.193 0.236 0.82 

Stomach 0.134 0.095 1.41 

Intestine 0.114 0.066 1.73 

Colon 0.054 0.045 1.20 

Brain 0.018 0.026 0.69 

Tumor 0.154 0.107 1.44 

                            * N/A: Not applicable. 
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