Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2014.



## **Supporting Information**

for Small., DOI: 10.1002/smll.201303894

Donut-Shaped Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> Structures as a High Performance Anode Material for Lithium Ion Batteries

Anulekha K. Haridas, Chandra S. Sharma, \* and Tata N. Rao\*

## WILEY-VCH

## **Supporting Information**

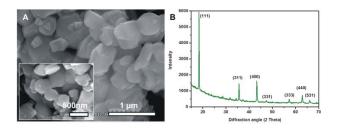



Figure S1. FESEM and XRD pattern of commercial LTO

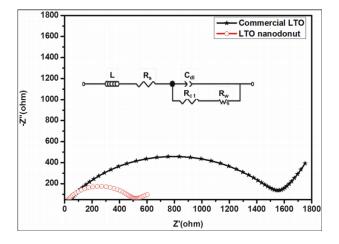



Figure S2. EIS Nyquist plot comparison of LTO sub-micron donuts and commercial LTO at 10 mV . An equivalent circuit for the same is also provided in the inset.

Electrochemical impedance curve fitting results on LTO sub-micron donuts and commercial LTO

| Sl. No |                                    | $R_{s(\Omega)}$ | C <sub>dl</sub> (µF) | $R_{ct}(\Omega)$ |
|--------|------------------------------------|-----------------|----------------------|------------------|
| 1.     | Commercial LTO                     | 11.93           | 22.51                | 1561             |
| 2.     | LTO <mark>sub-micron</mark> donuts | 4.79            | 24.12                | 484.9            |

## WILEY-VCH

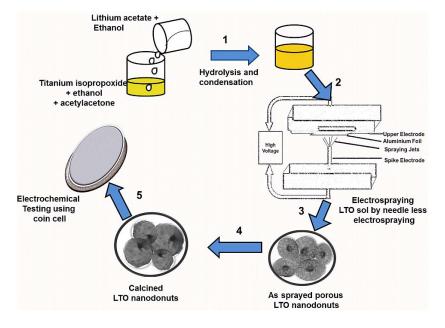



Figure S3. Schematic showing formation of LTO sub-micron donuts by sol-gel electrospinning for lithium ion battery application